CINXE.COM

Search results for: zebrafish

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: zebrafish</title> <meta name="description" content="Search results for: zebrafish"> <meta name="keywords" content="zebrafish"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="zebrafish" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="zebrafish"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 31</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: zebrafish</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Compensatory Increased Activities of Mitochondrial Respiratory Chain Complexes from Eyes of Glucose-Immersed Zebrafish</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jisun%20Jun">Jisun Jun</a>, <a href="https://publications.waset.org/abstracts/search?q=Eun%20Ko"> Eun Ko</a>, <a href="https://publications.waset.org/abstracts/search?q=Sooim%20Shin"> Sooim Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Kitae%20Kim"> Kitae Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Moonsung%20Choi"> Moonsung Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diabetes is a metabolic disease characterized by hyperglycemia, insulin resistant, mitochondrial dysfunction. Diabetes is associated with the development of diabetic retinopathy resulting in worsening vision and eventual blindness. In this study, eyes were enucleated from glucose-immersed zebrafish which is a good animal model to generate diabetes, and then mitochondria were isolated to evaluate activities of mitochondrial electron transfer complexes. Surprisingly, the amount of isolated mitochondria was increased in eyes from glucose-immersed zebrafish compared to those from non-glucose-immerged zebrafish. Spectrophotometric analysis for measuring activities of mitochondrial complex I, II, III, and IV revealed that mitochondria functions was even enhanced in eyes from glucose-immersed zebrafish. These results indicated that 3 days or 7 days glucose-immersion on zebrafish to induce diabetes might contribute metabolic compensatory mechanism to restore their mitochondrial homeostasis on the early stage of diabetes in eyes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabetes" title="diabetes">diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose%20immersion" title=" glucose immersion"> glucose immersion</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondrial%20complexes" title=" mitochondrial complexes"> mitochondrial complexes</a>, <a href="https://publications.waset.org/abstracts/search?q=zebrafish" title=" zebrafish"> zebrafish</a> </p> <a href="https://publications.waset.org/abstracts/77334/compensatory-increased-activities-of-mitochondrial-respiratory-chain-complexes-from-eyes-of-glucose-immersed-zebrafish" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Over Expression of Mapk8ip3 Patient Variants in Zebrafish to Establish a Spectrum of Phenotypes in a Rare-Neurodevelopmental Disorder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kinnsley%20Travis">Kinnsley Travis</a>, <a href="https://publications.waset.org/abstracts/search?q=Camerron%20M.%20Crowder"> Camerron M. Crowder</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mapk8ip3 (Mitogen-Activated Protein Kinase 8 Interacting Protein 3) is a gene that codes for the JIP3 protein, which is a part of the JIP scaffolding protein family. This protein is involved in axonal vesicle transport, elongation and regeneration. Variants in the Mapk8ip3 gene are associated with a rare-genetic condition that results in a neurodevelopmental disorder that can cause a range of phenotypes including global developmental delay and intellectual disability. Currently, there are 18 known individuals diagnosed to have sequenced confirmed Mapk8ip3 genetic disorders. This project focuses on examining the impact of a subset of missense patient variants on the Jip3 protein function by overexpressing the mRNA of these variants in a zebrafish knockout model for Jip3. Plasmids containing cDNA with individual missense variants were reverse transcribed, purified, and injected into single-cell zebrafish embryos (Wild Type, Jip3 -/+, and Jip3 -/-). At 6-days post mRNA microinjection, morphological, behavioral, and microscopic phenotypes were examined in zebrafish larvae. Morphologically, we compared the size and shape of the zebrafish during their development over a 5-day period. Total locomotive activity was assessed using the Microtracker assay and patterns of movement over time were examined using the DanioVision assay. Lastly, we used confocal microscopy to examine sensory axons for swelling and shortened length, which are phenotypes observed in the loss-of-function knockout Jip3 zebrafish model. Using these assays during embryonic development, we determined the impact of various missense variants on Jip3 protein function, compared to knockout and wild-type zebrafish embryo models. Variants in the gene Mapk8ip3 cause rare-neurodevelopmental disorders due to an essential role in axonal vesicle transport, elongation and regeneration. A subset of missense variants was examined by overexpressing the mRNA of these variants in a Jip3 knock-out zebrafish. Morphological, behavioral, and microscopic phenotypes were examined in zebrafish larvae. Using these assays, the spectrum of disorders can be phenotypically determined and the impact of variant location can be compared to knockout and wild-type zebrafish embryo models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rare%20disease" title="rare disease">rare disease</a>, <a href="https://publications.waset.org/abstracts/search?q=neurodevelopmental%20disorders" title=" neurodevelopmental disorders"> neurodevelopmental disorders</a>, <a href="https://publications.waset.org/abstracts/search?q=mrna%20overexpression" title=" mrna overexpression"> mrna overexpression</a>, <a href="https://publications.waset.org/abstracts/search?q=zebrafish%20research" title=" zebrafish research"> zebrafish research</a> </p> <a href="https://publications.waset.org/abstracts/154287/over-expression-of-mapk8ip3-patient-variants-in-zebrafish-to-establish-a-spectrum-of-phenotypes-in-a-rare-neurodevelopmental-disorder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154287.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> The Angiogenic Activity of α-Mangostin in the Development of Zebrafish Embryo In Vivo</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Titis%20Indah%20Adi%20Rahayu">Titis Indah Adi Rahayu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Angiogenesis is the process of generating new capillary from pre-existing blood vessels. VEGFA is a major regulator in angiogenesis that binds and activates two tyrosine kinase receptors, VEGFR1 (Flt-1) and VEGFR2 (Flk-1/KDR) which regulate pathological and physiological angiogenesis. Disruption of VEGFA and VEGFR2 regulation lead to many diseases. The study of α-Mangostin (derivate of xanthone) as anti-oxidant and anti inflammation has been explored recently and both of them have relation to vasculature however the effect of α-Mangostin in blood vessel formation in healthy tissue in vivo has not been studied. Zebrafish is a powerful model in studying angiogenesis and shared many advantages that is a viable whole animal model for screening small molecules that affect blood vessel formation. Therefore the aim of this study is to evaluate angiogenic activity of α-Mangostin in healthy tissue in vivo in zebrafish embryo in relation of patterning blood vessel. Blood vessel patterning is highly characteristic in the developing of zebrafish embryo and the subintestinal vessel (SIV) can be stained and visualized microscopically as a primary screen for α-Mangostin that effect angiogenesis. The zebrafish embryos are divided into 2 groups. Group one consists of the zebrafish embryos at 1 dpf for 4 days which are tested to α-Mangostin in several concentration 2 µM, 4 µM, 6 µM, 8 µM and 10 µM whereas in group two the zebrafish larva at 4 dpf are exposed to α-Mangostin 1,75 µM, 2,3 µM, 2,9 µM, 3,8 µM dan 5 µM for 2 days. DMSO is served as a control for each group. The level expression of vegfa and vegfr2 are observed quantitatively using real time q-PCR and patterning of SIV are then analized via alkaline phospatase staining. Result shows that the level expression of vegfa and vegfr2 is repressed quantitatively as shown in real time q-PCR in the group of 1-4 days of α-Mangostin exposure where it is increased in the group of 4-6 days of α-Mangostin exposure. The result is then compared to alkaline phospatase staining of SIV using stereo microscope. It indicates that α-Mangostin does not disturb the patterning of SIV formation in zebrafish. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=angiogenesis" title="angiogenesis">angiogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=Danio%20rerio" title=" Danio rerio"> Danio rerio</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-Mangostin" title=" α-Mangostin"> α-Mangostin</a>, <a href="https://publications.waset.org/abstracts/search?q=SIV" title=" SIV"> SIV</a>, <a href="https://publications.waset.org/abstracts/search?q=vegfa" title=" vegfa"> vegfa</a>, <a href="https://publications.waset.org/abstracts/search?q=vegfr2" title=" vegfr2"> vegfr2</a> </p> <a href="https://publications.waset.org/abstracts/15118/the-angiogenic-activity-of-a-mangostin-in-the-development-of-zebrafish-embryo-in-vivo" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15118.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Short-Term Exposing Effects of 4,4&#039;-DDT on Mitochondrial Electron Transport Complexes in Eyes of Zebrafish</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eun%20Ko">Eun Ko</a>, <a href="https://publications.waset.org/abstracts/search?q=Moonsung%20Choi"> Moonsung Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sooim%20Shin"> Sooim Shin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 4,4’-Dichlorodiphenyltrichloroethane (4,4’-DDT) is colorless, odorless organochlorine and known as persistent toxic organic pollutant accumulated in organs. In this study, effects of 4,4’-DDT on activities of mitochondrial electron transport chain system was analyzed. 4,4’-DDT is directly treated to isolated mitochondria from eyes of zebrafish and then activities of mitochondrial complex I, II, III, IV were measured spectrophotometrically. The reaction was proceeded immediately after adding 4,4’-DDT to examine the short-term exposing effects of persistent organic pollutant. As a result, high concentration of 4,4’-DDT treated mitochondria exhibited slightly enhanced activity in all complexes than non-treated one except complex III in male. Particularly, 4,4’-DDT was more effective on enzymatic activity in mitochondria isolated from eyes of male zebrafish. These results represented that 4,4’-DDT might temporarily induce to open up ion channel on isolated mitochondria resulting in increasing the functional activity of mitochondrial electron transport chain system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electron%20transport%20chain" title="electron transport chain">electron transport chain</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondrial%20function" title=" mitochondrial function"> mitochondrial function</a>, <a href="https://publications.waset.org/abstracts/search?q=persistent%20organic%20pollutant" title=" persistent organic pollutant"> persistent organic pollutant</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrophotometric%20assay" title=" spectrophotometric assay"> spectrophotometric assay</a>, <a href="https://publications.waset.org/abstracts/search?q=zebrafish" title=" zebrafish "> zebrafish </a> </p> <a href="https://publications.waset.org/abstracts/77446/short-term-exposing-effects-of-44-ddt-on-mitochondrial-electron-transport-complexes-in-eyes-of-zebrafish" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Dietary Ergosan as a Supplemental Nutrient on Growth Performance, and Stress in Zebrafish (Danio Rerio)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Ahmadifar">Ehsan Ahmadifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ali%20Yousefi"> Mohammad Ali Yousefi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Roohi"> Zahra Roohi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effects of different levels of Ergosan (control group (0), 2, 4 and 6 gr Ergosan per Kg diet) as a nutritional supplement were investigated on growth indices and stress in Zebrafish for 3 months. Larvae (4-day-old after hatching) were fed with experimental diet from the beginning of feeding until adult (adolescence) (average weight: 69.3 g, length: 5.1 cm). Different levels of Ergosan had no significant effect on rate survival (P < 0.05). The results showed that diet containing 6 gr Ergosan significantly caused the best FCR in Zebrafish (P < 0.05). By increasing the Ergosan diet, specific growth rate increased. Body weight gain and condition factor had significant differences (P < 0.05) as the highest and the lowest were observed in treatment 3 gr of Ergosan and control, respectively. The results showed that fish fed with experimental diet, had the highest resistance to environmental stresses compared to control, and the test temperature, oxygen, salinity and alkalinity samples containing 6 gr/kg, was significantly more resistance compared to the other treatments (P < 0.05). Overall, to achieve high resistance to environmental stress and increase final biomass using 6 gr/kg Ergosan in diet fish Zebrafish. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ergosan" title="Ergosan">Ergosan</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20performance" title=" growth performance"> growth performance</a>, <a href="https://publications.waset.org/abstracts/search?q=Danio%20rerio" title=" Danio rerio"> Danio rerio</a> </p> <a href="https://publications.waset.org/abstracts/65506/dietary-ergosan-as-a-supplemental-nutrient-on-growth-performance-and-stress-in-zebrafish-danio-rerio" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Zebrafish Larvae Model: A High Throughput Screening Tool to Study Autism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shubham%20Dwivedi">Shubham Dwivedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Raghavender%20Medishetti"> Raghavender Medishetti</a>, <a href="https://publications.waset.org/abstracts/search?q=Rita%20Rani"> Rita Rani</a>, <a href="https://publications.waset.org/abstracts/search?q=Aarti%20Sevilimedu"> Aarti Sevilimedu</a>, <a href="https://publications.waset.org/abstracts/search?q=Pushkar%20Kulkarni"> Pushkar Kulkarni</a>, <a href="https://publications.waset.org/abstracts/search?q=Yogeeswari%20Perumal"> Yogeeswari Perumal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder of early onset, characterized by impaired sociability, cognitive function and stereotypies. There is a significant urge to develop and establish new animal models with ASD-like characteristics for better understanding of underlying mechanisms. The aim of the present study was to develop a cost and time effective zebrafish model with quantifiable parameters to facilitate mechanistic studies as well as high-throughput screening of new molecules for autism. Zebrafish embryos were treated with valproic acid and a battery of behavioral tests (anxiety, inattentive behavior, irritability and social impairment) was performed on larvae at 7th day post fertilization, followed by study of molecular markers of autism. This model shows a significant behavioural impairment in valproic acid treated larvae in comparison to control which was again supported by alteration in few marker genes and proteins of autism. The model also shows a rescue of behavioural despair with positive control drugs. The model shows robust parameters to study behavior, molecular mechanism and drug screening approach in a single frame. Thus we postulate that our 7 days zebrafish larval model for autism can help in high throughput screening of new molecules on autism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autism" title="autism">autism</a>, <a href="https://publications.waset.org/abstracts/search?q=zebrafish" title=" zebrafish"> zebrafish</a>, <a href="https://publications.waset.org/abstracts/search?q=valproic%20acid" title=" valproic acid"> valproic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=neurodevelopment" title=" neurodevelopment"> neurodevelopment</a>, <a href="https://publications.waset.org/abstracts/search?q=behavioral%20assay" title=" behavioral assay"> behavioral assay</a> </p> <a href="https://publications.waset.org/abstracts/98203/zebrafish-larvae-model-a-high-throughput-screening-tool-to-study-autism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98203.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Vertebrate Model to Examine the Biological Effectiveness of Different Radiation Qualities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rita%20Em%C3%ADlia%20Szab%C3%B3">Rita Emília Szabó</a>, <a href="https://publications.waset.org/abstracts/search?q=R%C3%B3bert%20Polanek"> Róbert Polanek</a>, <a href="https://publications.waset.org/abstracts/search?q=T%C3%BCnde%20T%C5%91k%C3%A9s"> Tünde Tőkés</a>, <a href="https://publications.waset.org/abstracts/search?q=Zolt%C3%A1n%20Szab%C3%B3"> Zoltán Szabó</a>, <a href="https://publications.waset.org/abstracts/search?q=Szabolcs%20Czifrus"> Szabolcs Czifrus</a>, <a href="https://publications.waset.org/abstracts/search?q=Katalin%20Hidegh%C3%A9ty"> Katalin Hideghéty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: Several feature of zebrafish are making them amenable for investigation on therapeutic approaches such as ionizing radiation. The establishment of zebrafish model for comprehensive radiobiological research stands in the focus of our investigation, comparing the radiation effect curves of neutron and photon irradiation. Our final aim is to develop an appropriate vertebrate model in order to investigate the relative biological effectiveness of laser driven ionizing radiation. Methods and Materials: After careful dosimetry series of viable zebrafish embryos were exposed to a single fraction whole-body neutron-irradiation (1,25; 1,875; 2; 2,5 Gy) at the research reactor of the Technical University of Budapest and to conventional 6 MeV photon beam at 24 hour post-fertilization (hpf). The survival and morphologic abnormalities (pericardial edema, spine curvature) of each embryo were assessed for each experiment at 24-hour intervals from the point of fertilization up to 168 hpf (defining the dose lethal for 50% (LD50)). Results: In the zebrafish embryo model LD50 at 20 Gy dose level was defined and the same lethality were found at 2 Gy dose from the reactor neutron beam resulting RBE of 10. Dose-dependent organ perturbations were detected on macroscopic (shortening of the body length, spine curvature, microcephaly, micro-ophthalmia, micrognathia, pericardial edema, and inhibition of yolk sac resorption) and microscopic (marked cellular changes in skin, cardiac, gastrointestinal system) with the same magnitude of dose difference. Conclusion: In our observations, we found that zebrafish embryo model can be used for investigating the effects of different type of ionizing radiation and this system proved to be highly efficient vertebrate model for preclinical examinations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ionizing%20radiation" title="ionizing radiation">ionizing radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=LD50" title=" LD50"> LD50</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20biological%20effectiveness" title=" relative biological effectiveness"> relative biological effectiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=zebrafish%20embryo" title=" zebrafish embryo"> zebrafish embryo</a> </p> <a href="https://publications.waset.org/abstracts/42445/vertebrate-model-to-examine-the-biological-effectiveness-of-different-radiation-qualities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42445.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Effect of Pristine Graphene on Developmental Toxicity in Zebrafish (Danio rerio) Embryos: Cardiovascular Defects, Apoptosis, and Globin Expression Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manjunatha%20Bangeppagari">Manjunatha Bangeppagari</a>, <a href="https://publications.waset.org/abstracts/search?q=Lee%20Sang%20Joon"> Lee Sang Joon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, graphene-related nanomaterials are receiving fast-increasing attention with augmented applications in various fields. Especially, graphene-related materials have been widely applied to the biomedical field in the past years. In the present study, we evaluated the adverse effects of pristine graphene (pG) in zebrafish (Danio rerio) embryos in various aspects, such as mortality rate, heart rate, hatching rate, cardiotoxicity, cardiovascular defect, cardiac looping, apoptosis, and globin expression. For various trace concentrations of pG (1, 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 μg/L), early life-stage parameters were observed at 24, 48, 72, and 96 hpf. As a result, pG induces significant developmental defects including yolk sac edema, pericardial edema, embryonic mortality, delayed hatching, heartbeat, several morphological defects, pericardial toxicity, and bradycardia. Moreover, the exposure to pG was found to be a potential risk factor to the cardiovascular system of zebrafish embryos. However, further study on their properties which vary according to production methods and surface functionalization is essentially required. In addition, the possible risks of pG flakes to aquatic animals, and public health should be evaluated before releasing them to the surrounding environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title="apoptosis">apoptosis</a>, <a href="https://publications.waset.org/abstracts/search?q=cardiovascular%20toxicity" title=" cardiovascular toxicity"> cardiovascular toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=globin%20expression" title=" globin expression"> globin expression</a>, <a href="https://publications.waset.org/abstracts/search?q=pristine%20graphene" title=" pristine graphene"> pristine graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=zebrafish%20embryos" title=" zebrafish embryos"> zebrafish embryos</a> </p> <a href="https://publications.waset.org/abstracts/104957/effect-of-pristine-graphene-on-developmental-toxicity-in-zebrafish-danio-rerio-embryos-cardiovascular-defects-apoptosis-and-globin-expression-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104957.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Histological Characteristics of the Organs of Adult Zebrafish as a Biomarker for the Study of New Drugs with Effect on the Snake Venom of Bothrops alternatus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jose%20Carlos%20Tavares%20Carvalho">Jose Carlos Tavares Carvalho</a>, <a href="https://publications.waset.org/abstracts/search?q=Hady%20Keita"> Hady Keita</a>, <a href="https://publications.waset.org/abstracts/search?q=Giovanna%20Rocha%20Santana"> Giovanna Rocha Santana</a>, <a href="https://publications.waset.org/abstracts/search?q=Igor%20Victor%20Ferreira%20Dos%20Santos"> Igor Victor Ferreira Dos Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=Jesus%20Rafael%20Rodriguez%20Amado"> Jesus Rafael Rodriguez Amado</a>, <a href="https://publications.waset.org/abstracts/search?q=Ariadna%20Lafourcade%20Prada"> Ariadna Lafourcade Prada</a>, <a href="https://publications.waset.org/abstracts/search?q=Adriana%20Maciel%20Ferreira"> Adriana Maciel Ferreira</a>, <a href="https://publications.waset.org/abstracts/search?q=Helison%20Oliveira"> Helison Oliveira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Summary: As animal model, zebrafish can be a good opportunity to establish a profile of tissue alteration caused by Bothrops alternatus venom and to screen new anti-venom drugs. Objective: To establish tissue biomarkers from zebrafish injected by snake venom and elucidate the use of glucocorticoids in ophidic accidents. Materials and Methods: The Danio rerio fish were randomly divided into four groups: control group, venom group, Dexamethasone1h before venom injected group and Dexamethasone 1 h after venom injected group. The concentration of Bothrops alternatus venom was 0.13 mg/ml and the fish received 20µl/Fish. The Body weight measurement and histological characteristics of gills, kidneys, liver, and intestine were determinate. Results: Physical analysis shows necrosis accompanied by inflammation in animals receiving the Bothrops alternatus venom. Significant difference was observed in the variation of weight between the control group, and the groups received the venom (t student test, p < 0.05). The average histological alterations index of gill, liver, kidney or intestine was statistically higher in animals received the venom (t Student test, p < 0.05). The alterations were lower in the groups that received Dexamethasone 1h before and after venom injected compared to the group that received only the venom. Dexamethasone 1h before venom injected group had minor histopathological alterations. Conclusion: The organs of zebrafish may be a tissue biomarker of alterations from Bothrops alternatus venom and dexamethasone reduced the damage caused by this venom in the organs studied, which may suggest the use of zebrafish as animal model for research related to screening new drug against snake venom. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=zebrafish" title="zebrafish">zebrafish</a>, <a href="https://publications.waset.org/abstracts/search?q=snake%20venom" title=" snake venom"> snake venom</a>, <a href="https://publications.waset.org/abstracts/search?q=biomarker" title=" biomarker"> biomarker</a>, <a href="https://publications.waset.org/abstracts/search?q=drugs" title=" drugs"> drugs</a> </p> <a href="https://publications.waset.org/abstracts/53757/histological-characteristics-of-the-organs-of-adult-zebrafish-as-a-biomarker-for-the-study-of-new-drugs-with-effect-on-the-snake-venom-of-bothrops-alternatus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53757.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> In vitro and in vivo Antiangiogenic Activity of Girinimbine Isolated from Murraya koenigii</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Venoos%20Iman">Venoos Iman</a>, <a href="https://publications.waset.org/abstracts/search?q=Suzita%20Mohd%20Noor"> Suzita Mohd Noor</a>, <a href="https://publications.waset.org/abstracts/search?q=Syam%20Mohan"> Syam Mohan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Ibrahim%20Noordin"> Mohamad Ibrahim Noordin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Girinimbine, a carbazole alkaloid was isolated from the stem bark and root of Murraya koenigii and its structure and purity was identified by HPLC and LC-MS. Here we report that Girinimbine strongly inhibit angiogenesis activity both in vitro and in vivo. MTT result showed that girinimbine inhibits cell proliferation of the HUVECS cell line in vitro. Result of endothelial cell invasion, migration, tube formation and wound healing assays also demonstrated significant time and does dependent inhibition by girinimbine. Moreover, girinibine mediates its anti-angiogenic activity through up- and down-regulation of angiogenic and anti-aniogenic proteins. Furthermore, anti-angiogenic potential of girinimbine was evidenced in vivo on zebrafish model. Girinimbine inhibited neo-vessels formation in zebrafish embryos during 24 hours exposure time. Together, these results demonstrated for the first time that girinimbine could effectively suppress angiogenesis and strongly suggest that it might be a novel angiogenesis inhibitor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-angiogenic" title="anti-angiogenic">anti-angiogenic</a>, <a href="https://publications.waset.org/abstracts/search?q=carbazole%20alkaloid" title=" carbazole alkaloid"> carbazole alkaloid</a>, <a href="https://publications.waset.org/abstracts/search?q=girinimbine" title=" girinimbine"> girinimbine</a>, <a href="https://publications.waset.org/abstracts/search?q=zebrafish" title=" zebrafish"> zebrafish</a> </p> <a href="https://publications.waset.org/abstracts/13579/in-vitro-and-in-vivo-antiangiogenic-activity-of-girinimbine-isolated-from-murraya-koenigii" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Identification of the Most Effective Dosage of Clove Oil Solution as an Alternative for Synthetic Anaesthetics on Zebrafish (Danio rerio)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20P.%20N.%20De%20Silva">D. P. N. De Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20P.%20P.%20Liyanage"> N. P. P. Liyanage</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zebrafish (Danio rerio) in the family Cyprinidae, is a tropical freshwater fish widely used as a model organism in scientific research. Use of effective and economical anaesthetic is very important when handling fish. Clove oil (active ingredient: eugenol) was identified as a natural product which is safer and economical compared to synthetic chemicals like methanesulfonate (MS-222). Therefore, the aim of this study was to identify the most effective dosage of clove oil solution as an anaesthetic on mature Zebrafish. Clove oil solution was prepared by mixing pure clove oil with 94% ethanol at a ratio of 1:9 respectively. From that solution, different volumes were selected as (0.4 ml, 0.6 ml and 0.8 ml) and dissolved in one liter of conditioned water (dosages : 0.4 ml/L, 0.6 ml/L and 0.8 ml/L). Water quality parameters (pH, temperature and conductivity) were measured before and after adding clove oil solution. Mature Zebrafish with similar standard length (2.76 ± 0.1 cm) and weight (0.524 ± 0.1 g) were selected for this experiment. Time taken for loss of equilibrium (initiation phase) and complete loss of movements including opercular movement (anaesthetic phase) were measured. To detect the efficacy on anaesthetic recovery, time taken to begin opercular movements (initiation of recovery phase) until swimming (post anaesthetic phase) were observed. The results obtained were analyzed according to the analysis of variance (ANOVA) and Tukeys’ method using SPSS version 17.0 at 95% confidence interval (p<0.5). According to the results, there was no significant difference at the initiation phase of anaesthesia in all three doses though the time taken was varied from 0.14 to 0.41 minutes. Mean value of the time taken to complete the anaesthetic phase at 0.4 ml/L dosage was significantly different with 0.6 ml/L and 0.8 ml/L dosages independently (p=0.01). There was no significant difference among recovery times at all dosages but 0.8 ml/L dosage took longer time compared to 0.6 ml/L dosage. The water quality parameters (pH and temperature) were stable throughout the experiment except conductivity, which increased with the higher dosage. In conclusion, the best dosage need to anaesthetize Zebrafish using clove oil solution was 0.6 ml/L due to its fast initiation of anaesthesia and quick recovery compared to the other two dosages. Therefore clove oil can be used as a good substitute for synthetic anaesthetics because of its efficacy at a lower dosage with higher safety at a low cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaesthetics" title="anaesthetics">anaesthetics</a>, <a href="https://publications.waset.org/abstracts/search?q=clove%20oil" title=" clove oil"> clove oil</a>, <a href="https://publications.waset.org/abstracts/search?q=zebrafish" title=" zebrafish"> zebrafish</a>, <a href="https://publications.waset.org/abstracts/search?q=Cyprinidae" title=" Cyprinidae"> Cyprinidae</a> </p> <a href="https://publications.waset.org/abstracts/11297/identification-of-the-most-effective-dosage-of-clove-oil-solution-as-an-alternative-for-synthetic-anaesthetics-on-zebrafish-danio-rerio" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">716</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Antifungal Susceptibility of Saprolegnia parasitica Isolated from Rainbow Trout and Its Host Pathogen Interaction in Zebrafish Disease Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sangyeop%20Shin">Sangyeop Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20C.%20M.%20Kulatunga"> D. C. M. Kulatunga</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20S.%20Dananjaya"> S. H. S. Dananjaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Chamilani%20Nikapitiya"> Chamilani Nikapitiya</a>, <a href="https://publications.waset.org/abstracts/search?q=Jehee%20Lee"> Jehee Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahanama%20De%20Zoysa"> Mahanama De Zoysa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Saprolegniasis is one of the most devastating fungal diseases in freshwater fish which is caused by species in the genus Saprolegnia including Saprolegnia parasitica. In this study, we isolated the strain of S. parasitica from diseased rainbow trout in Korea. Morphological and molecular based identification confirmed that isolated fungi belong to the member of S. parasitica, supported by its typical fungal features including cotton-like whitish mycelium, zoospores (primary and secondary) and phylogenetic analysis with internal transcribed spacer (ITS) region. Pathogenicity of isolated S. parasitica was developed in embryo, larvae, juvenile and adult zebrafish as a disease model. Up regulation of host genes encoding ZfTnf-α, Zfc-Rel, ZfIl-12, ZfLyz-c, Zfβ-def, and ZfHsp-70 was identified in zebrafish larvae after experimental challenge of S. parasitica showing the host immune responses against the S. parasitica. Survival of the juveniles upon fungal infection might be due to the increased immune protection in the host. Investigation of antifungal susceptibility of S. parasitica with natural lawsone (2-hydroxy-1,4-naphthoquinone) revealed the minimum inhibitory concentration (MIC) and percentage inhibition of radial growth (PIRG %) as 200 µg/mL and 31.8%, respectively. Lawsone was able to change the membrane permeability, and cause irreversible damage and disintegration to the cellular membranes of S. parasitica which might have effect on fungi growth inhibition. Moreover, the mycelium exposed to lawsone (MIC level) changed the transcriptional responses of S. parasitica genes. Overall results indicate that lawsone could be a potential and novel anti-S. parasitica agent for controlling S. parasitica infection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=host-pathogen%20interactions" title="host-pathogen interactions">host-pathogen interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=lawsone" title=" lawsone"> lawsone</a>, <a href="https://publications.waset.org/abstracts/search?q=rainbow%20trout" title=" rainbow trout"> rainbow trout</a>, <a href="https://publications.waset.org/abstracts/search?q=Saprolegnia%20parasitica" title=" Saprolegnia parasitica"> Saprolegnia parasitica</a>, <a href="https://publications.waset.org/abstracts/search?q=Saprolegniasis" title=" Saprolegniasis"> Saprolegniasis</a>, <a href="https://publications.waset.org/abstracts/search?q=zebrafish" title=" zebrafish"> zebrafish</a> </p> <a href="https://publications.waset.org/abstracts/68984/antifungal-susceptibility-of-saprolegnia-parasitica-isolated-from-rainbow-trout-and-its-host-pathogen-interaction-in-zebrafish-disease-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68984.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Evaluation of Immunostimulant Potential of Proteoliposomes Derived from Vibrio anguillarum Administered by Immersion in Zebrafish (Danio rerio)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Caruffo">M. Caruffo</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Navarrete"> P. Navarrete</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20G.%20Feijoo"> C. G. Feijoo</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20S%C3%A1enz"> L. Sáenz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Disease prevention through the use of vaccines has been crucial to achieve the current level of production in the salmon industry. However, vaccines have been developed based largely on inactivated bacterial formulations, using the whole pathogen. These formulations have demonstrated excellent efficacy against extracellular bacterial pathogens. However diseases with the greatest economic impacts correspond to intracellular bacterial and viral pathogens, vaccines based on these types of agents have shown a discrete effectiveness. It is for these reasons that the development of subunit vaccines based on defined antigens offers a promising solution. The main problem is that subunit vaccines offer a low immunogenicity, since they lack immunostimulatory elements, so that the development of new adjuvants platforms becomes an important challenge for this type of formulations. We evaluate the effect of a formulation based on proteoliposomes of Vibrio anguillarum administered by immersion as a new adjuvant strategy, allowing efficient stimulation of the innate immune system. Proteoliposomes physicochemical properties were evaluated in its ability to produce an inflammatory process. Using zebrafish (Danio rerio) larvae as a model species and the transgenic line (Tg(mpx: GFP)i114) allowed us to track the neutrophil migration in real time. Additionally we evaluated the gene expression of some molecular markers involved in the development of the innate immune response characterizing the adjuvant capacity of the formulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adjuvants" title="adjuvants">adjuvants</a>, <a href="https://publications.waset.org/abstracts/search?q=vaccine%20development" title=" vaccine development"> vaccine development</a>, <a href="https://publications.waset.org/abstracts/search?q=zebrafish" title=" zebrafish"> zebrafish</a>, <a href="https://publications.waset.org/abstracts/search?q=innate%20immunity" title=" innate immunity"> innate immunity</a> </p> <a href="https://publications.waset.org/abstracts/33769/evaluation-of-immunostimulant-potential-of-proteoliposomes-derived-from-vibrio-anguillarum-administered-by-immersion-in-zebrafish-danio-rerio" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">556</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> In vivo Evaluation of LAB Probiotic Potential with the Zebrafish Animal Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I%C3%B1aki%20Iturria">Iñaki Iturria</a>, <a href="https://publications.waset.org/abstracts/search?q=Pasquale%20Russo"> Pasquale Russo</a>, <a href="https://publications.waset.org/abstracts/search?q=Montserrat%20Nacher-V%C3%A1zquez"> Montserrat Nacher-Vázquez</a>, <a href="https://publications.waset.org/abstracts/search?q=Giuseppe%20Spano"> Giuseppe Spano</a>, <a href="https://publications.waset.org/abstracts/search?q=Paloma%20L%C3%B3pez"> Paloma López</a>, <a href="https://publications.waset.org/abstracts/search?q=Miguel%20Angel%20Pardo"> Miguel Angel Pardo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: It is known that some Lactic Acid Bacteria (LAB) present an interesting probiotic effect. Probiotic bacteria stimulate host resistance to microbial pathogens and thereby aid in immune response, and modulate the host's immune responses to antigens with a potential to down-regulate hypersensitivity reactions. Therefore, probiotic therapy is valuable against intestinal infections and may be beneficial in the treatment of Inflammatory Bowel Disease (IBD). Several in vitro tests are available to evaluate the probiotic potential of a LAB strain. However, an in vivo model is required to understand the interaction between the host immune system and the bacteria. During the last few years, zebrafish (Danio rerio) has gained interest as a promising vertebrate model in this field. This organism has been extensively used to study the interaction between the host and the microbiota, as well as the host immune response under several microbial infections. In this work, we report on the use of the zebrafish model to investigate in vivo the colonizing ability and the immunomodulatory effect of probiotic LAB. Methods: Lactobacillus strains belonging to different LAB species were fluorescently tagged and used to colonize germ-free zebrafish larvae gastrointestinal tract (GIT). Some of the strains had a well-documented probiotic effect (L. acidophilus LA5); while others presented an exopolysaccharide (EPS) producing phenotype, thus allowing evaluating the influence of EPS in the colonization and immunomodulatory effect. Bacteria colonization was monitored for 72 h by direct observation in real time using fluorescent microscopy. CFU count per larva was also evaluated at different times. The immunomodulatory effect was assessed analysing the differential expression of several innate immune system genes (MyD88, NF-κB, Tlr4, Il1β and Il10) by qRT- PCR. The anti-inflammatory effect was evaluated using a chemical enterocolitis zebrafish model. The protective effect against a pathogen was also studied. To that end, a challenge test was developed using a fluorescently tagged pathogen (Vibrio anguillarum-GFP+). The progression of the infection was monitored up to 3 days using a fluorescent stereomicroscope. Mortality rates and CFU counts were also registered. Results and conclusions: Larvae exposed to EPS-producing bacteria showed a higher fluorescence and CFU count than those colonized with no-EPS phenotype LAB. In the same way, qRT-PCR results revealed an immunomodulatory effect on the host after the administration of the strains with probiotic activity. A downregulation of proinflammatory cytoquines as well as other cellular mediators of inflammation was observed. The anti-inflammatory effect was found to be particularly marked following exposure to LA% strain, as well as EPS producing strains. Furthermore, the challenge test revealed a protective effect of probiotic administration. As a matter of fact, larvae fed with probiotics showed a decrease in the mortality rate ranging from 20 to 35%. Discussion: In this work, we developed a promising model, based on the use of gnotobiotic zebrafish coupled with a bacterial fluorescent tagging in order to evaluate the probiotic potential of different LAB strains. We have successfully used this system to monitor in real time the colonization and persistence of exogenous LAB within the gut of zebrafish larvae, to evaluate their immunomodulatory effect and for in vivo competition assays. This approach could bring further insights into the complex microbial-host interactions at intestinal level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gnotobiotic" title="gnotobiotic">gnotobiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=immune%20system" title=" immune system"> immune system</a>, <a href="https://publications.waset.org/abstracts/search?q=lactic%20acid%20bacteria" title=" lactic acid bacteria"> lactic acid bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotics" title=" probiotics"> probiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=zebrafish" title=" zebrafish"> zebrafish</a> </p> <a href="https://publications.waset.org/abstracts/46742/in-vivo-evaluation-of-lab-probiotic-potential-with-the-zebrafish-animal-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Antistress Effects of Hydrangeae Dulcis Folium on Net Handing Stress-Induced Anxiety-Like Behavior in Zebrafish: Possible Mechanism of Action of Adrenocorticotropin Hormone (ACTH) Receptor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lee%20Seungheon">Lee Seungheon</a>, <a href="https://publications.waset.org/abstracts/search?q=Kim%20Ba-Ro"> Kim Ba-Ro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the anti-stress effects of the ethanolic extract of Hydrangeae Dulcis Folium (EHDF) were investigated. To determine the effects of EHDF on physical stress, changes in the whole-body cortisol level and behaviour were monitored in zebrafish. To induce physical stress, we used the net handling stress (NHS). Fish were treated with EHDF for 6 min before they were exposed to stress, and the fish were either evaluated via behavioural tests, including a novel tank test and an open field test or sacrificed to collect body fluid from the whole body. The results indicate that increased anxiety-like behaviours in the novel tank test and open field test under stress were recovered by treatment with EHDF at 5, 10 and 20 mg/L (P < 0.05). Moreover, compared with the normal group, which was not treated with NHS, the whole-body cortisol level was significantly increased by treatment with NHS in the control group. Compared with the control group, pre-treatment with EHDF at concentrations of 5, 10 and 20 mg/L for 6 min significantly prevented the increase in the whole-body cortisol level induced by NHS (P < 0.05). In addition, adrenocorticotropin hormone (ACTH) challenge studies showed that EHDF completely blocked the effects of ACTH (0.2 IU/g, IP) on cortisol secretion. These results suggest that EHDF may be a good anti-stress candidate and that its mechanism of action may be related to its positive effects on cortisol release. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=net%20handling%20stress" title="net handling stress">net handling stress</a>, <a href="https://publications.waset.org/abstracts/search?q=zebrafish" title=" zebrafish"> zebrafish</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrangeae%20dulcis%20folium" title=" hydrangeae dulcis folium"> hydrangeae dulcis folium</a>, <a href="https://publications.waset.org/abstracts/search?q=whole-body%20cortisol" title=" whole-body cortisol"> whole-body cortisol</a>, <a href="https://publications.waset.org/abstracts/search?q=novel%20tank%20test" title=" novel tank test"> novel tank test</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20field%20test" title=" open field test"> open field test</a> </p> <a href="https://publications.waset.org/abstracts/63359/antistress-effects-of-hydrangeae-dulcis-folium-on-net-handing-stress-induced-anxiety-like-behavior-in-zebrafish-possible-mechanism-of-action-of-adrenocorticotropin-hormone-acth-receptor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Effective Removal of Tetrodotoxin with Fiber Mat Containing Activated Charcoal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Min%20Sik%20Kim">Min Sik Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hwa%20Sung%20Shin"> Hwa Sung Shin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> From 2013, small eel farms, which are located in Han River Estuary, South Korea suffer damage because of unknown massive perish. In the middle of discussion that the cause of perish could be environmental changes or waste water, a large amount of unknown nemertean was discovered during that time. Some nemerteans are known releasing neurotoxin substance. In this study, we isolated intestinal bacteria using selective media and conducted 16s rDNA microbial identification by gene alignment. As a result, there was a type of bacteria producing TTX, blocks sodium-channel inducing organism’s death. TTX production from the bacteria was confirmed by ELISA and liquid chromatography coupled with mass spectrometer. Additionally, the activated-charcoal which has an ability to absorb small molecules like toxin was applied to fibrous mesh to prevent ingestion of aquatic organisms and increase applicable area. The viability of zebrafish in the water with TTX and charcoal fiber mat were not decreased meaning it could be used for solving the perishing problem in fish farm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nemertean" title="nemertean">nemertean</a>, <a href="https://publications.waset.org/abstracts/search?q=TTX" title=" TTX"> TTX</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20mat" title=" fiber mat"> fiber mat</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20charcoal" title=" activated charcoal"> activated charcoal</a>, <a href="https://publications.waset.org/abstracts/search?q=zebrafish" title=" zebrafish"> zebrafish</a> </p> <a href="https://publications.waset.org/abstracts/75876/effective-removal-of-tetrodotoxin-with-fiber-mat-containing-activated-charcoal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75876.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Effect of Diet Inulin Prebiotic on Growth, Reproductive Performance, Carcass Composition and Resistance to Environmental Stresses in Zebra Danio (Danio rerio)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Ahmadifar">Ehsan Ahmadifar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, the effects of different levels (control group (T0), (T1)1, (T2)2 and (T3)3 gr Inulin per Kg diet) of prebiotic Inulin as nutritional supplement on Danio rerio were investigated for 4 month. Since the beginning of feeding larvae until adult (average weight: 67.1 g, length: 4.5 cm) were fed with experimental diets. The survival rate of fish had no significant effect on rate survival (P > 0.05). The highest food conversion ratio (FCR) was in control group and the lowest was observed in T3. Treatment of T3 significantly caused the best feed conversion ratio in Zebra fish (P < 0.05). By increasing the inulin diet during the experiment, specific growth rate increased. The highest and the lowest body weight gain and condition factor were observed in T3 and control, respectively (P < 0.05). Adding 3 gr inulin in Zebra fish diet can improve the performance of the growth indices and final biomass, also this prebiotic can be considered as a suitable supplement for Cyprinidae diet. In the first sampling stage for feeding fish, fat and muscle protein was significantly higher than the second sampling stage (P < 0.05). Given that the second stage fish were full sexual maturity, the amount of fat in muscle decreased (P < 0.05). Moisture and ash levels were significantly (P < 0.05) higher in the second stage sampling than the first stage. Overall, different stage of living affected on muscle chemical composition muscle. Reproductive performance in treatment T2 and T3 were significantly higher than other treatments (P < 0.05). According to the results, the prebiotic inulin does not have a significant impact on the sex ratio in zebrafish (P > 0.05). Based on histology of the gonads, the use of dietary inulin accelerates the process of gonad development in zebrafish. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inulin" title="inulin">inulin</a>, <a href="https://publications.waset.org/abstracts/search?q=zebrafish" title=" zebrafish"> zebrafish</a>, <a href="https://publications.waset.org/abstracts/search?q=reproduction" title=" reproduction"> reproduction</a>, <a href="https://publications.waset.org/abstracts/search?q=histology" title=" histology"> histology</a> </p> <a href="https://publications.waset.org/abstracts/62158/effect-of-diet-inulin-prebiotic-on-growth-reproductive-performance-carcass-composition-and-resistance-to-environmental-stresses-in-zebra-danio-danio-rerio" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62158.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> The Effect of TiO₂ Nanoparticles on Zebrafish Embryos</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elena%20Maria%20Scalisi">Elena Maria Scalisi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, photodegradation by nanoparticles (NPs) is a common solution for wastewater treatment. Nanoparticles are efficient for removing organic and inorganic pollutants, heavy metals from wastewater and killing microorganisms through environmentally friendly. In this context, the major representative of photocatalytic technology for industrial wastewater treatment are TiO₂ nanoparticles (TiO₂-NPs). TiO₂-NPs have a strong catalytic activity that depends to their physicochemical properties. Thanks to their small size (between 1-100 nm), nanoparticles occupy less volume, then their surface area increases. The increase in the surface-to-volume ratio results in the increase of the particle surface energy, which improve their reactivity potential. However, these unique properties represent risks to the ecosystems and organisms when unintentionally TiO₂-NPs are release into the environment and absorbed by living organisms. Several studies confirm that there is a high level of interest concerning the safety of TiO₂-NPs in the aquatic environment, furthermore, ecotoxicological tools are useful to correctly evaluate their toxicity. In the current study, we aimed to characterize potential toxic effects of TiO₂-NP suspension to zebrafish during embryo-larval stages to evaluate parameters such as survival rates, malformation, hatching, the overall length of the larvae heartbeat, and biochemical biomarkers that reflect the acute toxicity and sublethal effects of TiO₂-NPs. Zebrafish embryos were exposed to titanium dioxide nanoparticles (TiO₂-NPs at 1mg/L, 2mg/L, and 4mg/L) from fertilization to the free swimming stage (144hpf). Every day, we recorded the toxicological endpoints, moreover, immunohistochemical analysis has been performed at the end of the exposure. In particular, we have evaluate the expression of the following biomarkers: Heat Shock Protein 70 (HSP70), Poly ADP-Ribose Polymerase-1 (PARP-1), Metallothioneins (MTs). Our results have shown that hatch ability, survival, and malformation rate were not affected by TiO₂ NPs at these exposure levels. However, TiO₂-NPs caused an increase of heartbeat and reduction of body length; at the same time, TiO₂-NPs have inducted the production of ROS and the expression of oxidative stress biomarkers HSP70 and PARP-1. Hight positivity for PARP-1 at all concentration tested was observed. As regards MT, positivity was found in the expression of this biomarker in the whole body of the embryo, with the exception of the end of the tail. Metallothioneins (MT) are biomarkers widely used in environmental monitoring programs for aquatic creatures. At the light of our results i.e. no death until the end of the experiment (144hpf), no malformation and expression of the biomarkers mentioned, it is evident that zebrafish larvae with their natural detoxification pathways are able to resist the presence of toxic substances and then they can tolerate the presence of metal concentrations. However, an excessive oxidative state can compromise cell function, therefore the uncontrolled release of nanoparticles into the environment is severe and must be constantly monitored. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title="nanoparticles">nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=embryo%20zebrafish" title=" embryo zebrafish"> embryo zebrafish</a>, <a href="https://publications.waset.org/abstracts/search?q=HSP70" title=" HSP70"> HSP70</a>, <a href="https://publications.waset.org/abstracts/search?q=PARP-1" title=" PARP-1"> PARP-1</a> </p> <a href="https://publications.waset.org/abstracts/146191/the-effect-of-tio2-nanoparticles-on-zebrafish-embryos" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> In Vivo Evaluation of Exposure to Electromagnetic Fields at 27 GHz (5G) of Danio Rerio: A Preliminary Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elena%20Maria%20Scalisi">Elena Maria Scalisi</a>, <a href="https://publications.waset.org/abstracts/search?q=Roberta%20%20Pecoraro"> Roberta Pecoraro</a>, <a href="https://publications.waset.org/abstracts/search?q=Martina%20Contino"> Martina Contino</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Ignoto"> Sara Ignoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Carmelo%20Iaria"> Carmelo Iaria</a>, <a href="https://publications.waset.org/abstracts/search?q=Santi%20Concetto%20Pavone"> Santi Concetto Pavone</a>, <a href="https://publications.waset.org/abstracts/search?q=Gino%20Sorbello"> Gino Sorbello</a>, <a href="https://publications.waset.org/abstracts/search?q=Loreto%20Di%20Donato"> Loreto Di Donato</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Violetta%20Brundo"> Maria Violetta Brundo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 5G Technology is evolving to satisfy a variety of service requirements that may allow high data-rate connections (1Gbps) and lower latency times than current (<1ms). In order to support a high data transmission speed and a high traffic service for eMBB (enhanced mobile broadband) use cases, 5G systems have the characteristic of using different frequency bands of the radio wave spectrum (700 MHz, 3.6-3.8 GHz and 26.5-27.5 GHz), thus taking advantage of higher frequencies than previous mobile radio generations (1G-4G). However, waves at higher frequencies have a lower capacity to propagate in free space and therefore, in order to guarantee the capillary coverage of the territory for high reliability applications, it will be necessary to install a large number of repeaters. Following the introduction of this new technology, there has been growing concern over the past few months about possible harmful effects on human health. The aim of this preliminary study is to evaluate possible short term effects induced by 5G-millimeter waves on embryonic development and early life stages of Danio rerio by Z-FET. We exposed developing zebrafish at frequency of 27 GHz, with a standard pyramidal horn antenna placed at 15 cm far from the samples holder ensuring an incident power density of 10 mW/cm2. During the exposure cycle, from 6 h post fertilization (hpf) to 96 hpf, we measured a different morphological endpoints every 24 hours. Zebrafish embryo toxicity test (Z-FET) is a short term test, carried out on fertilized eggs of zebrafish and it represents an effective alternative to acute test with adult fish (OECD, 2013). We have observed that 5G did not reveal significant impacts on mortality nor on morphology because exposed larvae showed a normal detachment of the tail, presence of heartbeat, well-organized somites, therefore hatching rate was lower than untreated larvae even at 48 h of exposure. Moreover, the immunohistochemical analysis performed on larvae showed a negativity to the HSP-70 expression used as a biomarkers. This is a preliminary study on evaluation of potential toxicity induced by 5G and it seems appropriate to underline the importance that further studies would take, aimed at clarifying the probable real risk of exposure to electromagnetic fields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Biomarker%20of%20exposure" title="Biomarker of exposure">Biomarker of exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=embryonic%20development" title=" embryonic development"> embryonic development</a>, <a href="https://publications.waset.org/abstracts/search?q=5G%20waves" title=" 5G waves"> 5G waves</a>, <a href="https://publications.waset.org/abstracts/search?q=zebrafish%20embryo%20toxicity%20test" title=" zebrafish embryo toxicity test"> zebrafish embryo toxicity test</a> </p> <a href="https://publications.waset.org/abstracts/129179/in-vivo-evaluation-of-exposure-to-electromagnetic-fields-at-27-ghz-5g-of-danio-rerio-a-preliminary-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Functional Analysis of Variants Implicated in Hearing Loss in a Cohort from Argentina: From Molecular Diagnosis to Pre-Clinical Research</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paula%20I.%20Buonfiglio">Paula I. Buonfiglio</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20David%20Bruque"> Carlos David Bruque</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucia%20Salatino"> Lucia Salatino</a>, <a href="https://publications.waset.org/abstracts/search?q=Vanesa%20Lotersztein"> Vanesa Lotersztein</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebasti%C3%A1n%20Menazzi"> Sebastián Menazzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Paola%20Plazas"> Paola Plazas</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Bel%C3%A9n%20Elgoyhen"> Ana Belén Elgoyhen</a>, <a href="https://publications.waset.org/abstracts/search?q=Viviana%20Dalam%C3%B3n"> Viviana Dalamón</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hearing loss (HL) is the most prevalent sensorineural disorder affecting about 10% of the global population, with more than half due to genetic causes. About 1 in 500-1000 newborns present congenital HL. Most of the patients are non-syndromic with an autosomal recessive mode of inheritance. To date, more than 100 genes are related to HL. Therefore, the Whole-exome sequencing (WES) technique has become a cost-effective alternative approach for molecular diagnosis. Nevertheless, new challenges arise from the detection of novel variants, in particular missense changes, which can lead to a spectrum of genotype-to-phenotype correlations, which is not always straightforward. In this work, we aimed to identify the genetic causes of HL in isolated and familial cases by designing a multistep approach to analyze target genes related to hearing impairment. Moreover, we performed in silico and in vivo analyses in order to further study the effect of some of the novel variants identified in the hair cell function using the zebrafish model. A total of 650 patients were studied by Sanger Sequencing and Gap-PCR in GJB2 and GJB6 genes, respectively, diagnosing 15.5% of sporadic cases and 36% of familial ones. Overall, 50 different sequence variants were detected. Fifty of the undiagnosed patients with moderate HL were tested for deletions in STRC gene by Multiplex ligation-dependent probe amplification technique (MLPA), leading to 6% of diagnosis. After this initial screening, 50 families were selected to be analyzed by WES, achieving diagnosis in 44% of them. Half of the identified variants were novel. A missense variant in MYO6 gene detected in a family with postlingual HL was selected to be further analyzed. A protein modeling with AlphaFold2 software was performed, proving its pathogenic effect. In order to functionally validate this novel variant, a knockdown phenotype rescue assay in zebrafish was carried out. Injection of wild-type MYO6 mRNA in embryos rescued the phenotype, whereas using the mutant MYO6 mRNA (carrying c.2782C>A variant) had no effect. These results strongly suggest the deleterious effect of this variant on the mobility of stereocilia in zebrafish neuromasts, and hence on the auditory system. In the present work, we demonstrated that our algorithm is suitable for the sequential multigenic approach to HL in our cohort. These results highlight the importance of a combined strategy in order to identify candidate variants as well as the in silico and in vivo studies to analyze and prove their pathogenicity and accomplish a better understanding of the mechanisms underlying the physiopathology of the hearing impairment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diagnosis" title="diagnosis">diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=genetics" title=" genetics"> genetics</a>, <a href="https://publications.waset.org/abstracts/search?q=hearing%20loss" title=" hearing loss"> hearing loss</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20silico%20analysis" title=" in silico analysis"> in silico analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vivo%20analysis" title=" in vivo analysis"> in vivo analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=WES" title=" WES"> WES</a>, <a href="https://publications.waset.org/abstracts/search?q=zebrafish" title=" zebrafish"> zebrafish</a> </p> <a href="https://publications.waset.org/abstracts/165373/functional-analysis-of-variants-implicated-in-hearing-loss-in-a-cohort-from-argentina-from-molecular-diagnosis-to-pre-clinical-research" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165373.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Noninvasive Technique for Measurement of Heartbeat in Zebrafish Embryos Exposed to Electromagnetic Fields at 27 GHz</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sara%20Ignoto">Sara Ignoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20M.%20Scalisi"> Elena M. Scalisi</a>, <a href="https://publications.waset.org/abstracts/search?q=Carmen%20Sica"> Carmen Sica</a>, <a href="https://publications.waset.org/abstracts/search?q=Martina%20Contino"> Martina Contino</a>, <a href="https://publications.waset.org/abstracts/search?q=Greta%20Ferruggia"> Greta Ferruggia</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Salvaggio"> Antonio Salvaggio</a>, <a href="https://publications.waset.org/abstracts/search?q=Santi%20C.%20Pavone"> Santi C. Pavone</a>, <a href="https://publications.waset.org/abstracts/search?q=Gino%20Sorbello"> Gino Sorbello</a>, <a href="https://publications.waset.org/abstracts/search?q=Loreto%20Di%20Donato"> Loreto Di Donato</a>, <a href="https://publications.waset.org/abstracts/search?q=Roberta%20Pecoraro"> Roberta Pecoraro</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20V.%20Brundo"> Maria V. Brundo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The new fifth generation technology (5G), which should favor high data-rate connections (1Gbps) and latency times lower than the current ones (<1ms), has the characteristic of working on different frequency bands of the radio wave spectrum (700 MHz, 3.6-3.8 GHz and 26.5-27.5 GHz), thus also exploiting higher frequencies than previous mobile radio generations (1G-4G). The higher frequency waves, however, have a lower capacity to propagate in free space and therefore, in order to guarantee the capillary coverage of the territory for high reliability applications, it will be necessary to install a large number of repeaters. Following the introduction of this new technology, there has been growing concern in recent years about the possible harmful effects on human health and several studies were published using several animal models. This study aimed to observe the possible short-term effects induced by 5G-millimeter waves on heartbeat of early life stages of Danio rerio using DanioScope software (Noldus). DanioScope is the complete toolbox for measurements on zebrafish embryos and larvae. The effect of substances can be measured on the developing zebrafish embryo by a range of parameters: earliest activity of the embryo’s tail, activity of the developing heart, speed of blood flowing through the vein, length and diameters of body parts. Activity measurements, cardiovascular data, blood flow data and morphometric parameters can be combined in one single tool. Obtained data are elaborate and provided by the software both numerical as well as graphical. The experiments were performed at 27 GHz by a no commercial high gain pyramidal horn antenna. According to OECD guidelines, exposure to 5G-millimeter waves was tested by fish embryo toxicity test within 96 hours post fertilization, Observations were recorded every 24h, until the end of the short-term test (96h). The results have showed an increase of heartbeat rate on exposed embryos at 48h hpf than control group, but this increase has not been shown at 72-96 h hpf. Nowadays, there is a scant of literature data about this topic, so these results could be useful to approach new studies and also to evaluate potential cardiotoxic effects of mobile radiofrequency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Danio%20rerio" title="Danio rerio">Danio rerio</a>, <a href="https://publications.waset.org/abstracts/search?q=DanioScope" title=" DanioScope"> DanioScope</a>, <a href="https://publications.waset.org/abstracts/search?q=cardiotoxicity" title=" cardiotoxicity"> cardiotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=millimeter%20waves." title=" millimeter waves."> millimeter waves.</a> </p> <a href="https://publications.waset.org/abstracts/144206/noninvasive-technique-for-measurement-of-heartbeat-in-zebrafish-embryos-exposed-to-electromagnetic-fields-at-27-ghz" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Eudesmane-Type Sesquiterpenes from Laggera alata Inhibiting Angiogenesis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liang%20Ning">Liang Ning</a>, <a href="https://publications.waset.org/abstracts/search?q=Chung%20Hau%20Yin"> Chung Hau Yin </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Angiogenesis is the process of new blood vessel development. It has been recognized as a therapeutic target for blocking cancer growth four decades ago. Vascular sprouting is initiated by pro-angiogenic factors. Vascular endothelial cell growth factor (VEGF) plays a central role in angiogenic initiation, many patients with cancer or ocular neovascularization have been benefited from anti-VEGF therapy. Emerging approaches impacting in the later stages of vessel remodeling and maturation are expected to improve clinical efficacy. TIE receptor as well as the corresponding angiopoietin ligands, were identified as another endothelial cell specific receptor tyrosine kinase signaling system. Much efforts were made to reduce the activity of angiopoietin-TIE receptor axis. Two eudesmane-type sesquiterpenes from laggera alata, namely, 15-dihydrocostic acid and ilicic acid were found with strong anti-angiogenic properties in zebrafish model. Meanwhile, the mRNA expression levels of VEGFR2 and TIE2 pathway related genes were down-regulated in the sesquiterpenes treated zebrafish embryos. Besides, in human umbilical vein endothelial cells (HUVECs), the sesquiterpenes have the ability to inhibit VEGF-induced HUVECs proliferation and migration at non-toxic concentration. Moreover, angiopoietin-2 induced TIE2 phosphorylation was inhibited by the sesquiterpenes, the inhibitory effect was detected in angiopoietin-1 induced HUVECs proliferation as well. Thus, we hypothesized the anti-angiogenic activity of the compounds may via the inhibition of VEGF and TIE2 related pathways. How the compounds come into play as the pathways inhibitors need to be evaluated in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laggera%20alata" title="Laggera alata">Laggera alata</a>, <a href="https://publications.waset.org/abstracts/search?q=eudesmane-type%20sesquiterpene" title=" eudesmane-type sesquiterpene"> eudesmane-type sesquiterpene</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-angiogenesis" title=" anti-angiogenesis"> anti-angiogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=VEGF" title=" VEGF"> VEGF</a>, <a href="https://publications.waset.org/abstracts/search?q=angiopoietin" title=" angiopoietin"> angiopoietin</a>, <a href="https://publications.waset.org/abstracts/search?q=TIE2" title=" TIE2"> TIE2</a> </p> <a href="https://publications.waset.org/abstracts/45292/eudesmane-type-sesquiterpenes-from-laggera-alata-inhibiting-angiogenesis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45292.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Application of Bacteriophages as Natural Antibiotics in Aquaculture </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chamilani%20Nikapitiya">Chamilani Nikapitiya</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahanama%20De%20Zoysa"> Mahanama De Zoysa</a>, <a href="https://publications.waset.org/abstracts/search?q=Jehee%20Lee"> Jehee Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most of the bacterial diseases are associated with high mortalities in aquaculture species and causing huge economic losses. Different approaches have been taken to prevent or control of bacterial diseases including use of vaccines, probiotics, chemotherapy, water quality management, etc. Antibiotics are widely applying as chemotherapy to control bacterial diseases, however, it has been shown that frequent use of antibiotics is favored to develop multi-drug resistance bacteria. Therefore, phages and phage encoded lytic proteins are known to be one of the most promising alternatives for antibiotics to avoid the emergence of antibiotic-resistant bacteria. We isolated and characterized the two lytic phages, namely pAh-1 and pAs-1 against pathogenic Aeromonas hydrophila and Aeromonas salmonicida, respectively. Morphological characteristics were analyzed by Transmission electron microscopy (TEM) and host strain specificities were tested with Aeromonas and other closely related bacterial strains. TEM analysis revealed that both pAh-1 and pAsm-1 are composed of an icosahedral head and a segmented tail, and we suggest that, they are new members of Myoviridae family. Genome sizes of isolated phages were estimated by restriction enzyme digestion of genomic DNA using selected endonucleases followed by agarose gel electrophoresis. Estimated genome size of pAh-1 and pAs-1 were approximately 64 Kbp and 120 Kbp, respectively. Both pAh-1 and pAs-1 have shown narrow host specificity. Moreover, protective effects of phage therapy against fish pathogenic A. hydrophila were investigated in zebrafish model. The survival rate was 40% higher when zebrafish received intra-peritoneal injection (i.p.) of pAh-1 were simultaneously challenge A. hydrophila (2 x 106 CFU/fish) compared to that without phage treatment. Overall results suggest that both pAh-1 and pAs-1 can be used as a potential phage therapy to control Aeromonas infections in aquaculture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aeromonas%20infections" title="Aeromonas infections">Aeromonas infections</a>, <a href="https://publications.waset.org/abstracts/search?q=antibiotic%20resistance" title=" antibiotic resistance"> antibiotic resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteriophage" title=" bacteriophage"> bacteriophage</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-control" title=" bio-control"> bio-control</a>, <a href="https://publications.waset.org/abstracts/search?q=lytic%20phage" title=" lytic phage "> lytic phage </a> </p> <a href="https://publications.waset.org/abstracts/69285/application-of-bacteriophages-as-natural-antibiotics-in-aquaculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Variations in Spatial Learning and Memory across Natural Populations of Zebrafish, Danio rerio</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tamal%20Roy">Tamal Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=Anuradha%20Bhat"> Anuradha Bhat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cognitive abilities aid fishes in foraging, avoiding predators & locating mates. Factors like predation pressure & habitat complexity govern learning & memory in fishes. This study aims to compare spatial learning & memory across four natural populations of zebrafish. Zebrafish, a small cyprinid inhabits a diverse range of freshwater habitats & this makes it amenable to studies investigating role of native environment in spatial cognitive abilities. Four populations were collected across India from waterbodies with contrasting ecological conditions. Habitat complexity of the water-bodies was evaluated as a combination of channel substrate diversity and diversity of vegetation. Experiments were conducted on populations under controlled laboratory conditions. A square shaped spatial testing arena (maze) was constructed for testing the performance of adult zebrafish. The square tank consisted of an inner square shaped layer with the edges connected to the diagonal ends of the tank-walls by connections thereby forming four separate chambers. Each of the four chambers had a main door in the centre. Each chamber had three sections separated by two windows. A removable coloured window-pane (red, yellow, green or blue) identified each main door. A food reward associated with an artificial plant was always placed inside the left-hand section of the red-door chamber. The position of food-reward and plant within the red-door chamber was fixed. A test fish would have to explore the maze by taking turns and locate the food inside the right-side section of the red-door chamber. Fishes were sorted from each population stock and kept individually in separate containers for identification. At a time, a test fish was released into the arena and allowed 20 minutes to explore in order to find the food-reward. In this way, individual fishes were trained through the maze to locate the food reward for eight consecutive days. The position of red door, with the plant and the reward, was shuffled every day. Following training, an intermission of four days was given during which the fishes were not subjected to trials. Post-intermission, the fishes were re-tested on the 13th day following the same protocol for their ability to remember the learnt task. Exploratory tendencies and latency of individuals to explore on 1st day of training, performance time across trials, and number of mistakes made each day were recorded. Additionally, mechanism used by individuals to solve the maze each day was analyzed across populations. Fishes could be expected to use algorithm (sequence of turns) or associative cues in locating the food reward. Individuals of populations did not differ significantly in latencies and tendencies to explore. No relationship was found between exploration and learning across populations. High habitat-complexity populations had higher rates of learning & stronger memory while low habitat-complexity populations had lower rates of learning and much reduced abilities to remember. High habitat-complexity populations used associative cues more than algorithm for learning and remembering while low habitat-complexity populations used both equally. The study, therefore, helped understand the role of natural ecology in explaining variations in spatial learning abilities across populations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algorithm" title="algorithm">algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=associative%20cue" title=" associative cue"> associative cue</a>, <a href="https://publications.waset.org/abstracts/search?q=habitat%20complexity" title=" habitat complexity"> habitat complexity</a>, <a href="https://publications.waset.org/abstracts/search?q=population" title=" population"> population</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20learning" title=" spatial learning"> spatial learning</a> </p> <a href="https://publications.waset.org/abstracts/48757/variations-in-spatial-learning-and-memory-across-natural-populations-of-zebrafish-danio-rerio" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48757.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Scale-Up Process for Phyllanthus niruri Enriched Extract by Supercritical Fluid Extraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Norsyamimi%20Hassim">Norsyamimi Hassim</a>, <a href="https://publications.waset.org/abstracts/search?q=Masturah%20Markom"> Masturah Markom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Supercritical fluid extraction (SFE) has been known as a sustainable and safe extraction technique for plant extraction due to the minimal usage of organic solvent. In this study, a scale-up process for the selected herbal plant (Phyllanthus niruri) was investigated by using supercritical carbon dioxide (SC-CO2) with food-grade (ethanol-water) cosolvent. The quantification of excess ethanol content in the final dry extracts was conducted to determine the safety of enriched extracts. The extraction yields obtained by scale-up SFE unit were not much different compared to the predicted extraction yields with an error of 2.92%. For component contents, the scale-up extracts showed comparable quality with laboratory-scale experiments. The final dry extract showed that the excess ethanol content was 1.56% g/g extract. The fish embryo toxicity test (FETT) on the zebrafish embryos showed no toxicity effects by the extract, where the LD50 value was found to be 505.71 µg/mL. Thus, it has been proven that SFE with food-grade cosolvent is a safe extraction technique for the production of bioactive compounds from P. niruri. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scale-up" title="scale-up">scale-up</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20fluid%20extraction" title=" supercritical fluid extraction"> supercritical fluid extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=enriched%20extract" title=" enriched extract"> enriched extract</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=ethanol%20content" title=" ethanol content"> ethanol content</a> </p> <a href="https://publications.waset.org/abstracts/119141/scale-up-process-for-phyllanthus-niruri-enriched-extract-by-supercritical-fluid-extraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Chitosan Modified Halloysite Nanomaterials for Efficient and Effective Vaccine Delivery in Farmed Fish</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saji%20George">Saji George</a>, <a href="https://publications.waset.org/abstracts/search?q=Eng%20Khuan%20Seng"> Eng Khuan Seng</a>, <a href="https://publications.waset.org/abstracts/search?q=Christof%20Luda"> Christof Luda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanotechnology has been recognized as an important tool for modern agriculture and has the potential to overcome some of the pressing challenges faced by aquaculture industry. A strategy for optimizing nanotechnology-based therapeutic delivery platform for immunizing farmed fish was developed. Accordingly, a compositional library of nanomaterials of natural chemistry (Halloysite (clay), Chitosan, Hydroxyapatite, Mesoporous Silica and a composite material of clay-chitosan) was screened for their toxicity and efficiency in delivering models antigens in cellular and zebrafish embryo models using high throughput screening platforms. Through multi-parametric optimization, chitosan modified halloysite (clay) nanomaterial was identified as an optimal vaccine delivery platform. Further, studies conducted in juvenile seabass showed the potential of clay-chitosan in delivering outer membrane protein of Tenacibaculum maritimum- TIMA (pathogenic bacteria) to and its efficiency in eliciting immune responses in fish. In short, as exemplified by this work, the strategy of using compositional nanomaterial libraries and their biological profiling using high-throughput screening platform could fasten the discovery process of nanomaterials with potential applications in food and agriculture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title="nanotechnology">nanotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=fish-vaccine" title=" fish-vaccine"> fish-vaccine</a>, <a href="https://publications.waset.org/abstracts/search?q=drug-delivery" title=" drug-delivery"> drug-delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=halloysite-chitosan" title=" halloysite-chitosan"> halloysite-chitosan</a> </p> <a href="https://publications.waset.org/abstracts/52592/chitosan-modified-halloysite-nanomaterials-for-efficient-and-effective-vaccine-delivery-in-farmed-fish" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Screening the Growth Inhibition Mechanism of Sulfate-Reducing Bacteria by Chitosan/Lignosulfonate Nanocomposite in Seawater Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Rasool">K. Rasool</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sulfate-reducing bacteria (SRBs) induced biofilm formation is a global industrial concern due to its role in the development of microbial-induced corrosion (MIC). Herein, we have developed a biodegradable chitosan/lignosulfonate nanocomposite (CS@LS) as an efficient green biocide for the inhibition of SRBs biofilms. We investigated in detail the inhibition mechanism of SRBs by CS@LS in seawater media. Stable CS@LS-1:1 with 150–200 nm average size and zeta potential of + 34.25 mV was synthesized. The biocidal performance of CS@LS was evaluated by sulfate reduction profiles coupled with analysis of extracted extracellular polymeric substances (EPS) and lactate dehydrogenase (LDH) release assays. As the nanocomposite concentration was increased from 50 to 500 µg/mL, the specific sulfate reduction rate (SSRR) decreased from 0.278 to 0.036 g-sulfate/g-VSS*day showing a relative sulfate reduction inhibition of 86.64% as compared to that of control. Similarly, the specific organic uptake rate (SOUR) decreased from 0.082 to 0.039 0.036 g-TOC/g-VSS*day giving a relative co-substrate oxidation inhibition of 52.19% as compared to that of control. The SRBs spiked with 500 µg/mL CS@LS showed a reduction in cell viability to 1.5 × 106 MPN/mL. To assess the biosafety of the nanocomposite on the marine biota, the 72-hours acute toxicity assays using the zebrafish embryo model revealed that the LC50 for the CS@LS was 103.3 µg/mL. Thus, CS@LS can be classified as environmentally friendly. The nanocomposite showed long-term stability and excellent antibacterial properties against SRBs growth and is thus potentially useful for combating the problems of biofilm growth in harsh marine and aquatic environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20biocides" title="green biocides">green biocides</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan%2Flignosulfonate%20nanocomposite" title=" chitosan/lignosulfonate nanocomposite"> chitosan/lignosulfonate nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=SRBs" title=" SRBs"> SRBs</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a> </p> <a href="https://publications.waset.org/abstracts/150592/screening-the-growth-inhibition-mechanism-of-sulfate-reducing-bacteria-by-chitosanlignosulfonate-nanocomposite-in-seawater-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Mitigating the Aggregation of Human Islet Amyloid Polypeptide with Nanomaterials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ava%20Faridi">Ava Faridi</a>, <a href="https://publications.waset.org/abstracts/search?q=Pouya%20Faridi"> Pouya Faridi</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksandr%20Kakinen"> Aleksandr Kakinen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Javed"> Ibrahim Javed</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20P.%20Davis"> Thomas P. Davis</a>, <a href="https://publications.waset.org/abstracts/search?q=Pu%20Chun%20Ke"> Pu Chun Ke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human islet amyloid polypeptide (IAPP) is a hormone associated with glycemic control and type 2 diabetes. Biophysically, the chirality of IAPP fibrils has been little explored with respect to the aggregation and toxicity of the peptide. Biochemically, it remains unclear as for how protein expression in pancreatic beta cells may be altered by cell exposure to the peptide, and how such changes may be mitigated by nanoparticle inhibitors for IAPP aggregation. In this study, we first demonstrated the elimination of the IAPP nucleation phase and shortening of its elongation phase by silica nanoribbons. This accelerated IAPP fibrillization translated to reduced toxicity, especially for the right-handed silica nanoribbons, as revealed by cell viability, helium ion microscopy, as well as zebrafish embryo survival, developmental and behavioral assays. We then examined the proteomes of βTC6 pancreatic beta cells exposed to the three main aggregation states of monomeric, oligomeric and amyloid fibrillar IAPP, and compared that with cellular protein expression modulated by graphene quantum dots (GQDs). A total of 29 proteins were significantly regulated by different forms of IAPP, and the majority of these proteins were nucleotide-binding proteins. A regulatory capacity of GQDs against aberrant protein expression was confirmed. These studies have demonstrated the great potential of employing nanomaterials targeting the mesoscopic enantioselectivity and protein expression dysregulation in pancreatic beta cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene%20quantum%20dots" title="graphene quantum dots">graphene quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=IAPP" title=" IAPP"> IAPP</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20nanoribbons" title=" silica nanoribbons"> silica nanoribbons</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20expression" title=" protein expression"> protein expression</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a> </p> <a href="https://publications.waset.org/abstracts/107515/mitigating-the-aggregation-of-human-islet-amyloid-polypeptide-with-nanomaterials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107515.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> A Gold-Based Nanoformulation for Delivery of the CRISPR/Cas9 Ribonucleoprotein for Genome Editing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soultana%20Konstantinidou">Soultana Konstantinidou</a>, <a href="https://publications.waset.org/abstracts/search?q=Tiziana%20Schmidt"> Tiziana Schmidt</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20Landi"> Elena Landi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alessandro%20De%20Carli"> Alessandro De Carli</a>, <a href="https://publications.waset.org/abstracts/search?q=Giovanni%20Maltinti"> Giovanni Maltinti</a>, <a href="https://publications.waset.org/abstracts/search?q=Darius%20Witt"> Darius Witt</a>, <a href="https://publications.waset.org/abstracts/search?q=Alicja%20Dziadosz"> Alicja Dziadosz</a>, <a href="https://publications.waset.org/abstracts/search?q=Agnieszka%20Lindstaedt"> Agnieszka Lindstaedt</a>, <a href="https://publications.waset.org/abstracts/search?q=Michele%20Lai"> Michele Lai</a>, <a href="https://publications.waset.org/abstracts/search?q=Mauro%20Pistello"> Mauro Pistello</a>, <a href="https://publications.waset.org/abstracts/search?q=Valentina%20Cappello"> Valentina Cappello</a>, <a href="https://publications.waset.org/abstracts/search?q=Luciana%20Dente"> Luciana Dente</a>, <a href="https://publications.waset.org/abstracts/search?q=Chiara%20Gabellini"> Chiara Gabellini</a>, <a href="https://publications.waset.org/abstracts/search?q=Piotr%20Barski"> Piotr Barski</a>, <a href="https://publications.waset.org/abstracts/search?q=Vittoria%20Raffa"> Vittoria Raffa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> CRISPR/Cas9 technology has gained the interest of researchers in the field of biotechnology for genome editing. Since its discovery as a microbial adaptive immune defense, this system has been widely adopted and is acknowledged for having a variety of applications. However, critical barriers related to safety and delivery are persisting. Here, we propose a new concept of genome engineering, which is based on a nano-formulation of Cas9. The Cas9 enzyme was conjugated to a gold nanoparticle (AuNP-Cas9). The AuNP-Cas9 maintained its cleavage efficiency in vitro, to the same extent as the ribonucleoprotein, including non-conjugated Cas9 enzyme, and showed high gene editing efficiency in vivo in zebrafish embryos. Since CRISPR/Cas9 technology is extensively used in cancer research, melanoma was selected as a validation target. Cell studies were performed in A375 human melanoma cells. Particles per se had no impact on cell metabolism and proliferation. Intriguingly, the AuNP-Cas9 internalized spontaneously in cells and localized as a single particle in the cytoplasm and organelles. More importantly, the AuNP-Cas9 showed a high nuclear localization signal. The AuNP-Cas9, overcoming the delivery difficulties of Cas9, could be used in cellular biology and localization studies. Taking advantage of the plasmonic properties of gold nanoparticles, this technology could potentially be a bio-tool for combining gene editing and photothermal therapy in cancer cells. Further work will be focused on intracellular interactions of the nano-formulation and characterization of the optical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CRISPR%2FCas9" title="CRISPR/Cas9">CRISPR/Cas9</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20editing" title=" gene editing"> gene editing</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20nanoparticles" title=" gold nanoparticles"> gold nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title=" nanotechnology"> nanotechnology</a> </p> <a href="https://publications.waset.org/abstracts/137745/a-gold-based-nanoformulation-for-delivery-of-the-crisprcas9-ribonucleoprotein-for-genome-editing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137745.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Angiomotin Regulates Integrin Beta 1-Mediated Endothelial Cell Migration and Angiogenesis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuanyuan%20Zhang">Yuanyuan Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yujuan%20Zheng"> Yujuan Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Giuseppina%20Barutello"> Giuseppina Barutello</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumako%20Kameishi"> Sumako Kameishi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kungchun%20Chiu"> Kungchun Chiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Katharina%20Hennig"> Katharina Hennig</a>, <a href="https://publications.waset.org/abstracts/search?q=Martial%20Balland"> Martial Balland</a>, <a href="https://publications.waset.org/abstracts/search?q=Federica%20Cavallo"> Federica Cavallo</a>, <a href="https://publications.waset.org/abstracts/search?q=Lars%20Holmgren"> Lars Holmgren</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Angiogenesis describes that new blood vessels migrate from pre-existing ones to form 3D lumenized structure and remodeling. During directional migration toward the gradient of pro-angiogenic factors, the endothelial cells, especially the tip cells need filopodia to sense the environment and exert the pulling force. Of particular interest are the integrin proteins, which play an essential role in focal adhesion in the connection between migrating cells and extracellular matrix (ECM). Understanding how these biomechanical complexes orchestrate intrinsic and extrinsic forces is important for our understanding of the underlying mechanisms driving angiogenesis. We have previously identified Angiomotin (Amot), a member of Amot scaffold protein family, as a promoter for endothelial cell migration in vitro and zebrafish models. Hence, we established inducible endothelial-specific Amot knock-out mice to study normal retinal angiogenesis as well as tumor angiogenesis. We found that the migration ratio of the blood vessel network to the edge was significantly decreased in Amotec- retinas at postnatal day 6 (P6). While almost all the Amot defect tip cells lost migration advantages at P7. In consistence with the dramatic morphology defect of tip cells, there was a non-autonomous defect in astrocytes, as well as the disorganized fibronectin expression pattern correspondingly in migration front. Furthermore, the growth of transplanted LLC tumor was inhibited in Amot knockout mice due to fewer vasculature involved. By using MMTV-PyMT transgenic mouse model, there was a significantly longer period before tumors arised when Amot was specifically knocked out in blood vessels. In vitro evidence showed that Amot binded to beta-actin, Integrin beta 1 (ITGB1), Fibronectin, FAK, Vinculin, major focal adhesion molecules, and ITGB1 and stress fibers were distinctly induced by Amot transfection. Via traction force microscopy, the total energy (force indicater) was found significantly decreased in Amot knockdown cells. Taken together, we propose that Amot is a novel partner of the ITGB1/Fibronectin protein complex at focal adhesion and required for exerting force transition between endothelial cell and extracellular matrix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=angiogenesis" title="angiogenesis">angiogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=angiomotin" title=" angiomotin"> angiomotin</a>, <a href="https://publications.waset.org/abstracts/search?q=endothelial%20cell%20migration" title=" endothelial cell migration"> endothelial cell migration</a>, <a href="https://publications.waset.org/abstracts/search?q=focal%20adhesion" title=" focal adhesion"> focal adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=integrin%20beta%201" title=" integrin beta 1"> integrin beta 1</a> </p> <a href="https://publications.waset.org/abstracts/72725/angiomotin-regulates-integrin-beta-1-mediated-endothelial-cell-migration-and-angiogenesis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72725.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=zebrafish&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=zebrafish&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10