CINXE.COM
Search results for: rotating vissel
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: rotating vissel</title> <meta name="description" content="Search results for: rotating vissel"> <meta name="keywords" content="rotating vissel"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="rotating vissel" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="rotating vissel"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 296</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: rotating vissel</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">296</span> Power Consumption for Viscoplastic Fluid in a Rotating Vessel with an Anchor Impeller </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Draoui%20Belkacem">Draoui Belkacem</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahmani%20Lakhdar"> Rahmani Lakhdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Benachour%20Elhadj"> Benachour Elhadj</a>, <a href="https://publications.waset.org/abstracts/search?q=Seghier%20Oussama"> Seghier Oussama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rheology is known to have a strong impact on the flow behavior and the power consumption of mechanically agitated vessels. The laminar 2D agitation flow and power consumption of viscoplastic fluids with an anchor impeller in a stirring tank is studied by using computational fluid dynamics (CFD). In this work the objective of this paper is: to evaluate the power consumption for yield stress fluids in standard mixing system. The power consumption is calculated for the different types of anchor impeller configurations and an optimum configuration is proposed.The hydrodynamic fields of incompressible yield stress fluid with model of Bingham in a cylindrical vessel not chicaned equipped with anchor stirrer was undertaken by means of numerical simulation. The flow structures, and especially the effect of inertia, the plasticity and the yield stress, are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rheology" title="rheology">rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=2D" title=" 2D"> 2D</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical" title=" numerical"> numerical</a>, <a href="https://publications.waset.org/abstracts/search?q=anchor" title=" anchor"> anchor</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20vissel" title=" rotating vissel"> rotating vissel</a>, <a href="https://publications.waset.org/abstracts/search?q=non-Newtonien%20fluid" title=" non-Newtonien fluid "> non-Newtonien fluid </a> </p> <a href="https://publications.waset.org/abstracts/20884/power-consumption-for-viscoplastic-fluid-in-a-rotating-vessel-with-an-anchor-impeller" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">295</span> Calculation of Stress Intensity Factors in Rotating Disks Containing 3D Semi-Elliptical Cracks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Fakoor">Mahdi Fakoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mohammad%20Navid%20Ghoreishi"> Seyed Mohammad Navid Ghoreishi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Initiation and propagation of cracks may cause catastrophic failures in rotating disks, and hence determination of fracture parameter in rotating disks under the different working condition is very important issue. In this paper, a comprehensive study of stress intensity factors in rotating disks containing 3D semi-elliptical cracks under the different working condition is investigated. In this regard, after verification of modeling and analytical procedure, the effects of mechanical properties, rotational velocity, and orientation of cracks on Stress Intensity Factors (SIF) in rotating disks under centrifugal loading are investigated. Also, the effects of using composite patch in reduction of SIF in rotating disks are studied. By that way, the effects of patching design variables like mechanical properties, thickness, and ply angle are investigated individually. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stress%20intensity%20factor" title="stress intensity factor">stress intensity factor</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-elliptical%20crack" title=" semi-elliptical crack"> semi-elliptical crack</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20disk" title=" rotating disk"> rotating disk</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis%20%28FEA%29" title=" finite element analysis (FEA)"> finite element analysis (FEA)</a> </p> <a href="https://publications.waset.org/abstracts/47599/calculation-of-stress-intensity-factors-in-rotating-disks-containing-3d-semi-elliptical-cracks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">294</span> Developing an Intelligent Table Tennis Ball Machine with Human Play Simulation for Technical Training</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chen-Chi%20An">Chen-Chi An</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun-Yi%20He"> Jun-Yi He</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Han%20Hsieh"> Cheng-Han Hsieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen-Ching%20Ting"> Chen-Ching Ting</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research has successfully developed an intelligent table tennis ball machine with human play simulate all situations of human play to take the service. It is well known; an excellent ball machine can help the table tennis coach to provide more efficient teaching, also give players the good technical training and entertainment. An excellent ball machine should be able to service all balls based on human play simulation due to the conventional competitions are today all taken place for people. In this work, two counter-rotating wheels are used to service the balls, where changing the absolute rotating speeds of the two wheels and the differences of rotating speeds between the two wheels can adjust the struck forces and the rotating speeds of the ball. The relationships between the absolute rotating speed of the two wheels and the struck forces of the ball as well as the differences rotating speeds between the two wheels and the rotating speeds of the ball are experimentally determined for technical development. The outlet speed, the ejected distance, and the rotating speed of the ball were measured by changing the absolute rotating speeds of the two wheels in terms of a series of differences in rotating speed between the two wheels for calibration of the ball machine; where the outlet speed and the ejected distance of the ball were further converted to the struck forces of the ball. In process, the balls serviced by the intelligent ball machine were based on the received calibration curves with help of the computer. Experiments technically used photosensitive devices to detect the outlet and rotating speed of the ball. Finally, this research developed some teaching programs for technical training using three ball machines and received more efficient training. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=table%20tennis" title="table tennis">table tennis</a>, <a href="https://publications.waset.org/abstracts/search?q=ball%20machine" title=" ball machine"> ball machine</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20play%20simulation" title=" human play simulation"> human play simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=counter-rotating%20wheels" title=" counter-rotating wheels"> counter-rotating wheels</a> </p> <a href="https://publications.waset.org/abstracts/49530/developing-an-intelligent-table-tennis-ball-machine-with-human-play-simulation-for-technical-training" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49530.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">293</span> A Rotating Facility with High Temporal and Spatial Resolution Particle Image Velocimetry System to Investigate the Turbulent Boundary Layer Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruquan%20You">Ruquan You</a>, <a href="https://publications.waset.org/abstracts/search?q=Haiwang%20Li"> Haiwang Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhi%20Tao"> Zhi Tao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A time-resolved particle image velocimetry (PIV) system is developed to investigate the boundary layer flow with the effect of rotating Coriolis and buoyancy force. This time-resolved PIV system consists of a 10 Watts continuous laser diode and a high-speed camera. The laser diode is able to provide a less than 1mm thickness sheet light, and the high-speed camera can capture the 6400 frames per second with 1024×1024 pixels. The whole laser and the camera are fixed on the rotating facility with 1 radius meters and up to 500 revolutions per minute, which can measure the boundary flow velocity in the rotating channel with and without ribs directly at rotating conditions. To investigate the effect of buoyancy force, transparent heater glasses are used to provide the constant thermal heat flux, and then the density differences are generated near the channel wall, and the buoyancy force can be simulated when the channel is rotating. Due to the high temporal and spatial resolution of the system, the proper orthogonal decomposition (POD) can be developed to analyze the characteristic of the turbulent boundary layer flow at rotating conditions. With this rotating facility and PIV system, the velocity profile, Reynolds shear stress, spatial and temporal correlation, and the POD modes of the turbulent boundary layer flow can be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rotating%20facility" title="rotating facility">rotating facility</a>, <a href="https://publications.waset.org/abstracts/search?q=PIV" title=" PIV"> PIV</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer%20flow" title=" boundary layer flow"> boundary layer flow</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20and%20temporal%20resolution" title=" spatial and temporal resolution"> spatial and temporal resolution</a> </p> <a href="https://publications.waset.org/abstracts/100655/a-rotating-facility-with-high-temporal-and-spatial-resolution-particle-image-velocimetry-system-to-investigate-the-turbulent-boundary-layer-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100655.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">292</span> Performance Analysis of a 6-Phase PMG Exciter with Rotating Thyristor-Controlled Rectification Topologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jonas%20Kristiansen%20N%C3%B8land">Jonas Kristiansen Nøland</a>, <a href="https://publications.waset.org/abstracts/search?q=Karina%20Hjelmervik"> Karina Hjelmervik</a>, <a href="https://publications.waset.org/abstracts/search?q=Urban%20Lundin"> Urban Lundin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The thyristor bridge rectifier is often used for control of excitation equipment for synchronous generators. However, on the rotating shaft of brushless exciters, the diode bridge rectifier is mostly used. The step response of a conventional brushless rotating excitation system is slow compared to static excitation systems. This paper investigates the performance of different thyristor-controlled rectification topologies applied on the shaft of a 6-phase PMG exciter connected to a synchronous generator. One of the important issues is the steady-state torque ripple produced by the thyristor bridges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brushless%20exciters" title="brushless exciters">brushless exciters</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20exciters" title=" rotating exciters"> rotating exciters</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20machines" title=" permanent magnet machines"> permanent magnet machines</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronous%20generators" title=" synchronous generators"> synchronous generators</a> </p> <a href="https://publications.waset.org/abstracts/35257/performance-analysis-of-a-6-phase-pmg-exciter-with-rotating-thyristor-controlled-rectification-topologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">291</span> Experimental Investigation of Boundary Layer Instability and Transition on a Rotating Parabola in Axial Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Kargar">Ali Kargar</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamyar%20Mansour"> Kamyar Mansour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper the boundary layer instability and transition on a rotating parabola which is sheathed shape on a rotating 30 degrees total apex angle cone have been study by smoke visualization. The rotating cone especially 30 degrees total apex angle is a well-established subject in some previous novel works and also in our previous works. But in this paper a stabilizing effect is detected by the bluntness of nose and also surface curvature. A parabola model which is satisfying those conditions (sheathed parabola of the 30 degrees cone) has been built and studied in the wind tunnel. The results are shown that the boundary layer transition occurs at higher rotational Reynolds number in comparison by the cone. The results are shown in the visualization pictures and also are compared graphically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transitional%20Reynolds%20number" title="transitional Reynolds number">transitional Reynolds number</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel" title=" wind tunnel"> wind tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=smoke%20visualization" title=" smoke visualization"> smoke visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20parabola" title=" rotating parabola"> rotating parabola</a> </p> <a href="https://publications.waset.org/abstracts/36194/experimental-investigation-of-boundary-layer-instability-and-transition-on-a-rotating-parabola-in-axial-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">290</span> Brief Review of the Self-Tightening, Left-Handed Thread</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Robert%20S.%20Giachetti">Robert S. Giachetti</a>, <a href="https://publications.waset.org/abstracts/search?q=Emanuele%20Grossi"> Emanuele Grossi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Loosening of bolted joints in rotating machines can adversely affect their performance, cause mechanical damage, and lead to injuries. In this paper, two potential loosening phenomena in rotating applications are discussed. First, ‘precession,’ is governed by thread/nut contact forces, while the second is based on inertial effects of the fastened assembly. These mechanisms are reviewed within the context of historical usage of left-handed fasteners in rotating machines which appears absent in the literature and common machine design texts. Historically, to prevent loosening of wheel nuts, vehicle manufacturers have used right-handed and left-handed threads on different sides of the vehicle, but most modern vehicles have abandoned this custom and only use right-handed, tapered lug nuts on all sides of the vehicle. Other classical machines such as the bicycle continue to use different handed threads on each side while other machines such as, bench grinders, circular saws and brush cutters still use left-handed threads to fasten rotating components. Despite the continued use of left-handed fasteners, the rationale and analysis of left-handed threads to mitigate self-loosening of fasteners in rotating applications is not commonly, if at all, discussed in the literature or design textbooks. Without scientific literature to support these design selections, these implementations may be the result of experimental findings or aged institutional knowledge. Based on a review of rotating applications, historical documents and mechanical design references, a formal study of the paradoxical nature of left-handed threads in various applications is merited. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rotating%20machinery" title="rotating machinery">rotating machinery</a>, <a href="https://publications.waset.org/abstracts/search?q=self-loosening%20fasteners" title=" self-loosening fasteners"> self-loosening fasteners</a>, <a href="https://publications.waset.org/abstracts/search?q=wheel%20fastening" title=" wheel fastening"> wheel fastening</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20loosening" title=" vibration loosening"> vibration loosening</a> </p> <a href="https://publications.waset.org/abstracts/131028/brief-review-of-the-self-tightening-left-handed-thread" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">289</span> Feasibility Study of Wireless Communication for the Control and Monitoring of Rotating Electrical Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Ben%20Brahim">S. Ben Brahim</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20H.%20Vuong"> T. H. Vuong</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20David"> J. David</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Bouallegue"> R. Bouallegue</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Pietrzak-David"> M. Pietrzak-David</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrical machine monitoring is important to protect motor from unexpected problems. Today, using wireless communication for electrical machines is interesting for both real time monitoring and diagnostic purposes. In this paper, we propose a system based on wireless communication IEEE 802.11 to control electrical machine. IEEE 802.11 standard is recommended for this type of applications because it provides a faster connection, better range from the base station, and better security. Therefore, our contribution is to study a new technique to control and monitor the rotating electrical machines (motors, generators) using wireless communication. The reliability of radio channel inside rotating electrical machine is also discussed. Then, the communication protocol, software and hardware design used for the proposed system are presented in detail and the experimental results of our system are illustrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=control" title="control">control</a>, <a href="https://publications.waset.org/abstracts/search?q=DFIM%20machine" title=" DFIM machine"> DFIM machine</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20field" title=" electromagnetic field"> electromagnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=EMC" title=" EMC"> EMC</a>, <a href="https://publications.waset.org/abstracts/search?q=IEEE%20802.11" title=" IEEE 802.11"> IEEE 802.11</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring" title=" monitoring"> monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20electrical%20machines" title=" rotating electrical machines"> rotating electrical machines</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20communication" title=" wireless communication"> wireless communication</a> </p> <a href="https://publications.waset.org/abstracts/34526/feasibility-study-of-wireless-communication-for-the-control-and-monitoring-of-rotating-electrical-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">695</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">288</span> Orientation of Rotating Platforms on Mobile Vehicles by GNNS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20I%CC%87mrek">H. İmrek</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Corumluoglu"> O. Corumluoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Akdemir"> B. Akdemir</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Sanlioglu"> I. Sanlioglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is important to be able to determine the heading direction of a moving vehicle with respect to a distant location. Additionally, it is important to be able to direct a rotating platform on a moving vehicle towards a distant position or location on the earth surface, especially for applications such as determination of the Kaaba direction for daily Muslim prayers. GNNS offers some reasonable solutions. In this study, a functional model of such a directing system supported by GNNS is discussed, and an appropriate system is designed for these purposes. An application for directing system is done by using RTK and DGNSS. Accuracy estimations are given for this system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GNNS" title="GNNS">GNNS</a>, <a href="https://publications.waset.org/abstracts/search?q=orientation%20of%20rotating%20platform" title=" orientation of rotating platform"> orientation of rotating platform</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20orientation" title=" vehicle orientation"> vehicle orientation</a>, <a href="https://publications.waset.org/abstracts/search?q=prayer%20aid%20device" title=" prayer aid device"> prayer aid device</a> </p> <a href="https://publications.waset.org/abstracts/37188/orientation-of-rotating-platforms-on-mobile-vehicles-by-gnns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">287</span> Flow Analysis of Viscous Nanofluid Due to Rotating Rigid Disk with Navier’s Slip: A Numerical Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalil%20Ur%20Rehman">Khalil Ur Rehman</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Y.%20Malik"> M. Y. Malik</a>, <a href="https://publications.waset.org/abstracts/search?q=Usman%20Ali"> Usman Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the problem proposed by Von Karman is treated in the attendance of additional flow field effects when the liquid is spaced above the rotating rigid disk. To be more specific, a purely viscous fluid flow yield by rotating rigid disk with Navier’s condition is considered in both magnetohydrodynamic and hydrodynamic frames. The rotating flow regime is manifested with heat source/sink and chemically reactive species. Moreover, the features of thermophoresis and Brownian motion are reported by considering nanofluid model. The flow field formulation is obtained mathematically in terms of high order differential equations. The reduced system of equations is solved numerically through self-coded computational algorithm. The pertinent outcomes are discussed systematically and provided through graphical and tabular practices. A simultaneous way of study makes this attempt attractive in this sense that the article contains dual framework and validation of results with existing work confirms the execution of self-coded algorithm for fluid flow regime over a rotating rigid disk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Navier%E2%80%99s%20condition" title="Navier’s condition">Navier’s condition</a>, <a href="https://publications.waset.org/abstracts/search?q=Newtonian%20fluid%20model" title=" Newtonian fluid model"> Newtonian fluid model</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20reaction" title=" chemical reaction"> chemical reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20source%2Fsink" title=" heat source/sink"> heat source/sink</a> </p> <a href="https://publications.waset.org/abstracts/82330/flow-analysis-of-viscous-nanofluid-due-to-rotating-rigid-disk-with-naviers-slip-a-numerical-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82330.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">286</span> Numerical and Experimental Investigation of the Aerodynamic Performances of Counter-Rotating Rotors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Beldjilali">Ibrahim Beldjilali</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20Ghenaiet"> Adel Ghenaiet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The contra-rotating axial machine is a promising solution for several applications, where high pressure and efficiencies are needed. Also, they allow reducing the speed of rotation, the radial spacing and a better flexibility of use. However, this requires a better understanding of their operation, including the influence of second rotor on the overall aerodynamic performances. This work consisted of both experimental and numerical studies to characterize this counter-rotating fan, especially the analysis of the effects of the blades stagger angle and the inter-distance between the rotors. The experimental study served to validate the computational fluid dynamics model (CFD) used in the simulations. The numerical study permitted to cover a wider range of parameter and deeper investigation on flow structures details, including the effects of blade stagger angle and inter-distance, associated with the interaction between the rotors. As a result, there is a clear improvement in aerodynamic performance compared with a conventional machine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20performance" title="aerodynamic performance">aerodynamic performance</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20fan" title=" axial fan"> axial fan</a>, <a href="https://publications.waset.org/abstracts/search?q=counter%20rotating%20rotors" title=" counter rotating rotors"> counter rotating rotors</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20study" title=" experimental study"> experimental study</a> </p> <a href="https://publications.waset.org/abstracts/107619/numerical-and-experimental-investigation-of-the-aerodynamic-performances-of-counter-rotating-rotors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">285</span> The Creep Analysis of a Varying Thickness on a Rotating Composite Disk with Different Particle Size by Using Sherby’s Law</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rupinder%20Kaur">Rupinder Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Harjot%20Kaur"> Harjot Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this paper is to present the study of the effect of varying thickness on rotating composite disks made from Al-SiC_P having different particle sizes. Mathematical modeling is used to calculate the effect of varying thickness with different particle sizes on rotating composite disks in radial as well as tangential directions with thermal gradients. In comparison to various particle sizes with varied thicknesses, long-term deformation occurs. The results are displayed visually, demonstrating how creep deformation decreases with changing particle size and thickness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=creep" title="creep">creep</a>, <a href="https://publications.waset.org/abstracts/search?q=varying%20thickness" title=" varying thickness"> varying thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size" title=" particle size"> particle size</a>, <a href="https://publications.waset.org/abstracts/search?q=stresses%20and%20strain%20rates" title=" stresses and strain rates"> stresses and strain rates</a> </p> <a href="https://publications.waset.org/abstracts/173915/the-creep-analysis-of-a-varying-thickness-on-a-rotating-composite-disk-with-different-particle-size-by-using-sherbys-law" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173915.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">284</span> An Experimental Study of Low Concentration CO₂ Capture from Regenerative Thermal Oxidation Tail Gas in Rotating Packed Bed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dang%20HuynhMinhTam">Dang HuynhMinhTam</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuang-Cong%20Lu"> Kuang-Cong Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Hung%20Chen"> Yi-Hung Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhung-Yu%20Lin"> Zhung-Yu Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Siang%20Cheng"> Cheng-Siang Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon capture, utilization, and storage (CCUS) technology become a predominant technique to mitigate carbon dioxide and achieve net-zero emissions goals. This research targets to continuously capture the low concentration CO₂ from the tail gas of the regenerative thermal oxidizer (RTO) in the high technology industry. A rotating packed bed (RPB) reactor is investigated to capture the efficiency of CO₂ using a mixture of NaOH/Na₂CO₃ solutions to simulate the real absorbed solution. On a lab scale, semi-batch experiments of continuous gas flow and circulating absorbent solution are conducted to find the optimal parameters and are then examined in a continuous operation. In the semi-batch tests, the carbon capture efficiency and pH variation in the conditions of a low concentration CO₂ (about 1.13 vol%), the NaOH concentration of 1 wt% or 2 wt% mixed with 14 wt% Na₂CO₃, the rotating speed (600, 900, 1200 rpm), the gas-liquid ratio (100, 200, and 400), and the temperature of absorbent solution of 40 ºC are studied. The CO₂ capture efficiency significantly increases with higher rotating speed and smaller gas-liquid ratio, respectively, while the difference between the NaOH concentration of 1 wt% and 2 wt% is relatively small. The maximum capture efficiency is close to 80% in the conditions of the NaOH concentration of 1 wt%, the G/L ratio of 100, and the rotating speed of 1200 rpm within the first 5 minutes. Furthermore, the continuous operation based on similar conditions also demonstrates the steady efficiency of the carbon capture of around 80%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide%20capture" title="carbon dioxide capture">carbon dioxide capture</a>, <a href="https://publications.waset.org/abstracts/search?q=regenerative%20thermal%20oxidizer" title=" regenerative thermal oxidizer"> regenerative thermal oxidizer</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20packed%20bed" title=" rotating packed bed"> rotating packed bed</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20hydroxide" title=" sodium hydroxide"> sodium hydroxide</a> </p> <a href="https://publications.waset.org/abstracts/182235/an-experimental-study-of-low-concentration-co2-capture-from-regenerative-thermal-oxidation-tail-gas-in-rotating-packed-bed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">283</span> Linear Dynamic Stability Analysis of a Continuous Rotor-Disk-Blades System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Rahimi%20Dehgolan">F. Rahimi Dehgolan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20E.%20Khadem"> S. E. Khadem</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bab"> S. Bab</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Najafee"> M. Najafee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, using rotating systems like shafts and disks in industrial machines have been increased constantly. Dynamic stability is one of the most important factors in designing rotating systems. In this study, linear frequencies and stability of a coupled continuous flexible rotor-disk-blades system are studied. The Euler-Bernoulli beam theory is utilized to model the blade and shaft. The equations of motion are extracted using the extended Hamilton principle. The equations of motion have been simplified using the Coleman and complex transformations method. The natural frequencies of the linear part of the system are extracted, and the effects of various system parameters on the natural frequencies and decay rates (stability condition) are clarified. It can be seen that the centrifugal stiffening effect applied to the blades is the most important parameter for stability of the considered rotating system. This result highlights the importance of considering this stiffing effect in blades equation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rotating%20shaft" title="rotating shaft">rotating shaft</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20blades" title=" flexible blades"> flexible blades</a>, <a href="https://publications.waset.org/abstracts/search?q=centrifugal%20stiffness" title=" centrifugal stiffness"> centrifugal stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/56540/linear-dynamic-stability-analysis-of-a-continuous-rotor-disk-blades-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">282</span> Analysis of Impact of Airplane Wheels Pre-Rotating on Landing Gears of Large Airplane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huang%20Bingling">Huang Bingling</a>, <a href="https://publications.waset.org/abstracts/search?q=Jia%20Yuhong"> Jia Yuhong</a>, <a href="https://publications.waset.org/abstracts/search?q=Liu%20Yanhui"> Liu Yanhui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As an important part of aircraft, landing gears are responsible for taking-off and landing function. In recent years, big airplane's structural quality increases a lot. As a result, landing gears have stricter technical requirements than ever before such as structure strength and etc. If the structural strength of the landing gear is enhanced through traditional methods like increasing structural quality, the negative impacts on the landing gear's function would be very serious and even counteract the positive effects. Thus, in order to solve this problem, the impact of pre-rotating of landing gears on performance of landing gears is studied from the theoretical and experimental verification in this paper. By increasing the pre-rotating speed of the wheel, it can improve the performance of the landing gear and reduce the structural quality, the force of joint parts and other properties. In addition, the pre-rotating of the wheels also has other advantages, such as reduce the friction between wheels and ground and extend the life of the wheel. In this paper, the impact of the pre-rotating speed on landing gears and the connecting between landing gears performance and pre-rotating speed would be researched in detail. This paper is divided into three parts. In the first part, large airplane landing gear model is built by CATIA and LMS. As most general landing gear type in big plane, four-wheel landing gear is picked as model. The second part is to simulate the process of landing in LMS motion, and study the impact of pre-rotating of wheels on the aircraft`s properties, including the buffer stroke, efficiency, power; friction, displacement and relative speed between piston and sleeve; force and load distribution of tires. The simulation results show that the characteristics of the different pre-rotation speed are understood. The third part is conclusion. Through the data of the previous simulation and the relationship between the pre-rotation speed of the aircraft wheels and the performance of the aircraft, recommended speed interval is proposed. This paper is of great theoretical value to improve the performance of large airplane. It is a very effective method to improve the performance of aircraft by setting wheel pre-rotating speed. Do not need to increase the structural quality too much, eliminating the negative effects of traditional methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=large%20airplane" title="large airplane">large airplane</a>, <a href="https://publications.waset.org/abstracts/search?q=landing%20gear" title=" landing gear"> landing gear</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-rotating" title=" pre-rotating"> pre-rotating</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/75746/analysis-of-impact-of-airplane-wheels-pre-rotating-on-landing-gears-of-large-airplane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">281</span> Mixed Convection Enhancement in a 3D Lid-Driven Cavity Containing a Rotating Cylinder by Applying an Artificial Roughness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Khaleel%20Kareem">Ali Khaleel Kareem</a>, <a href="https://publications.waset.org/abstracts/search?q=Shian%20Gao"> Shian Gao</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Qasim%20Ahmed"> Ahmed Qasim Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical investigation of unsteady mixed convection heat transfer in a 3D moving top wall enclosure, which has a central rotating cylinder and uses either artificial roughness on the bottom hot plate or smooth bottom hot plate to study the heat transfer enhancement, is completed for fixed circular cylinder, and anticlockwise and clockwise rotational speeds, -1 ≤ Ω ≤ 1, at Reynolds number of 5000. The top lid-driven wall was cooled, while the other remaining walls that completed obstructed cubic were kept insulated and motionless. A standard k-ε model of Unsteady Reynolds-Averaged Navier-Stokes (URANS) method is involved to deal with turbulent flow. It has been clearly noted that artificial roughness can strongly control the thermal fields and fluid flow patterns. Ultimately, the heat transfer rate has been dramatically increased by involving artificial roughness on the heated bottom wall in the presence of rotating cylinder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20roughness" title="artificial roughness">artificial roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=lid-driven%20cavity" title=" lid-driven cavity"> lid-driven cavity</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20convection%20heat%20transfer" title=" mixed convection heat transfer"> mixed convection heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20cylinder" title=" rotating cylinder"> rotating cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=URANS%20method" title=" URANS method"> URANS method</a> </p> <a href="https://publications.waset.org/abstracts/91416/mixed-convection-enhancement-in-a-3d-lid-driven-cavity-containing-a-rotating-cylinder-by-applying-an-artificial-roughness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91416.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">280</span> Performance and Structural Evaluation of the Torrefaction of Bamboo under a High Gravity (Higee) Environment Using a Rotating Packed Bed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mark%20Daniel%20De%20Luna">Mark Daniel De Luna</a>, <a href="https://publications.waset.org/abstracts/search?q=Ma.%20Katreena%20Pillejera"> Ma. Katreena Pillejera</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Hsin%20Chen"> Wei-Hsin Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The raw bamboo (Phyllostachys mankinoi), with a moisture content of 13.54 % and a higher heating value (HHV) of 17.657 MJ/kg, was subjected to torrefaction under a high gravity (higee) environment using a rotating packed bed. The performance of the higee torrefaction was explored in two parts: (1) effect of rotation and temperature and (2) effect of duration on the solid yield, HHV and energy yield. By statistical analyses, the results indicated that the rotation, temperature and their interaction has a significant effect on the three responses. Same remarks on the effect of duration where when the duration (temperature and rotation) increases, the HHV increases, while the solid yield and energy yield decreases. Graphical interpretations showed that at 300 °C, the rotating speed has no evident effect on the responses. At 30-min holding time, the highest HHV reached (28.389 MJ/kg) was obtained in the most severe torrefaction condition (the rotating speed at 1800 rpm and temperature at 300 °C) with an enhancement factor of HHV corresponding to 1.61 and an energy yield of 63.51%. Upon inspection, the recommended operating condition under a 30-min holding time is at 255 °C-1800 rpm since the enhancement factor of HHV (1.53), HHV (26.988 MJ/kg), and energy yield (65.21%) values are relatively close to that of the aforementioned torrefaction condition. The Van Krevelen diagram of the torrefied biomass showed that the ratios decrease as the torrefaction intensifies, hence improving the hydrophobicity of the product. The spreads of the results of the solid yield, enhancement factor (EF) of HHV, energy yield, and H/C and O/C ratios were in accordance with the trends of the responses. Overall, from the results presented, it can be concluded that the quality of the product from the process is at par to that of coal (i.e. HHV of coal is 21-35 MJ/kg). The Fourier transform infrared (FTIR) spectroscopy results indicated that cellulose and lignin may have been degraded at a lower temperature accompanied with a high rotating speed. The results suggested that torrefaction under higee environment indicates promising process for the utilization of bamboo. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20gravity%20environment" title=" high gravity environment"> high gravity environment</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIR" title=" FTIR"> FTIR</a>, <a href="https://publications.waset.org/abstracts/search?q=rotation" title=" rotation"> rotation</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20speed" title=" rotating speed"> rotating speed</a>, <a href="https://publications.waset.org/abstracts/search?q=torrefaction" title=" torrefaction"> torrefaction</a> </p> <a href="https://publications.waset.org/abstracts/62297/performance-and-structural-evaluation-of-the-torrefaction-of-bamboo-under-a-high-gravity-higee-environment-using-a-rotating-packed-bed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">279</span> Study of the Effect of the Contra-Rotating Component on the Performance of the Centrifugal Compressor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Van%20Thang%20Nguyen">Van Thang Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Amelie%20Danlos"> Amelie Danlos</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Paridaens"> Richard Paridaens</a>, <a href="https://publications.waset.org/abstracts/search?q=Farid%20Bakir"> Farid Bakir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents a study of the effect of a contra-rotating component on the efficiency of centrifugal compressors. A contra-rotating centrifugal compressor (CRCC) is constructed using two independent rotors, rotating in the opposite direction and replacing the single rotor of a conventional centrifugal compressor (REF). To respect the geometrical parameters of the REF one, two rotors of the CRCC are designed, based on a single rotor geometry, using the hub and shroud length ratio parameter of the meridional contour. Firstly, the first rotor is designed by choosing a value of length ratio. Then, the second rotor is calculated to be adapted to the fluid flow of the first rotor according aerodynamics principles. In this study, four values of length ratios 0.3, 0.4, 0.5, and 0.6 are used to create four configurations CF1, CF2, CF3, and CF4 respectively. For comparison purpose, the circumferential velocity at the outlet of the REF and the CRCC are preserved, which means that the single rotor of the REF and the second rotor of the CRCC rotate with the same speed of 16000rpm. The speed of the first rotor in this case is chosen to be equal to the speed of the second rotor. The CFD simulation is conducted to compare the performance of the CRCC and the REF with the same boundary conditions. The results show that the configuration with a higher length ratio gives higher pressure rise. However, its efficiency is lower. An investigation over the entire operating range shows that the CF1 is the best configuration in this case. In addition, the CRCC can improve the pressure rise as well as the efficiency by changing the speed of each rotor independently. The results of changing the first rotor speed show with a 130% speed increase, the pressure ratio rises of 8.7% while the efficiency remains stable at the flow rate of the design operating point. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=centrifugal%20compressor" title="centrifugal compressor">centrifugal compressor</a>, <a href="https://publications.waset.org/abstracts/search?q=contra-rotating" title=" contra-rotating"> contra-rotating</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction%20rotor" title=" interaction rotor"> interaction rotor</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum" title=" vacuum"> vacuum</a> </p> <a href="https://publications.waset.org/abstracts/105648/study-of-the-effect-of-the-contra-rotating-component-on-the-performance-of-the-centrifugal-compressor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">278</span> Super Harmonic Nonlinear Lateral Vibration of an Axially Moving Beam with Rotating Prismatic Joint</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Najafi">M. Najafi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bab"> S. Bab</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Rahimi%20Dehgolan"> F. Rahimi Dehgolan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The motion of an axially moving beam with rotating prismatic joint with a tip mass on the end is analyzed to investigate the nonlinear vibration and dynamic stability of the beam. The beam is moving with a harmonic axially and rotating velocity about a constant mean velocity. A time-dependent partial differential equation and boundary conditions with the aid of the Hamilton principle are derived to describe the beam lateral deflection. After the partial differential equation is discretized by the Galerkin method, the method of multiple scales is applied to obtain analytical solutions. Frequency response curves are plotted for the super harmonic resonances of the first and the second modes. The effects of non-linear term and mean velocity are investigated on the steady state response of the axially moving beam. The results are validated with numerical simulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=super%20harmonic%20resonances" title="super harmonic resonances">super harmonic resonances</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20vibration" title=" non-linear vibration"> non-linear vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=axially%20moving%20beam" title=" axially moving beam"> axially moving beam</a>, <a href="https://publications.waset.org/abstracts/search?q=Galerkin%20method" title=" Galerkin method"> Galerkin method</a> </p> <a href="https://publications.waset.org/abstracts/67098/super-harmonic-nonlinear-lateral-vibration-of-an-axially-moving-beam-with-rotating-prismatic-joint" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">277</span> Performance Evaluation of Pilot Rotating Biological Contactor for Decentralised Management of Domestic Sewage in Delhi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20R.%20Sreekrishnan">T. R. Sreekrishnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mukesh%20Khare"> Mukesh Khare</a>, <a href="https://publications.waset.org/abstracts/search?q=Dinesh%20Upadhyay"> Dinesh Upadhyay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a Rotating Biological Contactor (RBC), the biological film responsible for removal of pollutants is formed on the surface of discs. Evaluation studies of a pilot RBC designed to treat sewage of 150 persons with BOD Loading Rate: 8.2–26.7 g/m2/d, Discharge: 57.6 – 115.2 m3/day, HRT 1.25 – 2.5 hrs, at STP Yamuna Vihar Delhi. Removal of organic materials through use of fixed film reactors such as RBC is accomplished by means of a biological film on the fixed media. May and June in Delhi are dry summer months where the ambient temperature is in the range of 35oC to 45oC. July is a wet monsoon month that receives occasional precipitation, cloud cover, high humidity, with ambient temperature in the range of 30oC to 35oC. The organic and inorganic loads to the RBC employed in this study are actual city sewage conditions. Average in fluent BOD concentrations have been 330 mg/l, 245 mg/l and 160 mg/l and the average COD concentrations have been 670 mg/l, 500 mg/l, and 275 mg/l. The city sewage also has high concentration of ammonia, phosphorous, total suspended solids (TSS). pH of the city sewage is near neutral. Overall, the substrate conditions of city sewage are conducive for biological treatment though aerobic process. The presentation is a part of the ongoing collaborative research initiative between IIT Delhi and Karlsruhe Institute of Technology, Germany which is going on for last 15 years or so in the treatment of sewage waste of Delhi using semi-decentralized treatment system based on Rotating Biological Contactor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rotating%20Biological%20Contactor%20%28RBC%29" title="Rotating Biological Contactor (RBC)">Rotating Biological Contactor (RBC)</a>, <a href="https://publications.waset.org/abstracts/search?q=COD" title=" COD"> COD</a>, <a href="https://publications.waset.org/abstracts/search?q=BOD" title=" BOD"> BOD</a>, <a href="https://publications.waset.org/abstracts/search?q=HRT" title=" HRT"> HRT</a>, <a href="https://publications.waset.org/abstracts/search?q=STP" title=" STP"> STP</a> </p> <a href="https://publications.waset.org/abstracts/20740/performance-evaluation-of-pilot-rotating-biological-contactor-for-decentralised-management-of-domestic-sewage-in-delhi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20740.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">276</span> A Study on the Method of Accelerated Life Test to Electric Rotating System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Youn-Hwan%20Kim">Youn-Hwan Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Won%20Moon"> Jae-Won Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Hae-Joong%20Kim"> Hae-Joong Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces the study on the method of accelerated life test to electrical rotating system. In recent years, as well as efficiency for motors and generators, there is a growing need for research on the life expectancy. It is considered impossible to calculate the acceleration coefficient by increasing the rotational load or temperature load as the acceleration stress in the motor system because the temperature of the copper exceeds the wire thermal class rating. In this paper, the accelerated life test methods of the electrical rotating system are classified according to the application. This paper describes the development of the test procedure for the highly accelerated life test (HALT) of the 100kW permanent magnet synchronous motor (PMSM) of electric vehicle. Finally, it explains how to select acceleration load for vibration, temperature, bearing load, etc. for accelerated life test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acceleration%20coefficient" title="acceleration coefficient">acceleration coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle%20motor" title=" electric vehicle motor"> electric vehicle motor</a>, <a href="https://publications.waset.org/abstracts/search?q=HALT" title=" HALT"> HALT</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20expectancy" title=" life expectancy"> life expectancy</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration" title=" vibration"> vibration</a> </p> <a href="https://publications.waset.org/abstracts/74733/a-study-on-the-method-of-accelerated-life-test-to-electric-rotating-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74733.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">275</span> Magnetoviscous Effects on Axi-Symmetric Ferrofluid Flow over a Porous Rotating Disk with Suction/Injection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vikas%20Kumar">Vikas Kumar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study is carried out to investigate the magneto-viscous effects on incompressible ferrofluid flow over a porous rotating disc with suction or injection on the surface of the disc subjected to a magnetic field. The flow under consideration is axi-symmetric steady ferrofluid flow of electrically non-conducting fluid. Karman’s transformation is used to convert the governing boundary layer equations involved in the problem to a system of non linear coupled differential equations. The solution of this system is obtained by using power series approximation. The flow characteristics i.e. radial, tangential, axial velocities and boundary layer displacement thickness are calculated for various values of MFD (magnetic field dependent) viscosity and for different values of suction injection parameter. Besides this, skin friction coefficients are also calculated on the surface of the disk. Thus, the obtained results are presented numerically and graphically in the paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axi-symmetric" title="axi-symmetric">axi-symmetric</a>, <a href="https://publications.waset.org/abstracts/search?q=ferrofluid" title=" ferrofluid"> ferrofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20rotating%20disk" title=" porous rotating disk"> porous rotating disk</a> </p> <a href="https://publications.waset.org/abstracts/2034/magnetoviscous-effects-on-axi-symmetric-ferrofluid-flow-over-a-porous-rotating-disk-with-suctioninjection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">274</span> Effect of Linear Thermal Gradient on Steady-State Creep Behavior of Isotropic Rotating Disc</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minto%20Rattan">Minto Rattan</a>, <a href="https://publications.waset.org/abstracts/search?q=Tania%20Bose"> Tania Bose</a>, <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20Chamoli"> Neeraj Chamoli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper investigates the effect of linear thermal gradient on the steady-state creep behavior of rotating isotropic disc using threshold stress based Sherby’s creep law. The composite discs made of aluminum matrix reinforced with silicon carbide particulate has been taken for analysis. The stress and strain rate distributions have been calculated for discs rotating at linear thermal gradation using von Mises’ yield criterion. The material parameters have been estimated by regression fit of the available experimental data. The results are displayed and compared graphically in designer friendly format for the above said temperature profile with the disc operating under uniform temperature profile. It is observed that radial and tangential stresses show minor variation and the strain rates vary significantly in the presence of thermal gradation as compared to disc having uniform temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=creep" title="creep">creep</a>, <a href="https://publications.waset.org/abstracts/search?q=isotropic" title=" isotropic"> isotropic</a>, <a href="https://publications.waset.org/abstracts/search?q=steady-state" title=" steady-state"> steady-state</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20gradient" title=" thermal gradient"> thermal gradient</a> </p> <a href="https://publications.waset.org/abstracts/59198/effect-of-linear-thermal-gradient-on-steady-state-creep-behavior-of-isotropic-rotating-disc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59198.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">273</span> On the Strong Solutions of the Nonlinear Viscous Rotating Stratified Fluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Giniatoulline">A. Giniatoulline</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A nonlinear model of the mathematical fluid dynamics which describes the motion of an incompressible viscous rotating fluid in a homogeneous gravitational field is considered. The model is a generalization of the known Navier-Stokes system with the addition of the Coriolis parameter and the equations for changeable density. An explicit algorithm for the solution is constructed, and the proof of the existence and uniqueness theorems for the strong solution of the nonlinear problem is given. For the linear case, the localization and the structure of the spectrum of inner waves are also investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Galerkin%20method" title="Galerkin method">Galerkin method</a>, <a href="https://publications.waset.org/abstracts/search?q=Navier-Stokes%20equations" title=" Navier-Stokes equations"> Navier-Stokes equations</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20partial%20differential%20equations" title=" nonlinear partial differential equations"> nonlinear partial differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=Sobolev%20spaces" title=" Sobolev spaces"> Sobolev spaces</a>, <a href="https://publications.waset.org/abstracts/search?q=stratified%20fluid" title=" stratified fluid"> stratified fluid</a> </p> <a href="https://publications.waset.org/abstracts/52024/on-the-strong-solutions-of-the-nonlinear-viscous-rotating-stratified-fluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">272</span> Exponential Stabilization of a Flexible Structure via a Delayed Boundary Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Smaoui">N. Smaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Chentouf"> B. Chentouf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The boundary stabilization problem of the rotating disk-beam system is a topic of interest in research studies. This system involves a flexible beam attached to the center of a disk, and the control and stabilization of this system have been extensively studied. This research focuses on the case where the center of mass is fixed in an inertial frame, and the rotation of the center is non-uniform. The system is represented by a set of nonlinear coupled partial differential equations and ordinary differential equations. The boundary stabilization problem of this system via a delayed boundary control is considered. We assume that the boundary control is either of a force type control or a moment type control and is subject to the presence of a constant time-delay. The aim of this research is threefold: First, we demonstrate that the rotating disk-beam system is well-posed in an appropriate functional space. Then, we establish the exponential stability property of the system. Finally, we provide numerical simulations that illustrate the theoretical findings. The research utilizes the semigroup theory to establish the well-posedness of the system. The resolvent method is then employed to prove the exponential stability property. Finally, the finite element method is used to demonstrate the theoretical results through numerical simulations. The research findings indicate that the rotating disk-beam system can be stabilized using a boundary control with a time delay. The proof of stability is based on the resolvent method and a variation of constants formula. The numerical simulations further illustrate the theoretical results. The findings have potential implications for the design and implementation of control strategies in similar systems. In conclusion, this research demonstrates that the rotating disk-beam system can be stabilized using a boundary control with time delay. The well-posedness and exponential stability properties are established through theoretical analysis, and these findings are further supported by numerical simulations. The research contributes to the understanding and practical application of control strategies for flexible structures, providing insights into the stability of rotating disk-beam systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rotating%20disk-beam" title="rotating disk-beam">rotating disk-beam</a>, <a href="https://publications.waset.org/abstracts/search?q=delayed%20force%20control" title=" delayed force control"> delayed force control</a>, <a href="https://publications.waset.org/abstracts/search?q=delayed%20moment%20control" title=" delayed moment control"> delayed moment control</a>, <a href="https://publications.waset.org/abstracts/search?q=torque%20control" title=" torque control"> torque control</a>, <a href="https://publications.waset.org/abstracts/search?q=exponential%20stability" title=" exponential stability"> exponential stability</a> </p> <a href="https://publications.waset.org/abstracts/175174/exponential-stabilization-of-a-flexible-structure-via-a-delayed-boundary-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">271</span> Vortices Structure in Internal Laminar and Turbulent Flows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farid%20Gaci">Farid Gaci</a>, <a href="https://publications.waset.org/abstracts/search?q=Zoubir%20Nemouchi"> Zoubir Nemouchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical study of laminar and turbulent fluid flows in 90° bend of square section was carried out. Three-dimensional meshes, based on hexahedral cells, were generated. The QUICK scheme was employed to discretize the convective term in the transport equations. The SIMPLE algorithm was adopted to treat the velocity-pressure coupling. The flow structure obtained showed interesting features such as recirculation zones and counter-rotating pairs of vortices. The performance of three different turbulence models was evaluated: the standard k- ω model, the SST k-ω model and the Reynolds Stress Model (RSM). Overall, it was found that, the multi-equation model performed better than the two equation models. In fact, the existence of four pairs of counter rotating cells, in the straight duct upstream of the bend, were predicted by the RSM closure but not by the standard eddy viscosity model nor the SST k-ω model. The analysis of the results led to a better understanding of the induced three dimensional secondary flows and the behavior of the local pressure coefficient and the friction coefficient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curved%20duct" title="curved duct">curved duct</a>, <a href="https://publications.waset.org/abstracts/search?q=counter-rotating%20cells" title=" counter-rotating cells"> counter-rotating cells</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20flow" title=" secondary flow"> secondary flow</a>, <a href="https://publications.waset.org/abstracts/search?q=laminar" title=" laminar"> laminar</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent" title=" turbulent"> turbulent</a> </p> <a href="https://publications.waset.org/abstracts/29767/vortices-structure-in-internal-laminar-and-turbulent-flows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29767.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">270</span> Magnetohydrodynamic (MHD) Flow of Cu-Water Nanofluid Due to a Rotating Disk with Partial Slip</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tasawar%20Hayat">Tasawar Hayat</a>, <a href="https://publications.waset.org/abstracts/search?q=Madiha%20Rashid"> Madiha Rashid</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Imtiaz"> Maria Imtiaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Alsaedi"> Ahmed Alsaedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This problem is about the study of flow of viscous fluid due to rotating disk in nanofluid. Effects of magnetic field, slip boundary conditions and thermal radiations are encountered. An incompressible fluid soaked the porous medium. In this model, nanoparticles of Cu is considered with water as the base fluid. For Copper-water nanofluid, graphical results are presented to describe the influences of nanoparticles volume fraction (φ) on velocity and temperature fields for the slip boundary conditions. The governing differential equations are transformed to a system of nonlinear ordinary differential equations by suitable transformations. Convergent solution of the nonlinear system is developed. The obtained results are analyzed through graphical illustrations for different parameters. Moreover, the features of the flow and heat transfer characteristics are analyzed. It is found that the skin friction coefficient and heat transfer rate at the surface are highest in copper-water nanofluid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MHD%20nanofluid" title="MHD nanofluid">MHD nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20medium" title=" porous medium"> porous medium</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20disk" title=" rotating disk"> rotating disk</a>, <a href="https://publications.waset.org/abstracts/search?q=slip%20effect" title=" slip effect"> slip effect</a> </p> <a href="https://publications.waset.org/abstracts/55344/magnetohydrodynamic-mhd-flow-of-cu-water-nanofluid-due-to-a-rotating-disk-with-partial-slip" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55344.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">269</span> Numerical Study on the Flow around a Steadily Rotating Spring: Understanding the Propulsion of a Bacterial Flagellum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Won%20Yeol%20Choi">Won Yeol Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sangmo%20Kang"> Sangmo Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The propulsion of a bacterial flagellum in a viscous fluid has attracted many interests in the field of biological hydrodynamics, but remains yet fully understood and thus still a challenging problem. In this study, therefore, we have numerically investigated the flow around a steadily rotating micro-sized spring to further understand such bacterial flagellum propulsion. Note that a bacterium gains thrust (propulsive force) by rotating the flagellum connected to the body through a bio motor to move forward. For the investigation, we convert the spring model from the micro scale to the macro scale using a similitude law (scale law) and perform simulations on the converted macro-scale model using a commercial software package, CFX v13 (ANSYS). To scrutinize the propulsion characteristics of the flagellum through the simulations, we make parameter studies by changing some flow parameters, such as the pitch, helical radius and rotational speed of the spring and the Reynolds number (or fluid viscosity), expected to affect the thrust force experienced by the rotating spring. Results show that the propulsion characteristics depend strongly on the parameters mentioned above. It is observed that the forward thrust increases in a linear fashion with either of the rotational speed or the fluid viscosity. In addition, the thrust is directly proportional to square of the helical radius and but the thrust force is increased and then decreased based on the peak value to the pitch. Finally, we also present the appropriate flow and pressure fields visualized to support the observations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluid%20viscosity" title="fluid viscosity">fluid viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamics" title=" hydrodynamics"> hydrodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=similitude" title=" similitude"> similitude</a>, <a href="https://publications.waset.org/abstracts/search?q=propulsive%20force" title=" propulsive force"> propulsive force</a> </p> <a href="https://publications.waset.org/abstracts/5032/numerical-study-on-the-flow-around-a-steadily-rotating-spring-understanding-the-propulsion-of-a-bacterial-flagellum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5032.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">268</span> Modeling Dynamics and Control of Transversal Vibration of an Underactuated Flexible Plate Using Controlled Lagrangian Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmood%20Khalghollah">Mahmood Khalghollah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Tavallaeinejad"> Mohammad Tavallaeinejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Eghtesad"> Mohammad Eghtesad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The method of Controlled Lagrangian is an energy shaping control technique for under actuated Lagrangian systems. Energy shaping control design methods are appealing as they retain the underlying nonlinear dynamics and can provide stability results that hold over larger domain than can be obtained using linear design and analysis. In the present study, controlled lagrangian is employed for designing a controller in an under actuated rotating flexible plate system. In the system of rotating flexible plate, due to its nonlinear characteristics and coupled dynamics of rigid and flexible components, controller design is a known challenge. In this paper, controller objectives are considered to be vibration reduction of flexible component and position control of the tip of the plate. To achieve the goals, a method based on both kinetic and potential energy shaping is introduced. The stability of the closed-loop system is investigated and proved around its equilibrium points. Moreover, the proposed controller is shown to be robust against disturbance and plant uncertainties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=controlled%20lagrangian" title="controlled lagrangian">controlled lagrangian</a>, <a href="https://publications.waset.org/abstracts/search?q=underactuated%20system" title=" underactuated system"> underactuated system</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20rotating%20plate" title=" flexible rotating plate"> flexible rotating plate</a>, <a href="https://publications.waset.org/abstracts/search?q=disturbance" title=" disturbance"> disturbance</a> </p> <a href="https://publications.waset.org/abstracts/26345/modeling-dynamics-and-control-of-transversal-vibration-of-an-underactuated-flexible-plate-using-controlled-lagrangian-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26345.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">267</span> Power Angle Control Strategy of Virtual Synchronous Machine: A Novel Approach to Control Virtual Synchronous Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shishir%20Lamichhane">Shishir Lamichhane</a>, <a href="https://publications.waset.org/abstracts/search?q=Saurav%20Dulal"> Saurav Dulal</a>, <a href="https://publications.waset.org/abstracts/search?q=Bibek%20Gautam"> Bibek Gautam</a>, <a href="https://publications.waset.org/abstracts/search?q=Madan%20Thapa%20Magar"> Madan Thapa Magar</a>, <a href="https://publications.waset.org/abstracts/search?q=Indraman%20Tamrakar"> Indraman Tamrakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Renewable energies such as wind turbines and solar photovoltaic have gained significance as a result of global environmental pollution and energy crises. These sources of energy are converted into electrical energy and delivered to end-users through the utility system. As a result of the widespread use of power electronics-based grid-interfacing technologies to accommodate renewable sources of energy, the prevalence of converters has expanded as well. As a result, the power system's rotating inertia is decreasing, endangering the utility grid's stability. The use of Virtual Synchronous Machine (VSM) technology has been proposed to overcome the grid stability problem due to low rotating inertia. The grid-connected inverter used in VSM can be controlled to emulate inertia, which replicates the external features of a synchronous generator. As a result, the rotating inertia is increased to support the power system's stability. A power angle control strategy is proposed in this paper and its model is simulated in MATLAB/Simulink to study the effects of parameter disturbances on the active power and frequency for a VSM. The system consists of a synchronous generator, which is modeled in such a way that the frequency drops to an unacceptable region during transient conditions due to a lack of inertia when VSM is not used. Then, the suggested model incorporating VSM emulates rotating inertia, injecting a controllable amount of energy into the grid during frequency transients to enhance transient stability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damping%20constant" title="damping constant">damping constant</a>, <a href="https://publications.waset.org/abstracts/search?q=inertia%E2%80%93constant" title=" inertia–constant"> inertia–constant</a>, <a href="https://publications.waset.org/abstracts/search?q=ROCOF" title=" ROCOF"> ROCOF</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20stability" title=" transient stability"> transient stability</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20sources" title=" distributed sources"> distributed sources</a> </p> <a href="https://publications.waset.org/abstracts/141846/power-angle-control-strategy-of-virtual-synchronous-machine-a-novel-approach-to-control-virtual-synchronous-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rotating%20vissel&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rotating%20vissel&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rotating%20vissel&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rotating%20vissel&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rotating%20vissel&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rotating%20vissel&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rotating%20vissel&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rotating%20vissel&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rotating%20vissel&page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rotating%20vissel&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>