CINXE.COM
Search results for: insecticidal activity
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: insecticidal activity</title> <meta name="description" content="Search results for: insecticidal activity"> <meta name="keywords" content="insecticidal activity"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="insecticidal activity" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="insecticidal activity"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6264</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: insecticidal activity</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6264</span> Bioinsecticidal Activity and Phytochemical Study of the Crude Extract from the Plant Artemisia judaica</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Acheuk">Fatma Acheuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Idir%20Bitam"> Idir Bitam</a>, <a href="https://publications.waset.org/abstracts/search?q=Leila%20Bendifallah"> Leila Bendifallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Malika%20Ramdani"> Malika Ramdani</a>, <a href="https://publications.waset.org/abstracts/search?q=Fethia%20Barika"> Fethia Barika</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phytochemical study of the plant Artemisia judaica showed the presence of various groups of natural products: saponins, tannins, coumarins, flavonoids, carbohydrates, and reducer compounds. However, alkaloids are present as traces. The crude ethanol extract of the test plant presented significant insecticidal activity on mosquito larvae in stage I, II and III. The LD50 highlighted the excellent insecticidal effect of the tested extract. Similarly, the LT50 are achieved early with high doses. The results obtained are encouraging and suggest the possibility of using the secondary metabolites of this plant such as bio-insecticide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atamisia%20judaica" title="Atamisia judaica">Atamisia judaica</a>, <a href="https://publications.waset.org/abstracts/search?q=crud%20extract" title=" crud extract"> crud extract</a>, <a href="https://publications.waset.org/abstracts/search?q=mosquito" title=" mosquito"> mosquito</a>, <a href="https://publications.waset.org/abstracts/search?q=insecticidal%20activity" title=" insecticidal activity"> insecticidal activity</a> </p> <a href="https://publications.waset.org/abstracts/24116/bioinsecticidal-activity-and-phytochemical-study-of-the-crude-extract-from-the-plant-artemisia-judaica" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24116.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6263</span> The Insecticidal Activity of Three Essential Oils on the Chickpea Weevil Callosobruchus Maculatus F (Coleoptera; Curculionidae)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azzaz%20Siham">Azzaz Siham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Essential oils are, by definition, secondary metabolites produced by plants as a means of defense against phytophagous pests. This work aims to study the insecticidal effect of the essential oil of three plants: Phoenician juniper Juniperus phoenicea; the Niaouli Melaleuca quinquenervia and the wild carrot Daucus carota L, on the chickpea weevil Callosobruchus maculatus F, which is known as a formidable pest of legumes. Essential oils are obtained by hydrodistillation. The study carried out in the laboratory concerning the insecticidal activity of these essential oils by contact and inhalation effect on C.maculatus gave important results, especially for the essential oil of Juniperus phoenicea for the contact test; and for the inhalation test, the essential oil of Melaleuca quinquenervia shows remarkable insecticidal activity compared to the other two oils. The results of these tests showed a very interesting action. The essential oils used very significantly describe the lifespan of adults. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=essential%20oils" title="essential oils">essential oils</a>, <a href="https://publications.waset.org/abstracts/search?q=juniperus%20phoenicea" title=" juniperus phoenicea"> juniperus phoenicea</a>, <a href="https://publications.waset.org/abstracts/search?q=melaleuca%20quinquenervia" title=" melaleuca quinquenervia"> melaleuca quinquenervia</a>, <a href="https://publications.waset.org/abstracts/search?q=daucus%20carota" title=" daucus carota"> daucus carota</a>, <a href="https://publications.waset.org/abstracts/search?q=Callosobruchus%20maculatus" title=" Callosobruchus maculatus"> Callosobruchus maculatus</a> </p> <a href="https://publications.waset.org/abstracts/146545/the-insecticidal-activity-of-three-essential-oils-on-the-chickpea-weevil-callosobruchus-maculatus-f-coleoptera-curculionidae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6262</span> Phytochemical Study and Bioinsecticidal Effect of the Crude Extract from the Plant Artemisia Judaica</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Acheuk">Fatma Acheuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Idir%20Bitam"> Idir Bitam</a>, <a href="https://publications.waset.org/abstracts/search?q=Leila%20Bendifallah"> Leila Bendifallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Malika%20Ramdani"> Malika Ramdani</a>, <a href="https://publications.waset.org/abstracts/search?q=Fethia%20Barika"> Fethia Barika</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phytochemical study of the plant Artemisia judaica showed the presence of various groups of natural products: saponins, tannins, coumarins, flavonoids, carbohydrates, and reducer compounds. However alkaloids are present as traces. The crude ethanol extract of the test plant presented significant insecticidal activity on mosquito larvae in stage I, II, and III. The LD50 highlighted the excellent insecticidal effect of the tested extract. Similarly, the LT50 are achieved early with high doses. The results obtained are encouraging and suggest the possibility of using the secondary metabolites of this plant such as bio-insecticide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atamisia%20judaica" title="Atamisia judaica">Atamisia judaica</a>, <a href="https://publications.waset.org/abstracts/search?q=crud%20extract" title=" crud extract"> crud extract</a>, <a href="https://publications.waset.org/abstracts/search?q=mosquito" title=" mosquito"> mosquito</a>, <a href="https://publications.waset.org/abstracts/search?q=insecticidal%20activity" title=" insecticidal activity"> insecticidal activity</a> </p> <a href="https://publications.waset.org/abstracts/21689/phytochemical-study-and-bioinsecticidal-effect-of-the-crude-extract-from-the-plant-artemisia-judaica" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21689.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">590</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6261</span> Insecticidal Activity of Extracts Essential Oils of Mentha Rotundifolia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bouziane%20Zehaira">Bouziane Zehaira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Essential oils derived from aromatic or medicinal plants have recently proven useful in a variety of fields including the production of medicines, perfumes and foodstuffs. The purpose of this research is to determine the insecticidal activity of essential oils extracted from Mentha rotundifolia species against Aphis fabae. The bioassay used to determine essential oils toxicity to pest insect Aphis fabae revealed a very high effective repellent. The effect with concentrations of 100% and 30% were found to be statistically significant (F=64.800, P<0.0001) with an average of 7.66 and 7, respectively. According to the findings, the plant under consideration is promising as a source of natural pesticides and lends itself well to research in the field of pest control using biochemical alternatives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pest" title="pest">pest</a>, <a href="https://publications.waset.org/abstracts/search?q=mentha" title=" mentha"> mentha</a>, <a href="https://publications.waset.org/abstracts/search?q=activity" title=" activity"> activity</a>, <a href="https://publications.waset.org/abstracts/search?q=effective" title=" effective"> effective</a> </p> <a href="https://publications.waset.org/abstracts/183809/insecticidal-activity-of-extracts-essential-oils-of-mentha-rotundifolia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6260</span> Antibacterial Activity of Bacillus thuringiensis Activated Delta-endotoxins</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Gounina-Allouane">R. Gounina-Allouane</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Ouali"> N. Ouali</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Z.%20Berrabah"> F. Z. Berrabah</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bentaleb"> A. Bentaleb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For a long time, the Gram-positive spore-forming bacteria Bacillus thuringiensis (Bt) has been widely used in biological control against devastating and disease vectors insects. This is due to the insecticidal activity of its crystalline parasporal inclusion (crystals) predominantly comprised of one or more proteins (Cry and Cyt proteins) also called δ-endotoxins, produced during sporulation. The shape and composition of Bt crystals vary among strains and crystalline proteins are extremely varied (more than 475 cry gene were discovered). The insecticidal activity of Bt crystals is very well studied, thus their insecticidal mode of action is well established, however, their antimicrobial effect is largely unknown. The lack of data on the antimicrobial effect of crystalline proteins of Bt and the need for searching new antimicrobial molecules encouraged us to carried out this study. The antibacterial effect of δ-endotoxines produced by two Bt stains; a strain isolated from soil at northern of Algeria (Bt 7.2.B), and a strain isolated from a bioinsecticide (Bacillus thuringiensis var aizawai), activated by proteolysis, was assayed on clinical bacterial strains and ATCC collection ones respectively. Gram positive and negative clinical bacterial strains (Escherichia coli, Klebsiella pneumonaie, Pseudomonas aeruginosa, Staphylococcus aureus) were sensitive to activated Bt 72B endotoxins. Similarly, bacterial strains from ATCC collection (Escherichia coli ATCC 25922, Pseudomonas aerugenosa ATCC 27853, Staphylococcus aureus ATCC 25923) were sensitive to activated B. thuringiensis var aizawai δ-endotoxines. The activated δ-endotoxins were separated by SDS-PAGE. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20thuringiensis" title="Bacillus thuringiensis">Bacillus thuringiensis</a>, <a href="https://publications.waset.org/abstracts/search?q=crystals" title=" crystals"> crystals</a>, <a href="https://publications.waset.org/abstracts/search?q=cry%20proteins" title=" cry proteins"> cry proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B4-endotoxins" title=" δ-endotoxins"> δ-endotoxins</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title=" antibacterial activity"> antibacterial activity</a> </p> <a href="https://publications.waset.org/abstracts/30294/antibacterial-activity-of-bacillus-thuringiensis-activated-delta-endotoxins" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6259</span> Antibacterial Activity of Bacillus thuringiensis Cristalline Parasporal Proteins</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Gounina-Allouane">R. Gounina-Allouane</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Ouali"> N. Ouali</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Z.%20Berrabah"> F. Z. Berrabah</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bentaleb"> A. Bentaleb </a> </p> <p class="card-text"><strong>Abstract:</strong></p> For a long time, the Gram-positive spore-forming bacteria Bacillus thuringiensis (Bt) has been widely used in biological control against devastating and disease vectors insects. This is due to the insecticidal activity of its crystalline parasporal inclusion (crystals) predominantly comprised of one or more proteins (Cry and Cyt proteins) also called δ-endotoxins, produced during sporulation. The shape and composition of Bt crystals vary among strains and crystalline proteins are extremely varied (more than 475 cry gene were discovered). The insecticidal activity of Bt crystals is very well studied, thus their insecticidal mode of action is well established, however, their antimicrobial effect is largely unknown. The lack of data on the antimicrobial effect of crystalline proteins of Bt and the need for searching new antimicrobial molecules encouraged us to carried out this study. The antibacterial effect of δ-endotoxines produced by two Bt stains; a strain isolated from soil at northern of Algeria (Bt 7.2.B), and a strain isolated from a bioinsecticide (Bacillus thuringiensis var aizawai), activated by proteolysis, was assayed on clinical bacterial strains and ATCC collection ones respectively. Gram positive and negative clinical bacterial strains (Escherichia coli, Klebsiella pneumonaie, Pseudomonas aeruginosa, Staphylococcus aureus) were sensitive to activated Bt 72B endotoxins. Similarly, bacterial strains from ATCC collection (Escherichia coli ATCC 25922, Pseudomonas aerugenosa ATCC 27853, Staphylococcus aureus ATCC 25923) were sensitive to activated B. thuringiensis var aizawai δ-endotoxines. The activated δ-endotoxins were separated by SDS-PAGE. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20thuringiensis" title="Bacillus thuringiensis">Bacillus thuringiensis</a>, <a href="https://publications.waset.org/abstracts/search?q=crystals" title=" crystals"> crystals</a>, <a href="https://publications.waset.org/abstracts/search?q=cry%20proteins" title=" cry proteins"> cry proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B4-endotoxins" title=" δ-endotoxins"> δ-endotoxins</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title=" antibacterial activity"> antibacterial activity</a> </p> <a href="https://publications.waset.org/abstracts/17935/antibacterial-activity-of-bacillus-thuringiensis-cristalline-parasporal-proteins" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17935.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6258</span> Insecticidal and Antifeedant Activity of Rosemary´s (Rosmarinus Officinalis L.) Different Extracts on Cotton Bollworm Helicoverpa Armigera Hubner</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monireh%20Movahedi">Monireh Movahedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Considering undesirable effects of chemical insecticides on environment and human health, most studies focused on insecticidal effects of plant materials. Here, the insecticidal effects of methanol, ethylacetat and n-Hexan extracts of Rosmarinus officinalis L. on larval stage of the cotton bollworm were studied. From each extract, six concentrations, including 5, 10, 20, 40 and 60 mg/ml were prepared and added on larval artificial diet. Moreover, solution of distilled water and tween 2% considered as check treatment. All experiments were done in laboratory temperature of 25±3 ºC, RH =50±10% and natural photoperiod during growing season. Each treatment had four replications and each replication carried out on 10 first instar larva with <24h age. Larval mortality was recorded 3 and 7 days after treat. Based on results, LC50 of methanol, ethylacetat and n-Hexan extracts of R. officinalis were 2.78, 15.87 and 15.70 ml/mg, respectively. On the other hand, antifeedant effect of methanol, ethylacetat and n-Hexan for R. officinalis estimated as 43.13%, 55.11% and 9.19%, respectively. All the obtained results revealed that methanol and ethylacetat extracts of R. officinalis are effective extracts for controlling the cotton bollworm population. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Helocoverpa%20armigera" title="Helocoverpa armigera">Helocoverpa armigera</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosemarinus%20officinalis" title=" Rosemarinus officinalis"> Rosemarinus officinalis</a>, <a href="https://publications.waset.org/abstracts/search?q=extract" title=" extract"> extract</a>, <a href="https://publications.waset.org/abstracts/search?q=methanol" title=" methanol"> methanol</a>, <a href="https://publications.waset.org/abstracts/search?q=ethylacetat" title=" ethylacetat"> ethylacetat</a>, <a href="https://publications.waset.org/abstracts/search?q=n-Hexan" title=" n-Hexan"> n-Hexan</a> </p> <a href="https://publications.waset.org/abstracts/122787/insecticidal-and-antifeedant-activity-of-rosemarys-rosmarinus-officinalis-l-different-extracts-on-cotton-bollworm-helicoverpa-armigera-hubner" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122787.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6257</span> Insecticidal Activity of Bacillus Thuringiensis Strain AH-2 Against Hemiptera Insects Pests: Aphis. Gossypii, and Lepidoptera Insect Pests: Plutella Xylostella and Hyphantria Cunea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajuna%20B.%20Henry">Ajuna B. Henry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent decades, climate change has demanded biological pesticides; more Bt strains are being discovered worldwide, some containing novel insecticidal genes while others have been modified through molecular approaches for increased yield, toxicity, and wider host target. In this study, B. thuringiensis strain AH-2 (Bt-2) was isolated from the soil and tested for insecticidal activity against Aphis gossypii (Hemiptera: Aphididae) and Lepidoptera insect pests: fall webworm (Hyphantria cunea) and diamondback moth (Plutella xylostella). A commercial strain B. thuringiensis subsp. kurstaki (Btk), and a chemical pesticide, imidacloprid (for Hemiptera) and chlorantraniliprole (for Lepidoptera), were used as positive control and the same media (without bacterial inoculum) as a negative control. For aphidicidal activity, Bt-2 caused a mortality rate of 70.2%, 78.1% or 88.4% in third instar nymphs of A. gossypii (3N) at 10%, 25% or 50% culture concentrations, respectively. Moreover, Bt-2 was effectively produced in cost-effective (PB) supplemented with either glucose (PBG) or sucrose (PBS) and maintained high aphicidal efficacy with 3N mortality rates of 85.9%, 82.9% or 82.2% in TSB, PBG or PBS media, respectively at 50% culture concentration. Bt-2 also suppressed adult fecundity by 98.3% compared to only 65.8% suppression by Btk at similar concentrations but was slightly lower than chemical treatment, which caused 100% suppression. Partial purification of 60 – 80% (NH4)2SO4 fraction of Bt-2 aphicidal proteins purified on anion exchange (DEAE-FF) column revealed a 105 kDa aphicidal protein with LC50 = 55.0 ng/µℓ. For Lepidoptera pests, chemical pesticide, Bt-2, and Btk cultures, mortality of 86.7%, 60%, and 60% in 3rd instar larvae of P. xylostella, and 96.7%, 80.0%, and 93.3% in 6th instar larvae of H. cunea, after 72h of exposure. When the entomopathogenic strains were cultured in a cost-effective PBG or PBS, the insecticidal activity in all strains was not significantly different compared to the use of a commercial medium (TSB). Bt-2 caused a mortality rate of 60.0%, 63.3%, and 50.0% against P. xylostella larvae and 76.7%, 83.3%, and 73.3% against H. cunea when grown in TSB, PBG, and PBS media, respectively. Bt-2 (grown in cost-effective PBG medium) caused a dose-dependent toxicity of 26.7%, 40.0%, and 63.3% against P. xylostella and 46.7%, 53.3%, and 76.7% against H. cunea at 10%, 25% and 50% culture concentration, respectively. The partially purified Bt-2 insecticidal proteins fractions F1, F2, F3, and F4 (extracted at different ratios of organic solvent) caused low toxicity (50.0%, 40.0%, 36.7%, and 30.0%) against P. xylostella and relatively high toxicity (56.7%, 76.7%, 66.7%, and 63.3%) against H. cunea at 100 µg/g of artificial diets. SDS-PAGE analysis revealed that a128kDa protein is associated with toxicity of Bt-2. Our result demonstrates a medium and strong larvicidal activity of Bt-2 against P. xylostella and H. cunea, respectively. Moreover, Bt-2 could be potentially produced using a cost-effective PBG medium which makes it an effective alternative biocontrol strategy to reduce chemical pesticide application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocontrol" title="biocontrol">biocontrol</a>, <a href="https://publications.waset.org/abstracts/search?q=insect%20pests" title=" insect pests"> insect pests</a>, <a href="https://publications.waset.org/abstracts/search?q=larvae%2Fnymph%20mortality" title=" larvae/nymph mortality"> larvae/nymph mortality</a>, <a href="https://publications.waset.org/abstracts/search?q=cost-effective%20media" title=" cost-effective media"> cost-effective media</a>, <a href="https://publications.waset.org/abstracts/search?q=aphis%20gossypii" title=" aphis gossypii"> aphis gossypii</a>, <a href="https://publications.waset.org/abstracts/search?q=plutella%20xylostella" title=" plutella xylostella"> plutella xylostella</a>, <a href="https://publications.waset.org/abstracts/search?q=hyphantria%20cunea" title=" hyphantria cunea"> hyphantria cunea</a>, <a href="https://publications.waset.org/abstracts/search?q=bacillus%20thuringiensi" title=" bacillus thuringiensi"> bacillus thuringiensi</a> </p> <a href="https://publications.waset.org/abstracts/189820/insecticidal-activity-of-bacillus-thuringiensis-strain-ah-2-against-hemiptera-insects-pests-aphis-gossypii-and-lepidoptera-insect-pests-plutella-xylostella-and-hyphantria-cunea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">19</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6256</span> NeuroBactrus, a Novel, Highly Effective, and Environmentally Friendly Recombinant Baculovirus Insecticide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yeon%20Ho%20Je">Yeon Ho Je</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A novel recombinant baculovirus, NeuroBactrus, was constructed to develop an improved baculovirus insecticide with additional beneficial properties, such as a higher insecticidal activity and improved recovery, compared to wild-type baculovirus. For the construction of NeuroBactrus, the Bacillus thuringiensis crystal protein gene (here termed cry1-5) was introduced into the Autographa californica nucleopolyhedrovirus (AcMNPV) genome by fusion of the polyhedrin–cry1-5–polyhedrin genes under the control of the polyhedrin promoter. In the opposite direction, an insect-specific neurotoxin gene, AaIT, from Androctonus australis was introduced under the control of an early promoter from Cotesia plutellae bracovirus by fusion of a partial fragment of orf603. The polyhedrin–Cry1-5–polyhedrin fusion protein expressed by the NeuroBactrus was not only occluded into the polyhedra, but it was also activated by treatment with trypsin, resulting in an_65-kDa active toxin. In addition, quantitative PCR revealed that the neurotoxin was expressed from the early phase of infection. NeuroBactrus showed a high level of insecticidal activity against Plutella xylostella larvae and a significant reduction in the median lethal time against Spodoptera exigua larvae compared to those of wild-type AcMNPV. Rerecombinant mutants derived from NeuroBactrus in which AaIT and/or cry1-5 were deleted were generated by serial passages in vitro. Expression of the foreign proteins (B. thuringiensis toxin and AaIT) was continuously reduced during the serial passage of the NeuroBactrus. Moreover, polyhedra collected from S. exigua larvae infected with the serially passaged NeuroBactrus showed insecticidal activity similar to that of wild-type AcMNPV. These results suggested that NeuroBactrus could be recovered to wild-type AcMNPV through serial passaging. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=baculovirus" title="baculovirus">baculovirus</a>, <a href="https://publications.waset.org/abstracts/search?q=insecticide" title=" insecticide"> insecticide</a>, <a href="https://publications.waset.org/abstracts/search?q=neurotoxin" title=" neurotoxin"> neurotoxin</a>, <a href="https://publications.waset.org/abstracts/search?q=neurobactrus" title=" neurobactrus"> neurobactrus</a> </p> <a href="https://publications.waset.org/abstracts/26296/neurobactrus-a-novel-highly-effective-and-environmentally-friendly-recombinant-baculovirus-insecticide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26296.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6255</span> Phytochemical Composition and Biological Activities of the Vegetal Extracts of Six Aromatic and Medicinal Plants of Algerian Flora and Their Uses in Food and Pharmaceutical Industries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ziani%20Borhane%20Eddine%20Cherif">Ziani Borhane Eddine Cherif</a>, <a href="https://publications.waset.org/abstracts/search?q=Hazzi%20Mohamed"> Hazzi Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mouhouche%20Fazia"> Mouhouche Fazia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The vegetal extracts of aromatic and medicinal plants start to have much of interest like potential sources of natural bioactive molecules. Many features are conferred by the nature of the chemical function of their major constituents (phenol, alcohol, aldehyde, cetone). This biopotential lets us to focalize on the study of three main biological activities, the antioxidant, antibiotic and insecticidal activities of six Algerian aromatic plants in the aim of making in evidence by the chromatographic analysis (CPG and CG/SM) the phytochemical compounds implicating in this effects. The contents of Oxygenated monoterpenes represented the most prominent group of constituents in the majority of plants. However, the α-Terpineol (28,3%), Carvacrol (47,3%), pulégone (39,5%), Chrysanthenone (27,4%), Thymol 23,9%, γ-Terpinene 23,9% and 2-Undecanone(94%) were the main components. The antioxyding activity of the Essential oils and no-volatils extracts was evaluated in vitro using four tests: inhibition of free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the 2,2-Azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) radical-scavenging activity (ABTS•+), the thiobarbituric acid reactive substances (TBARS) assays and the reducing power. The measures of the IC50 of these natural compounds revealed potent activity (between 254.64-462.76mg.l-1), almost similar to that of BHT, BHA, Tocopherol and Ascorbic acid (126,4-369,1 mg.l-1) and so far than the Trolox one (IC50= 2,82mg.l-1). Furthermore, three ethanol extracts were found to be remarkably effective toward DPPH and ABTS inhibition, compared to chemical antioxidant BHA and BHT (IC = 9.8±0.1 and 28±0.7 mg.l-1, respectively); for reducing power test it has also exhibited high activity. The study on the insecticidal activity effect by contact, inhalation, fecundity and fertility of Callosobruchus maculatus and Tribolium confusum showed a strong potential biocide reaching 95-100% mortality only after 24 hours. The antibiotic activity of our essential oils were evaluated by a qualitative study (aromatogramme) and quantitative (MIC, MBC and CML) on four bacteria (Gram+ and Gram-) and one strain of pathogenic yeast, the results of these tests showed very interesting action than that induced by the same reference antibiotics (Gentamycin, and Nystatin Ceftatidine) such that the inhibition diameters and MIC values for tested microorganisms were in the range of 23–58 mm and 0.015–0.25%(v/v) respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aromatic%20plants" title="aromatic plants">aromatic plants</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oils" title=" essential oils"> essential oils</a>, <a href="https://publications.waset.org/abstracts/search?q=no-volatils%20extracts" title=" no-volatils extracts"> no-volatils extracts</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactive%20molecules" title=" bioactive molecules"> bioactive molecules</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=insecticidal%20activity" title=" insecticidal activity"> insecticidal activity</a>, <a href="https://publications.waset.org/abstracts/search?q=antibiotic%20activity" title=" antibiotic activity"> antibiotic activity</a> </p> <a href="https://publications.waset.org/abstracts/11363/phytochemical-composition-and-biological-activities-of-the-vegetal-extracts-of-six-aromatic-and-medicinal-plants-of-algerian-flora-and-their-uses-in-food-and-pharmaceutical-industries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6254</span> The Order Russulales of Basidiomycota: Systematics, Ecology and Chemotaxonomy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marco%20Clericuzio">Marco Clericuzio</a>, <a href="https://publications.waset.org/abstracts/search?q=Alfredo%20Vizzini"> Alfredo Vizzini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The secondary metabolites of Russulales (one of the main orders of phylum Basidiomycota), have been studied. They are mainly terpenoids, with sesquiterpenes being the most common ones, but also triterpenoids and prenylated phenols have been isolated. We found that classes of specific compounds seem to be often allied to systematic groupings, so that they may have chemotaxonomic significance. Moreover, the ecological implications of such metabolites, as well as their biological activities, are discussed. Lately, we have focused our attention on the anti-arthropod activity of Russula metabolites, in particular on the toxicity against mites and other crop pests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemotaxonomy" title="chemotaxonomy">chemotaxonomy</a>, <a href="https://publications.waset.org/abstracts/search?q=fungi" title=" fungi"> fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=insecticidal%20activity" title=" insecticidal activity"> insecticidal activity</a>, <a href="https://publications.waset.org/abstracts/search?q=russulales" title=" russulales"> russulales</a>, <a href="https://publications.waset.org/abstracts/search?q=terpenoids" title=" terpenoids"> terpenoids</a> </p> <a href="https://publications.waset.org/abstracts/123286/the-order-russulales-of-basidiomycota-systematics-ecology-and-chemotaxonomy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123286.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6253</span> Antagonistic Effect of Indigenous Plant Extracts toward Dusky Cotton Bug, Oxycarenus laetus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Rafiq%20Shahid">Muhammad Rafiq Shahid</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Hassan"> Ali Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Umm-e-%20Rubab"> Umm-e- Rubab</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Nadeem"> Muhammad Nadeem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Insecticidal property of plant extracts was assessed toward dusky bug of cotton. Plant extracts consisted of bari pata (Ziziphus jajuba), Ak (Calotropis gigantean), Tobacco (Nicotiana tabacum), Bakine (Melia azedarach),Kanar (Nerium oleander),Kurtuma (Mitragyna speciosa) and one Control was also included with distilled water treatment. Forced feeding experiment was used to determine the antibiotic effect of bug plant extracts on dusky bug whereas Multi-choice experiment to determine the antixenosis/ repellent property of botanicals. It is evident from the results that mortality and antibiosis percentage of dusky bug due to the use of botanicals ranged from 15-95% and 20-87.3% respectively that was maximum in tobacoo extract followed by bakain and kurtama, minimum was on Ak, kanair and bakain extract. Non preference ranged from 14.28 to 85.7 where maximum non preference of dusky bug was found on bakain and kurtama followed by ak and kanair however minimum was on Bari pata extract. It was further found that local plant extract possessed insecticidal property toward dusky bug as well as also possesses repellency effect toward dusky bug, thus should be included in integrated pest management program of cotton in order to minimize the ill effects of pesticides it is compulsory to adopt eco-friendly methods of insect pest management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=botanical%20extract" title="botanical extract">botanical extract</a>, <a href="https://publications.waset.org/abstracts/search?q=insecticidal%20and%20repellency%20activity" title=" insecticidal and repellency activity"> insecticidal and repellency activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Gossypium%20hirsutum" title=" Gossypium hirsutum"> Gossypium hirsutum</a>, <a href="https://publications.waset.org/abstracts/search?q=oxycarenus%20laetus" title=" oxycarenus laetus"> oxycarenus laetus</a> </p> <a href="https://publications.waset.org/abstracts/15157/antagonistic-effect-of-indigenous-plant-extracts-toward-dusky-cotton-bug-oxycarenus-laetus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15157.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6252</span> Use of an Insecticidal-Iridovirus Kinase towards the Development of Aphid-Resistant Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saranya%20Ganapathy">Saranya Ganapathy</a>, <a href="https://publications.waset.org/abstracts/search?q=Megha%20N.%20Parajulee"> Megha N. Parajulee</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20San%20Francisco"> Michael San Francisco</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Zhang"> Hong Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Insect pests are a serious threat to agricultural productivity. Use of chemical pesticides, the predominant control method thus far, has resulted in environmental damage, pest resurgence, and negative effects on non-target species. Genetically modified (GM) crops offer a promising alternative, and Bacillus thuringiensis endotoxin genes have played a major role in this respect. However, to overcome insect tolerance issues and to broaden the target range, it is critical to identify alternative-insecticidal toxins working through novel mechanisms. Our research group has identified a kinase from Chilo iridescent virus (CIV; Family Iridoviridae) that has insecticidal activity and designated it as ISTK (Iridovirus Serine/Threonine Kinase). A 35 kDa truncated form of ISTK, designated iridoptin, was obtained during expression and purification of ISTK in the yeast system. This yeast-expressed CIV toxin induced 50% mortality in cotton aphids and 100% mortality in green peach aphids (GPA). Optimized viral genes (o-ISTK and o-IRI) were stably transformed into the model plant, Arabidopsis. PCR analysis of genomic DNA confirmed the presence of the gene insert (oISTK/oIRI) in selected transgenic lines. The further screening was performed to identify the PCR positive lines that showed expression of respective toxins at the polypeptide level using Western blot analysis. The stable lines expressing either of these two toxins induced moderate to very high mortality in GPAs and significantly affected GPA development and fecundity. The aphicidal potential of these transgenic Arabidopsis lines will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chilo%20iridescent%20virus" title="Chilo iridescent virus">Chilo iridescent virus</a>, <a href="https://publications.waset.org/abstracts/search?q=insecticidal%20toxin" title=" insecticidal toxin"> insecticidal toxin</a>, <a href="https://publications.waset.org/abstracts/search?q=iridoviruses" title=" iridoviruses"> iridoviruses</a>, <a href="https://publications.waset.org/abstracts/search?q=plant-incorporated%20protectants" title=" plant-incorporated protectants"> plant-incorporated protectants</a>, <a href="https://publications.waset.org/abstracts/search?q=serine%2Fthreonine%20kinase" title=" serine/threonine kinase"> serine/threonine kinase</a> </p> <a href="https://publications.waset.org/abstracts/33526/use-of-an-insecticidal-iridovirus-kinase-towards-the-development-of-aphid-resistant-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6251</span> A Potential Bio-Pesticidal Molecule Derived from Indian Traditional Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bunindro%20Nameirakpam">Bunindro Nameirakpam</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonia%20Sougrapakam"> Sonia Sougrapakam</a>, <a href="https://publications.waset.org/abstracts/search?q=Shannon%20B.%20Olsson"> Shannon B. Olsson</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajashekar%20Yallappa"> Rajashekar Yallappa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural sources for new pesticidal compounds hold promise in view of their eco-friendly nature, selectivity and mammalian safety. Despite a large number of plants that show insecticidal activity and diversity of natural chemistry with inherent eco-friendly nature, newer classes of insecticides have eluded discovery. Artemisia vulgaris, known as Mugwort, is a universal herb used for folk medicine and religious purposes throughout the ancient world. In India, the essential oils of Artemisia vulgaris are used for its insecticidal, anti parasiticidal and antimicrobial properties. Traditionally, the dried leaves of Artemisia vulgaris are used to repel insects as well as rats in and around the granaries in the North-East India. Artemisia vulgaris collected during November from different ecological sites were studied for the bio-pesticidal utility against the stored grain pests. The insecticidal activities were found in the crude extracts of n-hexane and methanol from the samples collected in Sikkim and Manipur respectively. Using silica gel column chromatography protocol, we have isolated one novel bioactive molecule from the aerial parts of Artemisia vulgaris L based on various physical-chemical and spectroscopic techniques (IR, 1H NMR, 13C NMR and mass). The novel bioactive molecule is highly toxic and very low concentration (4.35 µg/l) is needed to control the stored product insects. In additional experiment results clearly showed the involvement of sodium pumps inhibition in the insecticidal action of purified compound in the Sitophilus oryzae. The knockdown activity of the purified compound is concomitant with the in vivo inhibition of Na+/ K+- ATPase. Further, our study showed insignificant differences in the seed germination of control and the treated grains. The lack of adverse effect of the novel bioactive molecule on the seed germination is highly desirable for seed/grain protectant and showing the potential to be developed as possible natural fumigants for the control of stored grain pests. The novel bioactive molecule is selective insecticide with a high margin of safety to mammals and showed promise as novel biopesticide candidate for grain protection. It is believed that Bio-pesticides can serve as the most important pest management tools as far as global safety is concerned. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Indian%20traditional%20plant" title="Indian traditional plant">Indian traditional plant</a>, <a href="https://publications.waset.org/abstracts/search?q=Artemisia%20vulgaris" title=" Artemisia vulgaris"> Artemisia vulgaris</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-pesticides" title=" bio-pesticides"> bio-pesticides</a>, <a href="https://publications.waset.org/abstracts/search?q=Na%2B%2F%20K%2B-%20ATPase" title=" Na+/ K+- ATPase"> Na+/ K+- ATPase</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20germination" title=" seed germination"> seed germination</a> </p> <a href="https://publications.waset.org/abstracts/77889/a-potential-bio-pesticidal-molecule-derived-from-indian-traditional-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77889.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6250</span> Insecticidal Activity of Piper aduncum Fruit and Tephrosia vogelii Leaf Mixed Formulations against Cabbage Pest Plutella xylostella (L.) (Lepidoptera: Plutellidae) </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eka%20Candra%20Lina">Eka Candra Lina</a>, <a href="https://publications.waset.org/abstracts/search?q=Indah%20Widhianingrum"> Indah Widhianingrum</a>, <a href="https://publications.waset.org/abstracts/search?q=Mita%20Eka%20Putri"> Mita Eka Putri</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Afni%20Evalia"> Nur Afni Evalia</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Makky"> Muhammad Makky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The emulsifiable concentrate (EC) and wettable powder (WP) of Piper aduncum and Tephrosia vogelii mixed formulations were tested for their activities in the laboratory and their effectiveness in the field against cabbage pest Plutella xyostella. Cabbage leaves soaked in six different mixed formulation concentrations were tested to 2ⁿᵈ instar larvae of P. xylostella with six replications. The observation was conducted everyday until larvae reached 4ᵗʰ instar stage. Correlation between concentration and larvae mortality was analyzed using probit (POLO-PC). The survived larvae was observed by looking at the growth and development, as well as the antifeedant effects. Field efficacy test was based on LC₉₅ value from laboratory test result. The experiment used a randomized block design with 5 treatments and 3 replications to test the populations of P. xylostella larvae and insecticide effectivity. The results showed that the EC and WP mixed formulations showed insecticidal activity against P. xylostella larvae, with LC₉₅ value of 0.35% and 0.37%, respectively. The highest antifeedant effect on EC mixed formulation was 85.01% and WP mixed formulation was 86.23%. Both mixed formulations also slowed the development of larvae when compared with control. Field effication result showed that applications of EC mixed formulation were able to restrain the population of P. xylostella, with effectivity value of 71.06%. Insecticide effectivity value of EC mixed formulation was higher than WP mixed formulation and Bacillus thuringiensis formulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=botanical%20insecticide" title="botanical insecticide">botanical insecticide</a>, <a href="https://publications.waset.org/abstracts/search?q=efficacy" title=" efficacy"> efficacy</a>, <a href="https://publications.waset.org/abstracts/search?q=emulsifiable%20concentrate%20%28EC%29" title=" emulsifiable concentrate (EC)"> emulsifiable concentrate (EC)</a>, <a href="https://publications.waset.org/abstracts/search?q=Plutella%20xylostella" title=" Plutella xylostella"> Plutella xylostella</a>, <a href="https://publications.waset.org/abstracts/search?q=wettable%20powder%20%28WP%29" title=" wettable powder (WP)"> wettable powder (WP)</a> </p> <a href="https://publications.waset.org/abstracts/86856/insecticidal-activity-of-piper-aduncum-fruit-and-tephrosia-vogelii-leaf-mixed-formulations-against-cabbage-pest-plutella-xylostella-l-lepidoptera-plutellidae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6249</span> Antioxidant Activity of Launaea nudicaulis Growing in Southwest of Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelkrim%20Cheriti">Abdelkrim Cheriti</a>, <a href="https://publications.waset.org/abstracts/search?q=Mebarka%20Belboukhari"> Mebarka Belboukhari</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasser%20Belboukhari"> Nasser Belboukhari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Launaea Cass. is a small genus of the family Asteraceae (tribe Lactuceae, subtribe Sonchinae), consisting of 54 species, of which 9 are presented in the flora of Algeria and is mainly distributed in the South Mediterranean, Africa and SW Asia. Plants in the Launaea genus have been used ethnobotanically as bitter stomachic, for treating diarrhea, gastrointestinal tracts, as anti-inflammatory, for skin diseases, treatment of infected wounds, hepatic pains, children fever, as soporific, lactagogue, diuretic and as insecticidal. Antioxidants are vital substances, which possess the ability to protect the body from damages caused by free radical induced oxidative stress. A variety of free radical scavenging antioxidants is found in a number of dietary sources. The main objective of this study focused on the screening of antioxidant activity of Launaea nudicaulis (Asteraceae) extracts. The in vitro antioxidant activity was investigated with DPPH radical scavenging assay. The quantitative evaluation of DPPH scavenging activity showed that n-BuOH and EtOAc extracts are the most active extracts with a percentage of antiradical activity of 89,62% and 71,57% respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Launaea" title="Launaea">Launaea</a>, <a href="https://publications.waset.org/abstracts/search?q=phytochemical" title=" phytochemical"> phytochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=South%20Algeria" title=" South Algeria"> South Algeria</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahara" title=" Sahara"> Sahara</a>, <a href="https://publications.waset.org/abstracts/search?q=endemic%20specie" title=" endemic specie"> endemic specie</a> </p> <a href="https://publications.waset.org/abstracts/14299/antioxidant-activity-of-launaea-nudicaulis-growing-in-southwest-of-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14299.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6248</span> Effect of Four Medicinal Plant Extracts on Chickpea Leaf Miner Liriomyza cicerina (Rondani)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sabraoui%20Abdelhadi">Sabraoui Abdelhadi</a>, <a href="https://publications.waset.org/abstracts/search?q=El%20Bouhssini%20Mustapha"> El Bouhssini Mustapha</a>, <a href="https://publications.waset.org/abstracts/search?q=Lhaloui%20Saadia"> Lhaloui Saadia</a>, <a href="https://publications.waset.org/abstracts/search?q=El%20Fakhouri%20Karim"> El Fakhouri Karim</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouchelta%20Aziz"> Bouchelta Aziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The surveys carried out in 2014, 2015 in the regions of Abda- Doukala, Chaouia- Ouardigha, Zemour- Zair and Fes- Sais have confirmed that the leaf miner was the main insect pest attacking chickpea (Cicer arietinum L.) in Morocco. The grain yield losses caused by this pest could be more than 20% for winter planting and more than 42% for spring-sown crop. To reduce the chickpea leaf miner infestations, four essential oils, as biopesticide alternatives, were tested for their insecticidal effect on L. ciccerina, adults and larvae under laboratory conditions. In addition, we assessed the efficacy of these essential oils with and without adjuvant against this pest in comparison to three insecticides under field conditions. Mentha pulegium, with a dose of 33 µl/l of air caused 100% mortality on adults and larvae, after three hours and six hours of exposure, respectively. Eucalyptus showed 100% mortality on adults and larvae, with doses of 33 and 83 µl/l, after six and three hours of exposure, respectively. In the field conditions M. pulegium and E. globulus with adjuvant showed promising results compared with Abamectin, Azadirachtin and Spinetoram respectively. Essential oils could be used as one of the IPM components for the control of chickpea leaf miner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liriomyza%20cicerina" title="Liriomyza cicerina">Liriomyza cicerina</a>, <a href="https://publications.waset.org/abstracts/search?q=chickpea" title=" chickpea"> chickpea</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oils" title=" essential oils"> essential oils</a>, <a href="https://publications.waset.org/abstracts/search?q=insecticidal%20activity" title=" insecticidal activity"> insecticidal activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Morocco" title=" Morocco"> Morocco</a> </p> <a href="https://publications.waset.org/abstracts/64444/effect-of-four-medicinal-plant-extracts-on-chickpea-leaf-miner-liriomyza-cicerina-rondani" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6247</span> Bio-Efficacy of Newer Insecticides against Diamondback Moth (Plutella xylostella L. ) in Cabbage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20G.%20Sawant">C. G. Sawant</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20S.%20Patil"> C. S. Patil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The investigation was conducted during January 2016 on Farmer’s field at Nandur Madhyameshwar, Tq. Niphad, Dist. Nashik (Maharashtra: India) on bio-efficacy of newer insecticides against Plutella xylostella L. infesting cabbage. The cabbage crop (var. Saint) was raised according to package of practices except for plant protection measures. Six newer insecticides along with two conventional insecticides and one synthetic pyrethroid were applied twice at 30 and 55 days after transplanting. Insecticidal solutions were diluted in water (375-500 L ha-1) and applied using knapsack sprayer (16L) with hollow cone nozzle. Treatments included indoxacarb @ 40 g a.i.ha-1, spinosad @ 17.5 g a.i.ha-1, flubendiamide @18.24 g a.i. ha-1, diafenthiuron @ 300 g a. i. ha-1, emamectin benzoate @ 10 g a. i. ha-1, chlorantraniliprole @ 10 g a. i. ha-1, quinalphos @ 250 g a. i. ha-1, triazophos @ 500 g a. i. ha-1, bifenthrin @ 50 g a.i. ha-1 and untreated control. The larvae were counted on head and outside the head. Observations were recorded one day before spray (Precount) and 1,3,7,14 days after spray. Results revealed that all the insecticidal treatments were significantly superior over untreated control by recording lower larval count. Among the insecticidal treatments, significantly lowest number of larvae of diamondback moth was recorded in chlorantraniliprole @ 10 g a.i.ha-1 (1.00 larvae plant-1) followed by spinosad @ 17.5 g a.i. ha-1 (1.45 larvae plant-1 and flubendiamide 18.24 g a.i. ha-1(1.53 larvae plant-1). The efficacy of insecticides reflected on yield of marketable cabbage heads by recording 242.27 qt ha-1 (1:33.38) in the treatment of chlorantraniliprole @ 10 g a.i.ha-1. It was followed by spinosad @ 17.5 g a.i. ha-1 with 236.91 qt ha-1 (1:24.92) and flubendiamide 18.24 g a.i. ha-1 with 228.49 qt ha-1 (1:30.43). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-efficacy" title="bio-efficacy">bio-efficacy</a>, <a href="https://publications.waset.org/abstracts/search?q=cabbage" title=" cabbage"> cabbage</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorantraniliprole" title=" chlorantraniliprole"> chlorantraniliprole</a>, <a href="https://publications.waset.org/abstracts/search?q=Plutella%20xylostella%20L." title=" Plutella xylostella L."> Plutella xylostella L.</a> </p> <a href="https://publications.waset.org/abstracts/78218/bio-efficacy-of-newer-insecticides-against-diamondback-moth-plutella-xylostella-l-in-cabbage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6246</span> Separation of Some Pyrethroid Insecticides by High-Performance Liquid Chromatography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fairouz%20Tazerouti">Fairouz Tazerouti</a>, <a href="https://publications.waset.org/abstracts/search?q=Samira%20Ihadadene"> Samira Ihadadene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pyrethroids are synthetic pesticides that originated from the modification of natural pyrethrins to improve their biological activity and stability. They are a family of chiral pesticides with a large number of stereoisomers. Enantiomers of synthetic pyretroids present different insecticidal activity, toxicity against aquatic invertebrates and persistence in the environment so the development of rapid and sensitive chiral methods for the determination of different enantiomers is necessary. In this study, the separation of enantiomers of pyrethroid insecticides has been systematically studied using three commercially chiral high-performance liquid chromatography columns. Useful resolution was obtained for compounds with a variety of acid and alcohol moieties, and containing one to four chiral centres. The chromatographic behaviour of the diastereomers of some of these insecticides by using normal, polar and reversed mobile phase mode were also examined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pesticides" title="pesticides">pesticides</a>, <a href="https://publications.waset.org/abstracts/search?q=analysis" title=" analysis"> analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20chromatography" title=" liquid chromatography"> liquid chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrethroids" title=" pyrethroids"> pyrethroids</a> </p> <a href="https://publications.waset.org/abstracts/16635/separation-of-some-pyrethroid-insecticides-by-high-performance-liquid-chromatography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16635.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6245</span> The Effect of Aromatherapy Candle as Insecticide from Citrus Extract of Lemongrass (Cymbopogon) to Increase Ae. aegypti Mortality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurul%20Hidayah">Nurul Hidayah</a>, <a href="https://publications.waset.org/abstracts/search?q=Farida%20Rahmatika"> Farida Rahmatika</a>, <a href="https://publications.waset.org/abstracts/search?q=Fathimah%20Azzahra"> Fathimah Azzahra</a>, <a href="https://publications.waset.org/abstracts/search?q=Nesty%20Herennadia"> Nesty Herennadia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aromatherapy candles are one of the insecticide media that have not been much researched. The active ingredient that is proven to have the effect of insecticide is a citrus extract from lemongrass oil (Cymbopogon). Aromatherapy candles are added by citrus compounds to be insecticidal for Ae. aegypti mosquito that was related to the infectious disease such as dengue fever. This research aims to find out if aromatherapy candles of citrus compounds have an insecticidal effect on Ae. aegypti mosquito. We used true experimental design including posttest only with control group design. The samples are 20 male and female Ae. aegypti mosquitos with aged 1-7 days belong to the inclusion criteria. The subjects were divided into 6 groups, consisting of 1 negative control group and 5 treatment groups with variation concentration are 1%; 2%; 3%; 4%; 5%. Each group will be treated for 2 hours and observed death after 24 hours. Replication in each group is done 4 times. The results were then tested statistically using Kruskal-Wallis and probit test. Mean of death in negative control group, and treatment group 1%; 2%; 3%; 4%; 5% respectively 0; 1; 0.25; 0; 1 and 1 mosquito. The Kruskal-Wallis test in the study group found no significant difference (p = 0.178). The probit analysis showed that LC50 and LC90 were 20.069% and 31.557%. The aromatherapy candle of a citrus compound has an insecticidal effect on the Ae aegypti mosquito. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ae.%20aegypti%20insecticide" title="Ae. aegypti insecticide">Ae. aegypti insecticide</a>, <a href="https://publications.waset.org/abstracts/search?q=aromatherapy%20candle" title=" aromatherapy candle"> aromatherapy candle</a>, <a href="https://publications.waset.org/abstracts/search?q=citrus%20compound" title=" citrus compound"> citrus compound</a>, <a href="https://publications.waset.org/abstracts/search?q=lemongrass%20oil%20%28Cymbopogon%29" title=" lemongrass oil (Cymbopogon)"> lemongrass oil (Cymbopogon)</a> </p> <a href="https://publications.waset.org/abstracts/83514/the-effect-of-aromatherapy-candle-as-insecticide-from-citrus-extract-of-lemongrass-cymbopogon-to-increase-ae-aegypti-mortality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83514.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6244</span> Helicoverpa armigera Hubner (Lepidoptera: Noctuidae) Susceptibility to Bacillus thuringiensis Crystal Toxins</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Jawad%20Saleem">Muhammad Jawad Saleem</a>, <a href="https://publications.waset.org/abstracts/search?q=Faisal%20Hafeez"> Faisal Hafeez</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Arshad"> Muhammad Arshad</a>, <a href="https://publications.waset.org/abstracts/search?q=Afifa%20Naeem"> Afifa Naeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayesha%20Iftekhar"> Ayesha Iftekhar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bacillus thuringiensis is a gram-positive spore-forming bacterium that belongs to the Bacillus cereus group of Bacilli and it produces ICP (insecticidal crystal protein) Cry toxins or Cysts toxins. Spores are produced as parasporal crystalline inclusions bodies (also known as endotoxins) at the onset of sporulation during the stationary growth phase. During vegetative growth that does not form crystals and is called vegetative insecticidal proteins (VIP) and secreted an insecticidal protein (SIP). Bacillus thuringiensis (Bt) is important for pest management either in the form of insecticides or through incorporated in the gene of the crop. Bioassays were conducted on the F2 generation of 1st instar larvae of H. armigera by the diet incorporation method to determine the susceptibility to Bt Cry toxins (Cry1Ac, Cry2Ab, Cry2A). The median lethal concentration (LC₅₀) of Cry1Ac, Cry2Ab, Cry2A ranged from 0.11 to 1.06 µg/ml and moult inhibitory concentration (MIC₅₀) of Cry1Ac, Cry2Ab, Cry2A ranged from 0.05 to 0.25 µg/ml. Cry1Ac was found most toxic to 1st instar larvae of H. armigera as compared to other Bt Cry toxins (Cry1Ac, Cry2Ab, Cry2A). The experimental results are important to policy-makers and technology providers to develop strategies for the exploitation of transgenic Bt cotton varieties as a component of integrated pest management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bt%20toxin" title="Bt toxin">Bt toxin</a>, <a href="https://publications.waset.org/abstracts/search?q=Cry1Ac" title=" Cry1Ac"> Cry1Ac</a>, <a href="https://publications.waset.org/abstracts/search?q=Cry2Ab" title=" Cry2Ab"> Cry2Ab</a>, <a href="https://publications.waset.org/abstracts/search?q=Cry2A" title=" Cry2A"> Cry2A</a>, <a href="https://publications.waset.org/abstracts/search?q=susceptibility" title=" susceptibility"> susceptibility</a>, <a href="https://publications.waset.org/abstracts/search?q=Helicoverpa%20armigera" title=" Helicoverpa armigera"> Helicoverpa armigera</a> </p> <a href="https://publications.waset.org/abstracts/97825/helicoverpa-armigera-hubner-lepidoptera-noctuidae-susceptibility-to-bacillus-thuringiensis-crystal-toxins" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6243</span> Insecticidal Effects of Plant Extracts of Thymus daenensis and Eucalyptus camaldulensis on Callosobruchus maculatus (Coleoptera: Bruchidae)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afsoon%20Danesh%20Afrooz">Afsoon Danesh Afrooz</a>, <a href="https://publications.waset.org/abstracts/search?q=Sohrab%20Imani"> Sohrab Imani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Ahadiyat"> Ali Ahadiyat</a>, <a href="https://publications.waset.org/abstracts/search?q=Aref%20Maroof"> Aref Maroof</a>, <a href="https://publications.waset.org/abstracts/search?q=Yahya%20Ostadi"> Yahya Ostadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study has been investigated for finding alternative and safe botanical pesticides instead of chemical insecticides. The effects of plant extracts of Eucalyptus camaldulensis and Thymus daenensis were tested against adult of Callosobrochus maculatus F. Experiments were carried out at 27±1°C and 60 ± 5% R. H. under dark condition with adopting a complete randomized block design. Three replicates were set up for five concentrations of each plants extract. LC50 values were determined by SPSS 16.0 software. LC50 values indicated that plant extract of Thymus daenensis with 1.708 (µl/l air) against adult was more effective than the plant extract of Eucalyptus camaldulensis with LC50 12.755 (µl/l air). It was found that plant extract of Thymus daenensis in comparison with extract of Eucalyptus camaldulensis could be used as a pesticide for control store pests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=callosobruchus%20maculatus" title="callosobruchus maculatus">callosobruchus maculatus</a>, <a href="https://publications.waset.org/abstracts/search?q=Eucalyptus%20camaldulensis" title=" Eucalyptus camaldulensis"> Eucalyptus camaldulensis</a>, <a href="https://publications.waset.org/abstracts/search?q=insecticidal%20effects" title=" insecticidal effects"> insecticidal effects</a>, <a href="https://publications.waset.org/abstracts/search?q=Thymus%20daenensis" title=" Thymus daenensis"> Thymus daenensis</a> </p> <a href="https://publications.waset.org/abstracts/16007/insecticidal-effects-of-plant-extracts-of-thymus-daenensis-and-eucalyptus-camaldulensis-on-callosobruchus-maculatus-coleoptera-bruchidae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16007.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6242</span> The Chemical Composition and Larvicidal Activity of Essential Oils Derived from Piper Longepetiolatum and Piper Brachypetiolatum (Piperaceae) Against Aedes Aegypti Larvae (Culicidae) Were Investigated</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suelen%20C.%20Lima">Suelen C. Lima</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9%20C.%20de%20Oliveira"> André C. de Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosemary%20A.%20Roque"> Rosemary A. Roque</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dengue is fatal arboviruses transmitted by the A. aegypti mosquito to more than 100 countries, for which the WHO estimates that 2.5 million people will be infected by these disease. The widespread of these diseases is due, among other factors, to the resistance that A. aegypti has to several commercial insecticides. On the other hand, natural products based on plants of the genus Piper (Piperaceae) are characterized by their insecticidal activities against mosquitoes. Piper longepetiolatum and Piper brachypetiolatum are species with wide distribution in the State of Amazonas. However, there is no investigation of phytochemical or biological of these plants against mosquitoes such as A. aegypti. The main of this study was to identify the chemical composition of the essential oil (EOs) from P. longepetiolatum and P. brachypetiolatum and to evaluate the biological activity against A. aegypti. The EOs were extracted by hydrodistillation from leaves (200 g) of P. longepetiolatum and P. brachypetiolatum and analyzed by GC-MS and GC-FID. The main compounds β-caryophyllene (99.9% of purity) and E-nerolidol (99.4% of purity) were purchased from Sigma-Aldrich® Brazil. The larvicidal activity of EOs (20 to 100 ppm), β-caryophyllene and E-nerolidol (10 to 50 ppm) was performed according to WHO protocol against A. aegypti larvae. The GC-MS and GC-FID analysis of EOs from P. longepetiolatum and P. brachypetiolatum indicated the majority presence of β-caryophyllene (35.42%) and E-nerolidol (49.79%), respectively. The results showed that all natural products presented larvicidal activity against A. aegypti. In this aspect, the OE from P. brachypetiolatum (LC50 of 15.51 ppm and LC90 of 22.79 ppm) was more active than the OE from P. longepetiolatum (LC50 of 47.17 ppm and LC90 of 69.60 ppm) (p < 0.05). Regarding of main compounds, E-nerolidol (LC50 of 9.50 ppm and LC90 of 23.89 ppm) showed higher larvicidal activity than the β-caryophyllene compound (LC50 of 79.00 ppm and LC90 of 230.91 ppm) (p < 0.05). The larvae treated with these natural products showed tremors and lethargic movements, suggesting that these natural products have neurotoxic action. These observations support studies to investigate the mechanism of action. This is the first record of the chemical composition and larvicidal activity of the EO from P. longepetiolatum and P. brachypetiolatum rich in β-caryophyllene and E-nerolidol against A. aegypti larvae. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piperaceae" title="piperaceae">piperaceae</a>, <a href="https://publications.waset.org/abstracts/search?q=aedes" title=" aedes"> aedes</a>, <a href="https://publications.waset.org/abstracts/search?q=sesquiterpenes" title=" sesquiterpenes"> sesquiterpenes</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20control" title=" biological control"> biological control</a> </p> <a href="https://publications.waset.org/abstracts/175157/the-chemical-composition-and-larvicidal-activity-of-essential-oils-derived-from-piper-longepetiolatum-and-piper-brachypetiolatum-piperaceae-against-aedes-aegypti-larvae-culicidae-were-investigated" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175157.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6241</span> Influence of Catharanthus roseus, Ocimum sanctum and Lantana camara Extracts on Survival and Longevity of Dysdercus koenigii</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sunil%20Kayesth">Sunil Kayesth</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamal%20Kumar%20Gupta"> Kamal Kumar Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of resistance among insects and pests, environmental contamination and adverse effects on non-target organisms is contributed by the indiscriminate use of chemical based insecticides. To overcome these environmental and other ecological issues that are need to replace these harmful toxic compounds. The present study was designed to evaluate the effect of Catharanthus roseus, Ocimum sanctum and Lantana camara plants volatiles on survival and longevity of Dysdercus koenigii. The hexane extract and ethanol extracts of these three plants were used. The fifth instars were exposed to hexane extract with concentrations of 10%, 5%, 2.5% 1.25%, 0.1%, 0.5% 0.25%, 0.125% and 0.0625% while, adults were treated with10%, 5%, 2.5% and 1.25%. 1-ml of each of these concentrations was used to make a thin film in sterilized glass jars of 500 ml capacity. Fifteen- newly emerged fifth instar nymphs and adult bugs were treated separately with the extracts for 24- hour exposure to the plant volatiles. For ethanol extracts cottonseed were treated with ethanol extracts of 10%, 5%, 2.5% and 1.25% concentrations. The treated seeds were provided to the Dysdercus for a period of 24 hours and their feeding behaviour was observed. The effect of hexane and ethanol extract of these plants was observed and readings were recorded for 15 days. Survival and longevity of both fifth instars and adults were in correlation with the concentrations of the plant extracts. Among three plant extracts, Ocimum hexane extract was most toxic and Catharanthus was moderate while Lantana was least toxic. The ethanol extracts of Lantana was highly antifeedent while Ocimum was moderate and Catharanthus was least antifeedent. Both Catharanthus and Ocimum appeared to have potential molecules, which possessed insecticidal activity while Ocimum and Lantana showed antifeedent activities. These insecticidal and antifeedent properties may be used in IPM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Catharanthus%20roseus" title="Catharanthus roseus">Catharanthus roseus</a>, <a href="https://publications.waset.org/abstracts/search?q=Ocimum%20sanctum" title=" Ocimum sanctum"> Ocimum sanctum</a>, <a href="https://publications.waset.org/abstracts/search?q=Lantana%20camara" title=" Lantana camara"> Lantana camara</a>, <a href="https://publications.waset.org/abstracts/search?q=Dysdercus%20koenigii" title=" Dysdercus koenigii "> Dysdercus koenigii </a> </p> <a href="https://publications.waset.org/abstracts/39732/influence-of-catharanthus-roseus-ocimum-sanctum-and-lantana-camara-extracts-on-survival-and-longevity-of-dysdercus-koenigii" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6240</span> Aromatogram Test to Control Aphis Fabae Using Essential Oils of Mentha rotundifolia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bouziane%20Zehaira">Bouziane Zehaira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Essential oils derived from aromatic or medicinal plants have recently proven useful in a variety of fields, including the production of medicines, perfumes and foodstuffs. The purpose of this research is to determine the insecticidal activity of essential oils extracted from Mentha rotundifolia species against Aphis fabae. The bioassay used to determine essential oils toxicity to pest insect Aphis fabae revealed a very high effective repellent. The effects with concentrations of 100% and 30% were found to be statistically significant (F=64.800, P<0.0001) with an average of 7.66 and 7, respectively. According to the findings, the plant under consideration is promising as a source of natural pesticides and lends itself well to research in the field of pest control using biochemical alternatives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pest" title="pest">pest</a>, <a href="https://publications.waset.org/abstracts/search?q=mentha" title=" mentha"> mentha</a>, <a href="https://publications.waset.org/abstracts/search?q=effective" title=" effective"> effective</a>, <a href="https://publications.waset.org/abstracts/search?q=biocontrol" title=" biocontrol"> biocontrol</a>, <a href="https://publications.waset.org/abstracts/search?q=repellent" title=" repellent"> repellent</a> </p> <a href="https://publications.waset.org/abstracts/193145/aromatogram-test-to-control-aphis-fabae-using-essential-oils-of-mentha-rotundifolia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193145.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">13</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6239</span> Storage of Maize Grains Using Powder and Oils of Commonly Used Medicinal Plants (Aframomum melegueta, Garcinia kola and Piper guineense)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20O.%20Adejumo">T. O. Adejumo</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20S.%20Akinyemi"> O. S. Akinyemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Powders and oils of Aframomum melegueta, Garcinia kola and Piper guineense were tested as preservatives for the storage of maize grains for four weeks. The concentrations of the powders were 32.5gkg-1, 65.0gkg-1 and 97.5gkg-1 maize, while those of oils were 0.85mlkg-1, 0.50mlkg-1 and 0.75mlkg-1 maize respectively. Powders of the three botanicals at 97.5gkg-1 maize possessed insecticidal effect on Sitophilus zeamais and also inhibitory activities on Aspergillus flavus, A. fumigatus, A. niger and Fusarium verticillioides, while little effect was observed for other concentrations. Oils of the three botanicals at 0.50mlkg-1 and 0.75mlkg-1 maize showed an insecticidal effect on S. zeamais and also inhibitory activities on A. flavus, A. fumigatus, A. niger, F. verticillioides, Penicillium and Rhizopus species. Oils showed more potential as a protectant against fungal and insect pest in storage maize grains than powders. Powders and oils of A. melegueta, G. kola and P. guineense could be successfully used as biopesticides. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aframomum%20melegueta" title="aframomum melegueta">aframomum melegueta</a>, <a href="https://publications.waset.org/abstracts/search?q=garcinia%20kola" title=" garcinia kola"> garcinia kola</a>, <a href="https://publications.waset.org/abstracts/search?q=maize" title=" maize"> maize</a>, <a href="https://publications.waset.org/abstracts/search?q=powder" title=" powder"> powder</a>, <a href="https://publications.waset.org/abstracts/search?q=oils" title=" oils"> oils</a>, <a href="https://publications.waset.org/abstracts/search?q=piper%20guineense" title=" piper guineense"> piper guineense</a> </p> <a href="https://publications.waset.org/abstracts/35674/storage-of-maize-grains-using-powder-and-oils-of-commonly-used-medicinal-plants-aframomum-melegueta-garcinia-kola-and-piper-guineense" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35674.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6238</span> Chemical Composition and Insecticidal Activity of Three Essential Oil and Beauvericin Nanogel on Plodia Interpunctella (Lepidoptera: Pyralidae)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Magda%20Mahmoud%20Amin%20Sabbour">Magda Mahmoud Amin Sabbour</a>, <a href="https://publications.waset.org/abstracts/search?q=El-Sayed%20H.%20Shaurub"> El-Sayed H. Shaurub</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Indian meal moth Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae), of stored grain pests which destroy the seed completely. Their larval stages feed on the nutrient germinating kernels part found in the seeds grain. This leads to a reduction causing a badness to seed germination and seed viability. It controlled by many insecticides which pollute and cusses a harmful diseases to human being. Three tested oils were evaluated on this target pests. Plant extracts, essential oils and medical oils are materials which used to control many stored pests. Plant oils extracts have a lower effects on parasites and predators and not pollute the medium. By using the apparatus gas chromatography flame ionization detector gas chromatography–analysis of three essential oil tested. This research was point to explore and appreciation the activity of three oils and nano gel Beauvericin against P. interpunctella in the laboratory conditions and in the store conditions. The three essential oil tested proved that, percentage of α-Pinene recoded 7.76, 7.72 and 6.66 for C. cyminum, A. squamosal and G. officinale respectively. The composition of the β-Pinene recoded 4.61, 8.92 and 30.63 for the corresponding oils tested. Results showed that after analytically the oils tested, the effective compound of C. cyminum oil are p-cyinene and Terpinene. Results obtained show that the LC50 recorded 125, 112, 55 and 20 ppm after P. interpunctella treated with medical oils of Guaiacum officinale, Annona squamosa, Cuminum cyminum and Beauvericin 3% respectively. The accumulative mortality of P. interpunctella after treated with A.squamosa oil-loaded nanogels which showed that it is the highest oils from infestations recoded when the seed treated with 3% after 48 days, the accumulations obtained 44% at followed by 24 after24 days of storage. Results, cleared that the seed protection by G. officinale recorded 40% at concentrations of 3% after 48 days of storage seeds. C. cyminum was the highest mortality by 98, at concentrations 3%. The highest seed protection proved after C. cyminum oil-loaded nanogels 14% followed by G. officinale 29% and A.squamosa 44%.when the seeds treated with Beauvericin 3%. Results of this work cleared that the essential medical oils have a useful action effect on target insects. Plant essential and medical oils, their active ingredient have potentially high bioactivity against on P. interpunctella. The medical and essential oils incorporation and usage the nano-formulation release stopped the highly degradation vaporization and the increasing in the constancy, and save the lower effectiveness of the dosage/application. The research results proved that the highest seed protection obtained after C. cyminum oil-loaded nanogels followed by G. officinale and A.squamosa. It could be complemented that P. interpunctella were more susceptible to medical oils loaded nanogel (MOLNs ) than medical oils only (MO). MOLNs had best lower amount of the residual activity than MO only. MOLNs might mend the insecticidal action of the medical oil tested by the slow effective release of the medical oils to control P. interpunctella mostly at the lower doses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cuminum%20cyminum" title="Cuminum cyminum">Cuminum cyminum</a>, <a href="https://publications.waset.org/abstracts/search?q=annona%20squamosa" title=" annona squamosa"> annona squamosa</a>, <a href="https://publications.waset.org/abstracts/search?q=guaiacum%20officinale" title=" guaiacum officinale"> guaiacum officinale</a>, <a href="https://publications.waset.org/abstracts/search?q=beauvericin%203%20%25" title=" beauvericin 3 %"> beauvericin 3 %</a>, <a href="https://publications.waset.org/abstracts/search?q=plodia%20interpunctella" title=" plodia interpunctella"> plodia interpunctella</a> </p> <a href="https://publications.waset.org/abstracts/154047/chemical-composition-and-insecticidal-activity-of-three-essential-oil-and-beauvericin-nanogel-on-plodia-interpunctella-lepidoptera-pyralidae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6237</span> Antioxidant Activity of the Algerian Traditional Kefir Supernatant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Amellal-Chibane">H. Amellal-Chibane</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Dehdouh"> N. Dehdouh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ait-Kaki"> S. Ait-Kaki</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20%20Halladj"> F. Halladj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kefir is fermented milk that is produced by adding Kefir grains, consisting of bacteria and yeasts, to milk. The aim of this study was to investigate the antioxidant activity of the kefir supernatant and the raw milk. The Antioxidant activity assays of kefir supernatant and raw milk were evaluated by assessing the DPPH radical-scavenging activity. Kefir supernatant demonstrated high antioxidant activity (87.75%) compared to the raw milk (70.59 %). These results suggest that the Algerian kefir has interesting antioxidant activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=kefir" title=" kefir"> kefir</a>, <a href="https://publications.waset.org/abstracts/search?q=kefir%20supernatant" title=" kefir supernatant"> kefir supernatant</a>, <a href="https://publications.waset.org/abstracts/search?q=raw%20milk" title=" raw milk "> raw milk </a> </p> <a href="https://publications.waset.org/abstracts/24330/antioxidant-activity-of-the-algerian-traditional-kefir-supernatant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24330.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6236</span> Insecticidal and Repellent Efficacy of Clove and Lemongrass Oils Against Museum Pest, Lepisma Saccharina (Zygentoma: Lepismatidae)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suboohi%20Nasrin">Suboohi Nasrin</a>, <a href="https://publications.waset.org/abstracts/search?q=MHD.%20Shahid"> MHD. Shahid</a>, <a href="https://publications.waset.org/abstracts/search?q=Abduraheem%20K."> Abduraheem K.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> India is a tropical country, and it is estimated that biological and abiological agents are the major factors in the destruction and deterioration of archival materials like herbarium, paper, cellulose, bookbinding, etc. Silverfish, German Cockroaches, Termites, Booklice, Tobacco beetle and Carpet beetles are the common insect's pests in the museum, which causes deterioration to collections of museum specimens. Among them, silverfish is one of the most notorious pests and primarily responsible for the deterioration of Archival materials. So far, the investigation has been carried to overcome this existing problem as different management strategies such as chemical insecticides, fungicides, herbicides, nematicides, etc., have been applied. Moreover, Synthetic molecules lead to affect the ecological balance, have a detrimental effects on human health, reduce the beneficial microbial flora and fauna, etc. With a view, numbers of chemicals have been banned and advised not to be used due to their long-lasting persistency in soil ecosystem, water and carcinogenic. That’s why the authors used natural products with biocidal activity, cost-effective and eco-friendly approaches. In this study, various concentrations (30, 60 and 90 ml/L) of clove and lemongrass essential oil at different treatment duration (30, 60, 90 and 120-minutes) were investigated to test its properties as a silverfish repellent and insecticidal effect. The result of two ways ANOVA revealed that the mortality was significantly influenced by oil concentration, treatment duration and interaction between two independent factors was also found significant. The mortality rate increased with increasing the oil concentration in clove oil, and 100 % mortality was recorded in 0.9 ml at 120-minute. It was also observed that the treatment duration has the highest effect on the mortality rate of silverfish. The clove oil had the greatest effect on the silverfish in comparison to lemongrass. While in the case of percentage, repellency of adult silverfish was oil concentration and treatment duration-dependent, i.e., increase in concentration and treatment duration resulted in higher repellency percentage. The clove oil was found more effective, showing maximum repellency of 80.00% at 0.9ml/cm2 (highest) concentration, and in lemongrass highest repellency was observed at 33.4% at 0.9 ml/cm2 concentration in the treated area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adult%20silverfish" title="adult silverfish">adult silverfish</a>, <a href="https://publications.waset.org/abstracts/search?q=oils" title=" oils"> oils</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20concentration" title=" oil concentration"> oil concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment%20duration" title=" treatment duration"> treatment duration</a>, <a href="https://publications.waset.org/abstracts/search?q=mortality%20%28%25%29%20and%20repellency" title=" mortality (%) and repellency"> mortality (%) and repellency</a> </p> <a href="https://publications.waset.org/abstracts/141561/insecticidal-and-repellent-efficacy-of-clove-and-lemongrass-oils-against-museum-pest-lepisma-saccharina-zygentoma-lepismatidae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141561.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6235</span> Biological Activity of Essential Oils from Salvia nemorosa L.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdol-Hassan%20Doulah">Abdol-Hassan Doulah </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, antimicrobial activity of essential oil and ethyl acetate and ether extracts of S. nemorosa were examined against some species of bacteria and fungi. The essential oil of the aerial part of S. nemorosa was examined by GC and GC-MS. In the essential oil of S. nemorosa 26 Compounds have been identified. 2-Nonanone (44.09 %), 2-Undecanone (33.79 %), E-Caryophyllene (3.74 %) and 2-Decanone (2.89 %) were the main components of the essential oil. The essential oil analysis showed greatest antimicrobial activity against Staphylococcus epidermidis (5.3 μg/ml) and S. cerevisiae (9.3 μg/ml). The ethyl acetate showed greatest antimicrobial activity against Bacillus subtilis (106.7 μg/ml), Candida albicans (5.3 μg/ml) and ether extract showed greatest antimicrobial activity against Klebseilla pneumoniae (10.7 μg/ml) and Saccharomyces cerevisiae (10.7 μg/ml). In conclusion, we suggest that the antimicrobial activity of S. nemorosa may be due to its content of germacrene and linalool. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title="antibacterial activity">antibacterial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=antifungal%20activity" title=" antifungal activity"> antifungal activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Salvia%20nemorosa%20L." title=" Salvia nemorosa L."> Salvia nemorosa L.</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oils" title=" essential oils"> essential oils</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20activity" title=" biological activity"> biological activity</a> </p> <a href="https://publications.waset.org/abstracts/31804/biological-activity-of-essential-oils-from-salvia-nemorosa-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=insecticidal%20activity&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=insecticidal%20activity&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=insecticidal%20activity&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=insecticidal%20activity&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=insecticidal%20activity&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=insecticidal%20activity&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=insecticidal%20activity&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=insecticidal%20activity&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=insecticidal%20activity&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=insecticidal%20activity&page=208">208</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=insecticidal%20activity&page=209">209</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=insecticidal%20activity&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>