CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 240 results for author: <span class="mathjax">Lu, Z</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Lu%2C+Z">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Lu, Z"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Lu%2C+Z&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Lu, Z"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Lu%2C+Z&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Lu%2C+Z&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Lu%2C+Z&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Lu%2C+Z&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Lu%2C+Z&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Lu%2C+Z&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.16036">arXiv:2502.16036</a> <span> [<a href="https://arxiv.org/pdf/2502.16036">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> AI Models Still Lag Behind Traditional Numerical Models in Predicting Sudden-Turning Typhoons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xu%2C+D">Daosheng Xu</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zebin Lu</a>, <a href="/search/physics?searchtype=author&query=Leung%2C+J+C">Jeremy Cheuk-Hin Leung</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+D">Dingchi Zhao</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yi Li</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yang Shi</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+B">Bin Chen</a>, <a href="/search/physics?searchtype=author&query=Nie%2C+G">Gaozhen Nie</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+N">Naigeng Wu</a>, <a href="/search/physics?searchtype=author&query=Tian%2C+X">Xiangjun Tian</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+Y">Yi Yang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+S">Shaoqing Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+B">Banglin Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.16036v1-abstract-short" style="display: inline;"> Given the interpretability, accuracy, and stability of numerical weather prediction (NWP) models, current operational weather forecasting relies heavily on the NWP approach. In the past two years, the rapid development of Artificial Intelligence (AI) has provided an alternative solution for medium-range (1-10 days) weather forecasting. Bi et al. (2023) (hereafter Bi23) introduced the first AI-base… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16036v1-abstract-full').style.display = 'inline'; document.getElementById('2502.16036v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.16036v1-abstract-full" style="display: none;"> Given the interpretability, accuracy, and stability of numerical weather prediction (NWP) models, current operational weather forecasting relies heavily on the NWP approach. In the past two years, the rapid development of Artificial Intelligence (AI) has provided an alternative solution for medium-range (1-10 days) weather forecasting. Bi et al. (2023) (hereafter Bi23) introduced the first AI-based weather prediction (AIWP) model in China, named Pangu-Weather, which offers fast prediction without compromising accuracy. In their work, Bi23 made notable claims regarding its effectiveness in extreme weather predictions. However, this claim lacks persuasiveness because the extreme nature of the two tropical cyclones (TCs) examples presented in Bi23, namely Typhoon Kong-rey and Typhoon Yutu, stems primarily from their intensities rather than their moving paths. Their claim may mislead into another meaning which is that Pangu-Weather works well in predicting unusual typhoon paths, which was not explicitly analyzed. Here, we reassess Pangu-Weather's ability to predict extreme TC trajectories from 2020-2024. Results reveal that while Pangu-Weather overall outperforms NWP models in predicting tropical cyclone (TC) tracks, it falls short in accurately predicting the rarely observed sudden-turning tracks, such as Typhoon Khanun in 2023. We argue that current AIWP models still lag behind traditional NWP models in predicting such rare extreme events in medium-range forecasts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16036v1-abstract-full').style.display = 'none'; document.getElementById('2502.16036v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.01264">arXiv:2502.01264</a> <span> [<a href="https://arxiv.org/pdf/2502.01264">pdf</a>, <a href="https://arxiv.org/format/2502.01264">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Generalized Lanczos method for systematic optimization of neural-network quantum states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jia-Qi Wang</a>, <a href="/search/physics?searchtype=author&query=He%2C+R">Rong-Qiang He</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zhong-Yi Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.01264v1-abstract-short" style="display: inline;"> Recently, artificial intelligence for science has made significant inroads into various fields of natural science research. In the field of quantum many-body computation, researchers have developed numerous ground state solvers based on neural-network quantum states (NQSs), achieving ground state energies with accuracy comparable to or surpassing traditional methods such as variational Monte Carlo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.01264v1-abstract-full').style.display = 'inline'; document.getElementById('2502.01264v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.01264v1-abstract-full" style="display: none;"> Recently, artificial intelligence for science has made significant inroads into various fields of natural science research. In the field of quantum many-body computation, researchers have developed numerous ground state solvers based on neural-network quantum states (NQSs), achieving ground state energies with accuracy comparable to or surpassing traditional methods such as variational Monte Carlo methods, density matrix renormalization group, and quantum Monte Carlo methods. Here, we combine supervised learning, reinforcement learning, and the Lanczos method to develop a systematic approach to improving the NQSs of many-body systems, which we refer to as the NQS Lanczos method. The algorithm mainly consists of two parts: the supervised learning part and the reinforcement learning part. Through supervised learning, the Lanczos states are represented by the NQSs. Through reinforcement learning, the NQSs are further optimized. We analyze the reasons for the underfitting problem and demonstrate how the NQS Lanczos method systematically improves the energy in the highly frustrated regime of the two-dimensional Heisenberg $J_1$-$J_2$ model. Compared to the existing method that combines the Lanczos method with the restricted Boltzmann machine, the primary advantage of the NQS Lanczos method is its linearly increasing computational cost. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.01264v1-abstract-full').style.display = 'none'; document.getElementById('2502.01264v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures, 3 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.12222">arXiv:2501.12222</a> <span> [<a href="https://arxiv.org/pdf/2501.12222">pdf</a>, <a href="https://arxiv.org/ps/2501.12222">ps</a>, <a href="https://arxiv.org/format/2501.12222">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Strong phonon-mediated high temperature superconductivity in Li$_2$AuH$_6$ under ambient pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ouyang%2C+Z">Zhenfeng Ouyang</a>, <a href="/search/physics?searchtype=author&query=Yao%2C+B">Bo-Wen Yao</a>, <a href="/search/physics?searchtype=author&query=Han%2C+X">Xiao-Qi Han</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+P">Peng-Jie Guo</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+Z">Ze-Feng Gao</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zhong-Yi Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.12222v1-abstract-short" style="display: inline;"> We used our developed AI search engine~(InvDesFlow) to perform extensive investigations regarding ambient stable superconducting hydrides. A cubic structure Li$_2$AuH$_6$ with Au-H octahedral motifs is identified to be a candidate. After performing thermodynamical analysis, we provide a feasible route to experimentally synthesize this material via the known LiAu and LiH compounds under ambient pre… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12222v1-abstract-full').style.display = 'inline'; document.getElementById('2501.12222v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.12222v1-abstract-full" style="display: none;"> We used our developed AI search engine~(InvDesFlow) to perform extensive investigations regarding ambient stable superconducting hydrides. A cubic structure Li$_2$AuH$_6$ with Au-H octahedral motifs is identified to be a candidate. After performing thermodynamical analysis, we provide a feasible route to experimentally synthesize this material via the known LiAu and LiH compounds under ambient pressure. The further first-principles calculations suggest that Li$_2$AuH$_6$ shows a high superconducting transition temperature ($T_c$) $\sim$ 140 K under ambient pressure. The H-1$s$ electrons strongly couple with phonon modes of vibrations of Au-H octahedrons as well as vibrations of Li atoms, where the latter is not taken seriously in other previously similar cases. Hence, different from previous claims of searching metallic covalent bonds to find high-$T_c$ superconductors, we emphasize here the importance of those phonon modes with strong electron-phonon coupling (EPC). And we suggest that one can intercalate atoms into binary or ternary hydrides to introduce more potential phonon modes with strong EPC, which is an effective approach to find high-$T_c$ superconductors within multicomponent compounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12222v1-abstract-full').style.display = 'none'; document.getElementById('2501.12222v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages; 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.01270">arXiv:2501.01270</a> <span> [<a href="https://arxiv.org/pdf/2501.01270">pdf</a>, <a href="https://arxiv.org/format/2501.01270">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.4c05865">10.1021/acs.nanolett.4c05865 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Competing Hexagonal and Square Lattices on a Spherical Surface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xie%2C+H">Han Xie</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+W">Wenyu Liu</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zhenyue Lu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+J+Z+Y">Jeff Z. Y. Chen</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yao Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.01270v1-abstract-short" style="display: inline;"> The structural properties of packed soft-core particles provide a platform to understand the cross-pollinated physical concepts in solid-state- and soft-matter physics. Confined on spherical surface, the traditional differential geometry also dictates the overall defect properties in otherwise regular crystal lattices. Using molecular dynamics simulation of the Hertzian model as a tool, we report… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01270v1-abstract-full').style.display = 'inline'; document.getElementById('2501.01270v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.01270v1-abstract-full" style="display: none;"> The structural properties of packed soft-core particles provide a platform to understand the cross-pollinated physical concepts in solid-state- and soft-matter physics. Confined on spherical surface, the traditional differential geometry also dictates the overall defect properties in otherwise regular crystal lattices. Using molecular dynamics simulation of the Hertzian model as a tool, we report here the emergence of new types of disclination patterns: domain and counter-domain defects, when hexagonal and square patterns coexist. A new angle is presented to understand the incompatibility between tiling lattice shapes and the available spherical areal shapes, which is common in nature -- from molecular systems in biology to backbone construction in architectures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01270v1-abstract-full').style.display = 'none'; document.getElementById('2501.01270v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Authors' version of the article submitted to Nano Letters and accepted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.01050">arXiv:2501.01050</a> <span> [<a href="https://arxiv.org/pdf/2501.01050">pdf</a>, <a href="https://arxiv.org/format/2501.01050">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Spatial Correlation Unifies Nonequilibrium Response Theory for Arbitrary Markov Jump Processes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zheng%2C+J">Jiming Zheng</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zhiyue Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.01050v2-abstract-short" style="display: inline;"> Understanding how systems respond to external perturbations is a fundamental challenge in physics, particularly for non-equilibrium and non-stationary processes. The fluctuation-dissipation theorem provides a complete framework for near-equilibrium systems, and various bounds are recently reported for specific non-equilibrium regimes. Here, we present an exact response equality for arbitrary Marko… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01050v2-abstract-full').style.display = 'inline'; document.getElementById('2501.01050v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.01050v2-abstract-full" style="display: none;"> Understanding how systems respond to external perturbations is a fundamental challenge in physics, particularly for non-equilibrium and non-stationary processes. The fluctuation-dissipation theorem provides a complete framework for near-equilibrium systems, and various bounds are recently reported for specific non-equilibrium regimes. Here, we present an exact response equality for arbitrary Markov processes that decompose system response into spatial correlations of local dynamical events. This decomposition reveals that response properties are encoded in correlations between transitions and dwelling times across the network, providing a natural generalization of the fluctuation-dissipation theorem to generic non-equilibrium processes. Our theory unifies existing response bounds, extends them to time-dependent processes, and reveals fundamental monotonicity properties of the tightness of multi-parameter response inequalities. Beyond its theoretical significance, this framework enables efficient numerical evaluation of response properties from sampling unperturbed trajectory, offering significant advantages over traditional finite-difference approaches for estimating response properties of complex networks and biological systems far from equilibrium. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01050v2-abstract-full').style.display = 'none'; document.getElementById('2501.01050v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.14687">arXiv:2412.14687</a> <span> [<a href="https://arxiv.org/pdf/2412.14687">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Global track finding based on the Hough transform in the STCF detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhou%2C+H">Hang Zhou</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+K">Kexin Sun</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zhenna Lu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hao Li</a>, <a href="/search/physics?searchtype=author&query=Ai%2C+X">Xiaocong Ai</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jin Zhang</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+X">Xingtao Huang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jianbei Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.14687v1-abstract-short" style="display: inline;"> The proposed Super Tau-Charm Facility (STCF) is an electron-positron collider designed to operate in a center-of-mass energy range from 2 to 7 GeV. It provides a unique platform for physics research in the tau-charm energy region. To fulfill the physics goals of STCF, high tracking efficiency and good momentum resolution is required for charged particles with momenta from 50 MeV/c to 3.5 GeV/c. A… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.14687v1-abstract-full').style.display = 'inline'; document.getElementById('2412.14687v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.14687v1-abstract-full" style="display: none;"> The proposed Super Tau-Charm Facility (STCF) is an electron-positron collider designed to operate in a center-of-mass energy range from 2 to 7 GeV. It provides a unique platform for physics research in the tau-charm energy region. To fulfill the physics goals of STCF, high tracking efficiency and good momentum resolution is required for charged particles with momenta from 50 MeV/c to 3.5 GeV/c. A global track finding algorithm based on Hough transform has been developed and implemented in the STCF software framework to meet this requirement. The design of the algorithm and its performance with simulation are presented in this paper. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.14687v1-abstract-full').style.display = 'none'; document.getElementById('2412.14687v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.12557">arXiv:2412.12557</a> <span> [<a href="https://arxiv.org/pdf/2412.12557">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physrep.2024.10.008">10.1016/j.physrep.2024.10.008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultrafast demagnetization in ferromagnetic materials: Origins and progress </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xiaowen Chen</a>, <a href="/search/physics?searchtype=author&query=Adam%2C+R">Roman Adam</a>, <a href="/search/physics?searchtype=author&query=B%C3%BCrgler%2C+D+E">Daniel E. B眉rgler</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+F">Fangzhou Wang</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zhenyan Lu</a>, <a href="/search/physics?searchtype=author&query=Pan%2C+L">Lining Pan</a>, <a href="/search/physics?searchtype=author&query=Heidtfeld%2C+S">Sarah Heidtfeld</a>, <a href="/search/physics?searchtype=author&query=Greb%2C+C">Christian Greb</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+M">Meihong Liu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Q">Qingfang Liu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jianbo Wang</a>, <a href="/search/physics?searchtype=author&query=Schneider%2C+C+M">Claus M. Schneider</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+D">Derang Cao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.12557v1-abstract-short" style="display: inline;"> Since the discovery of ultrafast demagnetization in Ni thin films in 1996, laser-induced ultrafast spin dynamics have become a prominent research topic in the field of magnetism and spintronics. This development offers new possibilities for the advancement of spintronics and magnetic storage technology. The subject has drawn a substantial number of researchers, leading to a series of research ende… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12557v1-abstract-full').style.display = 'inline'; document.getElementById('2412.12557v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.12557v1-abstract-full" style="display: none;"> Since the discovery of ultrafast demagnetization in Ni thin films in 1996, laser-induced ultrafast spin dynamics have become a prominent research topic in the field of magnetism and spintronics. This development offers new possibilities for the advancement of spintronics and magnetic storage technology. The subject has drawn a substantial number of researchers, leading to a series of research endeavors. Various models have been proposed to elucidate the physical processes underlying laser-induced ultrafast spin dynamics in ferromagnetic materials. However, the potential origins of these processes across different material systems and the true contributions of these different origins remain challenging in the realm of ultrafast spin dynamics. This predicament also hinders the development of spintronic terahertz emitters. In this review, we initially introduce the different experimental methods used in laser-induced ultrafast spin dynamics. We then systematically explore the magnetization precession process and present seven models of ultrafast demagnetization in ferromagnetic materials. Subsequently, we discuss the physical processes and research status of four ultrafast demagnetization origins (including spin-flipping, spin transport, non-thermal electronic distribution, and laser-induced lattice strain). Since attosecond laser technique and antiferromagnetic materials exhibit promising applications in ultrahigh-frequency spintronics, we acknowledge the emerging studies used by attosecond pules and studies on ultrafast spin dynamics in antiferromagnets, noting the significant challenges that need to be addressed in these burgeoning field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12557v1-abstract-full').style.display = 'none'; document.getElementById('2412.12557v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09345">arXiv:2411.09345</a> <span> [<a href="https://arxiv.org/pdf/2411.09345">pdf</a>, <a href="https://arxiv.org/format/2411.09345">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> DarkSHINE Baseline Design Report: Physics Prospects and Detector Technologies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+J">Jing Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+J">Ji-Yuan Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+J">Jun-Feng Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xiang Chen</a>, <a href="/search/physics?searchtype=author&query=Fu%2C+C">Chang-Bo Fu</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+J">Jun Guo</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Y">Yi-Han Guo</a>, <a href="/search/physics?searchtype=author&query=Khaw%2C+K+S">Kim Siang Khaw</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Jia-Lin Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+L">Liang Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+S">Shu Li</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+Y">Yu-ming Lin</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+D">Dan-Ning Liu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+K">Kang Liu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+K">Kun Liu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Q">Qi-Bin Liu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zhi Liu</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Ze-Jia Lu</a>, <a href="/search/physics?searchtype=author&query=Lv%2C+M">Meng Lv</a>, <a href="/search/physics?searchtype=author&query=Song%2C+S">Si-Yuan Song</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+T">Tong Sun</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jian-Nan Tang</a>, <a href="/search/physics?searchtype=author&query=Wan%2C+W">Wei-Shi Wan</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+D">Dong Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xiao-Long Wang</a> , et al. (17 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09345v2-abstract-short" style="display: inline;"> DarkSHINE is a newly proposed fixed-target experiment initiative to search for the invisible decay of Dark Photon via missing energy/momentum signatures, based on the high repetition rate electron beam to be deployed/delivered by the Shanghai High repetition rate XFEL and Extreme light facility (SHINE). This report elaborates the baseline design of DarkSHINE experiment by introducing the physics g… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09345v2-abstract-full').style.display = 'inline'; document.getElementById('2411.09345v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09345v2-abstract-full" style="display: none;"> DarkSHINE is a newly proposed fixed-target experiment initiative to search for the invisible decay of Dark Photon via missing energy/momentum signatures, based on the high repetition rate electron beam to be deployed/delivered by the Shanghai High repetition rate XFEL and Extreme light facility (SHINE). This report elaborates the baseline design of DarkSHINE experiment by introducing the physics goals, experimental setups, details of each sub-detector system technical designs, signal and backgground modelings, expected search sensitivities and future prospects, which mark an important step towards the further prototyping and technical demonstrations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09345v2-abstract-full').style.display = 'none'; document.getElementById('2411.09345v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.00303">arXiv:2411.00303</a> <span> [<a href="https://arxiv.org/pdf/2411.00303">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Quasi-Phase-Matching Enabled by van der Waals Stacking </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tang%2C+Y">Yilin Tang</a>, <a href="/search/physics?searchtype=author&query=Sripathy%2C+K">Kabilan Sripathy</a>, <a href="/search/physics?searchtype=author&query=Qin%2C+H">Hao Qin</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zhuoyuan Lu</a>, <a href="/search/physics?searchtype=author&query=Guccione%2C+G">Giovanni Guccione</a>, <a href="/search/physics?searchtype=author&query=Janousek%2C+J">Jiri Janousek</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+Y">Yi Zhu</a>, <a href="/search/physics?searchtype=author&query=Hasan%2C+M+M">Md Mehedi Hasan</a>, <a href="/search/physics?searchtype=author&query=Iwasa%2C+Y">Yoshihiro Iwasa</a>, <a href="/search/physics?searchtype=author&query=Lam%2C+P+K">Ping Koy Lam</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Y">Yuerui Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.00303v1-abstract-short" style="display: inline;"> Quasi-phase matching (QPM) is a technique extensively utilized in nonlinear optics for enhancing the efficiency and stability of frequency conversion processes. However, the conventional QPM relies on periodically poled ferroelectric crystals, which are limited in availability. The 3R phase of molybdenum disulfide (3R-MoS2), a transition metal dichalcogenide (TMDc) with the broken inversion symmet… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00303v1-abstract-full').style.display = 'inline'; document.getElementById('2411.00303v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.00303v1-abstract-full" style="display: none;"> Quasi-phase matching (QPM) is a technique extensively utilized in nonlinear optics for enhancing the efficiency and stability of frequency conversion processes. However, the conventional QPM relies on periodically poled ferroelectric crystals, which are limited in availability. The 3R phase of molybdenum disulfide (3R-MoS2), a transition metal dichalcogenide (TMDc) with the broken inversion symmetry, stands out as a promising candidate for QPM, enabling efficient nonlinear process. Here, we experimentally demonstrate the QPM at nanoscale, utilizing van der Waals stacking of 3R-MoS2 layers with specific orientation to realize second harmonic generation (SHG) enhancement beyond the non QPM limit. We have also demonstrated enhanced spontaneous parametric down-conversion (SPDC) via QPM of 3R-MoS2 homo-structure, enabling more efficient generation of entangled photon pairs. The tunable capacity of 3R-MoS2 van der Waals stacking provides a platform for tuning phase-matching condition. This technique opens interesting possibilities for potential applications in nonlinear process and quantum technology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00303v1-abstract-full').style.display = 'none'; document.getElementById('2411.00303v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.23981">arXiv:2410.23981</a> <span> [<a href="https://arxiv.org/pdf/2410.23981">pdf</a>, <a href="https://arxiv.org/ps/2410.23981">ps</a>, <a href="https://arxiv.org/format/2410.23981">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Piecewise Field-Aligned Finite Element Method for Multi-Mode Nonlinear Particle Simulations in tokamak plasmas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zhixin Lu</a>, <a href="/search/physics?searchtype=author&query=Meng%2C+G">Guo Meng</a>, <a href="/search/physics?searchtype=author&query=Sonnendr%C3%BCcker%2C+E">Eric Sonnendr眉cker</a>, <a href="/search/physics?searchtype=author&query=Hatzky%2C+R">Roman Hatzky</a>, <a href="/search/physics?searchtype=author&query=Mishchenko%2C+A">Alexey Mishchenko</a>, <a href="/search/physics?searchtype=author&query=Zonca%2C+F">Fulvio Zonca</a>, <a href="/search/physics?searchtype=author&query=Lauber%2C+P">Philipp Lauber</a>, <a href="/search/physics?searchtype=author&query=Hoelzl%2C+M">Matthias Hoelzl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.23981v1-abstract-short" style="display: inline;"> This paper presents a novel approach for simulating plasma instabilities in tokamak plasmas using the piecewise field-aligned finite element method in combination with the particle-in-cell method. Our method traditionally aligns the computational grid but defines the basis functions in piecewise field-aligned coordinates to avoid grid deformation while naturally representing the field-aligned mode… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23981v1-abstract-full').style.display = 'inline'; document.getElementById('2410.23981v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.23981v1-abstract-full" style="display: none;"> This paper presents a novel approach for simulating plasma instabilities in tokamak plasmas using the piecewise field-aligned finite element method in combination with the particle-in-cell method. Our method traditionally aligns the computational grid but defines the basis functions in piecewise field-aligned coordinates to avoid grid deformation while naturally representing the field-aligned mode structures. This scheme is formulated and implemented numerically. It also applied to the unstructured triangular meshes in principle. We have conducted linear benchmark tests, which agree well with previous results and traditional schemes. Furthermore, multiple-$n$ simulations are also carried out as a proof of principle, demonstrating the efficiency of this scheme in nonlinear turbulence simulations within the framework of the finite element method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23981v1-abstract-full').style.display = 'none'; document.getElementById('2410.23981v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 10 figures, 20th edition of the European Fusion Theory Conference (EFTC 2023), 8th Asia-Pacific Conference on Plasma Physics(AAPPS-DPP2024)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.16791">arXiv:2410.16791</a> <span> [<a href="https://arxiv.org/pdf/2410.16791">pdf</a>, <a href="https://arxiv.org/format/2410.16791">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> $\textit{Ab initio}$ dynamical mean-field theory with natural orbitals renormalization group impurity solver: Formalism and applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jia-Ming Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jing-Xuan Wang</a>, <a href="/search/physics?searchtype=author&query=He%2C+R">Rong-Qiang He</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+L">Li Huang</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zhong-Yi Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.16791v1-abstract-short" style="display: inline;"> In this study, we introduce a novel implementation of density functional theory integrated with single-site dynamical mean-field theory to investigate the complex properties of strongly correlated materials. This comprehensive first-principles many-body computational toolkit, termed $\texttt{Zen}$, utilizes the Vienna $\textit{ab initio}$ simulation package and the $\texttt{Quantum ESPRESSO}$ code… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16791v1-abstract-full').style.display = 'inline'; document.getElementById('2410.16791v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.16791v1-abstract-full" style="display: none;"> In this study, we introduce a novel implementation of density functional theory integrated with single-site dynamical mean-field theory to investigate the complex properties of strongly correlated materials. This comprehensive first-principles many-body computational toolkit, termed $\texttt{Zen}$, utilizes the Vienna $\textit{ab initio}$ simulation package and the $\texttt{Quantum ESPRESSO}$ code to perform density functional theory calculations and generate band structures for realistic materials. The challenges associated with correlated electron systems are addressed through two distinct yet complementary quantum impurity solvers: the natural orbitals renormalization group solver for zero temperature and the hybridization expansion continuous-time quantum Monte Carlo solver for finite temperature. Additionally, this newly developed toolkit incorporates several valuable post-processing tools, such as $\texttt{ACFlow}$, which employs the maximum entropy method and the stochastic pole expansion method for the analytic continuation of Matsubara Green's functions and self-energy functions. To validate the performance of this toolkit, we examine three representative cases: the correlated metal SrVO$_{3}$, the nickel-based unconventional superconductor La$_{3}$Ni$_{2}$O$_{7}$, and the wide-gap Mott insulator MnO. The results obtained demonstrate strong agreement with experimental findings and previously available theoretical results. Notably, we successfully elucidate the quasiparticle peak and band renormalization in SrVO$_{3}$, the dominance of Hund correlation in La$_{3}$Ni$_{2}$O$_{7}$, and the pressure-driven insulator-metal transition as well as the high-spin to low-spin transition in MnO. These findings suggest that $\texttt{Zen}$ is proficient in accurately describing the electronic structures of $d$-electron correlated materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16791v1-abstract-full').style.display = 'none'; document.getElementById('2410.16791v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15988">arXiv:2410.15988</a> <span> [<a href="https://arxiv.org/pdf/2410.15988">pdf</a>, <a href="https://arxiv.org/format/2410.15988">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Synergy of turbulence and thermo-diffusive effects on the intermittent boundary-layer flashback of swirling flames </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+S">Shiming Zhang</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zhen Lu</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+Y">Yue Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15988v1-abstract-short" style="display: inline;"> We simulated the intermittent boundary-layer flashback (BLF) of hydrogen-enriched swirling flames using large-eddy simulation (LES) with the flame-surface-density (FSD) method. Three cases of intermittent BLF, characterized by periodic flame entry and exit of the mixing tube, are presented. The intermittent BLF characteristics varied with the hydrogen volume fraction. Small flame bulges entered an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15988v1-abstract-full').style.display = 'inline'; document.getElementById('2410.15988v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15988v1-abstract-full" style="display: none;"> We simulated the intermittent boundary-layer flashback (BLF) of hydrogen-enriched swirling flames using large-eddy simulation (LES) with the flame-surface-density (FSD) method. Three cases of intermittent BLF, characterized by periodic flame entry and exit of the mixing tube, are presented. The intermittent BLF characteristics varied with the hydrogen volume fraction. Small flame bulges entered and exited the mixing tube in low hydrogen-enrichment cases. The duration of intermittent BLF events and BLF depth increased as the hydrogen content increased. Meanwhile, a large flame tongue penetrating deeply upstream characterised the highest hydrogen-enrichment case.The mean BLF peak depths and standard deviations obtained through simulations aligned well with experimental data for low and moderate hydrogen-enrichment cases. However, LES-FSD underestimated the average BLF peak depth for the highest hydrogen-enrichment case.Analysis of the flow-flame interaction revealed two mechanisms underlying the intermittent BLF phenomena. The flame bulges' oscillation near the outlet is caused by the reverse flow induced by the recirculation zone. At the same time, the deep intermittent BLF occurrs due to the boundary layer separation induced by the large turbulent burning velocity, resulting from the synergy of turbulence and thermo-diffusive effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15988v1-abstract-full').style.display = 'none'; document.getElementById('2410.15988v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.09331">arXiv:2410.09331</a> <span> [<a href="https://arxiv.org/pdf/2410.09331">pdf</a>, <a href="https://arxiv.org/ps/2410.09331">ps</a>, <a href="https://arxiv.org/format/2410.09331">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Minutes-scale Schr{枚}dinger-cat state of spin-5/2 atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yang%2C+Y+A">Y. A. Yang</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+W+-">W. -T. Luo</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J+-">J. -L. Zhang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+S+-">S. -Z. Wang</a>, <a href="/search/physics?searchtype=author&query=Zou%2C+C">Chang-Ling Zou</a>, <a href="/search/physics?searchtype=author&query=Xia%2C+T">T. Xia</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z+-">Z. -T. Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.09331v1-abstract-short" style="display: inline;"> Quantum metrology with nonclassical states offers a promising route to improved precision in physical measurements. The quantum effects of Schr{枚}dinger-cat superpositions or entanglements allow measurement uncertainties to reach below the standard quantum limit. However, the challenge in keeping a long coherence time for such nonclassical states often prevents full exploitation of the quantum adv… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09331v1-abstract-full').style.display = 'inline'; document.getElementById('2410.09331v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.09331v1-abstract-full" style="display: none;"> Quantum metrology with nonclassical states offers a promising route to improved precision in physical measurements. The quantum effects of Schr{枚}dinger-cat superpositions or entanglements allow measurement uncertainties to reach below the standard quantum limit. However, the challenge in keeping a long coherence time for such nonclassical states often prevents full exploitation of the quantum advantage in metrology. Here we demonstrate a long-lived Schr{枚}dinger-cat state of optically trapped $^{173}$Yb (\textit{I}\ =\ 5/2) atoms. The cat state, a superposition of two oppositely-directed and furthest-apart spin states, is generated by a non-linear spin rotation. Protected in a decoherence-free subspace against inhomogeneous light shifts of an optical lattice, the cat state achieves a coherence time of $1.4(1)\times 10^3$ s. A magnetic field is measured with Ramsey interferometry, demonstrating a scheme of Heisenberg-limited metrology for atomic magnetometry, quantum information processing, and searching for new physics beyond the Standard Model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09331v1-abstract-full').style.display = 'none'; document.getElementById('2410.09331v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06361">arXiv:2410.06361</a> <span> [<a href="https://arxiv.org/pdf/2410.06361">pdf</a>, <a href="https://arxiv.org/format/2410.06361">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> </div> <p class="title is-5 mathjax"> Hierarchy of chaotic dynamics in random modular networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ku%C5%9Bmierz%2C+%C5%81">艁ukasz Ku艣mierz</a>, <a href="/search/physics?searchtype=author&query=Pereira-Obilinovic%2C+U">Ulises Pereira-Obilinovic</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zhixin Lu</a>, <a href="/search/physics?searchtype=author&query=Mastrovito%2C+D">Dana Mastrovito</a>, <a href="/search/physics?searchtype=author&query=Mihalas%2C+S">Stefan Mihalas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06361v1-abstract-short" style="display: inline;"> We introduce a model of randomly connected neural populations and study its dynamics by means of the dynamical mean-field theory and simulations. Our analysis uncovers a rich phase diagram, featuring high- and low-dimensional chaotic phases, separated by a crossover region characterized by low values of the maximal Lyapunov exponent and participation ratio dimension, but with high and rapidly chan… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06361v1-abstract-full').style.display = 'inline'; document.getElementById('2410.06361v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06361v1-abstract-full" style="display: none;"> We introduce a model of randomly connected neural populations and study its dynamics by means of the dynamical mean-field theory and simulations. Our analysis uncovers a rich phase diagram, featuring high- and low-dimensional chaotic phases, separated by a crossover region characterized by low values of the maximal Lyapunov exponent and participation ratio dimension, but with high and rapidly changing values of the Lyapunov dimension. Counterintuitively, chaos can be attenuated by either adding noise to strongly modular connectivity or by introducing modularity into random connectivity. Extending the model to include a multilevel, hierarchical connectivity reveals that a loose balance between activities across levels drives the system towards the edge of chaos. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06361v1-abstract-full').style.display = 'none'; document.getElementById('2410.06361v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.03928">arXiv:2410.03928</a> <span> [<a href="https://arxiv.org/pdf/2410.03928">pdf</a>, <a href="https://arxiv.org/ps/2410.03928">ps</a>, <a href="https://arxiv.org/format/2410.03928">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Gyrokinetic Electromagnetic Particle Simulations in Triangular Meshes with C1 Finite Elements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zhixin Lu</a>, <a href="/search/physics?searchtype=author&query=Meng%2C+G">Guo Meng</a>, <a href="/search/physics?searchtype=author&query=Hatzky%2C+R">Roman Hatzky</a>, <a href="/search/physics?searchtype=author&query=Sonnendr%C3%BCcker%2C+E">Eric Sonnendr眉cker</a>, <a href="/search/physics?searchtype=author&query=Mishchenko%2C+A">Alexey Mishchenko</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+J">Jin Chen</a>, <a href="/search/physics?searchtype=author&query=Lauber%2C+P">Philipp Lauber</a>, <a href="/search/physics?searchtype=author&query=Zonca%2C+F">Fulvio Zonca</a>, <a href="/search/physics?searchtype=author&query=Hoelzl%2C+M">Matthias Hoelzl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.03928v1-abstract-short" style="display: inline;"> The triangular mesh-based gyrokinetic scheme enables comprehensive axis-to-edge studies across the entire plasma volume. Our approach employs triangular finite elements with first-derivative continuity (C1), building on previous work to facilitate gyrokinetic simulations. Additionally, we have adopted the mixed variable/pullback scheme for gyrokinetic electromagnetic particle simulations. The filt… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03928v1-abstract-full').style.display = 'inline'; document.getElementById('2410.03928v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.03928v1-abstract-full" style="display: none;"> The triangular mesh-based gyrokinetic scheme enables comprehensive axis-to-edge studies across the entire plasma volume. Our approach employs triangular finite elements with first-derivative continuity (C1), building on previous work to facilitate gyrokinetic simulations. Additionally, we have adopted the mixed variable/pullback scheme for gyrokinetic electromagnetic particle simulations. The filter-free treatment in the poloidal cross-section with triangular meshes introduces unique features and challenges compared to previous treatments using structured meshes. Our implementation has been validated through benchmarks using ITPA-TAE (Toroidicity-induced Alfv茅n Eigenmode) parameters, showing its capability in moderate to small electron skin depth regimes. Additional examinations using experimental parameters confirm its applicability to realistic plasma conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03928v1-abstract-full').style.display = 'none'; document.getElementById('2410.03928v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 9 figures. Joint Varenna-Lausanne International Workshop on Theory of Fusion Plasmas. Submitted to Plasma Physics and Controlled Fusion (2024)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.19803">arXiv:2409.19803</a> <span> [<a href="https://arxiv.org/pdf/2409.19803">pdf</a>, <a href="https://arxiv.org/format/2409.19803">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Single-molecule Automata: Harnessing Kinetic-Thermodynamic Discrepancy for Temporal Pattern Recognition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+Z">Zhongmin Zhang</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zhiyue Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.19803v1-abstract-short" style="display: inline;"> Molecular-scale computation is crucial for smart materials and nanoscale devices, yet creating single-molecule systems capable of complex computations remains challenging. We present a theoretical framework for a single-molecule computer that performs temporal pattern recognition and complex information processing. Our approach introduces the concept of an energy seascape, extending traditional en… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19803v1-abstract-full').style.display = 'inline'; document.getElementById('2409.19803v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.19803v1-abstract-full" style="display: none;"> Molecular-scale computation is crucial for smart materials and nanoscale devices, yet creating single-molecule systems capable of complex computations remains challenging. We present a theoretical framework for a single-molecule computer that performs temporal pattern recognition and complex information processing. Our approach introduces the concept of an energy seascape, extending traditional energy landscapes by incorporating control parameter degrees of freedom. By engineering a kinetic-thermodynamic discrepancy in folding dynamics, we demonstrate that a linear polymer with $N$ binary-state foldable units can function as a deterministic finite automaton, processing $2^N$ configurations. The molecule's dominant configuration evolves deterministically in response to mechanical signals, enabling recognition of complex temporal patterns. This design allows complete state controllability through non-equilibrium driving protocols. Our model opens avenues for molecular-scale computation with applications in biosensing, smart drug delivery, and adaptive materials. We discuss potential experimental realizations using DNA nanotechnology. This work bridges the gap between information processing devices and stochastic molecular systems, paving the way for sophisticated molecular computers rivaling biological systems in complexity and adaptability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19803v1-abstract-full').style.display = 'none'; document.getElementById('2409.19803v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.08065">arXiv:2409.08065</a> <span> [<a href="https://arxiv.org/pdf/2409.08065">pdf</a>, <a href="https://arxiv.org/format/2409.08065">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> InvDesFlow: An AI search engine to explore possible high-temperature superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Han%2C+X">Xiao-Qi Han</a>, <a href="/search/physics?searchtype=author&query=Ouyang%2C+Z">Zhenfeng Ouyang</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+P">Peng-Jie Guo</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+H">Hao Sun</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+Z">Ze-Feng Gao</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zhong-Yi Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.08065v2-abstract-short" style="display: inline;"> The discovery of new superconducting materials, particularly those exhibiting high critical temperature ($T_c$), has been a vibrant area of study within the field of condensed matter physics. Conventional approaches primarily rely on physical intuition to search for potential superconductors within the existing databases. However, the known materials only scratch the surface of the extensive array… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08065v2-abstract-full').style.display = 'inline'; document.getElementById('2409.08065v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.08065v2-abstract-full" style="display: none;"> The discovery of new superconducting materials, particularly those exhibiting high critical temperature ($T_c$), has been a vibrant area of study within the field of condensed matter physics. Conventional approaches primarily rely on physical intuition to search for potential superconductors within the existing databases. However, the known materials only scratch the surface of the extensive array of possibilities within the realm of materials. Here, we develop InvDesFlow, an AI search engine that integrates deep model pre-training and fine-tuning techniques, diffusion models, and physics-based approaches (e.g., first-principles electronic structure calculation) for the discovery of high-$T_c$ superconductors. Utilizing InvDesFlow, we have obtained 74 dynamically stable materials with critical temperatures predicted by the AI model to be $T_c \geq$ 15 K based on a very small set of samples. Notably, these materials are not contained in any existing dataset. Furthermore, we analyze trends in our dataset and individual materials including B$_4$CN$_3$ (at 5 GPa) and B$_5$CN$_2$ (at ambient pressure) whose $T_c$s are 24.08 K and 15.93 K, respectively. We demonstrate that AI technique can discover a set of new high-$T_c$ superconductors, outline its potential for accelerating discovery of the materials with targeted properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08065v2-abstract-full').style.display = 'none'; document.getElementById('2409.08065v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 17 figures, 6 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.12497">arXiv:2408.12497</a> <span> [<a href="https://arxiv.org/pdf/2408.12497">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Long-Propagating Ghost Phonon Polaritons Enabled by Selective Mode Excitation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Suriyage%2C+M+P">Manuka P. Suriyage</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+Q">Qingyi Zhou</a>, <a href="/search/physics?searchtype=author&query=Qin%2C+H">Hao Qin</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+X">Xueqian Sun</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zhuoyuan Lu</a>, <a href="/search/physics?searchtype=author&query=Maier%2C+S+A">Stefan A. Maier</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+Z">Zongfu Yu</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Y">Yuerui Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.12497v2-abstract-short" style="display: inline;"> The precise control of phonon polaritons(PhPs) is essential for advancements in nanophotonic applications like on-chip optical communication and quantum information processing. Ghost hyperbolic phonon polaritons (g-HPs), which have been recently discovered, feature in-plane hyperbolic dispersion and oblique wavefronts, enabling long-range propagation. Despite their potential, controlling the direc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12497v2-abstract-full').style.display = 'inline'; document.getElementById('2408.12497v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.12497v2-abstract-full" style="display: none;"> The precise control of phonon polaritons(PhPs) is essential for advancements in nanophotonic applications like on-chip optical communication and quantum information processing. Ghost hyperbolic phonon polaritons (g-HPs), which have been recently discovered, feature in-plane hyperbolic dispersion and oblique wavefronts, enabling long-range propagation. Despite their potential, controlling the directionality and selective excitation of g-HPs remains challenging. Our research demonstrates that modifying the shape of the launching micro/nano antenna can achieve this control. Using an asymmetric triangular gold antenna on a calcite crystal surface, we achieve highly directional g-HP excitation by selectively targeting specific polariton modes. Additionally, the mode of g-HPs can be adjusted by changing the excitation wavelength or rotating the antenna. Remarkably, our near-field imaging experiments show g-HP propagation over distances exceeding 35 micrometers, more than twice the length reported in previous studies. This work merges g-HP theory with structural engineering, enhancing the control over g-HPs and paving the way for innovative applications in mid-IR optoelectronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12497v2-abstract-full').style.display = 'none'; document.getElementById('2408.12497v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.09323">arXiv:2408.09323</a> <span> [<a href="https://arxiv.org/pdf/2408.09323">pdf</a>, <a href="https://arxiv.org/format/2408.09323">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Squeezed Light via Exciton-Phonon Cavity QED </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zuo%2C+X">Xuan Zuo</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zi-Xu Lu</a>, <a href="/search/physics?searchtype=author&query=Fan%2C+Z">Zhi-Yuan Fan</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Jie Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.09323v1-abstract-short" style="display: inline;"> Squeezed light is a particularly useful quantum resource, which finds broad applications in quantum information processing, quantum metrology and sensing, and biological measurements. It has been successfully generated in various physical systems. Here we introduce a new mechanism and system to produce squeezed light using an exciton-phonon cavity-QED system. Specifically, we adopt a semiconductor… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09323v1-abstract-full').style.display = 'inline'; document.getElementById('2408.09323v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.09323v1-abstract-full" style="display: none;"> Squeezed light is a particularly useful quantum resource, which finds broad applications in quantum information processing, quantum metrology and sensing, and biological measurements. It has been successfully generated in various physical systems. Here we introduce a new mechanism and system to produce squeezed light using an exciton-phonon cavity-QED system. Specifically, we adopt a semiconductor microcavity embedded with a quantum well, which supports both linear and nonlinear interactions among excitons, phonons, and cavity photons. We show that the strong exciton-phonon nonlinear interaction can induce a quadrature-squeezed cavity output field, and reveal an important role of the exciton-photon coupling in engineering the squeezing spectrum and improving the robustness of the squeezing against thermal noise. Our results indicate that room-temperature squeezing of light is possible for materials with high exciton binding energy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09323v1-abstract-full').style.display = 'none'; document.getElementById('2408.09323v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.15242">arXiv:2407.15242</a> <span> [<a href="https://arxiv.org/pdf/2407.15242">pdf</a>, <a href="https://arxiv.org/format/2407.15242">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Low-energy inter-band Kondo bound states in orbital-selective Mott phases </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jia-Ming Wang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Yin Chen</a>, <a href="/search/physics?searchtype=author&query=Tian%2C+Y">Yi-Heng Tian</a>, <a href="/search/physics?searchtype=author&query=He%2C+R">Rong-Qiang He</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zhong-Yi Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.15242v1-abstract-short" style="display: inline;"> Low-energy excitations may manifest intricate behaviors of correlated electron systems and provide essential insights into the dynamics of quantum states and phase transitions. We study a two-orbital Hubbard model featuring the so-called holon-doublon low-energy excitations in the Mott insulating narrow band in the orbital-selective Mott phase (OSMP). We employ an improved dynamical mean-field the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15242v1-abstract-full').style.display = 'inline'; document.getElementById('2407.15242v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.15242v1-abstract-full" style="display: none;"> Low-energy excitations may manifest intricate behaviors of correlated electron systems and provide essential insights into the dynamics of quantum states and phase transitions. We study a two-orbital Hubbard model featuring the so-called holon-doublon low-energy excitations in the Mott insulating narrow band in the orbital-selective Mott phase (OSMP). We employ an improved dynamical mean-field theory (DMFT) technique to calculate the spectral functions at zero temperature. We show that the holon-doublon bound state is not the sole component of the low-energy excitations. Instead, it should be a bound state composed of a Kondo-like state in the wide band and a doublon in the narrow band, named inter-band Kondo-like (IBK) bound states. Notably, as the bandwidths of the two bands approach each other, we find anomalous IBK bound-state excitations in the metallic {\em wide} band. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15242v1-abstract-full').style.display = 'none'; document.getElementById('2407.15242v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.13737">arXiv:2407.13737</a> <span> [<a href="https://arxiv.org/pdf/2407.13737">pdf</a>, <a href="https://arxiv.org/format/2407.13737">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.235119">10.1103/PhysRevB.110.235119 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-Fermi liquid and antiferromagnetic correlations with hole doping in the bilayer two-orbital Hubbard model of La$_3$Ni$_2$O$_7$ at zero temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Yin Chen</a>, <a href="/search/physics?searchtype=author&query=Tian%2C+Y">Yi-Heng Tian</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jia-Ming Wang</a>, <a href="/search/physics?searchtype=author&query=He%2C+R">Rong-Qiang He</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zhong-Yi Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.13737v1-abstract-short" style="display: inline;"> High-$T_c$ superconductivity (SC) was recently found in the bilayer material La$_3$Ni$_2$O$_7$ (La327) under high pressures. We study the bilayer two-orbital Hubbard model derived from the band structure of the La327. The model is solved by cluster dynamical mean-field theory (CDMFT) with natural orbitals renormalization group (NORG) as impurity solver at zero temperature, considering only normal… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13737v1-abstract-full').style.display = 'inline'; document.getElementById('2407.13737v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.13737v1-abstract-full" style="display: none;"> High-$T_c$ superconductivity (SC) was recently found in the bilayer material La$_3$Ni$_2$O$_7$ (La327) under high pressures. We study the bilayer two-orbital Hubbard model derived from the band structure of the La327. The model is solved by cluster dynamical mean-field theory (CDMFT) with natural orbitals renormalization group (NORG) as impurity solver at zero temperature, considering only normal states. With hole doping, we have observed sequentially the Mott insulator (Mott), pseudogap (PG), non-Fermi liquid (NFL), and Fermi liquid (FL) phases, with quantum correlations decreasing. The ground state of the La327 is in the NFL phase with Hund spin correlation, which transmits the Ni-$3d_{z^2}$ ($z$) orbital inter-layer AFM correlation to the Ni-$3d_{x^2-y^2}$ orbitals. When the $蟽$-bonding state of the $z$ orbitals ($z+$) is no longer fully filled, the inter-layer antiferromagnetic (AFM) correlations weaken rapidly. At low pressures, the fully filled $z+$ band supports a strong inter-layer AFM correlations, potentially favoring short-range spin density wave (SDW) and suppressing SC. Hole doping at low pressures may achieve a similar effect to high pressures, under which the $z+$ band intersects with the Fermi level, and consequently the spin correlations weaken remarkably, potentially suppressing the possible short-range SDW and favoring SC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13737v1-abstract-full').style.display = 'none'; document.getElementById('2407.13737v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 235119 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.08601">arXiv:2407.08601</a> <span> [<a href="https://arxiv.org/pdf/2407.08601">pdf</a>, <a href="https://arxiv.org/ps/2407.08601">ps</a>, <a href="https://arxiv.org/format/2407.08601">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> DFT+DMFT study of correlated electronic structure in the monolayer-trilayer phase of La$_3$Ni$_2$O$_7$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ouyang%2C+Z">Zhenfeng Ouyang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jia-Ming Wang</a>, <a href="/search/physics?searchtype=author&query=He%2C+R">Rong-Qiang He</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zhong-Yi Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.08601v2-abstract-short" style="display: inline;"> By preforming DFT+DMFT calculations, we systematically investigate the correlated electronic structure in the newly discovered monolayer-trilayer (ML-TL) phase of La$_3$Ni$_2$O$_7$ (1313-La327). Our calculated Fermi surfaces are in good agreement with the result of angle-resolved photoemission spectroscopy. We find that 1313-La327 is a multiorbital correlated metal. An unstable orbital-selective M… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08601v2-abstract-full').style.display = 'inline'; document.getElementById('2407.08601v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.08601v2-abstract-full" style="display: none;"> By preforming DFT+DMFT calculations, we systematically investigate the correlated electronic structure in the newly discovered monolayer-trilayer (ML-TL) phase of La$_3$Ni$_2$O$_7$ (1313-La327). Our calculated Fermi surfaces are in good agreement with the result of angle-resolved photoemission spectroscopy. We find that 1313-La327 is a multiorbital correlated metal. An unstable orbital-selective Mott behavior is found in ML. The ML Ni-3$d_{z^2}$ orbital exhibits a Mott behavior, while the ML Ni-3$d_{x^2-y^2}$ orbital is metallic due to self-doping. Quasi-particle peaks appear at the Fermi level due to an interorbital hopping between the localized ML Ni-3$d_{z^2}$ and delocalized Ni-3$d_{x^2-y^2}$ orbitals. We also find a large static local spin susceptibility of ML Ni, suggesting that there is large spin fluctuation in 1313-La327. The TL Ni-$e_g$ orbitals possess similar electronic correlation to those in La$_4$Ni$_3$O$_{10}$. The $e_g$ orbitals of the outer-layer Ni in TL show non-Fermi liquid behaviors. Besides, large weight of high-spin states are found in TL-outer Ni and ML Ni, implying Hundness. Under 16 GPa, a Lifshitz transition is revealed by our calculations and a La-related band crosses the Fermi level. Our work provides a theoretical reference for studying other potential mixed-stacked nickelate superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08601v2-abstract-full').style.display = 'none'; document.getElementById('2407.08601v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures, 3 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.07651">arXiv:2407.07651</a> <span> [<a href="https://arxiv.org/pdf/2407.07651">pdf</a>, <a href="https://arxiv.org/format/2407.07651">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Study of the decay and production properties of $D_{s1}(2536)$ and $D_{s2}^*(2573)$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/physics?searchtype=author&query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/physics?searchtype=author&query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/physics?searchtype=author&query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/physics?searchtype=author&query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/physics?searchtype=author&query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/physics?searchtype=author&query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/physics?searchtype=author&query=An%2C+Q">Q. An</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+Y">Y. Bai</a>, <a href="/search/physics?searchtype=author&query=Bakina%2C+O">O. Bakina</a>, <a href="/search/physics?searchtype=author&query=Balossino%2C+I">I. Balossino</a>, <a href="/search/physics?searchtype=author&query=Ban%2C+Y">Y. Ban</a>, <a href="/search/physics?searchtype=author&query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/physics?searchtype=author&query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/physics?searchtype=author&query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/physics?searchtype=author&query=Berger%2C+N">N. Berger</a>, <a href="/search/physics?searchtype=author&query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/physics?searchtype=author&query=Bertani%2C+M">M. Bertani</a>, <a href="/search/physics?searchtype=author&query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/physics?searchtype=author&query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/physics?searchtype=author&query=Bianco%2C+E">E. Bianco</a>, <a href="/search/physics?searchtype=author&query=Bortone%2C+A">A. Bortone</a>, <a href="/search/physics?searchtype=author&query=Boyko%2C+I">I. Boyko</a>, <a href="/search/physics?searchtype=author&query=Briere%2C+R+A">R. A. Briere</a>, <a href="/search/physics?searchtype=author&query=Brueggemann%2C+A">A. Brueggemann</a> , et al. (645 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.07651v1-abstract-short" style="display: inline;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'inline'; document.getElementById('2407.07651v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.07651v1-abstract-full" style="display: none;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be $(35.9\pm 4.8\pm 3.5)\%$ and $(37.4\pm 3.1\pm 4.6)\%$, respectively. The measurements are in tension with predictions based on the assumption that the $D_{s1}(2536)$ and $D_{s2}^*(2573)$ are dominated by a bare $c\bar{s}$ component. The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ cross sections are measured, and a resonant structure at around 4.6~GeV with a width of 50~MeV is observed for the first time with a statistical significance of $15蟽$ in the $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ process. It could be the $Y(4626)$ found by the Belle collaboration in the $D_s^+D_{s1}(2536)^{-}$ final state, since they have similar masses and widths. There is also evidence for a structure at around 4.75~GeV in both processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'none'; document.getElementById('2407.07651v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.06067">arXiv:2407.06067</a> <span> [<a href="https://arxiv.org/pdf/2407.06067">pdf</a>, <a href="https://arxiv.org/format/2407.06067">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Faraday laser pumped cesium beam clock </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shi%2C+H">Hangbo Shi</a>, <a href="/search/physics?searchtype=author&query=Qin%2C+X">Xiaomin Qin</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+H">Haijun Chen</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+Y">Yufei Yan</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Ziqi Lu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zhiyang Wang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zijie Liu</a>, <a href="/search/physics?searchtype=author&query=Guan%2C+X">Xiaolei Guan</a>, <a href="/search/physics?searchtype=author&query=Wei%2C+Q">Qiang Wei</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+T">Tiantian Shi</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+J">Jingbiao Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.06067v2-abstract-short" style="display: inline;"> We realize a high-performance compact optically pumped cesium beam clock using Faraday laser simultaneously as pumping and detection lasers. The Faraday laser, which is frequency stabilized by modulation transfer spectroscopy (MTS) technique, has narrow linewidth and superior frequency stability. Measured by optical heterodyne method between two identical systems, the linewidth of the Faraday lase… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.06067v2-abstract-full').style.display = 'inline'; document.getElementById('2407.06067v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.06067v2-abstract-full" style="display: none;"> We realize a high-performance compact optically pumped cesium beam clock using Faraday laser simultaneously as pumping and detection lasers. The Faraday laser, which is frequency stabilized by modulation transfer spectroscopy (MTS) technique, has narrow linewidth and superior frequency stability. Measured by optical heterodyne method between two identical systems, the linewidth of the Faraday laser is 2.5 kHz after MTS locking, and the fractional frequency stability of the Faraday laser is optimized to $1.8\times{10}^{-12}/\sqrt蟿$. Based on this high-performance Faraday laser, the cesium beam clock realizes a signal-to-noise ratio (SNR) in 1 Hz bandwidth of $39600$ when the cesium oven temperature is 130掳C. Frequency-compared with Hydrogen maser, the fractional frequency stability of the Faraday laser pumped cesium beam clock can reach $1.3\times{10}^{-12}/\sqrt蟿$ and drops to $1.4\times{10}^{-14}$ at 10000 s when the cesium oven temperature is 110掳C. %, which is the best reported result compared with other cesium beam clocks. This Faraday laser pumped cesium beam clock demonstrates its excellent performance, and its great potential in the fields of timekeeping, navigation, and communication. Meanwhile, the Faraday laser, as a high-performance optical frequency standard, can also contribute to the development of other applications in quantum metrology, precision measurement and atomic physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.06067v2-abstract-full').style.display = 'none'; document.getElementById('2407.06067v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.00735">arXiv:2407.00735</a> <span> [<a href="https://arxiv.org/pdf/2407.00735">pdf</a>, <a href="https://arxiv.org/format/2407.00735">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Generative prediction of flow field based on the diffusion model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hu%2C+J">Jiajun Hu</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zhen Lu</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+Y">Yue Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.00735v1-abstract-short" style="display: inline;"> We propose a geometry-to-flow diffusion model that utilizes the input of obstacle shape to predict a flow field past the obstacle. The model is based on a learnable Markov transition kernel to recover the data distribution from the Gaussian distribution. The Markov process is conditioned on the obstacle geometry, estimating the noise to be removed at each step, implemented via a U-Net. A cross-att… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00735v1-abstract-full').style.display = 'inline'; document.getElementById('2407.00735v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.00735v1-abstract-full" style="display: none;"> We propose a geometry-to-flow diffusion model that utilizes the input of obstacle shape to predict a flow field past the obstacle. The model is based on a learnable Markov transition kernel to recover the data distribution from the Gaussian distribution. The Markov process is conditioned on the obstacle geometry, estimating the noise to be removed at each step, implemented via a U-Net. A cross-attention mechanism incorporates the geometry as a prompt. We train the geometry-to-flow diffusion model using a dataset of flows past simple obstacles, including the circle, ellipse, rectangle, and triangle. For comparison, the CNN model is trained using the same dataset. Tests are carried out on flows past obstacles with simple and complex geometries, representing interpolation and extrapolation on the geometry condition, respectively. In the test set, challenging scenarios include a cross and characters `PKU'. Generated flow fields show that the geometry-to-flow diffusion model is superior to the CNN model in predicting instantaneous flow fields and handling complex geometries. Quantitative analysis of the model accuracy and divergence in the fields demonstrate the high robustness of the diffusion model, indicating that the diffusion model learns physical laws implicitly. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00735v1-abstract-full').style.display = 'none'; document.getElementById('2407.00735v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.09729">arXiv:2406.09729</a> <span> [<a href="https://arxiv.org/pdf/2406.09729">pdf</a>, <a href="https://arxiv.org/format/2406.09729">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.4c02765">10.1021/acs.nanolett.4c02765 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonlinear chiral metasurfaces based on structured van der Waals materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tonkaev%2C+P">Pavel Tonkaev</a>, <a href="/search/physics?searchtype=author&query=Toftul%2C+I">Ivan Toftul</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zhuoyuan Lu</a>, <a href="/search/physics?searchtype=author&query=Qiu%2C+S">Shuyao Qiu</a>, <a href="/search/physics?searchtype=author&query=Qin%2C+H">Hao Qin</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+W">Wenkai Yang</a>, <a href="/search/physics?searchtype=author&query=Koshelev%2C+K">Kirill Koshelev</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Y">Yuerui Lu</a>, <a href="/search/physics?searchtype=author&query=Kivshar%2C+Y">Yuri Kivshar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.09729v2-abstract-short" style="display: inline;"> Nonlinear chiral photonics explores nonlinear response of chiral structures, and it offers a pathway to novel optical functionalities not accessible through linear or achiral systems. Here we present the first application of nanostructured van der Waals materials to nonlinear chiral photonics. We demonstrate the three orders of magnitude enhancement of the third-harmonic generation from hBN metasu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.09729v2-abstract-full').style.display = 'inline'; document.getElementById('2406.09729v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.09729v2-abstract-full" style="display: none;"> Nonlinear chiral photonics explores nonlinear response of chiral structures, and it offers a pathway to novel optical functionalities not accessible through linear or achiral systems. Here we present the first application of nanostructured van der Waals materials to nonlinear chiral photonics. We demonstrate the three orders of magnitude enhancement of the third-harmonic generation from hBN metasurfaces driven by quasi-bound states in the continuum and accompanied by strong nonlinear circular dichroism at the resonances. This novel platform for chiral metaphotonics can be employed for achieving large circular dichroism combined with high-efficiency harmonic generation in a broad frequency range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.09729v2-abstract-full').style.display = 'none'; document.getElementById('2406.09729v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.04304">arXiv:2406.04304</a> <span> [<a href="https://arxiv.org/pdf/2406.04304">pdf</a>, <a href="https://arxiv.org/ps/2406.04304">ps</a>, <a href="https://arxiv.org/format/2406.04304">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PRXLife.2.043019">10.1103/PRXLife.2.043019 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Information Benchmark for Biological Sensors Beyond Steady States -- Mpemba-like sensory withdrawal effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Pagare%2C+A">Asawari Pagare</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zhiyue Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.04304v1-abstract-short" style="display: inline;"> Biological sensors rely on the temporal dynamics of ligand concentration for signaling. The sensory performance is bounded by the distinguishability between the sensory state transition dynamics under different environmental protocols. This work presents a comprehensive theory to characterize arbitrary transient sensory dynamics of biological sensors. Here the sensory performance is quantified by… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04304v1-abstract-full').style.display = 'inline'; document.getElementById('2406.04304v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.04304v1-abstract-full" style="display: none;"> Biological sensors rely on the temporal dynamics of ligand concentration for signaling. The sensory performance is bounded by the distinguishability between the sensory state transition dynamics under different environmental protocols. This work presents a comprehensive theory to characterize arbitrary transient sensory dynamics of biological sensors. Here the sensory performance is quantified by the Kullback-Leibler (KL) divergence between the probability distributions of the sensor's stochastic paths. We introduce a novel benchmark to assess a sensor's transient sensory performance arbitrarily far from equilibrium. We identify a counter-intuitive phenomenon in multi-state sensors: while an initial exposure to high ligand concentration may hinder a sensor's sensitivity towards a future concentration up-shift, certain sensors may show a boost in sensitivity if the initial high concentration exposure is followed by a transient resetting at a low concentration environment. The boosted performance exceeds that of a sensor starting from an initially low concentration environment. This effect, reminiscent of a drug withdrawal effect, can be explained by the Markovian dynamics of the multi-state sensor, similar to the Markovian Mpemba effect. Moreover, an exhaustive machine learning study of 4-state sensors reveals a tight connection between the sensor's performance and the structure of the Markovian graph of its states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04304v1-abstract-full').style.display = 'none'; document.getElementById('2406.04304v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.01222">arXiv:2406.01222</a> <span> [<a href="https://arxiv.org/pdf/2406.01222">pdf</a>, <a href="https://arxiv.org/format/2406.01222">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Symmetry enforced solution of the many-body Schr枚dinger equation with deep neural network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+Z">Zhe Li</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zixiang Lu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+R">Ruichen Li</a>, <a href="/search/physics?searchtype=author&query=Wen%2C+X">Xuelan Wen</a>, <a href="/search/physics?searchtype=author&query=Li%2C+X">Xiang Li</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+L">Liwei Wang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+J">Ji Chen</a>, <a href="/search/physics?searchtype=author&query=Ren%2C+W">Weiluo Ren</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.01222v1-abstract-short" style="display: inline;"> The integration of deep neural networks with the Variational Monte Carlo (VMC) method has marked a significant advancement in solving the Schr枚dinger equation. In this work, we enforce spin symmetry in the neural network-based VMC calculation with modified optimization target. Our method is designed to solve for the ground state and multiple excited states with target spin symmetry at a low comput… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01222v1-abstract-full').style.display = 'inline'; document.getElementById('2406.01222v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.01222v1-abstract-full" style="display: none;"> The integration of deep neural networks with the Variational Monte Carlo (VMC) method has marked a significant advancement in solving the Schr枚dinger equation. In this work, we enforce spin symmetry in the neural network-based VMC calculation with modified optimization target. Our method is designed to solve for the ground state and multiple excited states with target spin symmetry at a low computational cost. It predicts accurate energies while maintaining the correct symmetry in strongly correlated systems, even in cases where different spin states are nearly degenerate. Our approach also excels at spin-gap calculations, including the singlet-triplet gap in biradical systems, which is of high interest in photochemistry. Overall, this work establishes a robust framework for efficiently calculating various quantum states with specific spin symmetry in correlated systems, paving the way for novel discoveries in quantum science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01222v1-abstract-full').style.display = 'none'; document.getElementById('2406.01222v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.10428">arXiv:2405.10428</a> <span> [<a href="https://arxiv.org/pdf/2405.10428">pdf</a>, <a href="https://arxiv.org/format/2405.10428">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Energetic particles transport in constants of motion space due to collisions in tokamak plasmas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Meng%2C+G">Guo Meng</a>, <a href="/search/physics?searchtype=author&query=Lauber%2C+P">Philipp Lauber</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zhixin Lu</a>, <a href="/search/physics?searchtype=author&query=Bergmann%2C+A">Andreas Bergmann</a>, <a href="/search/physics?searchtype=author&query=Schneider%2C+M">Mirelle Schneider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.10428v1-abstract-short" style="display: inline;"> The spatio-temporal evolution of the energetic particles in the transport time scale in tokamak plasmas is a key issue of the plasmas confinement, especially in burning plasmas. In order to include sources and sinks and collisional slowing down processes, a new solver, ATEP-3D was implemented to simulate the evolution of the EP distribution in the three-dimensional constants of motion (CoM) space.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.10428v1-abstract-full').style.display = 'inline'; document.getElementById('2405.10428v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.10428v1-abstract-full" style="display: none;"> The spatio-temporal evolution of the energetic particles in the transport time scale in tokamak plasmas is a key issue of the plasmas confinement, especially in burning plasmas. In order to include sources and sinks and collisional slowing down processes, a new solver, ATEP-3D was implemented to simulate the evolution of the EP distribution in the three-dimensional constants of motion (CoM) space. The Fokker-Planck collision operator represented in the CoM space is derived and numerically calculated. The collision coefficients are averaged over the unperturbed orbits to capture the fundamental properties of EPs. ATEP-3D is fully embedded in ITER IMAS framework and combined with the LIGKA/HAGIS codes. The finite volume method and the implicit Crank-Nicholson scheme are adopted due to their optimal numerical properties for transport time scale studies. ATEP-3D allows the analysis of the particle and power balance with the source and sink during the transport process to evaluate the EP confinement properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.10428v1-abstract-full').style.display = 'none'; document.getElementById('2405.10428v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 5 figures, 29th IAEA Fusion Energy Conf. 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.18748">arXiv:2404.18748</a> <span> [<a href="https://arxiv.org/pdf/2404.18748">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Unveiling the Impact of B-site Distribution on the Frustration Effect in Double Perovskite Ca2FeReO6 Using Monte Carlo Simulation and Molecular Field Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+G">Guoqing Liu</a>, <a href="/search/physics?searchtype=author&query=Mo%2C+J">Jiajun Mo</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zeyi Lu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Q">Qinghang Zhang</a>, <a href="/search/physics?searchtype=author&query=Xia%2C+P">Puyue Xia</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+M">Min Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.18748v1-abstract-short" style="display: inline;"> This work systematically investigates the spin glass behavior of the double perovskite Ca2FeReO6. Building on previous studies, we have developed a formula to quantify the ions distribution at B-site, incorporating the next-nearest neighbor interactions. Employing molecular field theory and Monte Carlo simulations, the influence of various arrangements of two B-site ions on frustration effects was… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18748v1-abstract-full').style.display = 'inline'; document.getElementById('2404.18748v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.18748v1-abstract-full" style="display: none;"> This work systematically investigates the spin glass behavior of the double perovskite Ca2FeReO6. Building on previous studies, we have developed a formula to quantify the ions distribution at B-site, incorporating the next-nearest neighbor interactions. Employing molecular field theory and Monte Carlo simulations, the influence of various arrangements of two B-site ions on frustration effects was uncovered. B-site is segmented into a and b-site, defining the number of nearest neighbors from Fea to Feb (and vice versa) as Zx(Zy). The significant frustration effects occur when 1<Zx(or Zy)<3, with Zx is not equal to Zy and also when Zx(or Zy) ~ 3 while Zy(or Zx) ~ 4. All of these are reflected in the variations observed in ground state magnetization and the Thermal Energy Step relation to Zx and Zy. The model proposed in this work can be applied to most B-site disordered in perovskite systems and even to other chemically disordered in frustrated systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18748v1-abstract-full').style.display = 'none'; document.getElementById('2404.18748v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.19989">arXiv:2403.19989</a> <span> [<a href="https://arxiv.org/pdf/2403.19989">pdf</a>, <a href="https://arxiv.org/format/2403.19989">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OPTICA.537655">10.1364/OPTICA.537655 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Integrated quantum communication network and vibration sensing in optical fibers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+S">Shuaishuai Liu</a>, <a href="/search/physics?searchtype=author&query=Tian%2C+Y">Yan Tian</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yu Zhang</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zhenguo Lu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xuyang Wang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yongmin Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.19989v2-abstract-short" style="display: inline;"> Communication and sensing technology play a significant role in various aspects of modern society. A seamless combination of the communication and the sensing systems is desired and have attracted great interests in recent years. Here, we propose and demonstrate a network architecture that integrating the downstream quantum access network (DQAN) and vibration sensing in optical fibers. By encoding… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.19989v2-abstract-full').style.display = 'inline'; document.getElementById('2403.19989v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.19989v2-abstract-full" style="display: none;"> Communication and sensing technology play a significant role in various aspects of modern society. A seamless combination of the communication and the sensing systems is desired and have attracted great interests in recent years. Here, we propose and demonstrate a network architecture that integrating the downstream quantum access network (DQAN) and vibration sensing in optical fibers. By encoding the key information of eight users simultaneously on the sidemode quantum states of a single laser source and successively separating them by a filter network, we achieve a secure and efficient DQAN with an average key rate of 1.88*10^4 bits per second over an 80 km single-mode fiber. Meanwhile, the vibration location with spatial resolution of 120 m, 24 m, and 8 m at vibration frequencies of 100 Hz, 1 kHz, and 10 kHz, respectively, is implemented with the existing infrastructure of the DQAN system. Our integrated architecture provides a viable and cost-effective solution for building a secure quantum communication sensor network, and open the way for expanding the functionality of quantum communication networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.19989v2-abstract-full').style.display = 'none'; document.getElementById('2403.19989v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optica 11, 1762-1772 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.17671">arXiv:2403.17671</a> <span> [<a href="https://arxiv.org/pdf/2403.17671">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.14.041039">10.1103/PhysRevX.14.041039 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Revealing the Microscopic Mechanism of Elementary Vortex Pinning in Superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+C">C. Chen</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Y. Liu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+Y+N">Y. N. Hu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+T+Z">T. Z. Zhang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+D">D. Li</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">X. Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+C+X">C. X. Wang</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z+Y+W">Z. Y. W. Lu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y+H">Y. H. Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Q+L">Q. L. Zhang</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+X+L">X. L. Dong</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+R">R. Wang</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+D+L">D. L. Feng</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+T">T. Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.17671v2-abstract-short" style="display: inline;"> Vortex pinning is a crucial factor that determines the critical current of practical superconductors and enables their diverse applications. However, the underlying mechanism of vortex pinning has long been elusive, lacking a clear microscopic explanation. Here using high-resolution scanning tunneling microscopy, we studied single vortex pinning induced by point defect in layered FeSe-based superc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.17671v2-abstract-full').style.display = 'inline'; document.getElementById('2403.17671v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.17671v2-abstract-full" style="display: none;"> Vortex pinning is a crucial factor that determines the critical current of practical superconductors and enables their diverse applications. However, the underlying mechanism of vortex pinning has long been elusive, lacking a clear microscopic explanation. Here using high-resolution scanning tunneling microscopy, we studied single vortex pinning induced by point defect in layered FeSe-based superconductors. We found the defect-vortex interaction drives low-energy vortex bound states away from EF, creating a "mini" gap that effectively lowers the system energy and enhances pinning. By measuring the local density-of-states, we directly obtained the elementary pinning energy and estimated the pinning force via the spatial gradient of pinning energy. The results are consistent with bulk critical current measurement. Furthermore, we show that a general microscopic quantum model incorporating defect-vortex interaction can naturally capture our observation. It suggests that the local pairing near pinned vortex core is actually enhanced compared to unpinned vortex, which is beyond the traditional understanding that non-superconducting regions pin vortices. Our study thus unveils a general microscopic mechanism of vortex pinning in superconductors, and provides insights for enhancing the critical current of practical superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.17671v2-abstract-full').style.display = 'none'; document.getElementById('2403.17671v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 18 figures, Supplementary Materials included. Comments are welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 14, 041039 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.10952">arXiv:2403.10952</a> <span> [<a href="https://arxiv.org/pdf/2403.10952">pdf</a>, <a href="https://arxiv.org/format/2403.10952">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Universal Non-equilibrium Response Theory Beyond Steady States </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zheng%2C+J">Jiming Zheng</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zhiyue Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.10952v4-abstract-short" style="display: inline;"> Fluctuation-dissipation relations elucidate the response of near-equilibrium systems to environmental changes, with recent advances extending response theory to non-equilibrium steady states. However, a general response theory for systems evolving far from steady states has remained elusive. Using information geometry of stochastic trajectory probabilities, we derive universal thermodynamic bounds… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.10952v4-abstract-full').style.display = 'inline'; document.getElementById('2403.10952v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.10952v4-abstract-full" style="display: none;"> Fluctuation-dissipation relations elucidate the response of near-equilibrium systems to environmental changes, with recent advances extending response theory to non-equilibrium steady states. However, a general response theory for systems evolving far from steady states has remained elusive. Using information geometry of stochastic trajectory probabilities, we derive universal thermodynamic bounds on both linear and nonlinear responses of Markov systems to environmental changes, applicable across all non-equilibrium regimes. This theory establishes a new paradigm in non-equilibrium statistical mechanics, offering a unified perspective on the responsiveness of non-stationary systems to external control and environmental changes. Applicable to systems ranging from biological sensory processes to engineered responsive materials, our framework paves the way for understanding and designing complex responsiveness in far-from-equilibrium stochastic systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.10952v4-abstract-full').style.display = 'none'; document.getElementById('2403.10952v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.18935">arXiv:2402.18935</a> <span> [<a href="https://arxiv.org/pdf/2402.18935">pdf</a>, <a href="https://arxiv.org/format/2402.18935">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41377-024-01638-4">10.1038/s41377-024-01638-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Miniaturized on-chip spectrometer enabled by electrochromic modulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tian%2C+M">Menghan Tian</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+B">Baolei Liu</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zelin Lu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yao Wang</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+Z">Ze Zheng</a>, <a href="/search/physics?searchtype=author&query=Song%2C+J">Jiaqi Song</a>, <a href="/search/physics?searchtype=author&query=Zhong%2C+X">Xiaolan Zhong</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+F">Fan Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.18935v1-abstract-short" style="display: inline;"> Miniaturized on-chip spectrometers with small footprints, lightweight, and low cost are in great demand for portable optical sensing, lab-on-chip systems, and so on. Such miniaturized spectrometers are usually based on engineered spectral response units and then reconstruct unknown spectra with algorithms. However, due to the limited footprints of computational on-chip spectrometers, the recovered… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18935v1-abstract-full').style.display = 'inline'; document.getElementById('2402.18935v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.18935v1-abstract-full" style="display: none;"> Miniaturized on-chip spectrometers with small footprints, lightweight, and low cost are in great demand for portable optical sensing, lab-on-chip systems, and so on. Such miniaturized spectrometers are usually based on engineered spectral response units and then reconstruct unknown spectra with algorithms. However, due to the limited footprints of computational on-chip spectrometers, the recovered spectral resolution is limited by the number of integrated spectral response units/filters. Thus, it is challenging to improve the spectral resolution without increasing the number of used filters. Here we present a computational on-chip spectrometer using electrochromic filters that can be electrochemically modulated to increase the efficient sampling number for higher spectral resolution. These filters are directly integrated on top of the photodetector pixels, and the spectral modulation of the filters results from redox reactions during the dual injection of ions and electrons into the electrochromic material. We experimentally demonstrate that the spectral resolution of the proposed spectrometer can be effectively improved as the number of applied voltages increases. The average difference of the peak wavelengths between the reconstructed and the reference spectra decreases from 14.48 nm to 2.57 nm. We also demonstrate the proposed spectrometer can be worked with only four or two filter units, assisted by electrochromic modulation. This strategy suggests a new way to enhance the performance of miniaturized spectrometers with tunable spectral filters for high resolution, low-cost, and portable spectral sensing, and would also inspire the exploration of other stimulus responses such as photochromic and force-chromic, etc, on computational spectrometers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18935v1-abstract-full').style.display = 'none'; document.getElementById('2402.18935v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Light: Science & Applications, 13, 278 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.17149">arXiv:2402.17149</a> <span> [<a href="https://arxiv.org/pdf/2402.17149">pdf</a>, <a href="https://arxiv.org/format/2402.17149">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Spatial Distribution of Inertial Particles in Turbulent Taylor-Couette Flow </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Jiang%2C+H">Hao Jiang</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zhi-ming Lu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+B">Bo-fu Wang</a>, <a href="/search/physics?searchtype=author&query=Meng%2C+X">Xiao-hui Meng</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+J">Jie Shen</a>, <a href="/search/physics?searchtype=author&query=Chong%2C+K+L">Kai Leong Chong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.17149v1-abstract-short" style="display: inline;"> This study investigates the spatial distribution of inertial particles in turbulent Taylor-Couette flow. Direct numerical simulations are performed using a one-way coupled Eulerian-Lagrangian approach, with a fixed inner wall Reynolds number of 2500 for the carrier flow, while the particle Stokes number varies from 0.034 to 1 for the dispersed phase. We first examine the issue of preferential conc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.17149v1-abstract-full').style.display = 'inline'; document.getElementById('2402.17149v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.17149v1-abstract-full" style="display: none;"> This study investigates the spatial distribution of inertial particles in turbulent Taylor-Couette flow. Direct numerical simulations are performed using a one-way coupled Eulerian-Lagrangian approach, with a fixed inner wall Reynolds number of 2500 for the carrier flow, while the particle Stokes number varies from 0.034 to 1 for the dispersed phase. We first examine the issue of preferential concentration of particles near the outer wall region. Employing two-dimensional (2D) Voronoi analysis, we observe a pronounced particle clustering with increasing $St$, particularly evident in regions of low fluid velocity. Additionally, we investigate the concentration balance equation, inspired by the work of johnson et al.(2020), to examine particle radial distribution. We discern the predominant sources of influence, namely biased sampling, turbophoresis, and centrifugal effects. Across all cases, centrifugal force emerges as the primary driver, causing particle migration towards the outer wall. Biased sampling predominantly affects smaller inertial particles, driving them towards the inner wall due to sampling within Taylor rolls with inward radial velocity. Conversely, turbophoresis primarily impacts larger inertial particles, inducing migration towards both walls where turbulent intensity is weaker compared to the bulk. With the revealed physics, our work provides a basis for predicting and controlling particle movement and distribution in industrial applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.17149v1-abstract-full').style.display = 'none'; document.getElementById('2402.17149v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.16011">arXiv:2402.16011</a> <span> [<a href="https://arxiv.org/pdf/2402.16011">pdf</a>, <a href="https://arxiv.org/format/2402.16011">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Ultrafast and precise distance measurement via real-time chirped pulse interferometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xu%2C+M">Mingyang Xu</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+H">Hanzhong Wu</a>, <a href="/search/physics?searchtype=author&query=Zhi%2C+J">Jiawen Zhi</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yang Liu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jie Zhang</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zehuang Lu</a>, <a href="/search/physics?searchtype=author&query=Shao%2C+C">Chenggang Shao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.16011v1-abstract-short" style="display: inline;"> Laser frequency combs, which are composed of a series of equally-spaced coherent frequency components, have triggered revolutionary progress for precision spectroscopy and optical metrology. Length/distance is of fundamental importance in both science and technology. In this work, we describe a ranging scheme based on chirped pulse interferometry. In contrast to the traditional spectral interferom… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.16011v1-abstract-full').style.display = 'inline'; document.getElementById('2402.16011v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.16011v1-abstract-full" style="display: none;"> Laser frequency combs, which are composed of a series of equally-spaced coherent frequency components, have triggered revolutionary progress for precision spectroscopy and optical metrology. Length/distance is of fundamental importance in both science and technology. In this work, we describe a ranging scheme based on chirped pulse interferometry. In contrast to the traditional spectral interferometry, the local oscillator is strongly chirped which is able to meet the measurement pulses at arbitrary distances, and therefore the dead zones can be removed. The distances can be precisely determined via two measurement steps based on time-of-flight method and synthetic wavelength interferometry, respectively. To overcome the speed limitation of the optical spectrum analyzer, the spectrograms are stretched and detected by a fast photodetector and oscilloscope, and consequently mapped into the time domain in real time. The experimental results indicate that the measurement uncertainty can be well within 2 $\upmu$m, compared with the reference distance meter. The Allan deviation can reach 0.4 $\upmu$m at averaging time of 4 ns, 25 nm at 1 $\upmu$s, and can achieve 2 nm at 100 $\upmu$s averaging time. We also measure a spinning disk with grooves of different depths to verify the measurement speed, and the results show that the grooves with about 150 m/s line speed can be clearly captured. Our method provides a unique combination of non-dead zones, ultrafast measurement speed, high precision and accuracy, large ambiguity range, and with only one single comb source. This system could offer a powerful solution for the field measurements in practical applications in future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.16011v1-abstract-full').style.display = 'none'; document.getElementById('2402.16011v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.11978">arXiv:2402.11978</a> <span> [<a href="https://arxiv.org/pdf/2402.11978">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Thermal Stress Analysis of the LNG Corrugated Cryogenic Hose During Gas Pre-Cooling Process </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+M">Miaoer Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+F">Fangqiu Li</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+H">Hao Cheng</a>, <a href="/search/physics?searchtype=author&query=Li%2C+E">Endao Li</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+J">Jun Yan</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+H">Hailong Lu</a>, <a href="/search/physics?searchtype=author&query=Bu%2C+Y">Yufeng Bu</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+T">Tingting Tang</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zhaokuan Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.11978v1-abstract-short" style="display: inline;"> In this study, thermal-fluid-solid coupled simulations on the gas-phase pre-cooling operation of the corrugated cryogenic hoses were performed. Attention was focused on the temporal evolution and spatial distribution of transient thermal stress in the hose structure caused by convective heat transfer of the cooling medium, Liquefied Natural Gas Boil-Off Gas (BOG). The effects of different corrugat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.11978v1-abstract-full').style.display = 'inline'; document.getElementById('2402.11978v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.11978v1-abstract-full" style="display: none;"> In this study, thermal-fluid-solid coupled simulations on the gas-phase pre-cooling operation of the corrugated cryogenic hoses were performed. Attention was focused on the temporal evolution and spatial distribution of transient thermal stress in the hose structure caused by convective heat transfer of the cooling medium, Liquefied Natural Gas Boil-Off Gas (BOG). The effects of different corrugated hose parameters, i.e., boundary conditions, hose lengths, BOG inlet flow rates, and corrugation shapes (C-type and U-type), on the transient thermal stress behavior were thoroughly assessed. The thermal stress developed at different locations of the corrugated hoses with these parameters is found to be governed by two major factors: the boundary constraint and local temperature gradient. The objective of this study is to offer practical insights for the structural strength design of corrugated cryogenic hoses and effective pre-cooling strategies, aiming to mitigate structural safety risks caused by excessive thermal stress. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.11978v1-abstract-full').style.display = 'none'; document.getElementById('2402.11978v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.10932">arXiv:2402.10932</a> <span> [<a href="https://arxiv.org/pdf/2402.10932">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Roadmap on Data-Centric Materials Science </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bauer%2C+S">Stefan Bauer</a>, <a href="/search/physics?searchtype=author&query=Benner%2C+P">Peter Benner</a>, <a href="/search/physics?searchtype=author&query=Bereau%2C+T">Tristan Bereau</a>, <a href="/search/physics?searchtype=author&query=Blum%2C+V">Volker Blum</a>, <a href="/search/physics?searchtype=author&query=Boley%2C+M">Mario Boley</a>, <a href="/search/physics?searchtype=author&query=Carbogno%2C+C">Christian Carbogno</a>, <a href="/search/physics?searchtype=author&query=Catlow%2C+C+R+A">C. Richard A. Catlow</a>, <a href="/search/physics?searchtype=author&query=Dehm%2C+G">Gerhard Dehm</a>, <a href="/search/physics?searchtype=author&query=Eibl%2C+S">Sebastian Eibl</a>, <a href="/search/physics?searchtype=author&query=Ernstorfer%2C+R">Ralph Ernstorfer</a>, <a href="/search/physics?searchtype=author&query=Fekete%2C+%C3%81">脕d谩m Fekete</a>, <a href="/search/physics?searchtype=author&query=Foppa%2C+L">Lucas Foppa</a>, <a href="/search/physics?searchtype=author&query=Fratzl%2C+P">Peter Fratzl</a>, <a href="/search/physics?searchtype=author&query=Freysoldt%2C+C">Christoph Freysoldt</a>, <a href="/search/physics?searchtype=author&query=Gault%2C+B">Baptiste Gault</a>, <a href="/search/physics?searchtype=author&query=Ghiringhelli%2C+L+M">Luca M. Ghiringhelli</a>, <a href="/search/physics?searchtype=author&query=Giri%2C+S+K">Sajal K. Giri</a>, <a href="/search/physics?searchtype=author&query=Gladyshev%2C+A">Anton Gladyshev</a>, <a href="/search/physics?searchtype=author&query=Goyal%2C+P">Pawan Goyal</a>, <a href="/search/physics?searchtype=author&query=Hattrick-Simpers%2C+J">Jason Hattrick-Simpers</a>, <a href="/search/physics?searchtype=author&query=Kabalan%2C+L">Lara Kabalan</a>, <a href="/search/physics?searchtype=author&query=Karpov%2C+P">Petr Karpov</a>, <a href="/search/physics?searchtype=author&query=Khorrami%2C+M+S">Mohammad S. Khorrami</a>, <a href="/search/physics?searchtype=author&query=Koch%2C+C">Christoph Koch</a>, <a href="/search/physics?searchtype=author&query=Kokott%2C+S">Sebastian Kokott</a> , et al. (36 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.10932v3-abstract-short" style="display: inline;"> Science is and always has been based on data, but the terms "data-centric" and the "4th paradigm of" materials research indicate a radical change in how information is retrieved, handled and research is performed. It signifies a transformative shift towards managing vast data collections, digital repositories, and innovative data analytics methods. The integration of Artificial Intelligence (AI) a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.10932v3-abstract-full').style.display = 'inline'; document.getElementById('2402.10932v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.10932v3-abstract-full" style="display: none;"> Science is and always has been based on data, but the terms "data-centric" and the "4th paradigm of" materials research indicate a radical change in how information is retrieved, handled and research is performed. It signifies a transformative shift towards managing vast data collections, digital repositories, and innovative data analytics methods. The integration of Artificial Intelligence (AI) and its subset Machine Learning (ML), has become pivotal in addressing all these challenges. This Roadmap on Data-Centric Materials Science explores fundamental concepts and methodologies, illustrating diverse applications in electronic-structure theory, soft matter theory, microstructure research, and experimental techniques like photoemission, atom probe tomography, and electron microscopy. While the roadmap delves into specific areas within the broad interdisciplinary field of materials science, the provided examples elucidate key concepts applicable to a wider range of topics. The discussed instances offer insights into addressing the multifaceted challenges encountered in contemporary materials research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.10932v3-abstract-full').style.display = 'none'; document.getElementById('2402.10932v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Review, outlook, roadmap, perspective</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.10874">arXiv:2402.10874</a> <span> [<a href="https://arxiv.org/pdf/2402.10874">pdf</a>, <a href="https://arxiv.org/format/2402.10874">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Design of 2D Skyrmionic Metamaterial Through Controlled Assembly </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xu%2C+Q">Qichen Xu</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+Z">Zhuanglin Shen</a>, <a href="/search/physics?searchtype=author&query=Edstr%C3%B6m%2C+A">Alexander Edstr枚m</a>, <a href="/search/physics?searchtype=author&query=Miranda%2C+I+P">I. P. Miranda</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zhiwei Lu</a>, <a href="/search/physics?searchtype=author&query=Bergman%2C+A">Anders Bergman</a>, <a href="/search/physics?searchtype=author&query=Thonig%2C+D">Danny Thonig</a>, <a href="/search/physics?searchtype=author&query=Yin%2C+W">Wanjian Yin</a>, <a href="/search/physics?searchtype=author&query=Eriksson%2C+O">Olle Eriksson</a>, <a href="/search/physics?searchtype=author&query=Delin%2C+A">Anna Delin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.10874v2-abstract-short" style="display: inline;"> Despite extensive research on magnetic skyrmions and antiskyrmions, a significant challenge remains in crafting nontrivial high-order skyrmionic textures with varying, or even tailor-made, topologies. We address this challenge, by focusing on a construction pathway of skyrmionic metamaterials within a monolayer thin film and suggest several skyrmionic metamaterials that are surprisingly stable, i.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.10874v2-abstract-full').style.display = 'inline'; document.getElementById('2402.10874v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.10874v2-abstract-full" style="display: none;"> Despite extensive research on magnetic skyrmions and antiskyrmions, a significant challenge remains in crafting nontrivial high-order skyrmionic textures with varying, or even tailor-made, topologies. We address this challenge, by focusing on a construction pathway of skyrmionic metamaterials within a monolayer thin film and suggest several skyrmionic metamaterials that are surprisingly stable, i.e., long-lived, due to a self-stabilization mechanism. This makes these new textures promising for applications. Central to our approach is the concept of 'simulated controlled assembly', in short, a protocol inspired by 'click chemistry' that allows for positioning topological magnetic structures where one likes, and then allowing for energy minimization to elucidate the stability. Utilizing high-throughput atomistic-spin-dynamic simulations alongside state-of-the-art AI-driven tools, we have isolated skyrmions (topological charge Q=1), antiskyrmions (Q=-1), and skyrmionium (Q=0). These entities serve as foundational 'skyrmionic building blocks' to form the here reported intricate textures. In this work, two key contributions are introduced to the field of skyrmionic systems. First, we present a a novel combination of atomistic spin dynamics simulations and controlled assembly protocols for the stabilization and investigation of new topological magnets. Second, using the aforementioned methods we report on the discovery of skyrmionic metamaterials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.10874v2-abstract-full').style.display = 'none'; document.getElementById('2402.10874v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.06646">arXiv:2402.06646</a> <span> [<a href="https://arxiv.org/pdf/2402.06646">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Diffusion Model-based Probabilistic Downscaling for 180-year East Asian Climate Reconstruction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ling%2C+F">Fenghua Ling</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zeyu Lu</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+J">Jing-Jia Luo</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+L">Lei Bai</a>, <a href="/search/physics?searchtype=author&query=Behera%2C+S+K">Swadhin K. Behera</a>, <a href="/search/physics?searchtype=author&query=Jin%2C+D">Dachao Jin</a>, <a href="/search/physics?searchtype=author&query=Pan%2C+B">Baoxiang Pan</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+H">Huidong Jiang</a>, <a href="/search/physics?searchtype=author&query=Yamagata%2C+T">Toshio Yamagata</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.06646v2-abstract-short" style="display: inline;"> As our planet is entering into the "global boiling" era, understanding regional climate change becomes imperative. Effective downscaling methods that provide localized insights are crucial for this target. Traditional approaches, including computationally-demanding regional dynamical models or statistical downscaling frameworks, are often susceptible to the influence of downscaling uncertainty. He… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.06646v2-abstract-full').style.display = 'inline'; document.getElementById('2402.06646v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.06646v2-abstract-full" style="display: none;"> As our planet is entering into the "global boiling" era, understanding regional climate change becomes imperative. Effective downscaling methods that provide localized insights are crucial for this target. Traditional approaches, including computationally-demanding regional dynamical models or statistical downscaling frameworks, are often susceptible to the influence of downscaling uncertainty. Here, we address these limitations by introducing a diffusion probabilistic downscaling model (DPDM) into the meteorological field. This model can efficiently transform data from 1掳 to 0.1掳 resolution. Compared with deterministic downscaling schemes, it not only has more accurate local details, but also can generate a large number of ensemble members based on probability distribution sampling to evaluate the uncertainty of downscaling. Additionally, we apply the model to generate a 180-year dataset of monthly surface variables in East Asia, offering a more detailed perspective for understanding local scale climate change over the past centuries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.06646v2-abstract-full').style.display = 'none'; document.getElementById('2402.06646v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.03856">arXiv:2402.03856</a> <span> [<a href="https://arxiv.org/pdf/2402.03856">pdf</a>, <a href="https://arxiv.org/ps/2402.03856">ps</a>, <a href="https://arxiv.org/format/2402.03856">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> High-order stochastic integration schemes for the Rosenbluth-Trubnikov collision operator in particle simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zhixin Lu</a>, <a href="/search/physics?searchtype=author&query=Meng%2C+G">Guo Meng</a>, <a href="/search/physics?searchtype=author&query=Tyranowski%2C+T">Tomasz Tyranowski</a>, <a href="/search/physics?searchtype=author&query=Chankin%2C+A">Alex Chankin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.03856v1-abstract-short" style="display: inline;"> In this study, we consider a numerical implementation of the nonlinear Rosenbluth-Trubnikov collision operator for particle simulations in plasma physics in the framework of the finite element method (FEM). The relevant particle evolution equations are formulated as stochastic differential equations, both in the Stratonovich and It么 forms, and are then solved with advanced high-order stochastic nu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.03856v1-abstract-full').style.display = 'inline'; document.getElementById('2402.03856v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.03856v1-abstract-full" style="display: none;"> In this study, we consider a numerical implementation of the nonlinear Rosenbluth-Trubnikov collision operator for particle simulations in plasma physics in the framework of the finite element method (FEM). The relevant particle evolution equations are formulated as stochastic differential equations, both in the Stratonovich and It么 forms, and are then solved with advanced high-order stochastic numerical schemes. Due to its formulation as a stochastic differential equation, both the drift and diffusion components of the collision operator are treated on an equal footing. Our investigation focuses on assessing the accuracy of these schemes. Previous studies on this subject have used the Euler-Maruyama scheme, which, although popular, is of low order, and requires small time steps to achieve satisfactory accuracy. In this work, we compare the performance of the Euler-Maruyama method to other high-order stochastic methods known in the stochastic differential equations literature. Our study reveals advantageous features of these high-order schemes, such as better accuracy and improved conservation properties of the numerical solution. The main test case used in the numerical experiments is the thermalization of isotropic and anisotropic particle distributions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.03856v1-abstract-full').style.display = 'none'; document.getElementById('2402.03856v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.02581">arXiv:2402.02581</a> <span> [<a href="https://arxiv.org/pdf/2402.02581">pdf</a>, <a href="https://arxiv.org/ps/2402.02581">ps</a>, <a href="https://arxiv.org/format/2402.02581">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.165140">10.1103/PhysRevB.109.165140 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-Fermi Liquid and Hund Correlation in La$_4$Ni$_3$O$_{10}$ under High Pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jing-Xuan Wang</a>, <a href="/search/physics?searchtype=author&query=Ouyang%2C+Z">Zhenfeng Ouyang</a>, <a href="/search/physics?searchtype=author&query=He%2C+R">Rong-Qiang He</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zhong-Yi Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.02581v1-abstract-short" style="display: inline;"> High temperature superconductivity was recently found in the bilayer nickelate $\rm{La}_3 \rm{Ni}_2 \rm{O}_7$ (La327), followed by the discovery of superconductivity in the trilayer $\rm{La}_4 \rm{Ni}_3 \rm{O}_{10}$ (La4310), under high pressure. Through studying the electronic correlation of La4310 with DFT+DMFT, and further comparing it with that of La327, we find that the $e_g$ orbitals of the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.02581v1-abstract-full').style.display = 'inline'; document.getElementById('2402.02581v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.02581v1-abstract-full" style="display: none;"> High temperature superconductivity was recently found in the bilayer nickelate $\rm{La}_3 \rm{Ni}_2 \rm{O}_7$ (La327), followed by the discovery of superconductivity in the trilayer $\rm{La}_4 \rm{Ni}_3 \rm{O}_{10}$ (La4310), under high pressure. Through studying the electronic correlation of La4310 with DFT+DMFT, and further comparing it with that of La327, we find that the $e_g$ orbitals of the outer-layer Ni cations in La4310 have a similar (but slightly weaker) electronic correlation to those in La327, in which the electrons behave as a non-Fermi liquid with Hund correlation and linear-in-temperature scattering rate. Our results suggest that the experimentally observed ``strange metal'' behavior may be explained by the Hund spin correlation featuring high spin states and spin-orbital separation. In contrast, the electrons in the inner-layer Ni cations in La4310 behave as a Fermi liquid. The weaker electronic correlation in La4310 is attributed to more hole-doping, which may explain its lower superconducting transition temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.02581v1-abstract-full').style.display = 'none'; document.getElementById('2402.02581v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 165140 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.16544">arXiv:2401.16544</a> <span> [<a href="https://arxiv.org/pdf/2401.16544">pdf</a>, <a href="https://arxiv.org/format/2401.16544">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0203335">10.1063/5.0203335 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stochastic Distinguishability of Markovian Trajectories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Pagare%2C+A">Asawari Pagare</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Z">Zhongmin Zhang</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+J">Jiming Zheng</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zhiyue Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.16544v2-abstract-short" style="display: inline;"> The ability to distinguish between stochastic systems based on their trajectories is crucial in thermodynamics, chemistry, and biophysics. The Kullback-Leibler (KL) divergence, $D_{\text{KL}}^{AB}(0,蟿)$, quantifies the distinguishability between the two ensembles of length-$蟿$ trajectories from Markov processes A and B. However, evaluating $D_{\text{KL}}^{AB}(0,蟿)$ from histograms of trajectories… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16544v2-abstract-full').style.display = 'inline'; document.getElementById('2401.16544v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.16544v2-abstract-full" style="display: none;"> The ability to distinguish between stochastic systems based on their trajectories is crucial in thermodynamics, chemistry, and biophysics. The Kullback-Leibler (KL) divergence, $D_{\text{KL}}^{AB}(0,蟿)$, quantifies the distinguishability between the two ensembles of length-$蟿$ trajectories from Markov processes A and B. However, evaluating $D_{\text{KL}}^{AB}(0,蟿)$ from histograms of trajectories faces sufficient sampling difficulties, and no theory explicitly reveals what dynamical features contribute to the distinguishability. This letter provides a general formula that decomposes $D_{\text{KL}}^{AB}(0,蟿)$ in space and time for any Markov processes, arbitrarily far from equilibrium or steady state. It circumvents the sampling difficulty of evaluating $D_{\text{KL}}^{AB}(0,蟿)$. Furthermore, it explicitly connects trajectory KL divergence with individual transition events and their waiting time statistics. The results provide insights into understanding distinguishability between Markov processes, leading to new theoretical frameworks for designing biological sensors and optimizing signal transduction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16544v2-abstract-full').style.display = 'none'; document.getElementById('2401.16544v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Chem. Phys. 7 May 2024; 160 (17): 171101 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.15477">arXiv:2401.15477</a> <span> [<a href="https://arxiv.org/pdf/2401.15477">pdf</a>, <a href="https://arxiv.org/format/2401.15477">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/978-981-97-0065-3_19">10.1007/978-981-97-0065-3_19 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Application of Graph Neural Networks in Dark Photon Search with Visible Decays at Future Beam Dump Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zejia Lu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xiang Chen</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+J">Jiahui Wu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yulei Zhang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+L">Liang Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.15477v1-abstract-short" style="display: inline;"> Beam dump experiments provide a distinctive opportunity to search for dark photons, which are compelling candidates for dark matter with low mass. In this study, we propose the application of Graph Neural Networks (GNN) in tracking reconstruction with beam dump experiments to obtain high resolution in both tracking and vertex reconstruction. Our findings demonstrate that in a typical 3-track scena… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.15477v1-abstract-full').style.display = 'inline'; document.getElementById('2401.15477v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.15477v1-abstract-full" style="display: none;"> Beam dump experiments provide a distinctive opportunity to search for dark photons, which are compelling candidates for dark matter with low mass. In this study, we propose the application of Graph Neural Networks (GNN) in tracking reconstruction with beam dump experiments to obtain high resolution in both tracking and vertex reconstruction. Our findings demonstrate that in a typical 3-track scenario with the visible decay mode, the GNN approach significantly outperforms the traditional approach, improving the 3-track reconstruction efficiency by up to 88% in the low mass region. Furthermore, we show that improving the minimal vertex detection distance significantly impacts the signal sensitivity in dark photon searches with the visible decay mode. By reducing the minimal vertex distance from 5 mm to 0.1 mm, the exclusion upper limit on the dark photon mass ($m_A\prime$) can be improved by up to a factor of 3. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.15477v1-abstract-full').style.display = 'none'; document.getElementById('2401.15477v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Intelligent Computers, Algorithms, and Applications. IC 2023. Communications in Computer and Information Science, vol 2036 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.14847">arXiv:2312.14847</a> <span> [<a href="https://arxiv.org/pdf/2312.14847">pdf</a>, <a href="https://arxiv.org/format/2312.14847">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.jpcb.3c08213">10.1021/acs.jpcb.3c08213 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Large Scale Training of Graph Neural Networks for Optimal Markov-Chain Partitioning Using the Kemeny Constant </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Martino%2C+S+A">Sam Alexander Martino</a>, <a href="/search/physics?searchtype=author&query=Morado%2C+J">Jo茫o Morado</a>, <a href="/search/physics?searchtype=author&query=Li%2C+C">Chenghao Li</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zhenghao Lu</a>, <a href="/search/physics?searchtype=author&query=Rosta%2C+E">Edina Rosta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.14847v3-abstract-short" style="display: inline;"> Traditional clustering algorithms often struggle to capture the complex relationships within graphs and generalise to arbitrary clustering criteria. The emergence of graph neural networks (GNNs) as a powerful framework for learning representations of graph data provides new approaches to solving the problem. Previous work has shown GNNs to be capable of proposing partitionings using a variety of c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14847v3-abstract-full').style.display = 'inline'; document.getElementById('2312.14847v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.14847v3-abstract-full" style="display: none;"> Traditional clustering algorithms often struggle to capture the complex relationships within graphs and generalise to arbitrary clustering criteria. The emergence of graph neural networks (GNNs) as a powerful framework for learning representations of graph data provides new approaches to solving the problem. Previous work has shown GNNs to be capable of proposing partitionings using a variety of criteria, however, these approaches have not yet been extended to work on Markov chains or kinetic networks. These arise frequently in the study of molecular systems and are of particular interest to the biochemical modelling community. In this work, we propose several GNN-based architectures to tackle the graph partitioning problem for Markov Chains described as kinetic networks. This approach aims to minimize how much a proposed partitioning changes the Kemeny constant. We propose using an encoder-decoder architecture and show how simple GraphSAGE-based GNNs with linear layers can outperform much larger and more expressive attention-based models in this context. As a proof of concept, we first demonstrate the method's ability to cluster randomly connected graphs. We also use a linear chain architecture corresponding to a 1D free energy profile as our kinetic network. Subsequently, we demonstrate the effectiveness of our method through experiments on a data set derived from molecular dynamics. We compare the performance of our method to other partitioning techniques such as PCCA+. We explore the importance of feature and hyperparameter selection and propose a general strategy for large-scale parallel training of GNNs for discovering optimal graph partitionings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14847v3-abstract-full').style.display = 'none'; document.getElementById('2312.14847v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. Chem. B 2024, 128, 34, 8103-8115 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.07893">arXiv:2312.07893</a> <span> [<a href="https://arxiv.org/pdf/2312.07893">pdf</a>, <a href="https://arxiv.org/format/2312.07893">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.proci.2024.105440">10.1016/j.proci.2024.105440 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum computing of reacting flows via Hamiltonian simulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zhen Lu</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+Y">Yue Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.07893v3-abstract-short" style="display: inline;"> We report the quantum computing of reacting flows by simulating the Hamiltonian dynamics. The scalar transport equation for reacting flows is transformed into a Hamiltonian system, mapping the dissipative and non-Hermitian problem in physical space to a Hermitian one in a higher-dimensional space. Using this approach, we develop the quantum spectral and finite difference methods for simulating rea… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07893v3-abstract-full').style.display = 'inline'; document.getElementById('2312.07893v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.07893v3-abstract-full" style="display: none;"> We report the quantum computing of reacting flows by simulating the Hamiltonian dynamics. The scalar transport equation for reacting flows is transformed into a Hamiltonian system, mapping the dissipative and non-Hermitian problem in physical space to a Hermitian one in a higher-dimensional space. Using this approach, we develop the quantum spectral and finite difference methods for simulating reacting flows in periodic and general conditions, respectively. The present quantum computing algorithms offer a ``one-shot'' solution for a given time without temporal discretization, avoiding iterative quantum state preparation and measurement. We compare computational complexities of the quantum and classical algorithms. The quantum spectral method exhibits exponential acceleration relative to its classical counterpart, and the quantum finite difference method can achieve exponential speedup in high-dimensional problems. The quantum algorithms are validated on quantum computing simulators with the Qiskit package. The validation cases cover one- and two-dimensional reacting flows with a linear source term and periodic or inlet-outlet boundary conditions. The results obtained from the quantum spectral and finite difference methods agree with analytical and classical simulation results. They accurately capture the convection, diffusion, and reaction processes. This demonstrates the potential of quantum computing as an efficient tool for the simulation of reactive flows in combustion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07893v3-abstract-full').style.display = 'none'; document.getElementById('2312.07893v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. Combust. Inst. 40 (2024) 105440 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.06133">arXiv:2312.06133</a> <span> [<a href="https://arxiv.org/pdf/2312.06133">pdf</a>, <a href="https://arxiv.org/ps/2312.06133">ps</a>, <a href="https://arxiv.org/format/2312.06133">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Characterization of an $\rm ^{27}Al^+$ ion optical clock laser with three independent methods </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zhiyuan Wang</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Z">Zhiyu Ma</a>, <a href="/search/physics?searchtype=author&query=Wei%2C+W">Wenzhe Wei</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+J">Jialu Chang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jingxuan Zhang</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+Q">Qiyue Wu</a>, <a href="/search/physics?searchtype=author&query=Yuan%2C+W">Wenhao Yuan</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+K">Ke Deng</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zehuang Lu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jie Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.06133v1-abstract-short" style="display: inline;"> We report on the development and performance evaluation of an ultra-stable clock laser for an $\rm ^{27}Al^+$ optical clock. The thermal noise limited ultra-stable laser is developed based on a 30 cm long ultra-stable cavity. Three independent evaluation methods, including the frequency noise summation method, the three-cornered hat (TCH) method, and the optical clock transition detection method,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06133v1-abstract-full').style.display = 'inline'; document.getElementById('2312.06133v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.06133v1-abstract-full" style="display: none;"> We report on the development and performance evaluation of an ultra-stable clock laser for an $\rm ^{27}Al^+$ optical clock. The thermal noise limited ultra-stable laser is developed based on a 30 cm long ultra-stable cavity. Three independent evaluation methods, including the frequency noise summation method, the three-cornered hat (TCH) method, and the optical clock transition detection method, are used to evaluate the clock laser performance. The summation result of various frequency noise terms is compared with the result of the TCH method. In addition, the $\rm ^{27}Al^+$ ion optical clock transition with ultra-narrow linewidth is also used to detect the frequency noise of the laser at lower Fourier frequencies. The results of the three methods show good agreements, showing a frequency instability level of $1.3\times10^{-16}$, and giving us confidence that these evaluation methods may provides guidance for accurate evaluations of high stability laser sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06133v1-abstract-full').style.display = 'none'; document.getElementById('2312.06133v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.17595">arXiv:2311.17595</a> <span> [<a href="https://arxiv.org/pdf/2311.17595">pdf</a>, <a href="https://arxiv.org/format/2311.17595">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Penalty and auxiliary wave function methods for electronic Excitation in neural network variational Monte Carlo </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zixiang Lu</a>, <a href="/search/physics?searchtype=author&query=Fu%2C+W">Weizhong Fu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.17595v1-abstract-short" style="display: inline;"> This study explores the application of neural network variational Monte Carlo (NN-VMC) for the computation of low-lying excited states in molecular systems. Our focus lies on the implementation and evaluation of two distinct methodologies, the penalty method and a novel modification of the auxiliary wave function (AW) method, within the framework of the FermiNet-based NN-VMC package. Importantly,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.17595v1-abstract-full').style.display = 'inline'; document.getElementById('2311.17595v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.17595v1-abstract-full" style="display: none;"> This study explores the application of neural network variational Monte Carlo (NN-VMC) for the computation of low-lying excited states in molecular systems. Our focus lies on the implementation and evaluation of two distinct methodologies, the penalty method and a novel modification of the auxiliary wave function (AW) method, within the framework of the FermiNet-based NN-VMC package. Importantly, this specific application has not been previously reported.Our investigation advocates for the efficacy of the modified AW method, emphasizing its superior robustness when compared to the penalty method. This methodological advancement introduces a valuable tool for the scientific community, offering a distinctive approach to target low-lying excited states. We anticipate that the modified AW method will garner interest within the research community, serving as a complementary and robust alternative to existing techniques. Moreover, this contribution enriches the ongoing development of various neural network ansatz, further expanding the toolkit available for the accurate exploration of excited states in molecular systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.17595v1-abstract-full').style.display = 'none'; document.getElementById('2311.17595v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.10249">arXiv:2311.10249</a> <span> [<a href="https://arxiv.org/pdf/2311.10249">pdf</a>, <a href="https://arxiv.org/ps/2311.10249">ps</a>, <a href="https://arxiv.org/format/2311.10249">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Resonance of Geometric Quantities and Hidden Symmetry in the Asymmetric Rabi Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yu%2C+Q">Qinjing Yu</a>, <a href="/search/physics?searchtype=author&query=L%C3%BC%2C+Z">Zhiguo L眉</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.10249v1-abstract-short" style="display: inline;"> We present the interesting resonance of two kinds of geometric quantities, namely the Aharonov-Anandan (AA) phase and the time-energy uncertainty, and reveal the relation between resonance and the hidden symmetry in the asymmetric Rabi model by numerical and analytical methods. By combining the counter-rotating hybridized rotating-wave method with time-dependent perturbation theory, we solve syste… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.10249v1-abstract-full').style.display = 'inline'; document.getElementById('2311.10249v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.10249v1-abstract-full" style="display: none;"> We present the interesting resonance of two kinds of geometric quantities, namely the Aharonov-Anandan (AA) phase and the time-energy uncertainty, and reveal the relation between resonance and the hidden symmetry in the asymmetric Rabi model by numerical and analytical methods. By combining the counter-rotating hybridized rotating-wave method with time-dependent perturbation theory, we solve systematically the time evolution operator and then obtain the geometric phase of the Rabi model. In comparison with the numerically exact solutions, we find that the analytical results accurately describe the geometric quantities in a wide parameter space. We unveil the effect of the bias on the resonance of geometric quantities, (1) the positions of all harmonic resonances stemming from the shift of the Rabi frequency at the presence of the bias; (2) the occurrence of even order harmonic resonance due to the bias. When the driving frequency is equal to the subharmonics of the bias, the odd higher-order harmonic resonances disappear. Finally, the hidden symmetry has a resemblance to that of the quantum Rabi model with bias, which indicates the quasienergy spectra are similar to the energy spectra of the latter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.10249v1-abstract-full').style.display = 'none'; document.getElementById('2311.10249v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.08177">arXiv:2311.08177</a> <span> [<a href="https://arxiv.org/pdf/2311.08177">pdf</a>, <a href="https://arxiv.org/format/2311.08177">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Overcoming the Size Limit of First Principles Molecular Dynamics Simulations with an In-Distribution Substructure Embedding Active Learner </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Kong%2C+L">Lingyu Kong</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Jielan Li</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+L">Lixin Sun</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+H">Han Yang</a>, <a href="/search/physics?searchtype=author&query=Hao%2C+H">Hongxia Hao</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+C">Chi Chen</a>, <a href="/search/physics?searchtype=author&query=Artrith%2C+N">Nongnuch Artrith</a>, <a href="/search/physics?searchtype=author&query=Torres%2C+J+A+G">Jose Antonio Garrido Torres</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Ziheng Lu</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+Y">Yichi Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.08177v2-abstract-short" style="display: inline;"> Large-scale first principles molecular dynamics are crucial for simulating complex processes in chemical, biomedical, and materials sciences. However, the unfavorable time complexity with respect to system sizes leads to prohibitive computational costs when the simulation contains over a few hundred atoms in practice. We present an In-Distribution substructure Embedding Active Learner (IDEAL) to e… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.08177v2-abstract-full').style.display = 'inline'; document.getElementById('2311.08177v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.08177v2-abstract-full" style="display: none;"> Large-scale first principles molecular dynamics are crucial for simulating complex processes in chemical, biomedical, and materials sciences. However, the unfavorable time complexity with respect to system sizes leads to prohibitive computational costs when the simulation contains over a few hundred atoms in practice. We present an In-Distribution substructure Embedding Active Learner (IDEAL) to enable efficient simulation of large complex systems with quantum accuracy by maintaining a machine learning force field (MLFF) as an accurate surrogate to the first principles methods. By extracting high-uncertainty substructures into low-uncertainty atom environments, the active learner is allowed to concentrate on and learn from small substructures of interest rather than carrying out intractable quantum chemical computations on large structures. IDEAL is benchmarked on various systems and shows sub-linear complexity, accelerating the simulation thousands of times compared with conventional active learning and millions of times compared with pure first principles simulations. To demonstrate the capability of IDEAL in practical applications, we simulated a polycrystalline lithium system composed of one million atoms and the full ammonia formation process in a Haber-Bosch reaction on a 3-nm Iridium nanoparticle catalyst on a computing node comprising one single A100 GPU and 24 CPU cores. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.08177v2-abstract-full').style.display = 'none'; document.getElementById('2311.08177v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Lu%2C+Z&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Lu%2C+Z&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Lu%2C+Z&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Lu%2C+Z&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Lu%2C+Z&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Lu%2C+Z&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>