CINXE.COM

Search results for: Oskar Grabowski

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Oskar Grabowski</title> <meta name="description" content="Search results for: Oskar Grabowski"> <meta name="keywords" content="Oskar Grabowski"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Oskar Grabowski" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Oskar Grabowski"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 16</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Oskar Grabowski</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Methodology of Choosing Technology and Sizing of the Hybrid Energy Storage Based on Cost-benefit Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Rafa%C5%82">Krzysztof Rafał</a>, <a href="https://publications.waset.org/abstracts/search?q=Weronika%20Radziszewska"> Weronika Radziszewska</a>, <a href="https://publications.waset.org/abstracts/search?q=Hubert%20Biedka"> Hubert Biedka</a>, <a href="https://publications.waset.org/abstracts/search?q=Oskar%20Grabowski"> Oskar Grabowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Mik"> Krzysztof Mik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a method to choose energy storage technologies and their parameters for the economic operation of a microgrid. A grid-connected system with local loads and PV generation is assumed, where an energy storage system (ESS) is attached to minimize energy cost by providing energy balancing and arbitrage functionalities. The ESS operates in a hybrid configuration and consists of two unique technologies operated in a coordinated way. Based on given energy profiles and economical data a model calculates financial flow for ESS investment, including energy cost and ESS depreciation resulting from degradation. The optimization strategy proposes a hybrid set of two technologies with their respective power and energy ratings to minimize overall system cost in a given timeframe. Results are validated through microgrid simulations using real-life input profiles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20storage" title="energy storage">energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20energy%20storage" title=" hybrid energy storage"> hybrid energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=cost-benefit%20analysis" title=" cost-benefit analysis"> cost-benefit analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=microgrid" title=" microgrid"> microgrid</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20sizing" title=" battery sizing"> battery sizing</a> </p> <a href="https://publications.waset.org/abstracts/141372/methodology-of-choosing-technology-and-sizing-of-the-hybrid-energy-storage-based-on-cost-benefit-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Escaping the Trauma: A Psychological Study of Jonathan Safran Foer’s Extremely Loud &amp; Incredibly Close</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahima%20Thakur">Mahima Thakur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Trauma rehabilitation requires both repairing physical injury and reconstructing broken narrative systems. The trauma's aftereffects entwine the broken patterns, allowing a cohesive narrative to emerge. In this article, the book Extremely Loud and Incredibly Close by Jonathan Safran Foer is discussed from a psychoanalytic perspective. The paper discusses the 9/11 attacks and their effects on those who suffered and lost family members during the catastrophe. The primary character of the novel, Oskar, along with his grandfather and grandmother, each have unique trauma escape stories that will be examined in light of Cathy Caruth and Geoffery H. Hartman‘s study. The text's numerous horrifying repetitions function as a narration strategy that not only captures the awareness of trauma but also gives the reader the psychological feature to overcome its deadening effects. This article explores the role that communication may have in assisting individuals in overcoming trauma. In addition to more research on traumatic memories, Dominick LaCapra's trauma theory's notions of "working through" and "acting out" highlight the need of communication in overcoming trauma and attempting to live outside of it. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=trauma%20theory" title="trauma theory">trauma theory</a>, <a href="https://publications.waset.org/abstracts/search?q=Cathy%20Caruth" title=" Cathy Caruth"> Cathy Caruth</a>, <a href="https://publications.waset.org/abstracts/search?q=memories" title=" memories"> memories</a>, <a href="https://publications.waset.org/abstracts/search?q=escapes" title=" escapes"> escapes</a>, <a href="https://publications.waset.org/abstracts/search?q=communication" title=" communication"> communication</a> </p> <a href="https://publications.waset.org/abstracts/191897/escaping-the-trauma-a-psychological-study-of-jonathan-safran-foers-extremely-loud-incredibly-close" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191897.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">21</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Problems of Using Mobile Photovoltaic Installations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ksenia%20Siadkowska">Ksenia Siadkowska</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%81ukasz%20Grabowski"> Łukasz Grabowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Micha%C5%82%20G%C4%99ca"> Michał Gęca </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dynamic development of photovoltaics in the 21st century has resulted in more possibilities for using photovoltaic systems. In order to reduce emissions, a retrofitting of vehicles with photovoltaic modules has recently become increasingly popular. Preparing such an installation, however, requires professional knowledge and compliance with safety rules. The paper discusses the advantages and disadvantages of some types of flexible photovoltaic modules that can be applied to mobile installations, types and causes of damage to photovoltaic modules as well as the most frequent types of misinstallation. Our attention has been drawn to the risk of fire caused by misintallation or defective insulation and the need to closely monitor mobile installations, for example by a non-destructive testing with a thermal imaging camera. The paper also presents certain selected results of the research conducted at the Lublin University of Technology. This work has been financed by the Polish National Centre for Research and Development, under Grant Agreement No. PBS2/A6/16/2013. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexible%20PV%20module" title="flexible PV module">flexible PV module</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20PV%20module" title=" mobile PV module"> mobile PV module</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20module" title=" photovoltaic module"> photovoltaic module</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic" title=" photovoltaic"> photovoltaic</a> </p> <a href="https://publications.waset.org/abstracts/50108/problems-of-using-mobile-photovoltaic-installations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Fuel Economy of Electrical Energy in the City Bus during Japanese Test Procedure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Piotr%20Kacejko">Piotr Kacejko</a>, <a href="https://publications.waset.org/abstracts/search?q=Lukasz%20Grabowski"> Lukasz Grabowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Zdzislaw%20Kaminski"> Zdzislaw Kaminski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses a model of fuel consumption and on-board electricity generation. Rapid changes in speed result in a constantly changing kinetic energy accumulated in a bus mass and an increased fuel consumption due to hardly recuperated kinetic energy. The model is based on the results achieved from chassis dynamometer, airport and city street researches. The verified model was applied to simulate the on-board electricity generation during the Japanese JE05 Emission Test Cycle. The simulations were performed for several values of vehicle mass and electrical load applied to on-board devices. The research results show that driving dynamics has an impact on a consumption of fuel to drive alternators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=city%20bus" title="city bus">city bus</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20duty%20vehicle" title=" heavy duty vehicle"> heavy duty vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=Japanese%20JE05%20test%20cycle" title=" Japanese JE05 test cycle"> Japanese JE05 test cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20generation" title=" power generation"> power generation</a> </p> <a href="https://publications.waset.org/abstracts/81532/fuel-economy-of-electrical-energy-in-the-city-bus-during-japanese-test-procedure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> A Research of the Prototype Fuel Injector for the Aircraft Two-Stroke Opposed-Piston Diesel Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ksenia%20Siadkowska">Ksenia Siadkowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Zbigniew%20Czyz"> Zbigniew Czyz</a>, <a href="https://publications.waset.org/abstracts/search?q=Lukasz%20Grabowski"> Lukasz Grabowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents the research results of the construction of an injector with a modified injection nozzle. The injector is designed for a prototype aircraft opposed-piston diesel engine with an assumed starting power of 100 kW. The injector has been subjected to optical tests carried out in a constant volume chamber with the use of a camera allowing to record images at the frequency of 5400 fps and at the resolution of 1024x1024. The measurements were based on a Mie scattering technique with global lighting. Seven repetitions were made for a specific measurement point. The measuring point was selected on the basis of the analysis of engine operating conditions. The analysis focused on the average range of the spray and its distribution. As a result of the conducted research, the range of the fuel spray was defined for the determined parameters of injection. The obtained results were used to verify and optimize the combustion process in the designed opposed-piston two-stroke diesel engine. Acknowledgment: This work has been realized in the cooperation with The Construction Office of WSK 'PZL-KALISZ' S.A.' and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diesel%20engine" title="diesel engine">diesel engine</a>, <a href="https://publications.waset.org/abstracts/search?q=opposed-piston" title=" opposed-piston"> opposed-piston</a>, <a href="https://publications.waset.org/abstracts/search?q=aircraft" title=" aircraft"> aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20injector" title=" fuel injector"> fuel injector</a> </p> <a href="https://publications.waset.org/abstracts/106611/a-research-of-the-prototype-fuel-injector-for-the-aircraft-two-stroke-opposed-piston-diesel-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Analysis of the Effect of Increased Self-Awareness on the Amount of Food Thrown Away</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agnieszka%20Dubiel">Agnieszka Dubiel</a>, <a href="https://publications.waset.org/abstracts/search?q=Artur%20Grabowski"> Artur Grabowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20Przerywacz"> Tomasz Przerywacz</a>, <a href="https://publications.waset.org/abstracts/search?q=Mateusz%20Roganowicz"> Mateusz Roganowicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrycja%20Zioty"> Patrycja Zioty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Food waste is one of the most significant challenges humanity is facing nowadays. Every year, reports from global organizations show the scale of the phenomenon, although society's awareness is still insufficient. One-third of the food produced in the world is wasted at various points in the food supply chain. Wastes are present from the delivery through the food preparation and distribution to the end of the sale and consumption. The first step in understanding and resisting the phenomenon is a thorough analysis of the everyday behaviors of humanity. This concept is understood as finding the correlation between the type of food and the reason for throwing it out and wasting it. Those actions were identified as a critical step in the start of work to develop technology to prevent food waste. In this paper, the problem mentioned above was analyzed by focusing on the inhabitants of Central Europe, especially Poland, aged 20-30. This paper provides an insight into collecting data through dedicated software and an organized database. The proposed database contains information on the amount, type, and reasons for wasting food in households. A literature review supported the work to answer research questions, compare the situation in Poland with the problem analyzed in other countries, and find research gaps. The proposed article examines the cause of food waste and its quantity in detail. This review complements previous reviews by emphasizing social and economic innovation in Poland's food waste management. The paper recommends a course of action for future research on food waste management and prevention related to the handling and disposal of food, emphasizing households, i.e., the last link in the supply chain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=food%20waste" title="food waste">food waste</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20waste%20reduction" title=" food waste reduction"> food waste reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=consumer%20food%20waste" title=" consumer food waste"> consumer food waste</a>, <a href="https://publications.waset.org/abstracts/search?q=human-food%20interaction" title=" human-food interaction"> human-food interaction</a> </p> <a href="https://publications.waset.org/abstracts/151378/analysis-of-the-effect-of-increased-self-awareness-on-the-amount-of-food-thrown-away" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151378.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Antioxidant Activity and Microbiological Quality of Functional Bread Enriched with Morus Alba Leaf Extract during Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joanna%20Kobus-Cisowska">Joanna Kobus-Cisowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Daria%20Szymanowska"> Daria Szymanowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Piotr%20Szulc"> Piotr Szulc</a>, <a href="https://publications.waset.org/abstracts/search?q=Oskar%20Szczepaniak"> Oskar Szczepaniak</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Dziedzinski"> Marcin Dziedzinski</a>, <a href="https://publications.waset.org/abstracts/search?q=Szymon%20Byczkiewicz"> Szymon Byczkiewicz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A wide range of food products is offered on the market. However, increasing consumer awareness of the impact of food on health causes a growing interest in enriched products. Cereal products are an important element of the daily diet of man. In the literature, no data was found on the impact of Morus alba preparations on the content of active ingredients and properties of wholemeal bread. Mulberry leaves (Morus alba L) are a rich source of bioactive compounds with multidirectional antioxidant activity, which means that they can be a component of new foods that prevent disease or support therapy and improve the patient's health. The aim of the study was to assess the impact of the addition of white mulberry leaf extract on the antioxidant activity of bread. It has been shown that bread can be a carrier of biologically active substances from mulberry leaves, because the addition of mulberry at a sensory acceptable level and meeting microbiological requirements significantly influenced the increase in the content of bioactive ingredients and the antioxidant activity of bread. The addition of mulberry leaf water extract to bread increased the level of flavonols and phenolic acids, in particular protocatechic, chlorogenic gallic and caffeic acid and isoquercetin and rutine, and also increased the antioxidant potential, which were microbiological stable during 5 days storage. It has been shown also that the addition of Morus alba preparations has a statistically significant effect on anti-radical activity. In addition, there were no differences in activity in DPPH · and ABTS · + tests between post-storage samples. This means that the compounds responsible for the anti-radical activity present in the bread were not inactivated during storage. It was found that the tested bread was characterized by high microbiological purity, which is indicated by the obtained results of analyzes performed for the titers of indicator microorganisms and the absence of pathogens. In the tested products from the moment of production throughout the entire storage period, no undesirable microflora was found, which proves their safety and guarantees microbiological stability during the storage period. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidants" title="antioxidants">antioxidants</a>, <a href="https://publications.waset.org/abstracts/search?q=bread" title=" bread"> bread</a>, <a href="https://publications.waset.org/abstracts/search?q=extract" title=" extract"> extract</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a> </p> <a href="https://publications.waset.org/abstracts/120409/antioxidant-activity-and-microbiological-quality-of-functional-bread-enriched-with-morus-alba-leaf-extract-during-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Possibilities to Evaluate the Climatic and Meteorological Potential for Viticulture in Poland: The Case Study of the Jagiellonian University Vineyard</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oskar%20Sekowski">Oskar Sekowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Current global warming causes changes in the traditional zones of viticulture worldwide. During 20th century, the average global air temperature increased by 0.89˚C. The models of climate change indicate that viticulture, currently concentrating in narrow geographic niches, may move towards the poles, to higher geographic latitudes. Global warming may cause changes in traditional viticulture regions. Therefore, there is a need to estimate the climatic conditions and climate change in areas that are not traditionally associated with viticulture, e.g., Poland. The primary objective of this paper is to prepare methodology to evaluate the climatic and meteorological potential for viticulture in Poland based on a case study. Moreover, the additional aim is to evaluate the climatic potential of a mesoregion where a university vineyard is located. The daily data of temperature, precipitation, insolation, and wind speed (1988-2018) from the meteorological station located in Łazy, southern Poland, was used to evaluate 15 climatological parameters and indices connected with viticulture. The next steps of the methodology are based on Geographic Information System methods. The topographical factors such as a slope gradient and slope exposure were created using Digital Elevation Models. The spatial distribution of climatological elements was interpolated by ordinary kriging. The values of each factor and indices were also ranked and classified. The viticultural potential was determined by integrating two suitability maps, i.e., the topographical and climatic ones, and by calculating the average for each pixel. Data analysis shows significant changes in heat accumulation indices that are driven by increases in maximum temperature, mostly increasing number of days with Tmax > 30˚C. The climatic conditions of this mesoregion are sufficient for vitis vinifera viticulture. The values of indicators and insolation are similar to those in the known wine regions located on similar geographical latitudes in Europe. The smallest threat to viticulture in study area is the occurrence of hail and the highest occurrence of frost in the winter. This research provides the basis for evaluating general suitability and climatologic potential for viticulture in Poland. To characterize the climatic potential for viticulture, it is necessary to assess the suitability of all climatological and topographical factors that can influence viticulture. The methodology used in this case study shows places where there is a possibility to create vineyards. It may also be helpful for wine-makers to select grape varieties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climatologic%20potential" title="climatologic potential">climatologic potential</a>, <a href="https://publications.waset.org/abstracts/search?q=climatic%20classification" title=" climatic classification"> climatic classification</a>, <a href="https://publications.waset.org/abstracts/search?q=Poland" title=" Poland"> Poland</a>, <a href="https://publications.waset.org/abstracts/search?q=viticulture" title=" viticulture"> viticulture</a> </p> <a href="https://publications.waset.org/abstracts/110598/possibilities-to-evaluate-the-climatic-and-meteorological-potential-for-viticulture-in-poland-the-case-study-of-the-jagiellonian-university-vineyard" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Validation Study of Radial Aircraft Engine Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lukasz%20Grabowski">Lukasz Grabowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Tytus%20Tulwin"> Tytus Tulwin</a>, <a href="https://publications.waset.org/abstracts/search?q=Michal%20Geca"> Michal Geca</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Karpinski"> P. Karpinski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the radial aircraft engine model which has been created in AVL Boost software. This model is a one-dimensional physical model of the engine, which enables us to investigate the impact of an ignition system design on engine performance (power, torque, fuel consumption). In addition, this model allows research under variable environmental conditions to reflect varied flight conditions (altitude, humidity, cruising speed). Before the simulation research the identifying parameters and validating of model were studied. In order to verify the feasibility to take off power of gasoline radial aircraft engine model, some validation study was carried out. The first stage of the identification was completed with reference to the technical documentation provided by manufacturer of engine and the experiments on the test stand of the real engine. The second stage involved a comparison of simulation results with the results of the engine stand tests performed on a WSK ’PZL-Kalisz’. The engine was loaded by a propeller in a special test bench. Identifying the model parameters referred to a comparison of the test results to the simulation in terms of: pressure behind the throttles, pressure in the inlet pipe, and time course for pressure in the first inlet pipe, power, and specific fuel consumption. Accordingly, the required coefficients and error of simulation calculation relative to the real-object experiments were determined. Obtained the time course for pressure and its value is compatible with the experimental results. Additionally the engine power and specific fuel consumption tends to be significantly compatible with the bench tests. The mapping error does not exceed 1.5%, which verifies positively the model of combustion and allows us to predict engine performance if the process of combustion will be modified. The next conducted tests verified completely model. The maximum mapping error for the pressure behind the throttles and the inlet pipe pressure is 4 %, which proves the model of the inlet duct in the engine with the charging compressor to be correct. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=1D-model" title="1D-model">1D-model</a>, <a href="https://publications.waset.org/abstracts/search?q=aircraft%20engine" title=" aircraft engine"> aircraft engine</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=validation" title=" validation"> validation</a> </p> <a href="https://publications.waset.org/abstracts/50036/validation-study-of-radial-aircraft-engine-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50036.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> The Verification Study of Computational Fluid Dynamics Model of the Aircraft Piston Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lukasz%20Grabowski">Lukasz Grabowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Konrad%20Pietrykowski"> Konrad Pietrykowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Michal%20Bialy"> Michal Bialy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the results of the research to verify the combustion in aircraft piston engine Asz62-IR. This engine was modernized and a type of ignition system was developed. Due to the high costs of experiments of a nine-cylinder 1,000 hp aircraft engine, a simulation technique should be applied. Therefore, computational fluid dynamics to simulate the combustion process is a reasonable solution. Accordingly, the tests for varied ignition advance angles were carried out and the optimal value to be tested on a real engine was specified. The CFD model was created with the AVL Fire software. The engine in the research had two spark plugs for each cylinder and ignition advance angles had to be set up separately for each spark. The results of the simulation were verified by comparing the pressure in the cylinder. The courses of the indicated pressure of the engine mounted on a test stand were compared. The real course of pressure was measured with an optical sensor, mounted in a specially drilled hole between the valves. It was the OPTRAND pressure sensor, which was designed especially to engine combustion process research. The indicated pressure was measured in cylinder no 3. The engine was running at take-off power. The engine was loaded by a propeller at a special test bench. The verification of the CFD simulation results was based on the results of the test bench studies. The course of the simulated pressure obtained is within the measurement error of the optical sensor. This error is 1% and reflects the hysteresis and nonlinearity of the sensor. The real indicated pressure measured in the cylinder and the pressure taken from the simulation were compared. It can be claimed that the verification of CFD simulations based on the pressure is a success. The next step was to research on the impact of changing the ignition advance timing of spark plugs 1 and 2 on a combustion process. Moving ignition timing between 1 and 2 spark plug results in a longer and uneven firing of a mixture. The most optimal point in terms of indicated power occurs when ignition is simultaneous for both spark plugs, but so severely separated ignitions are assured that ignition will occur at all speeds and loads of engine. It should be confirmed by a bench experiment of the engine. However, this simulation research enabled us to determine the optimal ignition advance angle to be implemented into the ignition control system. This knowledge allows us to set up the ignition point with two spark plugs to achieve as large power as possible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD%20model" title="CFD model">CFD model</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion" title=" combustion"> combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=engine" title=" engine"> engine</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/50035/the-verification-study-of-computational-fluid-dynamics-model-of-the-aircraft-piston-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Memorializing the Holocaust in the Present Century</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehak%20Burza">Mehak Burza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As we pause to observe the Holocaust Remembrance Day each year on 27 January, it becomes important to consider how the Holocaust is witnessed, and its education is perceived across the globe. The dissemination of knowledge of the Holocaust becomes more pertinent in the countries that were not directly affected by it. The Holocaust education is not widespread in Asian countries and is thus not mandatory as an academic discipline for school and university students. One such Asian country that often considers Holocaust as an isolated event is India. Though the struggle for freedom began with the 1857 mutiny (the first war of Indian independence) but the freedom revolts gained momentum specifically during the years 1944-1947, when India was steeped in a battery of rebellions. However, freedom for the Indian subcontinent from the domination of British Raj came at the cost of partition of India that resulted in widespread bloodshed and immigration. For India, it is this backdrop of her freedom struggle that always outweighs the incidents of the Second World War, including the catastrophic event of the Holocaust. As a result, the knowledge about the Holocaust is available through secondary sources such as Holocaust documentaries and movies. Besides Anne Frank’s diary, the knowledge about the Holocaust is disseminated through the course readings in the universities. The most common literary acquaintances with the Jewish faith for university students are when they come across the Jewish characters in their course readings. The Prioress’s Tale in Geoffrey Chaucer’s Canterbury Tales, the character of Shylock in William Shakespeare’s The Merchant of Venice, and the Jewish protagonist, Barabas, in Christopher Marlow’s Jew of Malta. Apart from this, the school textbooks mention a detailed chapter on Holocaust and Hitler, which is an encouraging turn. However, there still exists a yawning gap between dissemination and sensitization of Holocaust education owing to different geographical locales. My paper presentation aims to trace the intersectional elements between India and the Holocaust that can serve as the required pivotal stand-board to foster sensitization towards Holocaust education in the Indian subcontinent. For instance, Maharaja Jam SahebDigvijaysinhjiRanjitsinhji, the ruler of Nawanagar, a princely state in British India, helped save thousand Polish Jewish children in 1945 at the time when India herself was steeped in its struggle for freedom. Famously known as the ‘Indian Oskar Schindler’ Polish government has named a street after him in Krakow, Poland. Another example that deserves mention is the spy princess, Noor Inayat Khan, a descendent of Tipu Sultan, who became the most celebrated British spyand fought against the Nazis. Additionally, by offering refuge to Jews, India has proved to be a distant haven for them. Researching further the domain of Jewish refugees in India will not only illuminate a dull/gray zone of investigation but also enable the educators to provide appropriate entry points for introducing the subject of Shoah/Holocaust in India, a subject which unfortunately hitherto is either seldom discussed or is equated with the Partition of India. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=awareness" title="awareness">awareness</a>, <a href="https://publications.waset.org/abstracts/search?q=dissemination" title=" dissemination"> dissemination</a>, <a href="https://publications.waset.org/abstracts/search?q=holocaust" title=" holocaust"> holocaust</a>, <a href="https://publications.waset.org/abstracts/search?q=India" title=" India"> India</a> </p> <a href="https://publications.waset.org/abstracts/146386/memorializing-the-holocaust-in-the-present-century" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146386.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Numerical Analysis of Charge Exchange in an Opposed-Piston Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zbigniew%20Czy%C5%BC">Zbigniew Czyż</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Majczak"> Adam Majczak</a>, <a href="https://publications.waset.org/abstracts/search?q=Lukasz%20Grabowski"> Lukasz Grabowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents a description of geometric models, computational algorithms, and results of numerical analyses of charge exchange in a two-stroke opposed-piston engine. The research engine was a newly designed internal Diesel engine. The unit is characterized by three cylinders in which three pairs of opposed-pistons operate. The engine will generate a power output equal to 100 kW at a crankshaft rotation speed of 3800-4000 rpm. The numerical investigations were carried out using ANSYS FLUENT solver. Numerical research, in contrast to experimental research, allows us to validate project assumptions and avoid costly prototype preparation for experimental tests. This makes it possible to optimize the geometrical model in countless variants with no production costs. The geometrical model includes an intake manifold, a cylinder, and an outlet manifold. The study was conducted for a series of modifications of manifolds and intake and exhaust ports to optimize the charge exchange process in the engine. The calculations specified a swirl coefficient obtained under stationary conditions for a full opening of intake and exhaust ports as well as a CA value of 280° for all cylinders. In addition, mass flow rates were identified separately in all of the intake and exhaust ports to achieve the best possible uniformity of flow in the individual cylinders. For the models under consideration, velocity, pressure and streamline contours were generated in important cross sections. The developed models are designed primarily to minimize the flow drag through the intake and exhaust ports while the mass flow rate increases. Firstly, in order to calculate the swirl ratio [-], tangential velocity v [m/s] and then angular velocity ω [rad / s] with respect to the charge as the mean of each element were calculated. The paper contains comparative analyses of all the intake and exhaust manifolds of the designed engine. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK "PZL-KALISZ" S.A." and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title="computational fluid dynamics">computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=engine%20swirl" title=" engine swirl"> engine swirl</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20mechanics" title=" fluid mechanics"> fluid mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20flow%20rates" title=" mass flow rates"> mass flow rates</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=opposed-piston%20engine" title=" opposed-piston engine"> opposed-piston engine</a> </p> <a href="https://publications.waset.org/abstracts/81483/numerical-analysis-of-charge-exchange-in-an-opposed-piston-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81483.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> A Modelling of Main Bearings in the Two-Stroke Diesel Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Szlachetka">Marcin Szlachetka</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafal%20Sochaczewski"> Rafal Sochaczewski</a>, <a href="https://publications.waset.org/abstracts/search?q=Lukasz%20Grabowski"> Lukasz Grabowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the results of the load simulations of main bearings in a two-stroke Diesel engine. A model of an engine lubrication system with connections of its main lubrication nodes, i.e., a connection of its main bearings in the engine block with the crankshaft, a connection of its crankpins with its connecting rod and a connection of its pin and its piston has been created for our calculations performed using the AVL EXCITE Designer. The analysis covers the loads given as a pressure distribution in a hydrodynamic oil film, a temperature distribution on the main bush surfaces for the specified radial clearance values as well as the impact of the force of gas on the minimum oil film thickness in the main bearings depending on crankshaft rotational speeds and temperatures of oil in the bearings. One of the main goals of the research has been to determine whether the minimum thickness of the oil film at which fluid friction occurs can be achieved for each value of crankshaft speed. Our model calculates different oil film parameters, i.e., its thickness, a pressure distribution there, the change in oil temperature. Additional enables an analysis of an oil temperature distribution on the surfaces of the bearing seats. It allows verifying the selected clearances in the bearings of the main engine under normal operation conditions and extremal ones that show a significant increase in temperature above the limit value. The research has been conducted for several engine crankshaft speeds ranging from 1000 rpm to 4000 rpm. The oil pressure in the bearings has ranged 2-5 bar according to engine speeds and the oil temperature has ranged 90-120 °C. The main bearing clearance has been adopted for the calculation and analysis as 0.025 mm. The oil classified as SAE 5W-30 has been used for the simulations. The paper discusses the selected research results referring to several specific operating points and different temperatures of the lubricating oil in the bearings. The received research results show that for the investigated main bearing bushes of the shaft, the results fall within the ranges of the limit values despite the increase in the oil temperature of the bearings reaching 120˚C. The fact that the bearings are loaded with the maximum pressure makes no excessive temperature rise on the bush surfaces. The oil temperature increases by 17˚C, reaching 137˚C at a speed of 4000 rpm. The minimum film thickness at which fluid friction occurs has been achieved for each of the operating points at each of the engine crankshaft speeds. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK ‘PZL-KALISZ’ S.A.’ and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diesel%20engine" title="diesel engine">diesel engine</a>, <a href="https://publications.waset.org/abstracts/search?q=main%20bearings" title=" main bearings"> main bearings</a>, <a href="https://publications.waset.org/abstracts/search?q=opposing%20pistons" title=" opposing pistons"> opposing pistons</a>, <a href="https://publications.waset.org/abstracts/search?q=two-stroke" title=" two-stroke"> two-stroke</a> </p> <a href="https://publications.waset.org/abstracts/106628/a-modelling-of-main-bearings-in-the-two-stroke-diesel-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106628.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Simulation Research of Diesel Aircraft Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C5%81ukasz%20Grabowski">Łukasz Grabowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Micha%C5%82%20G%C4%99ca"> Michał Gęca</a>, <a href="https://publications.waset.org/abstracts/search?q=Miros%C5%82aw%20Wendeker"> Mirosław Wendeker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the simulation results of a new opposed piston diesel engine to power a light aircraft. Created in the AVL Boost, the model covers the entire charge passage, from the inlet up to the outlet. The model shows fuel injection into cylinders and combustion in cylinders. The calculation uses the module for two-stroke engines. The model was created using sub-models available in this software that structure the model. Each of the sub-models is complemented with parameters in line with the design premise. Since engine weight resulting from geometric dimensions is fundamental in aircraft engines, two configurations of stroke were studied. For each of the values, there were calculated selected operating conditions defined by crankshaft speed. The required power was achieved by changing air fuel ratio (AFR). There was also studied brake specific fuel consumption (BSFC). For stroke S1, the BSFC was lowest at all of the three operating points. This difference is approximately 1-2%, which means higher overall engine efficiency but the amount of fuel injected into cylinders is larger by several mg for S1. The cylinder maximum pressure is lower for S2 due to the fact that compressor gear driving remained the same and boost pressure was identical in the both cases. Calculations for various values of boost pressure were the next stage of the study. In each of the calculation case, the amount of fuel was changed to achieve the required engine power. In the former case, the intake system dimensions were modified, i.e. the duct connecting the compressor and the air cooler, so its diameter D = 40 mm was equal to the diameter of the compressor outlet duct. The impact of duct length was also examined to be able to reduce the flow pulsation during the operating cycle. For the so selected geometry of the intake system, there were calculations for various values of boost pressure. The boost pressure was changed by modifying the gear driving the compressor. To reach the required level of cruising power N = 68 kW. Due to the mechanical power consumed by the compressor, high pressure ratio results in a worsened overall engine efficiency. The figure on the change in BSFC from 210 g/kWh to nearly 270 g/kWh shows this correlation and the overall engine efficiency is reduced by about 8%. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK "PZL-KALISZ" S.A." and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aircraft" title="aircraft">aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=diesel" title=" diesel"> diesel</a>, <a href="https://publications.waset.org/abstracts/search?q=engine" title=" engine"> engine</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/81459/simulation-research-of-diesel-aircraft-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81459.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Operation Cycle Model of ASz62IR Radial Aircraft Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Duk">M. Duk</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Grabowski"> L. Grabowski</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Magryta"> P. Magryta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today's very important element relating to air transport is the environment impact issues. Nowadays there are no emissions standards for turbine and piston engines used in air transport. However, it should be noticed that the environmental effect in the form of exhaust gases from aircraft engines should be as small as possible. For this purpose, R&D centers often use special software to simulate and to estimate the negative effect of engine working process. For cooperation between the Lublin University of Technology and the Polish aviation company WSK "PZL-KALISZ" S.A., to achieve more effective operation of the ASz62IR engine, one of such tools have been used. The AVL Boost software allows to perform 1D simulations of combustion process of piston engines. ASz62IR is a nine-cylinder aircraft engine in a radial configuration. In order to analyze the impact of its working process on the environment, the mathematical model in the AVL Boost software have been made. This model contains, among others, model of the operation cycle of the cylinders. This model was based on a volume change in combustion chamber according to the reciprocating movement of a piston. The simplifications that all of the pistons move identically was assumed. The changes in cylinder volume during an operating cycle were specified. Those changes were important to determine the energy balance of a cylinder in an internal combustion engine which is fundamental for a model of the operating cycle. The calculations for cylinder thermodynamic state were based on the first law of thermodynamics. The change in the mass in the cylinder was calculated from the sum of inflowing and outflowing masses including: cylinder internal energy, heat from the fuel, heat losses, mass in cylinder, cylinder pressure and volume, blowdown enthalpy, evaporation heat etc. The model assumed that the amount of heat released in combustion process was calculated from the pace of combustion, using Vibe model. For gas exchange, it was also important to consider heat transfer in inlet and outlet channels because of much higher values there than for flow in a straight pipe. This results from high values of heat exchange coefficients and temperature coefficients near valves and valve seats. A Zapf modified model of heat exchange was used. To use the model with the flight scenarios, the impact of flight altitude on engine performance has been analyze. It was assumed that the pressure and temperature at the inlet and outlet correspond to the values resulting from the model for International Standard Atmosphere (ISA). Comparing this model of operation cycle with the others submodels of the ASz62IR engine, it could be noticed, that a full analysis of the performance of the engine, according to the ISA conditions, can be made. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aviation%20propulsion" title="aviation propulsion">aviation propulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=AVL%20Boost" title=" AVL Boost"> AVL Boost</a>, <a href="https://publications.waset.org/abstracts/search?q=engine%20model" title=" engine model"> engine model</a>, <a href="https://publications.waset.org/abstracts/search?q=operation%20cycle" title=" operation cycle"> operation cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=aircraft%20engine" title=" aircraft engine"> aircraft engine</a> </p> <a href="https://publications.waset.org/abstracts/50178/operation-cycle-model-of-asz62ir-radial-aircraft-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50178.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Thermal Imaging of Aircraft Piston Engine in Laboratory Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lukasz%20Grabowski">Lukasz Grabowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Szlachetka"> Marcin Szlachetka</a>, <a href="https://publications.waset.org/abstracts/search?q=Tytus%20Tulwin"> Tytus Tulwin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main task of the engine cooling system is to maintain its average operating temperatures within strictly defined limits. Too high or too low average temperatures result in accelerated wear or even damage to the engine or its individual components. In order to avoid local overheating or significant temperature gradients, leading to high stresses in the component, the aim is to ensure an even flow of air. In the case of analyses related to heat exchange, one of the main problems is the comparison of temperature fields because standard measuring instruments such as thermocouples or thermistors only provide information about the course of temperature at a given point. Thermal imaging tests can be helpful in this case. With appropriate camera settings and taking into account environmental conditions, we are able to obtain accurate temperature fields in the form of thermograms. Emission of heat from the engine to the engine compartment is an important issue when designing a cooling system. Also, in the case of liquid cooling, the main sources of heat in the form of emissions from the engine block, cylinders, etc. should be identified. It is important to redesign the engine compartment ventilation system. Ensuring proper cooling of aircraft reciprocating engine is difficult not only because of variable operating range but mainly because of different cooling conditions related to the change of speed or altitude of flight. Engine temperature also has a direct and significant impact on the properties of engine oil, which under the influence of this parameter changes, in particular, its viscosity. Too low or too high, its value can be a result of fast wear of engine parts. One of the ways to determine the temperatures occurring on individual parts of the engine is the use of thermal imaging measurements. The article presents the results of preliminary thermal imaging tests of aircraft piston diesel engine with a maximum power of about 100 HP. In order to perform the heat emission tests of the tested engine, the ThermaCAM S65 thermovision monitoring system from FLIR (Forward-Looking Infrared) together with the ThermaCAM Researcher Professional software was used. The measurements were carried out after the engine warm up. The engine speed was 5300 rpm The measurements were taken for the following environmental parameters: air temperature: 17 °C, ambient pressure: 1004 hPa, relative humidity: 38%. The temperatures distribution on the engine cylinder and on the exhaust manifold were analysed. Thermal imaging tests made it possible to relate the results of simulation tests to the real object by measuring the rib temperature of the cylinders. The results obtained are necessary to develop a CFD (Computational Fluid Dynamics) model of heat emission from the engine bay. The project/research was financed in the framework of the project Lublin University of Technology-Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aircraft" title="aircraft">aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=piston%20engine" title=" piston engine"> piston engine</a>, <a href="https://publications.waset.org/abstracts/search?q=heat" title=" heat"> heat</a>, <a href="https://publications.waset.org/abstracts/search?q=emission" title=" emission"> emission</a> </p> <a href="https://publications.waset.org/abstracts/106609/thermal-imaging-of-aircraft-piston-engine-in-laboratory-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10