CINXE.COM

Search results for: spectral estimators

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: spectral estimators</title> <meta name="description" content="Search results for: spectral estimators"> <meta name="keywords" content="spectral estimators"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="spectral estimators" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="spectral estimators"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 848</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: spectral estimators</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">848</span> Asymptotic Spectral Theory for Nonlinear Random Fields</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karima%20Kimouche">Karima Kimouche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we consider the asymptotic problems in spectral analysis of stationary causal random fields. We impose conditions only involving (conditional) moments, which are easily verifiable for a variety of nonlinear random fields. Limiting distributions of periodograms and smoothed periodogram spectral density estimates are obtained and applications to the spectral domain bootstrap are given. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spatial%20nonlinear%20processes" title="spatial nonlinear processes">spatial nonlinear processes</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20estimators" title=" spectral estimators"> spectral estimators</a>, <a href="https://publications.waset.org/abstracts/search?q=GMC%20condition" title=" GMC condition"> GMC condition</a>, <a href="https://publications.waset.org/abstracts/search?q=bootstrap%20method" title=" bootstrap method"> bootstrap method</a> </p> <a href="https://publications.waset.org/abstracts/12479/asymptotic-spectral-theory-for-nonlinear-random-fields" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12479.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">847</span> Some Generalized Multivariate Estimators for Population Mean under Multi Phase Stratified Systematic Sampling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muqaddas%20Javed">Muqaddas Javed</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Hanif"> Muhammad Hanif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The generalized multivariate ratio and regression type estimators for population mean are suggested under multi-phase stratified systematic sampling (MPSSS) using multi auxiliary information. Estimators are developed under the two different situations of availability of auxiliary information. The expressions of bias and mean square error (MSE) are developed. Special cases of suggested estimators are also discussed and simulation study is conducted to observe the performance of estimators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generalized%20estimators" title="generalized estimators">generalized estimators</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-phase%20sampling" title=" multi-phase sampling"> multi-phase sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=stratified%20random%20sampling" title=" stratified random sampling"> stratified random sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=systematic%20sampling" title=" systematic sampling"> systematic sampling</a> </p> <a href="https://publications.waset.org/abstracts/27296/some-generalized-multivariate-estimators-for-population-mean-under-multi-phase-stratified-systematic-sampling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27296.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">729</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">846</span> Alternative Robust Estimators for the Shape Parameters of the Burr XII Distribution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Zehra%20Do%C4%9Fru">Fatma Zehra Doğru</a>, <a href="https://publications.waset.org/abstracts/search?q=Olcay%20Arslan"> Olcay Arslan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose alternative robust estimators for the shape parameters of the Burr XII distribution. We provide a small simulation study and a real data example to illustrate the performance of the proposed estimators over the ML and the LS estimators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=burr%20xii%20distribution" title="burr xii distribution">burr xii distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20estimator" title=" robust estimator"> robust estimator</a>, <a href="https://publications.waset.org/abstracts/search?q=m-estimator" title=" m-estimator"> m-estimator</a>, <a href="https://publications.waset.org/abstracts/search?q=least%20squares" title=" least squares"> least squares</a> </p> <a href="https://publications.waset.org/abstracts/30038/alternative-robust-estimators-for-the-shape-parameters-of-the-burr-xii-distribution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">845</span> Channel Estimation/Equalization with Adaptive Modulation and Coding over Multipath Faded Channels for WiMAX</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Siva%20Kumar%20Reddy">B. Siva Kumar Reddy</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Lakshmi"> B. Lakshmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> WiMAX has adopted an Adaptive Modulation and Coding (AMC) in OFDM to endure higher data rates and error free transmission. AMC schemes employ the Channel State Information (CSI) to efficiently utilize the channel and maximize the throughput and for better spectral efficiency. This CSI has given to the transmitter by the channel estimators. In this paper, LSE (Least Square Error) and MMSE (Minimum Mean square Error) estimators are suggested and BER (Bit Error Rate) performance has been analyzed. Channel equalization is also integrated with with AMC-OFDM system and presented with Constant Modulus Algorithm (CMA) and Least Mean Square (LMS) algorithms with convergence rates analysis. Simulation results proved that increment in modulation scheme size causes to improvement in throughput along with BER value. There is a trade-off among modulation size, throughput, BER value and spectral efficiency. Results also reported the requirement of channel estimation and equalization in high data rate systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AMC" title="AMC">AMC</a>, <a href="https://publications.waset.org/abstracts/search?q=CSI" title=" CSI"> CSI</a>, <a href="https://publications.waset.org/abstracts/search?q=CMA" title=" CMA"> CMA</a>, <a href="https://publications.waset.org/abstracts/search?q=OFDM" title=" OFDM"> OFDM</a>, <a href="https://publications.waset.org/abstracts/search?q=OFDMA" title=" OFDMA"> OFDMA</a>, <a href="https://publications.waset.org/abstracts/search?q=WiMAX" title=" WiMAX"> WiMAX</a> </p> <a href="https://publications.waset.org/abstracts/14902/channel-estimationequalization-with-adaptive-modulation-and-coding-over-multipath-faded-channels-for-wimax" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">844</span> Bi-Dimensional Spectral Basis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelhamid%20Zerroug">Abdelhamid Zerroug</a>, <a href="https://publications.waset.org/abstracts/search?q=Mlle%20Ismahene%20Sehili"> Mlle Ismahene Sehili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spectral methods are usually applied to solve uni-dimensional boundary value problems. With the advantage of the creation of multidimensional basis, we propose a new spectral method for bi-dimensional problems. In this article, we start by creating bi-spectral basis by different ways, we developed also a new relations to determine the expressions of spectral coefficients in different partial derivatives expansions. Finally, we propose the principle of a new bi-spectral method for the bi-dimensional problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20value%20problems" title="boundary value problems">boundary value problems</a>, <a href="https://publications.waset.org/abstracts/search?q=bi-spectral%20methods" title=" bi-spectral methods"> bi-spectral methods</a>, <a href="https://publications.waset.org/abstracts/search?q=bi-dimensional%20Legendre%20basis" title=" bi-dimensional Legendre basis"> bi-dimensional Legendre basis</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20method" title=" spectral method"> spectral method</a> </p> <a href="https://publications.waset.org/abstracts/38573/bi-dimensional-spectral-basis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">843</span> A Generalized Family of Estimators for Estimation of Unknown Population Variance in Simple Random Sampling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saba%20Riaz">Saba Riaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20A.%20Hussain"> Syed A. Hussain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is addressing the estimation method of the unknown population variance of the variable of interest. A new generalized class of estimators of the finite population variance has been suggested using the auxiliary information. To improve the precision of the proposed class, known population variance of the auxiliary variable has been used. Mathematical expressions for the biases and the asymptotic variances of the suggested class are derived under large sample approximation. Theoretical and numerical comparisons are made to investigate the performances of the proposed class of estimators. The empirical study reveals that the suggested class of estimators performs better than the usual estimator, classical ratio estimator, classical product estimator and classical linear regression estimator. It has also been found that the suggested class of estimators is also more efficient than some recently published estimators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=study%20variable" title="study variable">study variable</a>, <a href="https://publications.waset.org/abstracts/search?q=auxiliary%20variable" title=" auxiliary variable"> auxiliary variable</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20population%20variance" title=" finite population variance"> finite population variance</a>, <a href="https://publications.waset.org/abstracts/search?q=bias" title=" bias"> bias</a>, <a href="https://publications.waset.org/abstracts/search?q=asymptotic%20variance" title=" asymptotic variance"> asymptotic variance</a>, <a href="https://publications.waset.org/abstracts/search?q=percent%20relative%20efficiency" title=" percent relative efficiency"> percent relative efficiency</a> </p> <a href="https://publications.waset.org/abstracts/87115/a-generalized-family-of-estimators-for-estimation-of-unknown-population-variance-in-simple-random-sampling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">842</span> Point Estimation for the Type II Generalized Logistic Distribution Based on Progressively Censored Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rana%20Rimawi">Rana Rimawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayman%20Baklizi"> Ayman Baklizi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Skewed distributions are important models that are frequently used in applications. Generalized distributions form a class of skewed distributions and gain widespread use in applications because of their flexibility in data analysis. More specifically, the Generalized Logistic Distribution with its different types has received considerable attention recently. In this study, based on progressively type-II censored data, we will consider point estimation in type II Generalized Logistic Distribution (Type II GLD). We will develop several estimators for its unknown parameters, including maximum likelihood estimators (MLE), Bayes estimators and linear estimators (BLUE). The estimators will be compared using simulation based on the criteria of bias and Mean square error (MSE). An illustrative example of a real data set will be given. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=point%20estimation" title="point estimation">point estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=type%20II%20generalized%20logistic%20distribution" title=" type II generalized logistic distribution"> type II generalized logistic distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=progressive%20censoring" title=" progressive censoring"> progressive censoring</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20likelihood%20estimation" title=" maximum likelihood estimation"> maximum likelihood estimation</a> </p> <a href="https://publications.waset.org/abstracts/142979/point-estimation-for-the-type-ii-generalized-logistic-distribution-based-on-progressively-censored-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142979.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">841</span> Comparative Study of Estimators of Population Means in Two Phase Sampling in the Presence of Non-Response</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20Ali%20Taqi">Syed Ali Taqi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ismail"> Muhammad Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A comparative study of estimators of population means in two phase sampling in the presence of non-response when Unknown population means of the auxiliary variable(s) and incomplete information of study variable y as well as of auxiliary variable(s) is made. Three real data sets of University students, hospital and unemployment are used for comparison of all the available techniques in two phase sampling in the presence of non-response with the newly generalized ratio estimators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=two-phase%20sampling" title="two-phase sampling">two-phase sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=ratio%20estimator" title=" ratio estimator"> ratio estimator</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20estimator" title=" product estimator"> product estimator</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20estimators" title=" generalized estimators"> generalized estimators</a> </p> <a href="https://publications.waset.org/abstracts/79636/comparative-study-of-estimators-of-population-means-in-two-phase-sampling-in-the-presence-of-non-response" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">840</span> Estimation of Population Mean under Random Non-Response in Two-Phase Successive Sampling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Khalid">M. Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20N.%20Singh"> G. N. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we have considered the problem of estimation for population mean, on current (second) occasion in the presence of random non response in two-occasion successive sampling under two phase set-up. Modified exponential type estimators have been proposed, and their properties are studied under the assumptions that numbers of sampling units follow a distribution due to random non response situations. The performances of the proposed estimators are compared with linear combinations of two estimators, (a) sample mean estimator for fresh sample and (b) ratio estimator for matched sample under the complete response situations. Results are demonstrated through empirical studies which present the effectiveness of the proposed estimators. Suitable recommendations have been made to the survey practitioners. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=successive%20sampling" title="successive sampling">successive sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20non-response" title=" random non-response"> random non-response</a>, <a href="https://publications.waset.org/abstracts/search?q=auxiliary%20variable" title=" auxiliary variable"> auxiliary variable</a>, <a href="https://publications.waset.org/abstracts/search?q=bias" title=" bias"> bias</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20square%20error" title=" mean square error"> mean square error</a> </p> <a href="https://publications.waset.org/abstracts/78773/estimation-of-population-mean-under-random-non-response-in-two-phase-successive-sampling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">839</span> Estimation of Population Mean Using Characteristics of Poisson Distribution: An Application to Earthquake Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prayas%20Sharma">Prayas Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposed a generalized class of estimators, an exponential class of estimators based on the adaption of Sharma and Singh (2015) and Solanki and Singh (2013), and a simple difference estimator for estimating unknown population mean in the case of Poisson distributed population in simple random sampling without replacement. The expressions for mean square errors of the proposed classes of estimators are derived from the first order of approximation. It is shown that the adapted version of Solanki and Singh (2013), the exponential class of estimator, is always more efficient than the usual estimator, ratio, product, exponential ratio, and exponential product type estimators and equally efficient to simple difference estimator. Moreover, the adapted version of Sharma and Singh's (2015) estimator is always more efficient than all the estimators available in the literature. In addition, theoretical findings are supported by an empirical study to show the superiority of the constructed estimators over others with an application to earthquake data of Turkey. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auxiliary%20attribute" title="auxiliary attribute">auxiliary attribute</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20bi-serial" title=" point bi-serial"> point bi-serial</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20square%20error" title=" mean square error"> mean square error</a>, <a href="https://publications.waset.org/abstracts/search?q=simple%20random%20sampling" title=" simple random sampling"> simple random sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=Poisson%20distribution" title=" Poisson distribution"> Poisson distribution</a> </p> <a href="https://publications.waset.org/abstracts/171049/estimation-of-population-mean-using-characteristics-of-poisson-distribution-an-application-to-earthquake-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171049.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">838</span> On a Generalization of the Spectral Dichotomy Method of a Matrix With Respect to Parabolas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mouhamadou%20Dosso">Mouhamadou Dosso</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents methods of spectral dichotomy of a matrix which compute spectral projectors on the subspace associated with the eigenvalues external to the parabolas described by a general equation. These methods are modifications of the one proposed in [A. N. Malyshev and M. Sadkane, SIAM J. MATRIX ANAL. APPL. 18 (2), 265-278, 1997] which uses the spectral dichotomy method of a matrix with respect to the imaginary axis. Theoretical and algorithmic aspects of the methods are developed. Numerical results obtained by applying methods presented on matrices are reported. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spectral%20dichotomy%20method" title="spectral dichotomy method">spectral dichotomy method</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20projector" title=" spectral projector"> spectral projector</a>, <a href="https://publications.waset.org/abstracts/search?q=eigensubspaces" title=" eigensubspaces"> eigensubspaces</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenvalue" title=" eigenvalue"> eigenvalue</a> </p> <a href="https://publications.waset.org/abstracts/159807/on-a-generalization-of-the-spectral-dichotomy-method-of-a-matrix-with-respect-to-parabolas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159807.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">837</span> Estimation of Population Mean under Random Non-Response in Two-Occasion Successive Sampling </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Khalid">M. Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20N.%20Singh"> G. N. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we have considered the problems of estimation for the population mean on current (second) occasion in two-occasion successive sampling under random non-response situations. Some modified exponential type estimators have been proposed and their properties are studied under the assumptions that the number of sampling unit follows a discrete distribution due to random non-response situations. The performances of the proposed estimators are compared with linear combinations of two estimators, (a) sample mean estimator for fresh sample and (b) ratio estimator for matched sample under the complete response situations. Results are demonstrated through empirical studies which present the effectiveness of the proposed estimators. Suitable recommendations have been made to the survey practitioners. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modified%20exponential%20estimator" title="modified exponential estimator">modified exponential estimator</a>, <a href="https://publications.waset.org/abstracts/search?q=successive%20sampling" title=" successive sampling"> successive sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20non-response" title=" random non-response"> random non-response</a>, <a href="https://publications.waset.org/abstracts/search?q=auxiliary%20variable" title=" auxiliary variable"> auxiliary variable</a>, <a href="https://publications.waset.org/abstracts/search?q=bias" title=" bias"> bias</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20square%20error" title=" mean square error"> mean square error</a> </p> <a href="https://publications.waset.org/abstracts/85408/estimation-of-population-mean-under-random-non-response-in-two-occasion-successive-sampling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">836</span> Finite Sample Inferences for Weak Instrument Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gubhinder%20Kundhi">Gubhinder Kundhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Rilstone"> Paul Rilstone</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is well established that Instrumental Variable (IV) estimators in the presence of weak instruments can be poorly behaved, in particular, be quite biased in finite samples. Finite sample approximations to the distributions of these estimators are obtained using Edgeworth and Saddlepoint expansions. Departures from normality of the distributions of these estimators are analyzed using higher order analytical corrections in these expansions. In a Monte-Carlo experiment, the performance of these expansions is compared to the first order approximation and other methods commonly used in finite samples such as the bootstrap. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bootstrap" title="bootstrap">bootstrap</a>, <a href="https://publications.waset.org/abstracts/search?q=Instrumental%20Variable" title=" Instrumental Variable"> Instrumental Variable</a>, <a href="https://publications.waset.org/abstracts/search?q=Edgeworth%20expansions" title=" Edgeworth expansions"> Edgeworth expansions</a>, <a href="https://publications.waset.org/abstracts/search?q=Saddlepoint%20expansions" title=" Saddlepoint expansions"> Saddlepoint expansions</a> </p> <a href="https://publications.waset.org/abstracts/46824/finite-sample-inferences-for-weak-instrument-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46824.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">835</span> Ratio Type Estimators for the Estimation of Population Coefficient of Variation under Two-Stage Sampling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Jabbar">Muhammad Jabbar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we propose two ratio and ratio type exponential estimator for the estimation of population coefficient of variation using the auxiliary information under two-stage sampling. The properties of these estimators are derived up to first order of approximation. The efficiency conditions under which suggested estimator are more efficient, are obtained. Numerical and simulated studies are conducted to support the superiority of the estimators. Theoretically and numerically, we have found that our proposed estimator is always more efficient as compared to its competitor estimator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=two-stage%20sampling" title="two-stage sampling">two-stage sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=coefficient%20of%20variation" title=" coefficient of variation"> coefficient of variation</a>, <a href="https://publications.waset.org/abstracts/search?q=ratio%20type%20exponential%20estimator" title=" ratio type exponential estimator"> ratio type exponential estimator</a> </p> <a href="https://publications.waset.org/abstracts/21936/ratio-type-estimators-for-the-estimation-of-population-coefficient-of-variation-under-two-stage-sampling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21936.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">529</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">834</span> Introduction of Robust Multivariate Process Capability Indices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Behrooz%20Khalilloo">Behrooz Khalilloo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Shahriari"> Hamid Shahriari</a>, <a href="https://publications.waset.org/abstracts/search?q=Emad%20Roghanian"> Emad Roghanian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Process capability indices (PCIs) are important concepts of statistical quality control and measure the capability of processes and how much processes are meeting certain specifications. An important issue in statistical quality control is parameter estimation. Under the assumption of multivariate normality, the distribution parameters, mean vector and variance-covariance matrix must be estimated, when they are unknown. Classic estimation methods like method of moment estimation (MME) or maximum likelihood estimation (MLE) makes good estimation of the population parameters when data are not contaminated. But when outliers exist in the data, MME and MLE make weak estimators of the population parameters. So we need some estimators which have good estimation in the presence of outliers. In this work robust M-estimators for estimating these parameters are used and based on robust parameter estimators, robust process capability indices are introduced. The performances of these robust estimators in the presence of outliers and their effects on process capability indices are evaluated by real and simulated multivariate data. The results indicate that the proposed robust capability indices perform much better than the existing process capability indices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multivariate%20process%20capability%20indices" title="multivariate process capability indices">multivariate process capability indices</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20M-estimator" title=" robust M-estimator"> robust M-estimator</a>, <a href="https://publications.waset.org/abstracts/search?q=outlier" title=" outlier"> outlier</a>, <a href="https://publications.waset.org/abstracts/search?q=multivariate%20quality%20control" title=" multivariate quality control"> multivariate quality control</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20quality%20control" title=" statistical quality control"> statistical quality control</a> </p> <a href="https://publications.waset.org/abstracts/81586/introduction-of-robust-multivariate-process-capability-indices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">833</span> Estimation of the Mean of the Selected Population</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kalu%20Ram%20Meena">Kalu Ram Meena</a>, <a href="https://publications.waset.org/abstracts/search?q=Aditi%20Kar%20Gangopadhyay"> Aditi Kar Gangopadhyay</a>, <a href="https://publications.waset.org/abstracts/search?q=Satrajit%20Mandal"> Satrajit Mandal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two normal populations with different means and same variance are considered, where the variances are known. The population with the smaller sample mean is selected. Various estimators are constructed for the mean of the selected normal population. Finally, they are compared with respect to the bias and MSE risks by the method of Monte-Carlo simulation and their performances are analysed with the help of graphs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=estimation%20after%20selection" title="estimation after selection">estimation after selection</a>, <a href="https://publications.waset.org/abstracts/search?q=Brewster-Zidek%20technique" title=" Brewster-Zidek technique"> Brewster-Zidek technique</a>, <a href="https://publications.waset.org/abstracts/search?q=estimators" title=" estimators"> estimators</a>, <a href="https://publications.waset.org/abstracts/search?q=selected%20populations" title=" selected populations"> selected populations</a> </p> <a href="https://publications.waset.org/abstracts/17179/estimation-of-the-mean-of-the-selected-population" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">832</span> Spectral Clustering for Manufacturing Cell Formation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yessica%20Nataliani">Yessica Nataliani</a>, <a href="https://publications.waset.org/abstracts/search?q=Miin-Shen%20Yang"> Miin-Shen Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cell formation (CF) is an important step in group technology. It is used in designing cellular manufacturing systems using similarities between parts in relation to machines so that it can identify part families and machine groups. There are many CF methods in the literature, but there is less spectral clustering used in CF. In this paper, we propose a spectral clustering algorithm for machine-part CF. Some experimental examples are used to illustrate its efficiency. Overall, the spectral clustering algorithm can be used in CF with a wide variety of machine/part matrices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=group%20technology" title="group technology">group technology</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20formation" title=" cell formation"> cell formation</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20clustering" title=" spectral clustering"> spectral clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=grouping%20efficiency" title=" grouping efficiency"> grouping efficiency</a> </p> <a href="https://publications.waset.org/abstracts/72294/spectral-clustering-for-manufacturing-cell-formation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">831</span> Parameter Estimation for the Mixture of Generalized Gamma Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wikanda%20Phaphan">Wikanda Phaphan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mixture generalized gamma distribution is a combination of two distributions: generalized gamma distribution and length biased generalized gamma distribution. These two distributions were presented by Suksaengrakcharoen and Bodhisuwan in 2014. The findings showed that probability density function (pdf) had fairly complexities, so it made problems in estimating parameters. The problem occurred in parameter estimation was that we were unable to calculate estimators in the form of critical expression. Thus, we will use numerical estimation to find the estimators. In this study, we presented a new method of the parameter estimation by using the expectation – maximization algorithm (EM), the conjugate gradient method, and the quasi-Newton method. The data was generated by acceptance-rejection method which is used for estimating α, β, λ and p. λ is the scale parameter, p is the weight parameter, α and β are the shape parameters. We will use Monte Carlo technique to find the estimator's performance. Determining the size of sample equals 10, 30, 100; the simulations were repeated 20 times in each case. We evaluated the effectiveness of the estimators which was introduced by considering values of the mean squared errors and the bias. The findings revealed that the EM-algorithm had proximity to the actual values determined. Also, the maximum likelihood estimators via the conjugate gradient and the quasi-Newton method are less precision than the maximum likelihood estimators via the EM-algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conjugate%20gradient%20method" title="conjugate gradient method">conjugate gradient method</a>, <a href="https://publications.waset.org/abstracts/search?q=quasi-Newton%20method" title=" quasi-Newton method"> quasi-Newton method</a>, <a href="https://publications.waset.org/abstracts/search?q=EM-algorithm" title=" EM-algorithm"> EM-algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20gamma%20distribution" title=" generalized gamma distribution"> generalized gamma distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=length%20biased%20generalized%20gamma%20distribution" title=" length biased generalized gamma distribution"> length biased generalized gamma distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20likelihood%20method" title=" maximum likelihood method"> maximum likelihood method</a> </p> <a href="https://publications.waset.org/abstracts/81404/parameter-estimation-for-the-mixture-of-generalized-gamma-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">830</span> Bayes Estimation of Parameters of Binomial Type Rayleigh Class Software Reliability Growth Model using Non-informative Priors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Singh">Rajesh Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Kailash%20Kale"> Kailash Kale </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the Binomial process type occurrence of software failures is considered and failure intensity has been characterized by one parameter Rayleigh class Software Reliability Growth Model (SRGM). The proposed SRGM is mathematical function of parameters namely; total number of failures i.e. η-0 and scale parameter i.e. η-1. It is assumed that very little or no information is available about both these parameters and then considering non-informative priors for both these parameters, the Bayes estimators for the parameters η-0 and η-1 have been obtained under square error loss function. The proposed Bayes estimators are compared with their corresponding maximum likelihood estimators on the basis of risk efficiencies obtained by Monte Carlo simulation technique. It is concluded that both the proposed Bayes estimators of total number of failures and scale parameter perform well for proper choice of execution time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binomial%20process" title="binomial process">binomial process</a>, <a href="https://publications.waset.org/abstracts/search?q=non-informative%20prior" title=" non-informative prior"> non-informative prior</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20likelihood%20estimator%20%28MLE%29" title=" maximum likelihood estimator (MLE)"> maximum likelihood estimator (MLE)</a>, <a href="https://publications.waset.org/abstracts/search?q=rayleigh%20class" title=" rayleigh class"> rayleigh class</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20reliability%20growth%20model%20%28SRGM%29" title=" software reliability growth model (SRGM)"> software reliability growth model (SRGM)</a> </p> <a href="https://publications.waset.org/abstracts/8925/bayes-estimation-of-parameters-of-binomial-type-rayleigh-class-software-reliability-growth-model-using-non-informative-priors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">829</span> Improved Estimation Strategies of Sensitive Characteristics Using Scrambled Response Techniques in Successive Sampling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Suman">S. Suman</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20N.%20Singh"> G. N. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research work is an effort to analyse the consequences of scrambled response technique to estimate the current population mean in two-occasion successive sampling when the characteristic of interest is sensitive in nature. The generalized estimation procedures have been proposed using sensitive auxiliary variables under additive and multiplicative scramble models. The properties of resultant estimators have been deeply examined. Simulation, as well as empirical studies, are carried out to evaluate the performances of the proposed estimators with respect to other competent estimators. The results of our studies suggest that the proposed estimation procedures are highly effective under the presence of non-response situation. The result of this study also suggests that additive scrambled response model is a better choice in the perspective of cost of the survey and privacy of the respondents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scrambled%20response" title="scrambled response">scrambled response</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitive%20characteristic" title=" sensitive characteristic"> sensitive characteristic</a>, <a href="https://publications.waset.org/abstracts/search?q=successive%20sampling" title=" successive sampling"> successive sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=optimum%20replacement%20strategy" title=" optimum replacement strategy"> optimum replacement strategy</a> </p> <a href="https://publications.waset.org/abstracts/95355/improved-estimation-strategies-of-sensitive-characteristics-using-scrambled-response-techniques-in-successive-sampling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">828</span> Bayesian Approach for Moving Extremes Ranked Set Sampling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Said%20Ali%20Al-Hadhrami">Said Ali Al-Hadhrami</a>, <a href="https://publications.waset.org/abstracts/search?q=Amer%20Ibrahim%20Al-Omari"> Amer Ibrahim Al-Omari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, Bayesian estimation for the mean of exponential distribution is considered using Moving Extremes Ranked Set Sampling (MERSS). Three priors are used; Jeffery, conjugate and constant using MERSS and Simple Random Sampling (SRS). Some properties of the proposed estimators are investigated. It is found that the suggested estimators using MERSS are more efficient than its counterparts based on SRS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayesian" title="Bayesian">Bayesian</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20extreme%20ranked%20set%20sampling" title=" moving extreme ranked set sampling"> moving extreme ranked set sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=ranked%20set%20sampling" title=" ranked set sampling"> ranked set sampling</a> </p> <a href="https://publications.waset.org/abstracts/30733/bayesian-approach-for-moving-extremes-ranked-set-sampling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30733.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">514</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">827</span> A Comparative Study of Additive and Nonparametric Regression Estimators and Variable Selection Procedures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adriano%20Z.%20Zambom">Adriano Z. Zambom</a>, <a href="https://publications.waset.org/abstracts/search?q=Preethi%20Ravikumar"> Preethi Ravikumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the biggest challenges in nonparametric regression is the curse of dimensionality. Additive models are known to overcome this problem by estimating only the individual additive effects of each covariate. However, if the model is misspecified, the accuracy of the estimator compared to the fully nonparametric one is unknown. In this work the efficiency of completely nonparametric regression estimators such as the Loess is compared to the estimators that assume additivity in several situations, including additive and non-additive regression scenarios. The comparison is done by computing the oracle mean square error of the estimators with regards to the true nonparametric regression function. Then, a backward elimination selection procedure based on the Akaike Information Criteria is proposed, which is computed from either the additive or the nonparametric model. Simulations show that if the additive model is misspecified, the percentage of time it fails to select important variables can be higher than that of the fully nonparametric approach. A dimension reduction step is included when nonparametric estimator cannot be computed due to the curse of dimensionality. Finally, the Boston housing dataset is analyzed using the proposed backward elimination procedure and the selected variables are identified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20model" title="additive model">additive model</a>, <a href="https://publications.waset.org/abstracts/search?q=nonparametric%20regression" title=" nonparametric regression"> nonparametric regression</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20selection" title=" variable selection"> variable selection</a>, <a href="https://publications.waset.org/abstracts/search?q=Akaike%20Information%20Criteria" title=" Akaike Information Criteria"> Akaike Information Criteria</a> </p> <a href="https://publications.waset.org/abstracts/56158/a-comparative-study-of-additive-and-nonparametric-regression-estimators-and-variable-selection-procedures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56158.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">826</span> Comparing Xbar Charts: Conventional versus Reweighted Robust Estimation Methods for Univariate Data Sets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ece%20Cigdem%20Mutlu">Ece Cigdem Mutlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Burak%20Alakent"> Burak Alakent</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Maintaining the quality of manufactured products at a desired level depends on the stability of process dispersion and location parameters and detection of perturbations in these parameters as promptly as possible. Shewhart control chart is the most widely used technique in statistical process monitoring to monitor the quality of products and control process mean and variability. In the application of Xbar control charts, sample standard deviation and sample mean are known to be the most efficient conventional estimators in determining process dispersion and location parameters, respectively, based on the assumption of independent and normally distributed datasets. On the other hand, there is no guarantee that the real-world data would be normally distributed. In the cases of estimated process parameters from Phase I data clouded with outliers, efficiency of traditional estimators is significantly reduced, and performance of Xbar charts are undesirably low, e.g. occasional outliers in the rational subgroups in Phase I data set may considerably affect the sample mean and standard deviation, resulting a serious delay in detection of inferior products in Phase II. For more efficient application of control charts, it is required to use robust estimators against contaminations, which may exist in Phase I. In the current study, we present a simple approach to construct robust Xbar control charts using average distance to the median, Qn-estimator of scale, M-estimator of scale with logistic psi-function in the estimation of process dispersion parameter, and Harrell-Davis qth quantile estimator, Hodge-Lehmann estimator and M-estimator of location with Huber psi-function and logistic psi-function in the estimation of process location parameter. Phase I efficiency of proposed estimators and Phase II performance of Xbar charts constructed from these estimators are compared with the conventional mean and standard deviation statistics both under normality and against diffuse-localized and symmetric-asymmetric contaminations using 50,000 Monte Carlo simulations on MATLAB. Consequently, it is found that robust estimators yield parameter estimates with higher efficiency against all types of contaminations, and Xbar charts constructed using robust estimators have higher power in detecting disturbances, compared to conventional methods. Additionally, utilizing individuals charts to screen outlier subgroups and employing different combination of dispersion and location estimators on subgroups and individual observations are found to improve the performance of Xbar charts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=average%20run%20length" title="average run length">average run length</a>, <a href="https://publications.waset.org/abstracts/search?q=M-estimators" title=" M-estimators"> M-estimators</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20control" title=" quality control"> quality control</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20estimators" title=" robust estimators"> robust estimators</a> </p> <a href="https://publications.waset.org/abstracts/79020/comparing-xbar-charts-conventional-versus-reweighted-robust-estimation-methods-for-univariate-data-sets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79020.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">825</span> A Posteriori Analysis of the Spectral Element Discretization of Heat Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chor%20Nejmeddine">Chor Nejmeddine</a>, <a href="https://publications.waset.org/abstracts/search?q=Ines%20Ben%20Omrane"> Ines Ben Omrane</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Abdelwahed"> Mohamed Abdelwahed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a posteriori analysis of the discretization of the heat equation by spectral element method. We apply Euler's implicit scheme in time and spectral method in space. We propose two families of error indicators, both of which are built from the residual of the equation and we prove that they satisfy some optimal estimates. We present some numerical results which are coherent with the theoretical ones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20equation" title="heat equation">heat equation</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20elements%20discretization" title=" spectral elements discretization"> spectral elements discretization</a>, <a href="https://publications.waset.org/abstracts/search?q=error%20indicators" title=" error indicators"> error indicators</a>, <a href="https://publications.waset.org/abstracts/search?q=Euler" title=" Euler"> Euler</a> </p> <a href="https://publications.waset.org/abstracts/4041/a-posteriori-analysis-of-the-spectral-element-discretization-of-heat-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4041.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">824</span> Matrix Valued Difference Equations with Spectral Singularities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Serifenur%20Cebesoy">Serifenur Cebesoy</a>, <a href="https://publications.waset.org/abstracts/search?q=Yelda%20Aygar"> Yelda Aygar</a>, <a href="https://publications.waset.org/abstracts/search?q=Elgiz%20Bairamov"> Elgiz Bairamov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we examine some spectral properties of non-selfadjoint matrix-valued difference equations consisting of a polynomial type Jost solution. The aim of this study is to investigate the eigenvalues and spectral singularities of the difference operator L which is expressed by the above-mentioned difference equation. Firstly, thanks to the representation of polynomial type Jost solution of this equation, we obtain asymptotics and some analytical properties. Then, using the uniqueness theorems of analytic functions, we guarantee that the operator L has a finite number of eigenvalues and spectral singularities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymptotics" title="asymptotics">asymptotics</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20spectrum" title=" continuous spectrum"> continuous spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=difference%20equations" title=" difference equations"> difference equations</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenvalues" title=" eigenvalues"> eigenvalues</a>, <a href="https://publications.waset.org/abstracts/search?q=jost%20functions" title=" jost functions"> jost functions</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20singularities" title=" spectral singularities"> spectral singularities</a> </p> <a href="https://publications.waset.org/abstracts/32256/matrix-valued-difference-equations-with-spectral-singularities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">823</span> Study of Cavitation Erosion of Pump-Storage Hydro Power Plant Prototype</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tine%20Cenci%C4%8D">Tine Cencič</a>, <a href="https://publications.waset.org/abstracts/search?q=Marko%20Ho%C4%8Devar"> Marko Hočevar</a>, <a href="https://publications.waset.org/abstracts/search?q=Brane%20%C5%A0irok"> Brane Širok</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental investigation has been made to detect cavitation in pump–storage hydro power plant prototype suffering from cavitation in pump mode. Vibrations and acoustic emission on the housing of turbine bearing and pressure fluctuations in the draft tube were measured and the corresponding signals have been recorded and analyzed. The analysis was based on the analysis of high-frequency content of measured variables. The pump-storage hydro power plant prototype has been operated at various input loads and Thoma numbers. Several estimators of cavitation were evaluated according to coefficient of determination between Thoma number and cavitation estimators. The best results were achieved with a compound discharge coefficient cavitation estimator. Cavitation estimators were evaluated in several intervals of frequencies. Also, a prediction of cavitation erosion was made in order to choose the appropriate maintenance and repair periods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cavitation%20erosion" title="cavitation erosion">cavitation erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=turbine" title=" turbine"> turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=cavitation%20measurement" title=" cavitation measurement"> cavitation measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20dynamics" title=" fluid dynamics"> fluid dynamics</a> </p> <a href="https://publications.waset.org/abstracts/8147/study-of-cavitation-erosion-of-pump-storage-hydro-power-plant-prototype" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8147.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">822</span> A Novel Spectral Index for Automatic Shadow Detection in Urban Mapping Based on WorldView-2 Satellite Imagery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaveh%20Shahi">Kaveh Shahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Helmi%20Z.%20M.%20Shafri"> Helmi Z. M. Shafri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ebrahim%20Taherzadeh"> Ebrahim Taherzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In remote sensing, shadow causes problems in many applications such as change detection and classification. It is caused by objects which are elevated, thus can directly affect the accuracy of information. For these reasons, it is very important to detect shadows particularly in urban high spatial resolution imagery which created a significant problem. This paper focuses on automatic shadow detection based on a new spectral index for multispectral imagery known as Shadow Detection Index (SDI). The new spectral index was tested on different areas of World-View 2 images and the results demonstrated that the new spectral index has a massive potential to extract shadows effectively and automatically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spectral%20index" title="spectral index">spectral index</a>, <a href="https://publications.waset.org/abstracts/search?q=shadow%20detection" title=" shadow detection"> shadow detection</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing%20images" title=" remote sensing images"> remote sensing images</a>, <a href="https://publications.waset.org/abstracts/search?q=World-View%202" title=" World-View 2"> World-View 2</a> </p> <a href="https://publications.waset.org/abstracts/13500/a-novel-spectral-index-for-automatic-shadow-detection-in-urban-mapping-based-on-worldview-2-satellite-imagery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13500.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">538</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">821</span> Vulnerability Assessment of Reinforced Concrete Frames Based on Inelastic Spectral Displacement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chao%20Xu">Chao Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Selecting ground motion intensity measures reasonably is one of the very important issues to affect the input ground motions selecting and the reliability of vulnerability analysis results. In this paper, inelastic spectral displacement is used as an alternative intensity measure to characterize the ground motion damage potential. The inelastic spectral displacement is calculated based modal pushover analysis and inelastic spectral displacement based incremental dynamic analysis is developed. Probability seismic demand analysis of a six story and an eleven story RC frame are carried out through cloud analysis and advanced incremental dynamic analysis. The sufficiency and efficiency of inelastic spectral displacement are investigated by means of regression and residual analysis, and compared with elastic spectral displacement. Vulnerability curves are developed based on inelastic spectral displacement. The study shows that inelastic spectral displacement reflects the impact of different frequency components with periods larger than fundamental period on inelastic structural response. The damage potential of ground motion on structures with fundamental period prolonging caused by structural soften can be caught by inelastic spectral displacement. To be compared with elastic spectral displacement, inelastic spectral displacement is a more sufficient and efficient intensity measure, which reduces the uncertainty of vulnerability analysis and the impact of input ground motion selection on vulnerability analysis result. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vulnerability" title="vulnerability">vulnerability</a>, <a href="https://publications.waset.org/abstracts/search?q=probability%20seismic%20demand%20analysis" title=" probability seismic demand analysis"> probability seismic demand analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20motion%20intensity%20measure" title=" ground motion intensity measure"> ground motion intensity measure</a>, <a href="https://publications.waset.org/abstracts/search?q=sufficiency" title=" sufficiency"> sufficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=inelastic%20time%20history%20analysis" title=" inelastic time history analysis"> inelastic time history analysis</a> </p> <a href="https://publications.waset.org/abstracts/48653/vulnerability-assessment-of-reinforced-concrete-frames-based-on-inelastic-spectral-displacement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48653.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">820</span> Investigating the Potential of Spectral Bands in the Detection of Heavy Metals in Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Golayeh%20Yousefi">Golayeh Yousefi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Homaee"> Mehdi Homaee</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Akbar%20Norouzi"> Ali Akbar Norouzi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ongoing monitoring of soil contamination by heavy metals is critical for ecosystem stability and environmental protection, and food security. The conventional methods of determining these soil contaminants are time-consuming and costly. Spectroscopy in the visible near-infrared (VNIR) - short wave infrared (SWIR) region is a rapid, non-destructive, noninvasive, and cost-effective method for assessment of soil heavy metals concentration by studying the spectral properties of soil constituents. The aim of this study is to derive spectral bands and important ranges that are sensitive to heavy metals and can be used to estimate the concentration of these soil contaminants. In other words, the change in the spectral properties of spectrally active constituents of soil can lead to the accurate identification and estimation of the concentration of these compounds in soil. For this purpose, 325 soil samples were collected, and their spectral reflectance curves were evaluated at a range of 350-2500 nm. After spectral preprocessing operations, the partial least-squares regression (PLSR) model was fitted on spectral data to predict the concentration of Cu and Ni. Based on the results, the spectral range of Cu- sensitive spectra were 480, 580-610, 1370, 1425, 1850, 1920, 2145, and 2200 nm, and Ni-sensitive ranges were 543, 655, 761, 1003, 1271, 1415, 1903, 2199 nm. Finally, the results of this study indicated that the spectral data contains a lot of information that can be applied to identify the soil properties, such as the concentration of heavy metals, with more detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title="heavy metals">heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=spectroscopy" title=" spectroscopy"> spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20bands" title=" spectral bands"> spectral bands</a>, <a href="https://publications.waset.org/abstracts/search?q=PLS%20regression" title=" PLS regression"> PLS regression</a> </p> <a href="https://publications.waset.org/abstracts/160387/investigating-the-potential-of-spectral-bands-in-the-detection-of-heavy-metals-in-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">819</span> Methods of Variance Estimation in Two-Phase Sampling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raghunath%20Arnab">Raghunath Arnab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The two-phase sampling which is also known as double sampling was introduced in 1938. In two-phase sampling, samples are selected in phases. In the first phase, a relatively large sample of size is selected by some suitable sampling design and only information on the auxiliary variable is collected. During the second phase, a sample of size is selected either from, the sample selected in the first phase or from the entire population by using a suitable sampling design and information regarding the study and auxiliary variable is collected. Evidently, two phase sampling is useful if the auxiliary information is relatively easy and cheaper to collect than the study variable as well as if the strength of the relationship between the variables and is high. If the sample is selected in more than two phases, the resulting sampling design is called a multi-phase sampling. In this article we will consider how one can use data collected at the first phase sampling at the stages of estimation of the parameter, stratification, selection of sample and their combinations in the second phase in a unified setup applicable to any sampling design and wider classes of estimators. The problem of the estimation of variance will also be considered. The variance of estimator is essential for estimating precision of the survey estimates, calculation of confidence intervals, determination of the optimal sample sizes and for testing of hypotheses amongst others. Although, the variance is a non-negative quantity but its estimators may not be non-negative. If the estimator of variance is negative, then it cannot be used for estimation of confidence intervals, testing of hypothesis or measure of sampling error. The non-negativity properties of the variance estimators will also be studied in details. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auxiliary%20information" title="auxiliary information">auxiliary information</a>, <a href="https://publications.waset.org/abstracts/search?q=two-phase%20sampling" title=" two-phase sampling"> two-phase sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=varying%20probability%20sampling" title=" varying probability sampling"> varying probability sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=unbiased%20estimators" title=" unbiased estimators"> unbiased estimators</a> </p> <a href="https://publications.waset.org/abstracts/36087/methods-of-variance-estimation-in-two-phase-sampling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">588</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spectral%20estimators&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spectral%20estimators&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spectral%20estimators&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spectral%20estimators&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spectral%20estimators&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spectral%20estimators&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spectral%20estimators&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spectral%20estimators&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spectral%20estimators&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spectral%20estimators&amp;page=28">28</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spectral%20estimators&amp;page=29">29</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spectral%20estimators&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10