CINXE.COM
Search results for: object detection
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: object detection</title> <meta name="description" content="Search results for: object detection"> <meta name="keywords" content="object detection"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="object detection" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="object detection"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2044</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: object detection</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2044</span> A Unified Robust Algorithm for Detection of Human and Non-human Object in Intelligent Safety Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M%20A%20Hannan">M A Hannan</a>, <a href="https://publications.waset.org/search?q=A.%20Hussain"> A. Hussain</a>, <a href="https://publications.waset.org/search?q=S.%20A.%20Samad"> S. A. Samad</a>, <a href="https://publications.waset.org/search?q=K.%20A.%20Ishak"> K. A. Ishak</a>, <a href="https://publications.waset.org/search?q=A.%0AMohamed"> A. Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a general trainable framework for fast and robust upright human face and non-human object detection and verification in static images. To enhance the performance of the detection process, the technique we develop is based on the combination of fast neural network (FNN) and classical neural network (CNN). In FNN, a useful correlation is exploited to sustain high level of detection accuracy between input image and the weight of the hidden neurons. This is to enable the use of Fourier transform that significantly speed up the time detection. The combination of CNN is responsible to verify the face region. A bootstrap algorithm is used to collect non human object, which adds the false detection to the training process of the human and non-human object. Experimental results on test images with both simple and complex background demonstrate that the proposed method has obtained high detection rate and low false positive rate in detecting both human face and non-human object. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Algorithm" title="Algorithm">Algorithm</a>, <a href="https://publications.waset.org/search?q=detection%20of%20human%20and%20non-human%0Aobject" title=" detection of human and non-human object"> detection of human and non-human object</a>, <a href="https://publications.waset.org/search?q=FNN" title=" FNN"> FNN</a>, <a href="https://publications.waset.org/search?q=CNN" title=" CNN"> CNN</a>, <a href="https://publications.waset.org/search?q=Image%20training." title=" Image training."> Image training.</a> </p> <a href="https://publications.waset.org/10689/a-unified-robust-algorithm-for-detection-of-human-and-non-human-object-in-intelligent-safety-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10689/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10689/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10689/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10689/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10689/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10689/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10689/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10689/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10689/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10689/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10689.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1633</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2043</span> A Moving Human-Object Detection for Video Access Monitoring</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Won-Ho%20Kim">Won-Ho Kim</a>, <a href="https://publications.waset.org/search?q=Nuwan%20Sanjeewa%20Rajasooriya"> Nuwan Sanjeewa Rajasooriya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, a simple moving human detection method is proposed for video surveillance system or access monitoring system. The frame difference and noise threshold are used for initial detection of a moving human-object, and simple labeling method is applied for final human-object segmentation. The simulated results show that the applied algorithm is fast to detect the moving human-objects by performing 95% of correct detection rate. The proposed algorithm has confirmed that can be used as an intelligent video access monitoring system.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Moving%20human-object%20detection" title="Moving human-object detection">Moving human-object detection</a>, <a href="https://publications.waset.org/search?q=Video%20access%20monitoring" title=" Video access monitoring"> Video access monitoring</a>, <a href="https://publications.waset.org/search?q=Image%20processing." title=" Image processing. "> Image processing. </a> </p> <a href="https://publications.waset.org/16883/a-moving-human-object-detection-for-video-access-monitoring" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16883/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16883/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16883/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16883/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16883/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16883/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16883/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16883/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16883/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16883/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2507</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2042</span> Object Motion Tracking Based On Color Detection for Android Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Zacharenia%20I.%20Garofalaki">Zacharenia I. Garofalaki</a>, <a href="https://publications.waset.org/search?q=John%20T.%20Amorginos"> John T. Amorginos</a>, <a href="https://publications.waset.org/search?q=John%20N.%20Ellinas"> John N. Ellinas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the development of a robot car that can track the motion of an object by detecting its color through an Android device. The employed computer vision algorithm uses the OpenCV library, which is embedded into an Android application of a smartphone, for manipulating the captured image of the object. The captured image of the object is subjected to color conversion and is transformed to a binary image for further processing after color filtering. The desired object is clearly determined after removing pixel noise by applying image morphology operations and contour definition. Finally, the area and the center of the object are determined so that object’s motion to be tracked. The smartphone application has been placed on a robot car and transmits by Bluetooth to an Arduino assembly the motion directives so that to follow objects of a specified color. The experimental evaluation of the proposed algorithm shows reliable color detection and smooth tracking characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Android" title="Android">Android</a>, <a href="https://publications.waset.org/search?q=Arduino%20Uno" title=" Arduino Uno"> Arduino Uno</a>, <a href="https://publications.waset.org/search?q=Image%20processing" title=" Image processing"> Image processing</a>, <a href="https://publications.waset.org/search?q=Object%0D%0Amotion%20detection" title=" Object motion detection"> Object motion detection</a>, <a href="https://publications.waset.org/search?q=OpenCV%20library." title=" OpenCV library."> OpenCV library.</a> </p> <a href="https://publications.waset.org/10001450/object-motion-tracking-based-on-color-detection-for-android-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001450/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001450/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001450/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001450/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001450/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001450/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001450/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001450/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001450/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001450/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001450.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">4564</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2041</span> A Background Subtraction Based Moving Object Detection around the Host Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hyojin%20Lim">Hyojin Lim</a>, <a href="https://publications.waset.org/search?q=Cuong%20Nguyen%20Khac"> Cuong Nguyen Khac</a>, <a href="https://publications.waset.org/search?q=Ho-Youl%20Jung"> Ho-Youl Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose moving object detection method which is helpful for driver to safely take his/her car out of parking lot. When moving objects such as motorbikes, pedestrians, the other cars and some obstacles are detected at the rear-side of host vehicle, the proposed algorithm can provide to driver warning. We assume that the host vehicle is just before departure. Gaussian Mixture Model (GMM) based background subtraction is basically applied. Pre-processing such as smoothing and post-processing as morphological filtering are added. We examine “which color space has better performance for detection of moving objects?” Three color spaces including RGB, YCbCr, and Y are applied and compared, in terms of detection rate. Through simulation, we prove that RGB space is more suitable for moving object detection based on background subtraction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Gaussian%20mixture%20model" title="Gaussian mixture model">Gaussian mixture model</a>, <a href="https://publications.waset.org/search?q=background%20subtraction" title=" background subtraction"> background subtraction</a>, <a href="https://publications.waset.org/search?q=Moving%20object%20detection" title=" Moving object detection"> Moving object detection</a>, <a href="https://publications.waset.org/search?q=color%20space" title=" color space"> color space</a>, <a href="https://publications.waset.org/search?q=morphological%20filtering." title=" morphological filtering."> morphological filtering.</a> </p> <a href="https://publications.waset.org/10001883/a-background-subtraction-based-moving-object-detection-around-the-host-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001883/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001883/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001883/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001883/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001883/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001883/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001883/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001883/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001883/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001883/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2556</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2040</span> An Efficient Fundamental Matrix Estimation for Moving Object Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yeongyu%20Choi">Yeongyu Choi</a>, <a href="https://publications.waset.org/search?q=Ju%20H.%20Park"> Ju H. Park</a>, <a href="https://publications.waset.org/search?q=S.%20M.%20Lee"> S. M. Lee</a>, <a href="https://publications.waset.org/search?q=Ho-Youl%20Jung"> Ho-Youl Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, an improved method for estimating fundamental matrix is proposed. The method is applied effectively to monocular camera based moving object detection. The method consists of corner points detection, moving object’s motion estimation and fundamental matrix calculation. The corner points are obtained by using Harris corner detector, motions of moving objects is calculated from pyramidal Lucas-Kanade optical flow algorithm. Through epipolar geometry analysis using RANSAC, the fundamental matrix is calculated. In this method, we have improved the performances of moving object detection by using two threshold values that determine inlier or outlier. Through the simulations, we compare the performances with varying the two threshold values.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Corner%20detection" title="Corner detection">Corner detection</a>, <a href="https://publications.waset.org/search?q=optical%20flow" title=" optical flow"> optical flow</a>, <a href="https://publications.waset.org/search?q=epipolar%20geometry" title=" epipolar geometry"> epipolar geometry</a>, <a href="https://publications.waset.org/search?q=RANSAC." title=" RANSAC."> RANSAC.</a> </p> <a href="https://publications.waset.org/10008013/an-efficient-fundamental-matrix-estimation-for-moving-object-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10008013/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10008013/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10008013/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10008013/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10008013/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10008013/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10008013/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10008013/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10008013/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10008013/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10008013.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1117</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2039</span> Object Detection in Digital Images under Non-Standardized Conditions Using Illumination and Shadow Filtering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Waqqas-ur-Rehman%20Butt">Waqqas-ur-Rehman Butt</a>, <a href="https://publications.waset.org/search?q=Martin%20Servin"> Martin Servin</a>, <a href="https://publications.waset.org/search?q=Marion%20Pause"> Marion Pause</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, object detection has gained much attention and very encouraging research area in the field of computer vision. The robust object boundaries detection in an image is demanded in numerous applications of human computer interaction and automated surveillance systems. Many methods and approaches have been developed for automatic object detection in various fields, such as automotive, quality control management and environmental services. Inappropriately, to the best of our knowledge, object detection under illumination with shadow consideration has not been well solved yet. Furthermore, this problem is also one of the major hurdles to keeping an object detection method from the practical applications. This paper presents an approach to automatic object detection in images under non-standardized environmental conditions. A key challenge is how to detect the object, particularly under uneven illumination conditions. Image capturing conditions the algorithms need to consider a variety of possible environmental factors as the colour information, lightening and shadows varies from image to image. Existing methods mostly failed to produce the appropriate result due to variation in colour information, lightening effects, threshold specifications, histogram dependencies and colour ranges. To overcome these limitations we propose an object detection algorithm, with pre-processing methods, to reduce the interference caused by shadow and illumination effects without fixed parameters. We use the Y CrCb colour model without any specific colour ranges and predefined threshold values. The segmented object regions are further classified using morphological operations (Erosion and Dilation) and contours. Proposed approach applied on a large image data set acquired under various environmental conditions for wood stack detection. Experiments show the promising result of the proposed approach in comparison with existing methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Image%20processing" title="Image processing">Image processing</a>, <a href="https://publications.waset.org/search?q=Illumination%20equalization" title=" Illumination equalization"> Illumination equalization</a>, <a href="https://publications.waset.org/search?q=Shadow%0D%0Afiltering" title=" Shadow filtering"> Shadow filtering</a>, <a href="https://publications.waset.org/search?q=Object%20detection" title=" Object detection"> Object detection</a>, <a href="https://publications.waset.org/search?q=Colour%20models" title=" Colour models"> Colour models</a>, <a href="https://publications.waset.org/search?q=Image%20segmentation." title=" Image segmentation."> Image segmentation.</a> </p> <a href="https://publications.waset.org/10008298/object-detection-in-digital-images-under-non-standardized-conditions-using-illumination-and-shadow-filtering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10008298/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10008298/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10008298/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10008298/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10008298/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10008298/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10008298/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10008298/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10008298/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10008298/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10008298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1020</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2038</span> Object Detection based Weighted-Center Surround Difference</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Seung-Hun%20Kim">Seung-Hun Kim</a>, <a href="https://publications.waset.org/search?q=Kye-Hoon%20Jeon"> Kye-Hoon Jeon</a>, <a href="https://publications.waset.org/search?q=Byoung-Doo%20Kang"> Byoung-Doo Kang</a>, <a href="https://publications.waset.org/search?q=I1-Kyun%20Jung"> I1-Kyun Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intelligent traffic surveillance technology is an issue in the field of traffic data analysis. Therefore, we need the technology to detect moving objects in real-time while there are variations in background and natural light. In this paper, we proposed a Weighted-Center Surround Difference method for object detection in outdoor environments. The proposed system detects objects using the saliency map that is obtained by analyzing the weight of each layers of Gaussian pyramid. In order to validate the effectiveness of our system, we implemented the proposed method using a digital signal processor, TMS320DM6437. Experimental results show that blurred noisy around objects was effectively eliminated and the object detection accuracy is improved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Saliency%20Map" title="Saliency Map">Saliency Map</a>, <a href="https://publications.waset.org/search?q=Center%20Surround%20Difference" title=" Center Surround Difference"> Center Surround Difference</a>, <a href="https://publications.waset.org/search?q=Object%20Detection" title=" Object Detection"> Object Detection</a>, <a href="https://publications.waset.org/search?q=Surveillance%20System" title=" Surveillance System"> Surveillance System</a> </p> <a href="https://publications.waset.org/7608/object-detection-based-weighted-center-surround-difference" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7608/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7608/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7608/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7608/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7608/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7608/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7608/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7608/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7608/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7608/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7608.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1736</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2037</span> Detection of Moving Images Using Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=P.%20Latha">P. Latha</a>, <a href="https://publications.waset.org/search?q=L.%20Ganesan"> L. Ganesan</a>, <a href="https://publications.waset.org/search?q=N.%20Ramaraj"> N. Ramaraj</a>, <a href="https://publications.waset.org/search?q=P.%20V.%20Hari%20Venkatesh"> P. V. Hari Venkatesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Motion detection is a basic operation in the selection of significant segments of the video signals. For an effective Human Computer Intelligent Interaction, the computer needs to recognize the motion and track the moving object. Here an efficient neural network system is proposed for motion detection from the static background. This method mainly consists of four parts like Frame Separation, Rough Motion Detection, Network Formation and Training, Object Tracking. This paper can be used to verify real time detections in such a way that it can be used in defense applications, bio-medical applications and robotics. This can also be used for obtaining detection information related to the size, location and direction of motion of moving objects for assessment purposes. The time taken for video tracking by this Neural Network is only few seconds.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Frame%20separation" title="Frame separation">Frame separation</a>, <a href="https://publications.waset.org/search?q=Correlation%20Network" title=" Correlation Network"> Correlation Network</a>, <a href="https://publications.waset.org/search?q=Neural%20network%20training" title=" Neural network training"> Neural network training</a>, <a href="https://publications.waset.org/search?q=Radial%20Basis%20Function" title=" Radial Basis Function"> Radial Basis Function</a>, <a href="https://publications.waset.org/search?q=object%20tracking" title=" object tracking"> object tracking</a>, <a href="https://publications.waset.org/search?q=Motion%20Detection." title=" Motion Detection."> Motion Detection.</a> </p> <a href="https://publications.waset.org/14518/detection-of-moving-images-using-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14518/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14518/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14518/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14518/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14518/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14518/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14518/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14518/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14518/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14518/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14518.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3150</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2036</span> Challenges in Video Based Object Detection in Maritime Scenario Using Computer Vision</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Dilip%20K.%20Prasad">Dilip K. Prasad</a>, <a href="https://publications.waset.org/search?q=C.%20Krishna%20Prasath"> C. Krishna Prasath</a>, <a href="https://publications.waset.org/search?q=Deepu%20Rajan"> Deepu Rajan</a>, <a href="https://publications.waset.org/search?q=Lily%20Rachmawati"> Lily Rachmawati</a>, <a href="https://publications.waset.org/search?q=Eshan%20Rajabally"> Eshan Rajabally</a>, <a href="https://publications.waset.org/search?q=Chai%20Quek"> Chai Quek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses the technical challenges in maritime image processing and machine vision problems for video streams generated by cameras. Even well documented problems of horizon detection and registration of frames in a video are very challenging in maritime scenarios. More advanced problems of background subtraction and object detection in video streams are very challenging. Challenges arising from the dynamic nature of the background, unavailability of static cues, presence of small objects at distant backgrounds, illumination effects, all contribute to the challenges as discussed here. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Autonomous%20maritime%20vehicle" title="Autonomous maritime vehicle">Autonomous maritime vehicle</a>, <a href="https://publications.waset.org/search?q=object%20detection" title=" object detection"> object detection</a>, <a href="https://publications.waset.org/search?q=situation%20awareness" title=" situation awareness"> situation awareness</a>, <a href="https://publications.waset.org/search?q=tracking." title=" tracking."> tracking.</a> </p> <a href="https://publications.waset.org/10006110/challenges-in-video-based-object-detection-in-maritime-scenario-using-computer-vision" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10006110/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10006110/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10006110/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10006110/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10006110/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10006110/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10006110/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10006110/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10006110/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10006110/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10006110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1329</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2035</span> Tagged Grid Matching Based Object Detection in Wavelet Neural Network </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=R.%20Arulmurugan">R. Arulmurugan</a>, <a href="https://publications.waset.org/search?q=P.%20Sengottuvelan"> P. Sengottuvelan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Object detection using Wavelet Neural Network (WNN) plays a major contribution in the analysis of image processing. Existing cluster-based algorithm for co-saliency object detection performs the work on the multiple images. The co-saliency detection results are not desirable to handle the multi scale image objects in WNN. Existing Super Resolution (SR) scheme for landmark images identifies the corresponding regions in the images and reduces the mismatching rate. But the Structure-aware matching criterion is not paying attention to detect multiple regions in SR images and fail to enhance the result percentage of object detection. To detect the objects in the high-resolution remote sensing images, Tagged Grid Matching (TGM) technique is proposed in this paper. TGM technique consists of the three main components such as object determination, object searching and object verification in WNN. Initially, object determination in TGM technique specifies the position and size of objects in the current image. The specification of the position and size using the hierarchical grid easily determines the multiple objects. Second component, object searching in TGM technique is carried out using the cross-point searching. The cross out searching point of the objects is selected to faster the searching process and reduces the detection time. Final component performs the object verification process in TGM technique for identifying (i.e.,) detecting the dissimilarity of objects in the current frame. The verification process matches the search result grid points with the stored grid points to easily detect the objects using the Gabor wavelet Transform. The implementation of TGM technique offers a significant improvement on the multi-object detection rate, processing time, precision factor and detection accuracy level.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Object%20Detection" title="Object Detection">Object Detection</a>, <a href="https://publications.waset.org/search?q=Cross-point%20Searching" title=" Cross-point Searching"> Cross-point Searching</a>, <a href="https://publications.waset.org/search?q=Wavelet%20Neural%20Network" title=" Wavelet Neural Network"> Wavelet Neural Network</a>, <a href="https://publications.waset.org/search?q=Object%20Determination" title=" Object Determination"> Object Determination</a>, <a href="https://publications.waset.org/search?q=Gabor%20Wavelet%20Transform" title=" Gabor Wavelet Transform"> Gabor Wavelet Transform</a>, <a href="https://publications.waset.org/search?q=Tagged%20Grid%20Matching." title=" Tagged Grid Matching. "> Tagged Grid Matching. </a> </p> <a href="https://publications.waset.org/9998888/tagged-grid-matching-based-object-detection-in-wavelet-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998888/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998888/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998888/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998888/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998888/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998888/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998888/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998888/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998888/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998888/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998888.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1965</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2034</span> Moving Area Filter to Detect Object in Video Sequence from Moving Platform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sallama%20Athab">Sallama Athab</a>, <a href="https://publications.waset.org/search?q=Hala%20Bahjat"> Hala Bahjat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Detecting object in video sequence is a challenging mission for identifying, tracking moving objects. Background removal considered as a basic step in detected moving objects tasks. Dual static cameras placed in front and rear moving platform gathered information which is used to detect objects. Background change regarding with speed and direction moving platform, so moving objects distinguished become complicated. In this paper, we propose framework allows detection moving object with variety of speed and direction dynamically. Object detection technique built on two levels the first level apply background removal and edge detection to generate moving areas. The second level apply Moving Areas Filter (MAF) then calculate Correlation Score (CS) for adjusted moving area. Merging moving areas with closer CS and marked as moving object. Experiment result is prepared on real scene acquired by dual static cameras without overlap in sense. Results showing accuracy in detecting objects compared with optical flow and Mixture Module Gaussian (MMG), Accurate ratio produced to measure accurate detection moving object.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Background%20Removal" title="Background Removal">Background Removal</a>, <a href="https://publications.waset.org/search?q=Correlation" title=" Correlation"> Correlation</a>, <a href="https://publications.waset.org/search?q=Mixture%20Module%0D%0AGaussian" title=" Mixture Module Gaussian"> Mixture Module Gaussian</a>, <a href="https://publications.waset.org/search?q=Moving%20Platform" title=" Moving Platform"> Moving Platform</a>, <a href="https://publications.waset.org/search?q=Object%20Detection." title=" Object Detection."> Object Detection.</a> </p> <a href="https://publications.waset.org/16625/moving-area-filter-to-detect-object-in-video-sequence-from-moving-platform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16625/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16625/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16625/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16625/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16625/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16625/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16625/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16625/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16625/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16625/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2120</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2033</span> Object Recognition on Horse Riding Simulator System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kyekyung%20Kim">Kyekyung Kim</a>, <a href="https://publications.waset.org/search?q=Sangseung%20Kang"> Sangseung Kang</a>, <a href="https://publications.waset.org/search?q=Suyoung%20Chi"> Suyoung Chi</a>, <a href="https://publications.waset.org/search?q=Jaehong%20Kim"> Jaehong Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In recent years, IT convergence technology has been developed to get creative solution by combining robotics or sports science technology. Object detection and recognition have mainly applied to sports science field that has processed by recognizing face and by tracking human body. But object detection and recognition using vision sensor is challenge task in real world because of illumination. In this paper, object detection and recognition using vision sensor applied to sports simulator has been introduced. Face recognition has been processed to identify user and to update automatically a person athletic recording. Human body has tracked to offer a most accurate way of riding horse simulator. Combined image processing has been processed to reduce illumination adverse affect because illumination has caused low performance in detection and recognition in real world application filed. Face has recognized using standard face graph and human body has tracked using pose model, which has composed of feature nodes generated diverse face and pose images. Face recognition using Gabor wavelet and pose recognition using pose graph is robust to real application. We have simulated using ETRI database, which has constructed on horse riding simulator.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Horse%20riding%20simulator" title="Horse riding simulator">Horse riding simulator</a>, <a href="https://publications.waset.org/search?q=Object%20detection" title=" Object detection"> Object detection</a>, <a href="https://publications.waset.org/search?q=Object%20recognition" title=" Object recognition"> Object recognition</a>, <a href="https://publications.waset.org/search?q=User%20identification" title=" User identification"> User identification</a>, <a href="https://publications.waset.org/search?q=Pose%20recognition." title=" Pose recognition."> Pose recognition.</a> </p> <a href="https://publications.waset.org/7473/object-recognition-on-horse-riding-simulator-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7473/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7473/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7473/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7473/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7473/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7473/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7473/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7473/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7473/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7473/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2089</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2032</span> Roof Material Detection Based on Object-Based Approach Using WorldView-2 Satellite Imagery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ebrahim%20Taherzadeh">Ebrahim Taherzadeh</a>, <a href="https://publications.waset.org/search?q=Helmi%20Z.%20M.%20Shafri"> Helmi Z. M. Shafri</a>, <a href="https://publications.waset.org/search?q=Kaveh%20Shahi"> Kaveh Shahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>One of the most important tasks in urban remote sensing is the detection of impervious surfaces (IS), such as roofs and roads. However, detection of IS in heterogeneous areas still remains one of the most challenging tasks. In this study, detection of concrete roof using an object-based approach was proposed. A new rule-based classification was developed to detect concrete roof tile. This proposed rule-based classification was applied to WorldView-2 image and results showed that the proposed rule has good potential to predict concrete roof material from WorldView-2 images, with 85% accuracy.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Urban%20remote%20sensing" title="Urban remote sensing">Urban remote sensing</a>, <a href="https://publications.waset.org/search?q=impervious%20surface" title=" impervious surface"> impervious surface</a>, <a href="https://publications.waset.org/search?q=Object-%0D%0ABased" title=" Object- Based"> Object- Based</a>, <a href="https://publications.waset.org/search?q=Roof%20Material" title=" Roof Material"> Roof Material</a>, <a href="https://publications.waset.org/search?q=Concrete%20tile" title=" Concrete tile"> Concrete tile</a>, <a href="https://publications.waset.org/search?q=WorldView-2." title=" WorldView-2."> WorldView-2.</a> </p> <a href="https://publications.waset.org/9999539/roof-material-detection-based-on-object-based-approach-using-worldview-2-satellite-imagery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999539/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999539/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999539/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999539/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999539/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999539/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999539/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999539/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999539/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999539/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999539.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3793</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2031</span> Fast 3D Collision Detection Algorithm using 2D Intersection Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Taehyun%20Yoon">Taehyun Yoon</a>, <a href="https://publications.waset.org/search?q=Keechul%20Jung"> Keechul Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>There are many researches to detect collision between real object and virtual object in 3D space. In general, these techniques are need to huge computing power. So, many research and study are constructed by using cloud computing, network computing, and distribute computing. As a reason of these, this paper proposed a novel fast 3D collision detection algorithm between real and virtual object using 2D intersection area. Proposed algorithm uses 4 multiple cameras and coarse-and-fine method to improve accuracy and speed performance of collision detection. In the coarse step, this system examines the intersection area between real and virtual object silhouettes from all camera views. The result of this step is the index of virtual sensors which has a possibility of collision in 3D space. To decide collision accurately, at the fine step, this system examines the collision detection in 3D space by using the visual hull algorithm. Performance of the algorithm is verified by comparing with existing algorithm. We believe proposed algorithm help many other research, study and application fields such as HCI, augmented reality, intelligent space, and so on.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Collision%20Detection" title="Collision Detection">Collision Detection</a>, <a href="https://publications.waset.org/search?q=Computer%20Vision" title=" Computer Vision"> Computer Vision</a>, <a href="https://publications.waset.org/search?q=Human%20Computer%20Interaction" title=" Human Computer Interaction"> Human Computer Interaction</a>, <a href="https://publications.waset.org/search?q=Visual%20Hull" title=" Visual Hull"> Visual Hull</a> </p> <a href="https://publications.waset.org/4503/fast-3d-collision-detection-algorithm-using-2d-intersection-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4503/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4503/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4503/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4503/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4503/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4503/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4503/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4503/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4503/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4503/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4503.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2406</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2030</span> Optical Flow Based Moving Object Detection and Tracking for Traffic Surveillance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sepehr%20Aslani">Sepehr Aslani</a>, <a href="https://publications.waset.org/search?q=Homayoun%20Mahdavi-Nasab"> Homayoun Mahdavi-Nasab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Automated motion detection and tracking is a challenging task in traffic surveillance. In this paper, a system is developed to gather useful information from stationary cameras for detecting moving objects in digital videos. The moving detection and tracking system is developed based on optical flow estimation together with application and combination of various relevant computer vision and image processing techniques to enhance the process. To remove noises, median filter is used and the unwanted objects are removed by applying thresholding algorithms in morphological operations. Also the object type restrictions are set using blob analysis. The results show that the proposed system successfully detects and tracks moving objects in urban videos.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Optical%20flow%20estimation" title="Optical flow estimation">Optical flow estimation</a>, <a href="https://publications.waset.org/search?q=moving%20object%20detection" title=" moving object detection"> moving object detection</a>, <a href="https://publications.waset.org/search?q=tracking" title=" tracking"> tracking</a>, <a href="https://publications.waset.org/search?q=morphological%20operation" title=" morphological operation"> morphological operation</a>, <a href="https://publications.waset.org/search?q=blob%20analysis." title=" blob analysis."> blob analysis.</a> </p> <a href="https://publications.waset.org/17157/optical-flow-based-moving-object-detection-and-tracking-for-traffic-surveillance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/17157/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/17157/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/17157/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/17157/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/17157/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/17157/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/17157/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/17157/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/17157/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/17157/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/17157.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">10156</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2029</span> RV-YOLOX: Object Detection on Inland Waterways Based on Optimized YOLOX through Fusion of Vision and 3+1D Millimeter Wave Radar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Zixian%20Zhang">Zixian Zhang</a>, <a href="https://publications.waset.org/search?q=Shanliang%20Yao"> Shanliang Yao</a>, <a href="https://publications.waset.org/search?q=Zile%20Huang"> Zile Huang</a>, <a href="https://publications.waset.org/search?q=Zhaodong%20Wu"> Zhaodong Wu</a>, <a href="https://publications.waset.org/search?q=Xiaohui%20Zhu"> Xiaohui Zhu</a>, <a href="https://publications.waset.org/search?q=Yong%20Yue"> Yong Yue</a>, <a href="https://publications.waset.org/search?q=Jieming%20Ma"> Jieming Ma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Unmanned Surface Vehicles (USVs) hold significant value for their capacity to undertake hazardous and labor-intensive operations over aquatic environments. Object detection tasks are significant in these applications. Nonetheless, the efficacy of USVs in object detection is impeded by several intrinsic challenges, including the intricate dispersal of obstacles, reflections emanating from coastal structures, and the presence of fog over water surfaces, among others. To address these problems, this paper provides a fusion method for USVs to effectively detect objects in the inland surface environment, utilizing vision sensors and 3+1D Millimeter-wave radar. The MMW radar is a complementary tool to vision sensors, offering reliable environmental data. This approach involves the conversion of the radar’s 3D point cloud into a 2D radar pseudo-image, thereby standardizing the format for radar and vision data by leveraging a point transformer. Furthermore, this paper proposes the development of a multi-source object detection network, named RV-YOLOX, which leverages radar-vision integration specifically tailored for inland waterway environments. The performance is evaluated on our self-recording waterways dataset. Compared with the YOLOX network, our fusion network significantly improves detection accuracy, especially for objects with bad light conditions.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Inland%20waterways" title="Inland waterways">Inland waterways</a>, <a href="https://publications.waset.org/search?q=object%20detection" title=" object detection"> object detection</a>, <a href="https://publications.waset.org/search?q=YOLO" title=" YOLO"> YOLO</a>, <a href="https://publications.waset.org/search?q=sensor%0D%0Afusion" title=" sensor fusion"> sensor fusion</a>, <a href="https://publications.waset.org/search?q=self-attention" title=" self-attention"> self-attention</a>, <a href="https://publications.waset.org/search?q=deep%20learning." title=" deep learning."> deep learning.</a> </p> <a href="https://publications.waset.org/10013553/rv-yolox-object-detection-on-inland-waterways-based-on-optimized-yolox-through-fusion-of-vision-and-31d-millimeter-wave-radar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013553/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013553/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013553/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013553/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013553/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013553/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013553/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013553/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013553/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013553/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013553.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2028</span> Similarity Detection in Collaborative Development of Object-Oriented Formal Specifications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Fathi%20Taibi">Fathi Taibi</a>, <a href="https://publications.waset.org/search?q=Fouad%20Mohammed%20Abbou"> Fouad Mohammed Abbou</a>, <a href="https://publications.waset.org/search?q=Md.%20Jahangir%20Alam"> Md. Jahangir Alam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The complexity of today-s software systems makes collaborative development necessary to accomplish tasks. Frameworks are necessary to allow developers perform their tasks independently yet collaboratively. Similarity detection is one of the major issues to consider when developing such frameworks. It allows developers to mine existing repositories when developing their own views of a software artifact, and it is necessary for identifying the correspondences between the views to allow merging them and checking their consistency. Due to the importance of the requirements specification stage in software development, this paper proposes a framework for collaborative development of Object- Oriented formal specifications along with a similarity detection approach to support the creation, merging and consistency checking of specifications. The paper also explores the impact of using additional concepts on improving the matching results. Finally, the proposed approach is empirically evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Collaborative%20Development" title="Collaborative Development">Collaborative Development</a>, <a href="https://publications.waset.org/search?q=Formal%20methods" title=" Formal methods"> Formal methods</a>, <a href="https://publications.waset.org/search?q=Object-Oriented" title=" Object-Oriented"> Object-Oriented</a>, <a href="https://publications.waset.org/search?q=Similarity%20detection" title=" Similarity detection"> Similarity detection</a> </p> <a href="https://publications.waset.org/1991/similarity-detection-in-collaborative-development-of-object-oriented-formal-specifications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1991/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1991/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1991/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1991/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1991/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1991/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1991/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1991/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1991/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1991/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1991.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1469</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2027</span> Object Detection Based on Plane Segmentation and Features Matching for a Service Robot</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ant%C3%B3nio%20J.%20R.%20Neves">António J. R. Neves</a>, <a href="https://publications.waset.org/search?q=Rui%20Garcia"> Rui Garcia</a>, <a href="https://publications.waset.org/search?q=Paulo%20Dias"> Paulo Dias</a>, <a href="https://publications.waset.org/search?q=Alina%20Trifan"> Alina Trifan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the aging of the world population and the continuous growth in technology, service robots are more and more explored nowadays as alternatives to healthcare givers or personal assistants for the elderly or disabled people. Any service robot should be capable of interacting with the human companion, receive commands, navigate through the environment, either known or unknown, and recognize objects. This paper proposes an approach for object recognition based on the use of depth information and color images for a service robot. We present a study on two of the most used methods for object detection, where 3D data is used to detect the position of objects to classify that are found on horizontal surfaces. Since most of the objects of interest accessible for service robots are on these surfaces, the proposed 3D segmentation reduces the processing time and simplifies the scene for object recognition. The first approach for object recognition is based on color histograms, while the second is based on the use of the SIFT and SURF feature descriptors. We present comparative experimental results obtained with a real service robot. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Service%20Robot" title="Service Robot">Service Robot</a>, <a href="https://publications.waset.org/search?q=Object%20Recognition" title=" Object Recognition"> Object Recognition</a>, <a href="https://publications.waset.org/search?q=3D%20Sensors" title=" 3D Sensors"> 3D Sensors</a>, <a href="https://publications.waset.org/search?q=Plane%0D%0ASegmentation." title=" Plane Segmentation."> Plane Segmentation.</a> </p> <a href="https://publications.waset.org/10004286/object-detection-based-on-plane-segmentation-and-features-matching-for-a-service-robot" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004286/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004286/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004286/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004286/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004286/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004286/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004286/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004286/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004286/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004286/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004286.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1674</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2026</span> The Canonical Object and Other Objects in Arabic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Safiah%20A.%20Madkhali">Safiah A. Madkhali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The grammatical relation object has not attracted the same attention in the literature as subject has. Where there is a clearly monotransitive verb such as kick, the criteria for identifying the grammatical relation may converge. However, the term object is also used to refer to phenomena that do not subsume all, or even most, of the recognized properties of the canonical object. Instances of such phenomena include non-canonical objects such as the ones in the so-called double-object construction i.e., the indirect object and the direct object as in (He bought his dog a new collar). In this paper, it is demonstrated how criteria of identifying the grammatical relation object that are found in the theoretical and typological literature can be applied to Arabic. Also, further language-specific criteria are here derived from the regularities of the canonical object in the language. The criteria established in this way are then applied to the non-canonical objects to demonstrate how far they conform to, or diverge from, the canonical object. Contrary to the claim that the direct object is more similar to the canonical object than is the indirect object, it was found that it is, in fact, the indirect object rather than the direct object that shares most of the aspects of the canonical object in monotransitive clauses. </p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Canonical%20objects" title="Canonical objects">Canonical objects</a>, <a href="https://publications.waset.org/search?q=double-object%20constructions" title=" double-object constructions"> double-object constructions</a>, <a href="https://publications.waset.org/search?q=direct%20object" title=" direct object"> direct object</a>, <a href="https://publications.waset.org/search?q=indirect%20object" title=" indirect object"> indirect object</a>, <a href="https://publications.waset.org/search?q=non-canonical%20objects." title=" non-canonical objects."> non-canonical objects.</a> </p> <a href="https://publications.waset.org/10012427/the-canonical-object-and-other-objects-in-arabic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012427/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012427/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012427/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012427/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012427/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012427/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012427/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012427/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012427/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012427/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">625</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2025</span> Fast Object/Face Detection Using Neural Networks and Fast Fourier Transform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hazem%20M.%20El-Bakry">Hazem M. El-Bakry</a>, <a href="https://publications.waset.org/search?q=Qiangfu%20Zhao"> Qiangfu Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, fast neural networks for object/face detection were presented in [1-3]. The speed up factor of these networks relies on performing cross correlation in the frequency domain between the input image and the weights of the hidden layer. But, these equations given in [1-3] for conventional and fast neural networks are not valid for many reasons presented here. In this paper, correct equations for cross correlation in the spatial and frequency domains are presented. Furthermore, correct formulas for the number of computation steps required by conventional and fast neural networks given in [1-3] are introduced. A new formula for the speed up ratio is established. Also, corrections for the equations of fast multi scale object/face detection are given. Moreover, commutative cross correlation is achieved. Simulation results show that sub-image detection based on cross correlation in the frequency domain is faster than classical neural networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Conventional%20Neural%20Networks" title="Conventional Neural Networks">Conventional Neural Networks</a>, <a href="https://publications.waset.org/search?q=Fast%20Neural%0ANetworks" title=" Fast Neural Networks"> Fast Neural Networks</a>, <a href="https://publications.waset.org/search?q=Cross%20Correlation%20in%20the%20Frequency%20Domain." title=" Cross Correlation in the Frequency Domain."> Cross Correlation in the Frequency Domain.</a> </p> <a href="https://publications.waset.org/3384/fast-objectface-detection-using-neural-networks-and-fast-fourier-transform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3384/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3384/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3384/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3384/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3384/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3384/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3384/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3384/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3384/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3384/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2480</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2024</span> Medical Image Edge Detection Based on Neuro-Fuzzy Approach </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=J.%20Mehena">J. Mehena</a>, <a href="https://publications.waset.org/search?q=M.%20C.%20Adhikary"> M. C. Adhikary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Edge detection is one of the most important tasks in image processing. Medical image edge detection plays an important role in segmentation and object recognition of the human organs. It refers to the process of identifying and locating sharp discontinuities in medical images. In this paper, a neuro-fuzzy based approach is introduced to detect the edges for noisy medical images. This approach uses desired number of neuro-fuzzy subdetectors with a postprocessor for detecting the edges of medical images. The internal parameters of the approach are optimized by training pattern using artificial images. The performance of the approach is evaluated on different medical images and compared with popular edge detection algorithm. From the experimental results, it is clear that this approach has better performance than those of other competing edge detection algorithms for noisy medical images. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Edge%20detection" title="Edge detection">Edge detection</a>, <a href="https://publications.waset.org/search?q=neuro-fuzzy" title=" neuro-fuzzy"> neuro-fuzzy</a>, <a href="https://publications.waset.org/search?q=image%20segmentation" title=" image segmentation"> image segmentation</a>, <a href="https://publications.waset.org/search?q=artificial%20image" title=" artificial image"> artificial image</a>, <a href="https://publications.waset.org/search?q=object%20recognition." title=" object recognition."> object recognition.</a> </p> <a href="https://publications.waset.org/10004525/medical-image-edge-detection-based-on-neuro-fuzzy-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004525/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004525/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004525/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004525/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004525/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004525/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004525/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004525/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004525/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004525/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004525.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1283</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2023</span> Moving Object Detection Using Histogram of Uniformly Oriented Gradient</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Wei-Jong%20Yang">Wei-Jong Yang</a>, <a href="https://publications.waset.org/search?q=Yu-Siang%20Su"> Yu-Siang Su</a>, <a href="https://publications.waset.org/search?q=Pau-Choo%20Chung"> Pau-Choo Chung</a>, <a href="https://publications.waset.org/search?q=Jar-Ferr%20Yang"> Jar-Ferr Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Moving object detection (MOD) is an important issue in advanced driver assistance systems (ADAS). There are two important moving objects, pedestrians and scooters in ADAS. In real-world systems, there exist two important challenges for MOD, including the computational complexity and the detection accuracy. The histogram of oriented gradient (HOG) features can easily detect the edge of object without invariance to changes in illumination and shadowing. However, to reduce the execution time for real-time systems, the image size should be down sampled which would lead the outlier influence to increase. For this reason, we propose the histogram of uniformly-oriented gradient (HUG) features to get better accurate description of the contour of human body. In the testing phase, the support vector machine (SVM) with linear kernel function is involved. Experimental results show the correctness and effectiveness of the proposed method. With SVM classifiers, the real testing results show the proposed HUG features achieve better than classification performance than the HOG ones.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Moving%20object%20detection" title="Moving object detection">Moving object detection</a>, <a href="https://publications.waset.org/search?q=histogram%20of%20oriented%20gradient%20histogram%20of%20oriented%20gradient" title=" histogram of oriented gradient histogram of oriented gradient"> histogram of oriented gradient histogram of oriented gradient</a>, <a href="https://publications.waset.org/search?q=histogram%20of%20uniformly-oriented%20gradient" title=" histogram of uniformly-oriented gradient"> histogram of uniformly-oriented gradient</a>, <a href="https://publications.waset.org/search?q=linear%20support%20vector%20machine." title=" linear support vector machine. "> linear support vector machine. </a> </p> <a href="https://publications.waset.org/10007186/moving-object-detection-using-histogram-of-uniformly-oriented-gradient" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007186/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007186/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007186/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007186/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007186/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007186/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007186/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007186/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007186/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007186/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1233</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2022</span> Loop Back Connected Component Labeling Algorithm and Its Implementation in Detecting Face</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Rakhmadi">A. Rakhmadi</a>, <a href="https://publications.waset.org/search?q=M.%20S.%20M.%20Rahim"> M. S. M. Rahim</a>, <a href="https://publications.waset.org/search?q=A.%20Bade"> A. Bade</a>, <a href="https://publications.waset.org/search?q=H.%20Haron"> H. Haron</a>, <a href="https://publications.waset.org/search?q=I.%20M.%20Amin"> I. M. Amin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a Loop Back Algorithm for component connected labeling for detecting objects in a digital image is presented. The approach is using loop back connected component labeling algorithm that helps the system to distinguish the object detected according to their label. Deferent than whole window scanning technique, this technique reduces the searching time for locating the object by focusing on the suspected object based on certain features defined. In this study, the approach was also implemented for a face detection system. Face detection system is becoming interesting research since there are many devices or systems that require detecting the face for certain purposes. The input can be from still image or videos, therefore the sub process of this system has to be simple, efficient and accurate to give a good result. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Image%20processing" title="Image processing">Image processing</a>, <a href="https://publications.waset.org/search?q=connected%20components%20labeling" title=" connected components labeling"> connected components labeling</a>, <a href="https://publications.waset.org/search?q=face%20detection." title="face detection.">face detection.</a> </p> <a href="https://publications.waset.org/9420/loop-back-connected-component-labeling-algorithm-and-its-implementation-in-detecting-face" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9420/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9420/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9420/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9420/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9420/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9420/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9420/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9420/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9420/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9420/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2300</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2021</span> Dynamic Background Updating for Lightweight Moving Object Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kelemewerk%20Destalem">Kelemewerk Destalem</a>, <a href="https://publications.waset.org/search?q=Jungjae%20Cho"> Jungjae Cho</a>, <a href="https://publications.waset.org/search?q=Jaeseong%20Lee"> Jaeseong Lee</a>, <a href="https://publications.waset.org/search?q=Ju%20H.%20Park"> Ju H. Park</a>, <a href="https://publications.waset.org/search?q=Joonhyuk%20Yoo"> Joonhyuk Yoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background subtraction and temporal difference are often used for moving object detection in video. Both approaches are computationally simple and easy to be deployed in real-time image processing. However, while the background subtraction is highly sensitive to dynamic background and illumination changes, the temporal difference approach is poor at extracting relevant pixels of the moving object and at detecting the stopped or slowly moving objects in the scene. In this paper, we propose a simple moving object detection scheme based on adaptive background subtraction and temporal difference exploiting dynamic background updates. The proposed technique consists of histogram equalization, a linear combination of background and temporal difference, followed by the novel frame-based and pixel-based background updating techniques. Finally, morphological operations are applied to the output images. Experimental results show that the proposed algorithm can solve the drawbacks of both background subtraction and temporal difference methods and can provide better performance than that of each method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Background%20subtraction" title="Background subtraction">Background subtraction</a>, <a href="https://publications.waset.org/search?q=background%20updating" title=" background updating"> background updating</a>, <a href="https://publications.waset.org/search?q=real%0D%0Atime%20and%20lightweight%20algorithm" title=" real time and lightweight algorithm"> real time and lightweight algorithm</a>, <a href="https://publications.waset.org/search?q=temporal%20difference." title=" temporal difference."> temporal difference.</a> </p> <a href="https://publications.waset.org/10002000/dynamic-background-updating-for-lightweight-moving-object-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002000/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002000/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002000/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002000/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002000/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002000/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002000/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002000/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002000/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002000/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2565</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2020</span> One Dimensional Object Segmentation and Statistical Features of an Image for Texture Image Recognition System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Nang%20Thwe%20Thwe%20Oo">Nang Thwe Thwe Oo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Traditional object segmentation methods are time consuming and computationally difficult. In this paper, onedimensional object detection along the secant lines is applied. Statistical features of texture images are computed for the recognition process. Example matrices of these features and formulae for calculation of similarities between two feature patterns are expressed. And experiments are also carried out using these features.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=1-D%20object%20segmentation" title="1-D object segmentation">1-D object segmentation</a>, <a href="https://publications.waset.org/search?q=secant%20lines" title=" secant lines"> secant lines</a>, <a href="https://publications.waset.org/search?q=objectoccurrence%28frequency%29%20matrix" title=" objectoccurrence(frequency) matrix"> objectoccurrence(frequency) matrix</a>, <a href="https://publications.waset.org/search?q=contiguity%20matrix" title=" contiguity matrix"> contiguity matrix</a>, <a href="https://publications.waset.org/search?q=statistical%20features." title=" statistical features."> statistical features.</a> </p> <a href="https://publications.waset.org/1501/one-dimensional-object-segmentation-and-statistical-features-of-an-image-for-texture-image-recognition-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1501/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1501/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1501/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1501/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1501/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1501/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1501/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1501/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1501/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1501/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1501.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1501</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2019</span> A Fast Object Detection Method with Rotation Invariant Features</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Zilong%20He">Zilong He</a>, <a href="https://publications.waset.org/search?q=Yuesheng%20Zhu"> Yuesheng Zhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Based on the combined shape feature and texture feature, a fast object detection method with rotation invariant features is proposed in this paper. A quick template matching scheme based online learning designed for online applications is also introduced in this paper. The experimental results have shown that the proposed approach has the features of lower computation complexity and higher detection rate, while keeping almost the same performance compared to the HOG-based method, and can be more suitable for run time applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=gradient%20feature" title="gradient feature">gradient feature</a>, <a href="https://publications.waset.org/search?q=online%20learning" title=" online learning"> online learning</a>, <a href="https://publications.waset.org/search?q=rotationinvariance" title=" rotationinvariance"> rotationinvariance</a>, <a href="https://publications.waset.org/search?q=template%20feature" title=" template feature"> template feature</a> </p> <a href="https://publications.waset.org/13938/a-fast-object-detection-method-with-rotation-invariant-features" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13938/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13938/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13938/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13938/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13938/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13938/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13938/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13938/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13938/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13938/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2477</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2018</span> Efficient Boosting-Based Active Learning for Specific Object Detection Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Thuy%20Thi%20Nguyen">Thuy Thi Nguyen</a>, <a href="https://publications.waset.org/search?q=Nguyen%20Dang%20Binh"> Nguyen Dang Binh</a>, <a href="https://publications.waset.org/search?q=Horst%20Bischof"> Horst Bischof</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we present a novel active learning approach for learning a visual object detection system. Our system is composed of an active learning mechanism as wrapper around a sub-algorithm which implement an online boosting-based learning object detector. In the core is a combination of a bootstrap procedure and a semi automatic learning process based on the online boosting procedure. The idea is to exploit the availability of classifier during learning to automatically label training samples and increasingly improves the classifier. This addresses the issue of reducing labeling effort meanwhile obtain better performance. In addition, we propose a verification process for further improvement of the classifier. The idea is to allow re-update on seen data during learning for stabilizing the detector. The main contribution of this empirical study is a demonstration that active learning based on an online boosting approach trained in this manner can achieve results comparable or even outperform a framework trained in conventional manner using much more labeling effort. Empirical experiments on challenging data set for specific object deteciton problems show the effectiveness of our approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Computer%20vision" title="Computer vision">Computer vision</a>, <a href="https://publications.waset.org/search?q=object%20detection" title=" object detection"> object detection</a>, <a href="https://publications.waset.org/search?q=online%20boosting" title=" online boosting"> online boosting</a>, <a href="https://publications.waset.org/search?q=active%20learning" title=" active learning"> active learning</a>, <a href="https://publications.waset.org/search?q=labeling%20complexity." title=" labeling complexity."> labeling complexity.</a> </p> <a href="https://publications.waset.org/9569/efficient-boosting-based-active-learning-for-specific-object-detection-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9569/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9569/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9569/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9569/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9569/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9569/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9569/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9569/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9569/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9569/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1785</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2017</span> Objects Extraction by Cooperating Optical Flow, Edge Detection and Region Growing Procedures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=C.%20Lodato">C. Lodato</a>, <a href="https://publications.waset.org/search?q=S.%20Lopes"> S. Lopes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The image segmentation method described in this paper has been developed as a pre-processing stage to be used in methodologies and tools for video/image indexing and retrieval by content. This method solves the problem of whole objects extraction from background and it produces images of single complete objects from videos or photos. The extracted images are used for calculating the object visual features necessary for both indexing and retrieval processes. The segmentation algorithm is based on the cooperation among an optical flow evaluation method, edge detection and region growing procedures. The optical flow estimator belongs to the class of differential methods. It permits to detect motions ranging from a fraction of a pixel to a few pixels per frame, achieving good results in presence of noise without the need of a filtering pre-processing stage and includes a specialised model for moving object detection. The first task of the presented method exploits the cues from motion analysis for moving areas detection. Objects and background are then refined using respectively edge detection and seeded region growing procedures. All the tasks are iteratively performed until objects and background are completely resolved. The method has been applied to a variety of indoor and outdoor scenes where objects of different type and shape are represented on variously textured background. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Image%20Segmentation" title="Image Segmentation">Image Segmentation</a>, <a href="https://publications.waset.org/search?q=Motion%20Detection" title=" Motion Detection"> Motion Detection</a>, <a href="https://publications.waset.org/search?q=Object%0AExtraction" title=" Object Extraction"> Object Extraction</a>, <a href="https://publications.waset.org/search?q=Optical%20Flow" title=" Optical Flow"> Optical Flow</a> </p> <a href="https://publications.waset.org/15382/objects-extraction-by-cooperating-optical-flow-edge-detection-and-region-growing-procedures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15382/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15382/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15382/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15382/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15382/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15382/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15382/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15382/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15382/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15382/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15382.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1756</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2016</span> Object Localization in Medical Images Using Genetic Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=George%20Karkavitsas">George Karkavitsas</a>, <a href="https://publications.waset.org/search?q=Maria%20Rangoussi"> Maria Rangoussi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>We present a genetic algorithm application to the problem of object registration (i.e., object detection, localization and recognition) in a class of medical images containing various types of blood cells. The genetic algorithm approach taken here is seen to be most appropriate for this type of image, due to the characteristics of the objects. Successful cell registration results on real life microscope images of blood cells show the potential of the proposed approach.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Genetic%20algorithms" title="Genetic algorithms">Genetic algorithms</a>, <a href="https://publications.waset.org/search?q=object%20registration" title=" object registration"> object registration</a>, <a href="https://publications.waset.org/search?q=pattern%20recognition" title=" pattern recognition"> pattern recognition</a>, <a href="https://publications.waset.org/search?q=blood%20cell%20microscope%20images." title=" blood cell microscope images."> blood cell microscope images.</a> </p> <a href="https://publications.waset.org/6138/object-localization-in-medical-images-using-genetic-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6138/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6138/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6138/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6138/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6138/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6138/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6138/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6138/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6138/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6138/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1969</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2015</span> Motion Detection Techniques Using Optical Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20A.%20Shafie">A. A. Shafie</a>, <a href="https://publications.waset.org/search?q=Fadhlan%20Hafiz"> Fadhlan Hafiz</a>, <a href="https://publications.waset.org/search?q=M.%20H.%20Ali"> M. H. Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Motion detection is very important in image processing. One way of detecting motion is using optical flow. Optical flow cannot be computed locally, since only one independent measurement is available from the image sequence at a point, while the flow velocity has two components. A second constraint is needed. The method used for finding the optical flow in this project is assuming that the apparent velocity of the brightness pattern varies smoothly almost everywhere in the image. This technique is later used in developing software for motion detection which has the capability to carry out four types of motion detection. The motion detection software presented in this project also can highlight motion region, count motion level as well as counting object numbers. Many objects such as vehicles and human from video streams can be recognized by applying optical flow technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Background%20modeling" title="Background modeling">Background modeling</a>, <a href="https://publications.waset.org/search?q=Motion%20detection" title=" Motion detection"> Motion detection</a>, <a href="https://publications.waset.org/search?q=Optical%0Aflow" title=" Optical flow"> Optical flow</a>, <a href="https://publications.waset.org/search?q=Velocity%20smoothness%20constant" title=" Velocity smoothness constant"> Velocity smoothness constant</a>, <a href="https://publications.waset.org/search?q=motion%20trajectories." title=" motion trajectories."> motion trajectories.</a> </p> <a href="https://publications.waset.org/8745/motion-detection-techniques-using-optical-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/8745/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/8745/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/8745/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/8745/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/8745/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/8745/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/8745/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/8745/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/8745/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/8745/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/8745.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">5384</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=object%20detection&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=object%20detection&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=object%20detection&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=object%20detection&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=object%20detection&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=object%20detection&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=object%20detection&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=object%20detection&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=object%20detection&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=object%20detection&page=68">68</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=object%20detection&page=69">69</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=object%20detection&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>