CINXE.COM

Search results for: Magnetic field

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Magnetic field</title> <meta name="description" content="Search results for: Magnetic field"> <meta name="keywords" content="Magnetic field"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Magnetic field" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Magnetic field"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2676</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Magnetic field</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2676</span> Mathematical Modeling on Capturing of Magnetic Nanoparticles in an Implant Assisted Channel for Magnetic Drug Targeting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Shashi%20Sharma">Shashi Sharma</a>, <a href="https://publications.waset.org/search?q=V.%20K.%20Katiyar"> V. K. Katiyar</a>, <a href="https://publications.waset.org/search?q=Uaday%20Singh"> Uaday Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In IA-MDT, the magnetic implants are placed strategically at the target site to greatly and locally increase the magnetic force on MDCPs and help to attract and retain the MDCPs at the targeted region. In the present work, we develop a mathematical model to study the capturing of magnetic nanoparticles flowing within a fluid in an implant assisted cylindrical channel under magnetic field. A coil of ferromagnetic SS-430 has been implanted inside the cylindrical channel to enhance the capturing of magnetic nanoparticles under magnetic field. The dominant magnetic and drag forces, which significantly affect the capturing of nanoparticles, are incorporated in the model. It is observed through model results that capture efficiency increases as we increase the magnetic field from 0.1 to 0.5 T, respectively. The increase in capture efficiency by increase in magnetic field is because as the magnetic field increases, the magnetization force, which is attractive in nature and responsible to attract or capture the magnetic particles, increases and results the capturing of large number of magnetic particles due to high strength of attractive magnetic force. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Capture%20efficiency" title="Capture efficiency">Capture efficiency</a>, <a href="https://publications.waset.org/search?q=Implant%20assisted-Magnetic%20drug%0D%0Atargeting%20%28IA-MDT%29" title=" Implant assisted-Magnetic drug targeting (IA-MDT)"> Implant assisted-Magnetic drug targeting (IA-MDT)</a>, <a href="https://publications.waset.org/search?q=Magnetic%20nanoparticles%20%28MNPs%29." title=" Magnetic nanoparticles (MNPs)."> Magnetic nanoparticles (MNPs).</a> </p> <a href="https://publications.waset.org/10002737/mathematical-modeling-on-capturing-of-magnetic-nanoparticles-in-an-implant-assisted-channel-for-magnetic-drug-targeting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002737/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002737/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002737/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002737/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002737/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002737/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002737/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002737/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002737/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002737/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002737.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1798</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2675</span> Hydrothermal Behavior of G-S Magnetically Stabilized Beds Consisting of Magnetic and Non-Magnetic Admixtures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Z.%20Al-Qodah">Z. Al-Qodah</a>, <a href="https://publications.waset.org/search?q=M.%20Al-Busoul"> M. Al-Busoul</a>, <a href="https://publications.waset.org/search?q=A.%20Khraewish"> A. Khraewish</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The hydrothermal behavior of a bed consisting of magnetic and shale oil particle admixtures under the effect of a transverse magnetic field is investigated. The phase diagram, bed void fraction are studied under wide range of the operating conditions i.e., gas velocity, magnetic field intensity and fraction of the magnetic particles. It is found that the range of the stabilized regime is reduced as the magnetic fraction decreases. In addition, the bed voidage at the onset of fluidization decreases as the magnetic fraction decreases. On the other hand, Nusselt number and consequently the heat transfer coefficient is found to increase as the magnetic fraction decreases. An empirical equation is investigated to relate the effect of the gas velocity, magnetic field intensity and fraction of the magnetic particles on the heat transfer behavior in the bed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Magnetic%20stabilization%3B%20Magnetic%20stabilized%20fluidizedbeds%3B%20Gas-fluidized%20beds." title="Magnetic stabilization; Magnetic stabilized fluidizedbeds; Gas-fluidized beds.">Magnetic stabilization; Magnetic stabilized fluidizedbeds; Gas-fluidized beds.</a> </p> <a href="https://publications.waset.org/14848/hydrothermal-behavior-of-g-s-magnetically-stabilized-beds-consisting-of-magnetic-and-non-magnetic-admixtures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14848/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14848/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14848/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14848/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14848/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14848/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14848/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14848/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14848/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14848/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1353</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2674</span> Effect of a Magnetic Field on the Onset of Marangoni Convection in a Micropolar Fluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mohd%20Nasir%20Mahmud">Mohd Nasir Mahmud</a>, <a href="https://publications.waset.org/search?q=Ruwaidiah%20Idris"> Ruwaidiah Idris</a>, <a href="https://publications.waset.org/search?q=Ishak%20Hashim"> Ishak Hashim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>With the presence of a uniform vertical magnetic field and suspended particles, thermocapillary instability in a horizontal liquid layer is investigated. The resulting eigenvalue is solved by the Galerkin technique for various basic temperature gradients. It is found that the presence of magnetic field always has a stability effect of increasing the critical Marangoni number.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Marangoni%20convection" title="Marangoni convection">Marangoni convection</a>, <a href="https://publications.waset.org/search?q=Magnetic%20field" title=" Magnetic field"> Magnetic field</a>, <a href="https://publications.waset.org/search?q=Micropolar%20fluid" title=" Micropolar fluid"> Micropolar fluid</a>, <a href="https://publications.waset.org/search?q=Non-uniform%20thermal%20gradient" title=" Non-uniform thermal gradient"> Non-uniform thermal gradient</a>, <a href="https://publications.waset.org/search?q=Thermocapillary." title=" Thermocapillary."> Thermocapillary.</a> </p> <a href="https://publications.waset.org/6244/effect-of-a-magnetic-field-on-the-onset-of-marangoni-convection-in-a-micropolar-fluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6244/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6244/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6244/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6244/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6244/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6244/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6244/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6244/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6244/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6244/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1637</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2673</span> A Numerical Simulation of Arterial Mass Transport in Presence of Magnetic Field-Links to Atherosclerosis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=H.%20Aminfar">H. Aminfar</a>, <a href="https://publications.waset.org/search?q=M.%20Mohammadpourfard"> M. Mohammadpourfard</a>, <a href="https://publications.waset.org/search?q=K.%20Khajeh"> K. Khajeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper has focused on the most important parameters in the LSC uptake; inlet Re number and Sc number in the presence of non-uniform magnetic field. The magnetic field is arising from the thin wire with electric current placed vertically to the arterial blood vessel. According to the results of this study, applying magnetic field can be a treatment for atherosclerosis by reducing LSC along the vessel wall. Homogeneous porous layer as a arterial wall has been regarded. Blood flow has been considered laminar and incompressible containing Ferro fluid (blood and 4 % vol. Fe<sub>3</sub>O<sub>4</sub>) under steady state conditions. Numerical solution of governing equations was obtained by using the single-phase model and control volume technique for flow field.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=LDL%20Surface%20Concentration%20%28LSC%29" title="LDL Surface Concentration (LSC)">LDL Surface Concentration (LSC)</a>, <a href="https://publications.waset.org/search?q=Magnetic%20field" title=" Magnetic field"> Magnetic field</a>, <a href="https://publications.waset.org/search?q=Computational%20fluid%20dynamics" title=" Computational fluid dynamics"> Computational fluid dynamics</a>, <a href="https://publications.waset.org/search?q=Porous%20wall." title=" Porous wall."> Porous wall.</a> </p> <a href="https://publications.waset.org/10003553/a-numerical-simulation-of-arterial-mass-transport-in-presence-of-magnetic-field-links-to-atherosclerosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003553/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003553/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003553/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003553/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003553/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003553/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003553/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003553/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003553/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003553/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003553.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1574</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2672</span> Noise Performance of Magnetic Field Tunable Avalanche Transit Time Source</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Partha%20Banerjee">Partha Banerjee</a>, <a href="https://publications.waset.org/search?q=Aritra%20Acharyya"> Aritra Acharyya</a>, <a href="https://publications.waset.org/search?q=Arindam%20Biswas"> Arindam Biswas</a>, <a href="https://publications.waset.org/search?q=A.%20K.%20Bhattacharjee"> A. K. Bhattacharjee</a>, <a href="https://publications.waset.org/search?q=Amit%20Banerjee"> Amit Banerjee</a>, <a href="https://publications.waset.org/search?q=Hiroshi%20Inokawa"> Hiroshi Inokawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of magnetic field on the noise performance of the magnetic field tunable avalanche transit time (MAGTATT) device based on Si, designed to operate at W-band (75 &ndash; 110 GHz), has been studied in this paper. A comprehensive two-dimensional (2D) model has been developed. The simulation results show that due to the presence of applied external transverse magnetic field, both the noise spectral density and noise measure of the MAGTATT device increase significantly. The noise performance of the device has been found to be further deteriorated if the magnetic field strength is further increased. Hence, in order to achieve the magnetic field tuning of the radio frequency (RF) properties of impact avalanche transit time (IMPATT) source, the noise performance of it has to be sacrificed in fair extent. Moreover, it clearly indicates that an IMPATT source must be covered with appropriate magnetic shielding material to avoid undesirable shift in operating frequency and output power and objectionable amount of deterioration in noise performance due to the presence of external magnetic field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=2-D%20model" title="2-D model">2-D model</a>, <a href="https://publications.waset.org/search?q=IMPATT" title=" IMPATT"> IMPATT</a>, <a href="https://publications.waset.org/search?q=MAGTATT" title=" MAGTATT"> MAGTATT</a>, <a href="https://publications.waset.org/search?q=mm-wave" title=" mm-wave"> mm-wave</a>, <a href="https://publications.waset.org/search?q=noise%20performance." title=" noise performance. "> noise performance. </a> </p> <a href="https://publications.waset.org/10009641/noise-performance-of-magnetic-field-tunable-avalanche-transit-time-source" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009641/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009641/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009641/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009641/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009641/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009641/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009641/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009641/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009641/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009641/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">810</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2671</span> Experimental Investigation with Different Inclination Angles on Copper Oscillating Heat Pipes Performance Using Fe2O3/Kerosene under Magnetic Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=H.%20R.%20Goshayeshi">H. R. Goshayeshi</a>, <a href="https://publications.waset.org/search?q=M.%20Mansori"> M. Mansori</a>, <a href="https://publications.waset.org/search?q=M.%20Ahmady"> M. Ahmady</a>, <a href="https://publications.waset.org/search?q=M.%20Khaloyi"> M. Khaloyi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the result of an experimental investigation regarding the use of Fe2O3 nanoparticles added to kerosene as a working fluid, under magnetic field for Copper Oscillating Heat pipe with inclination angle of 0°(horizontal), 15°, 30°,45°, 60°,75° and 90° (vertical). The following were examined; measure the temperature distribution and heat transfer rate on Oscillating Heat Pipe (OHP), with magnetic field under different angles. Results showed that the addition of Fe2O3 nanoparticles under magnetic field improved thermal performance of OHP especially in 75°. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Copper%20oscillating%20heat%20pipe" title="Copper oscillating heat pipe">Copper oscillating heat pipe</a>, <a href="https://publications.waset.org/search?q=Fe2O3" title=" Fe2O3"> Fe2O3</a>, <a href="https://publications.waset.org/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/search?q=inclination%20angles." title=" inclination angles."> inclination angles.</a> </p> <a href="https://publications.waset.org/10002645/experimental-investigation-with-different-inclination-angles-on-copper-oscillating-heat-pipes-performance-using-fe2o3kerosene-under-magnetic-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002645/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002645/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002645/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002645/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002645/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002645/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002645/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002645/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002645/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002645/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2171</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2670</span> Influence of Axial Magnetic Field on the Electrical Breakdown and Secondary Electron Emission in Plane-Parallel Plasma Discharge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sabah%20I.%20Wais">Sabah I. Wais</a>, <a href="https://publications.waset.org/search?q=Raghad%20Y.%20Mohammed"> Raghad Y. Mohammed</a>, <a href="https://publications.waset.org/search?q=Sedki%20O.%20Yousif"> Sedki O. Yousif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of axial magnetic field (B=0.48 T) on the variation of ionization efficiency coefficient h and secondary electron emission coefficient g with respect to reduced electric field E/P is studied at a new range of plane-parallel electrode spacing (0< d< 20 cm) and different nitrogen working pressure between 0.5-20 Pa. The axial magnetic field is produced from an inductive copper coil of radius 5.6 cm. The experimental data of breakdown voltage is adopted to estimate the mean Paschen curves at different working features. The secondary electron emission coefficient is calculated from the mean Paschen curve and used to determine the minimum breakdown voltage. A reduction of discharge voltage of about 25% is investigated by the applied of axial magnetic field. At high interelectrode spacing, the effect of axial magnetic field becomes more significant for the obtained values of h but it was less for the values of g. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Paschen%20curve" title="Paschen curve">Paschen curve</a>, <a href="https://publications.waset.org/search?q=Townsend%20coefficient" title=" Townsend coefficient"> Townsend coefficient</a>, <a href="https://publications.waset.org/search?q=Secondaryelectron%20emission" title=" Secondaryelectron emission"> Secondaryelectron emission</a>, <a href="https://publications.waset.org/search?q=Magnetic%20field" title=" Magnetic field"> Magnetic field</a>, <a href="https://publications.waset.org/search?q=Minimum%20breakdown%20voltage." title=" Minimum breakdown voltage."> Minimum breakdown voltage.</a> </p> <a href="https://publications.waset.org/7325/influence-of-axial-magnetic-field-on-the-electrical-breakdown-and-secondary-electron-emission-in-plane-parallel-plasma-discharge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7325/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7325/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7325/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7325/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7325/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7325/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7325/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7325/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7325/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7325/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7325.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2613</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2669</span> Consideration of Magnetic Lines of Force as Magnets Produced by Percussion Waves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Angel%20P%C3%A9rez%20S%C3%A1nchez">Angel Pérez Sánchez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Considering magnetic lines of force as a vector magnetic current was introduced by convention around 1830. But this leads to a dead end in traditional physics, and quantum explanations must be referred to explain the magnetic phenomenon. However, a study of magnetic lines as percussive waves leads to other paths capable of interpreting magnetism through traditional physics. The concept was explored by examining the behavior of two parallel electric current cables, which attract each other when the current goes in the same direction, and its application at a microscopic level inside magnets. Consideration of magnetic lines as magnets themselves would mean a paradigm shift in the study of magnetism and open the way to provide solutions to mysteries of magnetism until now only revealed by quantum mechanics. This groundbreaking study discovers how a magnetic field is created, as well as reason how magnetic attraction and repulsion work, understand how magnets behave when splitting them, and reveal the impossibility of a Magnetic Monopole. All of this is presented as if it were a symphony in which all the notes fit together perfectly to create a beautiful, smart, and simple work.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Magnetic%20lines%20of%20force" title="Magnetic lines of force">Magnetic lines of force</a>, <a href="https://publications.waset.org/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/search?q=magnetic%20attraction%20and%20repulsion" title=" magnetic attraction and repulsion"> magnetic attraction and repulsion</a>, <a href="https://publications.waset.org/search?q=magnet%20split" title=" magnet split"> magnet split</a>, <a href="https://publications.waset.org/search?q=magnetic%20monopole" title=" magnetic monopole"> magnetic monopole</a>, <a href="https://publications.waset.org/search?q=magnetic%20lines%20of%20force%20as%20magnets" title=" magnetic lines of force as magnets"> magnetic lines of force as magnets</a>, <a href="https://publications.waset.org/search?q=magnetic%20lines%20of%20force%20as%20waves." title=" magnetic lines of force as waves."> magnetic lines of force as waves.</a> </p> <a href="https://publications.waset.org/10013801/consideration-of-magnetic-lines-of-force-as-magnets-produced-by-percussion-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013801/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013801/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013801/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013801/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013801/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013801/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013801/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013801/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013801/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013801/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2668</span> Yang-Lee Edge Singularity of the Infinite-Range Ising Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Seung-Yeon%20Kim">Seung-Yeon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The Ising ferromagnet, consisting of magnetic spins, is the simplest system showing phase transitions and critical phenomena at finite temperatures. The Ising ferromagnet has played a central role in our understanding of phase transitions and critical phenomena. Also, the Ising ferromagnet explains the gas-liquid phase transitions accurately. In particular, the Ising ferromagnet in a nonzero magnetic field has been one of the most intriguing and outstanding unsolved problems. We study analytically the partition function zeros in the complex magnetic-field plane and the Yang-Lee edge singularity of the infinite-range Ising ferromagnet in an external magnetic field. In addition, we compare the Yang-Lee edge singularity of the infinite-range Ising ferromagnet with that of the square-lattice Ising ferromagnet in an external magnetic field.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Ising%20ferromagnet" title="Ising ferromagnet">Ising ferromagnet</a>, <a href="https://publications.waset.org/search?q=Magnetic%20field" title=" Magnetic field"> Magnetic field</a>, <a href="https://publications.waset.org/search?q=Partition%20function%0D%0Azeros" title=" Partition function zeros"> Partition function zeros</a>, <a href="https://publications.waset.org/search?q=Yang-Lee%20edge%20singularity." title=" Yang-Lee edge singularity."> Yang-Lee edge singularity.</a> </p> <a href="https://publications.waset.org/10000473/yang-lee-edge-singularity-of-the-infinite-range-ising-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000473/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000473/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000473/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000473/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000473/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000473/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000473/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000473/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000473/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000473/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3251</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2667</span> Raman Spectroscopy of Carbon Nanostructures in Strong Magnetic Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Kalbac">M. Kalbac</a>, <a href="https://publications.waset.org/search?q=T.%20Verhagen"> T. Verhagen</a>, <a href="https://publications.waset.org/search?q=K.%20Drogowska"> K. Drogowska</a>, <a href="https://publications.waset.org/search?q=J.%20Vejpravova"> J. Vejpravova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>One- and two-dimensional carbon nanostructures with sp2 hybridization of carbon atoms (single walled carbon nanotubes and graphene) are promising materials in future electronic and spintronics devices due to specific character of their electronic structure. In this paper we present a comparative study of graphene and single-wall carbon nanotubes by Raman spectro-microscopy in strong magnetic field. This unique method allows to study changes in electronic band structure of the two types of carbon nanostructures induced by a strong magnetic field.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Carbon%20nanostructures" title="Carbon nanostructures">Carbon nanostructures</a>, <a href="https://publications.waset.org/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/search?q=Raman%0D%0Aspectroscopy." title=" Raman spectroscopy."> Raman spectroscopy.</a> </p> <a href="https://publications.waset.org/9999709/raman-spectroscopy-of-carbon-nanostructures-in-strong-magnetic-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999709/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999709/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999709/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999709/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999709/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999709/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999709/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999709/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999709/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999709/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2651</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2666</span> New Device for Enhancement of Liposomal Magnetofection Efficiency of Cancer Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Baryshev">M. Baryshev</a>, <a href="https://publications.waset.org/search?q=D.Vainauska"> D.Vainauska</a>, <a href="https://publications.waset.org/search?q=S.%20Kozireva"> S. Kozireva</a>, <a href="https://publications.waset.org/search?q=A.Karpovs"> A.Karpovs</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Liposomal magnetofection is the most powerful nonviral method for the nucleic acid delivery into the cultured cancer cells and widely used for in vitro applications. Use of the static magnetic field condition may result in non-uniform distribution of aggregate complexes on the surface of cultured cells. To prevent this, we developed the new device which allows to concentrate aggregate complexes under dynamic magnetic field, assisting more contact of these complexes with cellular membrane and, possibly, stimulating endocytosis. Newly developed device for magnetofection under dynamic gradient magnetic field, &ldquo;DynaFECTOR&quot;, was used to compare transfection efficiency of human liver hepatocellular carcinoma cell line HepG2 with that obtained by lipofection and magnetofection. The effect of two parameters on transfection efficiency, incubation time under dynamic magnetic field and rotation frequency of magnet, was estimated. Liposomal magnetofection under dynamic gradient magnetic field showed the highest transfection efficiency for HepG2 cells.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Dynamic%20magnetic%20field" title="Dynamic magnetic field">Dynamic magnetic field</a>, <a href="https://publications.waset.org/search?q=Lipofection" title=" Lipofection"> Lipofection</a>, <a href="https://publications.waset.org/search?q=Magnetofection" title=" Magnetofection"> Magnetofection</a> </p> <a href="https://publications.waset.org/225/new-device-for-enhancement-of-liposomal-magnetofection-efficiency-of-cancer-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/225/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/225/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/225/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/225/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/225/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/225/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/225/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/225/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/225/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/225/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1762</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2665</span> The Study of Magnetic and Transport Properties in Normal State Eu1.85+yCe0.15-yCu1-yFeyO4+α-δ</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Risdiana">Risdiana</a>, <a href="https://publications.waset.org/search?q=D.%20Suhendar"> D. Suhendar</a>, <a href="https://publications.waset.org/search?q=S.%20Pratiwi"> S. Pratiwi</a>, <a href="https://publications.waset.org/search?q=W.%20A.%20Somantri"> W. A. Somantri</a>, <a href="https://publications.waset.org/search?q=T.%20Saragi"> T. Saragi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of partially substitution of magnetic impurity Fe for Cu to the magnetic and transport properties in electron-doped superconducting cuprates of Eu1.85+yCe0.15-yCu1-yFeyO4+α-δ (ECCFO) with y = 0, 0.010, 0.020, and 0.050 has been studied, in order to investigate the mechanism of magnetic and transport properties of ECCFO in normal-state. Magnetic properties are investigated by DC magnetic-susceptibility measurements that carried out at low temperatures down to 2 K using a standard SQUID magnetometer in a magnetic field of 5 Oe on field cooling. Transport properties addressed to electron mobility, are extracted from radius of electron localization calculated from temperature dependence of resistivity. For y = 0, temperature dependence of dc magnetic-susceptibility (χ) indicated the change of magnetic behavior from paramagnetic to diamagnetic below 15 K. Above 15 K, all samples show paramagnetic behavior with the values of magnetic moment in every volume unit increased with increasing y. Electron mobility decreased with increasing y. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=DC%20magnetic-susceptibility" title="DC magnetic-susceptibility">DC magnetic-susceptibility</a>, <a href="https://publications.waset.org/search?q=electron%20mobility" title=" electron mobility"> electron mobility</a>, <a href="https://publications.waset.org/search?q=Eu1.85%2ByCe0.15-yCu1-yFeyO4%2B%CE%B1-%CE%B4" title=" Eu1.85+yCe0.15-yCu1-yFeyO4+α-δ"> Eu1.85+yCe0.15-yCu1-yFeyO4+α-δ</a>, <a href="https://publications.waset.org/search?q=normal%20state." title=" normal state."> normal state.</a> </p> <a href="https://publications.waset.org/10001629/the-study-of-magnetic-and-transport-properties-in-normal-state-eu185yce015-ycu1-yfeyo4a-d" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001629/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001629/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001629/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001629/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001629/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001629/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001629/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001629/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001629/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001629/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3948</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2664</span> Magnetohydrodynamic Damping of Natural Convection Flows in a Rectangular Enclosure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Battira">M. Battira</a>, <a href="https://publications.waset.org/search?q=R.%20Bessaih"> R. Bessaih</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We numerically study the three-dimensional magnetohydrodynamics (MHD) stability of oscillatory natural convection flow in a rectangular cavity, with free top surface, filled with a liquid metal, having an aspect ratio equal to A=L/H=5, and subjected to a transversal temperature gradient and a uniform magnetic field oriented in x and z directions. The finite volume method was used in order to solve the equations of continuity, momentum, energy, and potential. The stability diagram obtained in this study highlights the dependence of the critical value of the Grashof number Grcrit , with the increase of the Hartmann number Ha for two orientations of the magnetic field. This study confirms the possibility of stabilization of a liquid metal flow in natural convection by application of a magnetic field and shows that the flow stability is more important when the direction of magnetic field is longitudinal than when the direction is transversal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Natural%20convection" title="Natural convection">Natural convection</a>, <a href="https://publications.waset.org/search?q=Magnetic%20field" title=" Magnetic field"> Magnetic field</a>, <a href="https://publications.waset.org/search?q=Oscillatory" title=" Oscillatory"> Oscillatory</a>, <a href="https://publications.waset.org/search?q=Cavity" title="Cavity">Cavity</a>, <a href="https://publications.waset.org/search?q=Liquid%20metal." title=" Liquid metal."> Liquid metal.</a> </p> <a href="https://publications.waset.org/8277/magnetohydrodynamic-damping-of-natural-convection-flows-in-a-rectangular-enclosure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/8277/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/8277/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/8277/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/8277/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/8277/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/8277/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/8277/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/8277/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/8277/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/8277/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/8277.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1551</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2663</span> Effect of Magnetic Field on Seed Germination of Two Wheat Cultivars</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ahmad%20Gholami">Ahmad Gholami </a>, <a href="https://publications.waset.org/search?q=Saeed%20Sharafi"> Saeed Sharafi</a>, <a href="https://publications.waset.org/search?q=Hamid%20Abbasdokht"> Hamid Abbasdokht</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of magnetic field on germination characteristics of two wheat Seeds has been studied under laboratory conditions. Seeds were magnetically exposed to magnetic field strengths, 125 or 250mT for different periods of time. Mean germination time and the time required to obtain 10, 25, 50, 75 and 90%of seeds to germinate were calculated. The germination time for each treatment were in general, higher than corresponding control values, in the other word in treated seeds time required for mean seed germination time increased nearly 3 hours in compared non treated control seeds. T10 for doses D5, D6, D11 and D12 significantly higher than the control values for both cultivars. Mean germination time (MGT) in both cultivars significantly increased when the time of seed exposed at magnetic field treatments increased , about 3 and 2 hour respectively for Omid and BCR cultivars. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=wheat" title="wheat">wheat</a>, <a href="https://publications.waset.org/search?q=cultivar" title=" cultivar"> cultivar</a>, <a href="https://publications.waset.org/search?q=germination%20test" title=" germination test"> germination test</a>, <a href="https://publications.waset.org/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a> </p> <a href="https://publications.waset.org/14519/effect-of-magnetic-field-on-seed-germination-of-two-wheat-cultivars" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14519/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14519/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14519/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14519/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14519/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14519/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14519/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14519/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14519/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14519/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14519.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">4054</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2662</span> Analysis of a Fluid Behavior in a Rectangular Enclosure under the Effect of Magnetic Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Y.Bakhshan">Y.Bakhshan</a>, <a href="https://publications.waset.org/search?q=H.Ashoori"> H.Ashoori</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, a 2-D computational analysis of steady state free convection in a rectangular enclosure filled with an electrically conducting fluid under Effect of Magnetic Field has been performed. The governing equations (mass, momentum, and energy) are formulated and solved by a finite volume method (FVM) subjected to different boundary conditions. A parametric study has been conducted to consider the influence of Grashof number (Gr), Prantdl number (Pr) and the orientation of magnetic field on the flow and heat transfer characteristics. It is observed that Nusselt number (Nu) and heat flux will increase with increasing Grashof and Prandtl numbers and decreasing the slope of the orientation of magnetic field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Rectangular%20Cavity" title="Rectangular Cavity">Rectangular Cavity</a>, <a href="https://publications.waset.org/search?q=magneto-hydrodynamic" title=" magneto-hydrodynamic"> magneto-hydrodynamic</a>, <a href="https://publications.waset.org/search?q=free%0Aconvection" title=" free convection"> free convection</a>, <a href="https://publications.waset.org/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/13569/analysis-of-a-fluid-behavior-in-a-rectangular-enclosure-under-the-effect-of-magnetic-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13569/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13569/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13569/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13569/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13569/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13569/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13569/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13569/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13569/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13569/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1583</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2661</span> Experimental Study on Capturing of Magnetic Nanoparticles Transported in an Implant Assisted Cylindrical Tube under Magnetic Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Anurag%20Gaur">Anurag Gaur</a>, <a href="https://publications.waset.org/search?q=Nidhi"> Nidhi</a>, <a href="https://publications.waset.org/search?q=Shashi%20Sharma"> Shashi Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Targeted drug delivery is a method of delivering medication to a patient in a manner that increases the concentration of the medication in some parts of the body relative to others. Targeted drug delivery seeks to concentrate the medication in the tissues of interest while reducing the relative concentration of the medication in the remaining tissues. This improves efficacy of the while reducing side effects. In the present work, we investigate the effect of magnetic field, flow rate and particle concentration on the capturing of magnetic particles transported in a stent implanted fluidic channel. Iron oxide magnetic nanoparticles (Fe3O4) nanoparticles were synthesized via co-precipitation method. The synthesized Fe3O4 nanoparticles were added in the de-ionized (DI) water to prepare the Fe3O4 magnetic particle suspended fluid. This fluid is transported in a cylindrical tube of diameter 8 mm with help of a peristaltic pump at different flow rate (25-40 ml/min). A ferromagnetic coil of SS 430 has been implanted inside the cylindrical tube to enhance the capturing of magnetic nanoparticles under magnetic field. The capturing of magnetic nanoparticles was observed at different magnetic magnetic field, flow rate and particle concentration. It is observed that capture efficiency increases from 47-67% at magnetic field 2-5kG, respectively at particle concentration 0.6mg/ml and at flow rate 30 ml/min. However, the capture efficiency decreases from 65 to 44% by increasing the flow rate from 25 to 40 ml/min, respectively. Furthermore, it is observed that capture efficiency increases from 51 to 67% by increasing the particle concentration from 0.3 to 0.6 mg/ml, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Capture%20efficiency" title="Capture efficiency">Capture efficiency</a>, <a href="https://publications.waset.org/search?q=Implant%20assisted-Magnetic%20drug%0D%0Atargeting%20%28IA-MDT%29" title=" Implant assisted-Magnetic drug targeting (IA-MDT)"> Implant assisted-Magnetic drug targeting (IA-MDT)</a>, <a href="https://publications.waset.org/search?q=Magnetic%20nanoparticles" title=" Magnetic nanoparticles"> Magnetic nanoparticles</a>, <a href="https://publications.waset.org/search?q=in%20vitro%20study." title=" in vitro study."> in vitro study.</a> </p> <a href="https://publications.waset.org/10002857/experimental-study-on-capturing-of-magnetic-nanoparticles-transported-in-an-implant-assisted-cylindrical-tube-under-magnetic-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002857/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002857/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002857/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002857/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002857/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002857/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002857/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002857/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002857/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002857/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1834</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2660</span> Effects and Mechanization of a High Gradient Magnetic Separation Process for Particulate and Microbe Removal from Ballast Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Zhijun%20Ren">Zhijun Ren</a>, <a href="https://publications.waset.org/search?q=Zhang%20Lin"> Zhang Lin</a>, <a href="https://publications.waset.org/search?q=Zhao%20Ye"> Zhao Ye</a>, <a href="https://publications.waset.org/search?q=Zuo%20Xiangyu"> Zuo Xiangyu</a>, <a href="https://publications.waset.org/search?q=Mei%20Dongxing"> Mei Dongxing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a pretreatment process of ballast water treatment, the performance of high gradient magnetic separation (HGMS) technology for the removal of particulates and microorganisms was studied. The results showed that HGMS process could effectively remove suspended particles larger than 5 &micro;m and had ability to resist impact load. Microorganism could also be effectively removed by HGMS process, and the removal effect increased with increasing magnetic field strength. The maximum removal rates for <em>Escherichia coli</em> (<em>E. </em><em>coli</em>) and <em>Staphylococcus aureus</em> (<em>S. aureus</em>) were 4016.1% and 9675.3% higher, respectively, than without the magnetic field. In addition, the superoxide dismutase (SOD) activity of the microbes decreased by 32.2% when the magnetic field strength was 15.4 mT for 72 min. The microstructure of the stainless steel wool was investigated, and the results showed that particle removal by HGMS has&nbsp;common&nbsp;function&nbsp;by the magnetic force of the high-strength, high-gradient magnetic field on weakly magnetic particles in the water, and on the stainless steel wool. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=HGMS" title="HGMS">HGMS</a>, <a href="https://publications.waset.org/search?q=particulates" title=" particulates"> particulates</a>, <a href="https://publications.waset.org/search?q=superoxide%20dismutase%20activity" title=" superoxide dismutase activity"> superoxide dismutase activity</a>, <a href="https://publications.waset.org/search?q=steel%20wool%20magnetic%20medium." title=" steel wool magnetic medium."> steel wool magnetic medium.</a> </p> <a href="https://publications.waset.org/10007386/effects-and-mechanization-of-a-high-gradient-magnetic-separation-process-for-particulate-and-microbe-removal-from-ballast-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007386/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007386/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007386/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007386/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007386/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007386/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007386/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007386/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007386/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007386/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007386.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">927</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2659</span> A Statistical Model for the Dynamics of Single Cathode Spot in Vacuum Cylindrical Cathode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Po-Wen%20Chen">Po-Wen Chen</a>, <a href="https://publications.waset.org/search?q=Jin-Yu%20Wu"> Jin-Yu Wu</a>, <a href="https://publications.waset.org/search?q=Md.%20Manirul%20Ali"> Md. Manirul Ali</a>, <a href="https://publications.waset.org/search?q=Yang%20Peng"> Yang Peng</a>, <a href="https://publications.waset.org/search?q=Chen-Te%20Chang"> Chen-Te Chang</a>, <a href="https://publications.waset.org/search?q=Der-Jun%20Jan"> Der-Jun Jan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dynamics of cathode spot has become a major part of vacuum arc discharge with its high academic interest and wide application potential. In this article, using a three-dimensional statistical model, we simulate the distribution of the ignition probability of a new cathode spot occurring in different magnetic pressure on old cathode spot surface and at different arcing time. This model for the ignition probability of a new cathode spot was proposed in two typical situations, one by the pure isotropic random walk in the absence of an external magnetic field, other by the retrograde motion in external magnetic field, in parallel with the cathode surface. We mainly focus on developed relationship between the ignition probability density distribution of a new cathode spot and the external magnetic field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Cathode%20spot" title="Cathode spot">Cathode spot</a>, <a href="https://publications.waset.org/search?q=vacuum%20arc%20discharge" title=" vacuum arc discharge"> vacuum arc discharge</a>, <a href="https://publications.waset.org/search?q=transverse%0D%0Amagnetic%20field" title=" transverse magnetic field"> transverse magnetic field</a>, <a href="https://publications.waset.org/search?q=random%20walk." title=" random walk."> random walk.</a> </p> <a href="https://publications.waset.org/10005421/a-statistical-model-for-the-dynamics-of-single-cathode-spot-in-vacuum-cylindrical-cathode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10005421/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10005421/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10005421/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10005421/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10005421/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10005421/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10005421/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10005421/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10005421/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10005421/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10005421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1398</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2658</span> Throughflow Effects on Thermal Convection in Variable Viscosity Ferromagnetic Liquids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=G.%20N.%20Sekhar">G. N. Sekhar</a>, <a href="https://publications.waset.org/search?q=P.%20G.%20Siddheshwar"> P. G. Siddheshwar</a>, <a href="https://publications.waset.org/search?q=G.%20Jayalatha"> G. Jayalatha</a>, <a href="https://publications.waset.org/search?q=R.%20Prakash"> R. Prakash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of thermal convection in temperature and magnetic field sensitive Newtonian ferromagnetic liquid is studied in the presence of uniform vertical magnetic field and throughflow. Using a combination of Galerkin and shooting techniques the critical eigenvalues are obtained for stationary mode. The effect of Prandtl number (Pr &gt; 1) on onset is insignificant and nonlinearity of non-buoyancy magnetic parameter M3 is found to have no influence on the onset of ferroconvection. The magnetic buoyancy number, M1 and variable viscosity parameter, V have destabilizing influences on the system. The effect of throughflow Peclet number, Pe is to delay the onset of ferroconvection and this effect is independent of the direction of flow. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Ferroconvection" title="Ferroconvection">Ferroconvection</a>, <a href="https://publications.waset.org/search?q=throughflow" title=" throughflow"> throughflow</a>, <a href="https://publications.waset.org/search?q=temperature%20dependent%0D%0Aviscosity" title=" temperature dependent viscosity"> temperature dependent viscosity</a>, <a href="https://publications.waset.org/search?q=magnetic%20field%20dependent%20viscosity." title=" magnetic field dependent viscosity."> magnetic field dependent viscosity.</a> </p> <a href="https://publications.waset.org/10007805/throughflow-effects-on-thermal-convection-in-variable-viscosity-ferromagnetic-liquids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007805/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007805/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007805/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007805/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007805/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007805/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007805/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007805/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007805/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007805/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007805.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1147</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2657</span> Magnetic Field Analysis for a Distribution Transformer with Unbalanced Load Conditions by using 3-D Finite Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=P.%20Meesuk">P. Meesuk</a>, <a href="https://publications.waset.org/search?q=T.%20Kulworawanichpong"> T. Kulworawanichpong</a>, <a href="https://publications.waset.org/search?q=P.%20Pao-la-or"> P. Pao-la-or</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a set of quasi-static mathematical model of magnetic fields caused by high voltage conductors of distribution transformer by using a set of second-order partial differential equation. The modification for complex magnetic field analysis and time-harmonic simulation are also utilized. In this research, transformers were study in both balanced and unbalanced loading conditions. Computer-based simulation utilizing the threedimensional finite element method (3-D FEM) is exploited as a tool for visualizing magnetic fields distribution volume a distribution transformer. Finite Element Method (FEM) is one among popular numerical methods that is able to handle problem complexity in various forms. At present, the FEM has been widely applied in most engineering fields. Even for problems of magnetic field distribution, the FEM is able to estimate solutions of Maxwell-s equations governing the power transmission systems. The computer simulation based on the use of the FEM has been developed in MATLAB programming environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Distribution%20Transformer" title="Distribution Transformer">Distribution Transformer</a>, <a href="https://publications.waset.org/search?q=Magnetic%20Field" title=" Magnetic Field"> Magnetic Field</a>, <a href="https://publications.waset.org/search?q=Load%0AUnbalance" title=" Load Unbalance"> Load Unbalance</a>, <a href="https://publications.waset.org/search?q=3-D%20Finite%20Element%20Method%20%283-D%20FEM%29" title=" 3-D Finite Element Method (3-D FEM)"> 3-D Finite Element Method (3-D FEM)</a> </p> <a href="https://publications.waset.org/7880/magnetic-field-analysis-for-a-distribution-transformer-with-unbalanced-load-conditions-by-using-3-d-finite-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7880/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7880/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7880/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7880/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7880/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7880/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7880/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7880/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7880/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7880/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2692</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2656</span> Analysis of Electromagnetic Field Effects Using FEM for Transmission Lines Transposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.%20Tupsie">S. Tupsie</a>, <a href="https://publications.waset.org/search?q=A.%20Isaramongkolrak"> A. Isaramongkolrak</a>, <a href="https://publications.waset.org/search?q=P.%20Pao-la-or"> P. Pao-la-or</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper presents the mathematical model of electric field and magnetic field in transmission system, which performs in second-order partial differential equation. This research has conducted analyzing the electromagnetic field radiating to atmosphere around the transmission line, when there is the transmission line transposition in case of long distance distribution. The six types of 500 kV transposed HV transmission line with double circuit will be considered. The computer simulation is applied finite element method that is developed by MATLAB program. The problem is considered to two dimensions, which is time harmonic system with the graphical performance of electric field and magnetic field. The impact from simulation of six types long distance distributing transposition will not effect changing of electric field and magnetic field which surround the transmission line.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Transposition" title="Transposition">Transposition</a>, <a href="https://publications.waset.org/search?q=Electromagnetic%20Field" title=" Electromagnetic Field"> Electromagnetic Field</a>, <a href="https://publications.waset.org/search?q=Finite%20Element%0D%0AMethod%20%28FEM%29" title=" Finite Element Method (FEM)"> Finite Element Method (FEM)</a>, <a href="https://publications.waset.org/search?q=Transmission%20Line" title=" Transmission Line"> Transmission Line</a>, <a href="https://publications.waset.org/search?q=Computer%20Simulation" title=" Computer Simulation"> Computer Simulation</a> </p> <a href="https://publications.waset.org/3199/analysis-of-electromagnetic-field-effects-using-fem-for-transmission-lines-transposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3199/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3199/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3199/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3199/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3199/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3199/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3199/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3199/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3199/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3199/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">4034</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2655</span> Improved Technique of Non-viral Gene Delivery into Cancer Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=D.%20Vainauska">D. Vainauska</a>, <a href="https://publications.waset.org/search?q=S.%20Kozireva"> S. Kozireva</a>, <a href="https://publications.waset.org/search?q=A.%20Karpovs"> A. Karpovs</a>, <a href="https://publications.waset.org/search?q=M.%20Chistyakovs"> M. Chistyakovs</a>, <a href="https://publications.waset.org/search?q=M.%20Baryshev"> M. Baryshev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Liposomal magnetofection is a simple, highly efficient technology for cell transfection, demonstrating better outcome than a number of other common gene delivery methods. However, aggregate complexes distribution over the cell surface is non-uniform due to the gradient of the permanent magnetic field. The aim of this study was to estimate the efficiency of liposomal magnetofection for prostate carcinoma PC3 cell line using newly designed device, “DynaFECTOR", ensuring magnetofection in a dynamic gradient magnetic field. Liposomal magnetofection in a dynamic gradient magnetic field demonstrated the highest transfection efficiency for PC3 cells – it increased for 21% in comparison with liposomal magnetofection and for 42% in comparison with lipofection alone. The optimal incubation time under dynamic magnetic field for PC3 cell line was 5 minutes and the optimal rotation frequency of magnets – 5 rpm. The new approach also revealed lower cytotoxic effect to cells than liposomal magnetofection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Dynamic%20gradient%20magnetic%20field" title="Dynamic gradient magnetic field">Dynamic gradient magnetic field</a>, <a href="https://publications.waset.org/search?q=gene%20delivery" title=" gene delivery"> gene delivery</a>, <a href="https://publications.waset.org/search?q=liposomal%20magnetofection" title=" liposomal magnetofection"> liposomal magnetofection</a>, <a href="https://publications.waset.org/search?q=prostate%20cancer%20cell%20line" title=" prostate cancer cell line"> prostate cancer cell line</a> </p> <a href="https://publications.waset.org/8299/improved-technique-of-non-viral-gene-delivery-into-cancer-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/8299/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/8299/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/8299/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/8299/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/8299/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/8299/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/8299/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/8299/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/8299/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/8299/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/8299.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1664</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2654</span> Power Frequency Magnetic Field Survey in Indoor Power Distribution Substation in Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ahmed%20Hossam_%20ElDin">Ahmed Hossam_ ElDin</a>, <a href="https://publications.waset.org/search?q=Ahmed%20Farag"> Ahmed Farag</a>, <a href="https://publications.waset.org/search?q=Ibrahim%20Madi."> Ibrahim Madi.</a>, <a href="https://publications.waset.org/search?q=Hanaa%20Karawia"> Hanaa Karawia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In our modern society electricity is vital to our health, safety, comfort and well-being. While our daily use of electricity is often taken for granted, public concern has arisen about potential adverse health effects from electric and magnetic – electromagnetic – fields (EMFs) produced by our use of electricity. This paper aims to compare between the measured magnetic field values and the simulated models for the indoor medium to low voltage (MV/LV) distribution substations. To calculate the magnetic flux density in the substations, interactive software SUBCALC is used which is based on closed form solution of the Biot-Savart law with 3D conductor model. The comparison between the measured values and the simulated models was acceptable. However there were some discrepancies, as expected, may be due to the current variation during measurements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Distribution%20substation" title="Distribution substation">Distribution substation</a>, <a href="https://publications.waset.org/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/search?q=measurement" title=" measurement"> measurement</a>, <a href="https://publications.waset.org/search?q=simulation." title=" simulation."> simulation.</a> </p> <a href="https://publications.waset.org/14633/power-frequency-magnetic-field-survey-in-indoor-power-distribution-substation-in-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14633/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14633/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14633/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14633/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14633/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14633/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14633/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14633/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14633/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14633/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14633.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2299</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2653</span> Magnetization of Thin-Film Permalloy Ellipses used for Programmable Motion of Magnetic Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=P.%20Warnicke">P. Warnicke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Simulations of magnetic microstructure in elliptical Permalloy elements used for controlled motion of magnetic particles are discussed. The saturating field of the elliptical elements was studied with respect to lateral dimensions for one-vortex, cross-tie, diamond and double-diamond states as initial zero-field domain configurations. With aspect ratio of 1:3 the short axis was varied from 125 nm to 1000 nm, whereas the thickness was kept constant at 50 nm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Domain%20structure" title="Domain structure">Domain structure</a>, <a href="https://publications.waset.org/search?q=magnetization" title=" magnetization"> magnetization</a>, <a href="https://publications.waset.org/search?q=micromagnetics" title=" micromagnetics"> micromagnetics</a>, <a href="https://publications.waset.org/search?q=Permalloy." title=" Permalloy."> Permalloy.</a> </p> <a href="https://publications.waset.org/1725/magnetization-of-thin-film-permalloy-ellipses-used-for-programmable-motion-of-magnetic-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1725/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1725/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1725/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1725/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1725/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1725/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1725/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1725/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1725/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1725/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1725.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1398</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2652</span> Dispersion of a Solute in Peristaltic Motion of a Couple Stress Fluid in the Presence of Magnetic Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Habtu%20Alemayehu">Habtu Alemayehu</a>, <a href="https://publications.waset.org/search?q=G.%20Radhakrishnamacharya"> G. Radhakrishnamacharya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An analytical solution for dispersion of a solute in the peristaltic motion of a couple stress fluid in the presence of magnetic field with both homogeneous and heterogeneous chemical reactions is presented. The average effective dispersion coefficient has been found using Taylor-s limiting condition and long wavelength approximation. The effects of various relevant parameters on the average effective coefficient of dispersion have been studied. The average effective dispersion coefficient tends to decrease with magnetic field parameter, homogeneous chemical reaction rate parameter and amplitude ratio but tends to increase with heterogeneous chemical reaction rate parameter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Dispersion" title="Dispersion">Dispersion</a>, <a href="https://publications.waset.org/search?q=Peristalsis" title=" Peristalsis"> Peristalsis</a>, <a href="https://publications.waset.org/search?q=Couple%20stress%20fluid" title=" Couple stress fluid"> Couple stress fluid</a>, <a href="https://publications.waset.org/search?q=Chemicalreaction" title=" Chemicalreaction"> Chemicalreaction</a>, <a href="https://publications.waset.org/search?q=Magnetic%20field." title=" Magnetic field."> Magnetic field.</a> </p> <a href="https://publications.waset.org/1926/dispersion-of-a-solute-in-peristaltic-motion-of-a-couple-stress-fluid-in-the-presence-of-magnetic-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1926/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1926/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1926/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1926/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1926/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1926/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1926/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1926/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1926/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1926/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1926.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1777</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2651</span> Effect of Changing Iron Content and Excitation Frequency on Magnetic Particle Imaging Signal: A Comparative Study of Synomag® Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kalthoum%20Riahi">Kalthoum Riahi</a>, <a href="https://publications.waset.org/search?q=Max%20T.%20Rietberg"> Max T. Rietberg</a>, <a href="https://publications.waset.org/search?q=Javier%20Perez%20y%20Perez"> Javier Perez y Perez</a>, <a href="https://publications.waset.org/search?q=Corn%C3%A9%20Dijkstra"> Corné Dijkstra</a>, <a href="https://publications.waset.org/search?q=Bennie%20ten%20Haken"> Bennie ten Haken</a>, <a href="https://publications.waset.org/search?q=Lejla%20Alic"> Lejla Alic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Magnetic nanoparticles (MNPs) are widely used to facilitate magnetic particle imaging (MPI) which has the potential to become the leading diagnostic instrument for biomedical imaging. This comparative study assesses the effects of changing iron content and excitation frequency on point-spread function (PSF) representing the effect of magnetization reversal. PSF is quantified by features of interest for MPI: i.e., drive field amplitude and full-width-at-half-maximum (FWHM). A superparamagnetic quantifier (SPaQ) is used to assess differential magnetic susceptibility of two commercially available MNPs: Synomag&reg;-D50 and Synomag&reg;-D70. For both MNPs, the signal output depends on increase in drive field frequency and amount of iron-oxide, which might be hampering the sensitivity of MPI systems that perform on higher frequencies. Nevertheless, there is a clear potential of Synomag&reg;-D for a stable MPI resolution, especially in case of 70 nm version, that is independent of either drive field frequency or amount of iron-oxide.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Magnetic%20nanoparticles" title="Magnetic nanoparticles">Magnetic nanoparticles</a>, <a href="https://publications.waset.org/search?q=MNPs" title=" MNPs"> MNPs</a>, <a href="https://publications.waset.org/search?q=Differential%20magnetic%20susceptibility" title=" Differential magnetic susceptibility"> Differential magnetic susceptibility</a>, <a href="https://publications.waset.org/search?q=DMS" title=" DMS"> DMS</a>, <a href="https://publications.waset.org/search?q=Magnetic%20particle%20imaging" title=" Magnetic particle imaging"> Magnetic particle imaging</a>, <a href="https://publications.waset.org/search?q=MPI" title=" MPI"> MPI</a>, <a href="https://publications.waset.org/search?q=magnetic%20relaxation" title=" magnetic relaxation"> magnetic relaxation</a>, <a href="https://publications.waset.org/search?q=Synomag%C2%AE-D." title=" Synomag®-D."> Synomag®-D.</a> </p> <a href="https://publications.waset.org/10012006/effect-of-changing-iron-content-and-excitation-frequency-on-magnetic-particle-imaging-signal-a-comparative-study-of-synomag-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012006/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012006/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012006/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012006/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012006/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012006/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012006/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012006/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012006/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012006/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012006.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">709</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2650</span> Effect of Variable viscosity on Convective Heat Transfer along an Inclined Plate Embedded in Porous Medium with an Applied Magnetic Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=N.S.%20Tomer">N.S. Tomer</a>, <a href="https://publications.waset.org/search?q=Phool%20Singh"> Phool Singh</a>, <a href="https://publications.waset.org/search?q=Manoj%20Kumar"> Manoj Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The flow and heat transfer characteristics for natural convection along an inclined plate in a saturated porous medium with an applied magnetic field have been studied. The fluid viscosity has been assumed to be an inverse function of temperature. Assuming temperature vary as a power function of distance. The transformed ordinary differential equations have solved by numerical integration using Runge-Kutta method. The velocity and temperature profile components on the plate are computed and discussed in detail for various values of the variable viscosity parameter, inclination angle, magnetic field parameter, and real constant (λ). The results have also been interpreted with the aid of tables and graphs. The numerical values of Nusselt number have been calculated for the mentioned parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Heat%20Transfer" title="Heat Transfer">Heat Transfer</a>, <a href="https://publications.waset.org/search?q=Magnetic%20Field" title=" Magnetic Field"> Magnetic Field</a>, <a href="https://publications.waset.org/search?q=Porosity" title=" Porosity"> Porosity</a>, <a href="https://publications.waset.org/search?q=Viscosity" title=" Viscosity"> Viscosity</a> </p> <a href="https://publications.waset.org/1198/effect-of-variable-viscosity-on-convective-heat-transfer-along-an-inclined-plate-embedded-in-porous-medium-with-an-applied-magnetic-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1198/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1198/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1198/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1198/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1198/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1198/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1198/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1198/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1198/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1198/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1198.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1749</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2649</span> Application of Magnetic Circuit and Multiple-Coils Array in Induction Heating for Improving Localized Hyperthermia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Chi-Fang%20Huang">Chi-Fang Huang</a>, <a href="https://publications.waset.org/search?q=Xi-Zhang%20Lin"> Xi-Zhang Lin</a>, <a href="https://publications.waset.org/search?q=Yi-Ru%20Yang"> Yi-Ru Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aiming the application of localized hyperthermia, a magnetic induction system with new approaches is proposed. The techniques in this system for improving the effectiveness of localized hyperthermia are that using magnetic circuit and the multiple-coil array instead of a giant coil for generating magnetic field. Specially, amorphous metal is adopted as the material of magnetic circuit. Detail design parameters of hardware are well described. Simulation tool is employed for this work and experiment result is reported as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=cancer%20therapy" title="cancer therapy">cancer therapy</a>, <a href="https://publications.waset.org/search?q=hyperthermia" title=" hyperthermia"> hyperthermia</a>, <a href="https://publications.waset.org/search?q=Helmholtz%20coil" title=" Helmholtz coil"> Helmholtz coil</a>, <a href="https://publications.waset.org/search?q=induction%20heating" title=" induction heating"> induction heating</a>, <a href="https://publications.waset.org/search?q=magnetic%20circuit." title=" magnetic circuit."> magnetic circuit.</a> </p> <a href="https://publications.waset.org/10690/application-of-magnetic-circuit-and-multiple-coils-array-in-induction-heating-for-improving-localized-hyperthermia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10690/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10690/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10690/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10690/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10690/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10690/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10690/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10690/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10690/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10690/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10690.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3273</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2648</span> Magnetic Field Effects on Parabolic Graphene Quantum Dots with Topological Defects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Defne%20Akay">Defne Akay</a>, <a href="https://publications.waset.org/search?q=Bekir%20S.%20Kandemir"> Bekir S. Kandemir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we investigate the low-lying energy levels of the two-dimensional parabolic graphene quantum dots (GQDs) in the presence of topological defects with long range Coulomb impurity and subjected to an external uniform magnetic field. The low-lying energy levels of the system are obtained within the framework of the perturbation theory. We theoretically demonstrate that a valley splitting can be controlled by geometrical parameters of the graphene quantum dots and/or by tuning a uniform magnetic field, as well as topological defects. It is found that, for parabolic graphene dots, the valley splitting occurs due to the introduction of spatial confinement. The corresponding splitting is enhanced by the introduction of a uniform magnetic field and it increases by increasing the angle of the cone in subcritical regime. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Coulomb%20impurity" title="Coulomb impurity">Coulomb impurity</a>, <a href="https://publications.waset.org/search?q=graphene%20cones" title=" graphene cones"> graphene cones</a>, <a href="https://publications.waset.org/search?q=graphene%0D%0Aquantum%20dots" title=" graphene quantum dots"> graphene quantum dots</a>, <a href="https://publications.waset.org/search?q=topological%20defects." title=" topological defects."> topological defects.</a> </p> <a href="https://publications.waset.org/10003408/magnetic-field-effects-on-parabolic-graphene-quantum-dots-with-topological-defects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003408/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003408/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003408/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003408/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003408/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003408/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003408/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003408/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003408/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003408/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2099</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2647</span> Influence of an External Magnetic Field on the Acoustomagnetoelectric Field in a Rectangular Quantum Wire with an Infinite Potential by Using a Quantum Kinetic Equation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=N.%20Q.%20Bau">N. Q. Bau</a>, <a href="https://publications.waset.org/search?q=N.%20V.%20Nghia"> N. V. Nghia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The acoustomagnetoelectric (AME) field in a rectangular quantum wire with an infinite potential (RQWIP) is calculated in the presence of an external magnetic field (EMF) by using the quantum kinetic equation for the distribution function of electrons system interacting with external phonons and electrons scattering with internal acoustic phonon in a RQWIP. We obtained ananalytic expression for the AME field in the RQWIP in the presence of the EMF. The dependence of AME field on the frequency of external acoustic wave, the temperature <em>T</em> of system, the cyclotron frequency of the EMF and the intensity of the EMF is obtained. Theoretical results for the AME field are numerically evaluated, plotted and discussed for a specific RQWIP <em>GaAs/GaAsAl</em>. This result has shown that the dependence of the AME field on intensity of the EMF is nonlinearly and it is many distinct maxima in the quantized magnetic region. We also compared received fields with those for normal bulk semiconductors, quantum well and quantum wire to show the difference. The influence of an EMF on AME field in a RQWIP is newly developed.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Rectangular%20quantum%20wire" title="Rectangular quantum wire">Rectangular quantum wire</a>, <a href="https://publications.waset.org/search?q=acoustomagnetoelectric%20field" title=" acoustomagnetoelectric field"> acoustomagnetoelectric field</a>, <a href="https://publications.waset.org/search?q=electron-phonon%20interaction" title=" electron-phonon interaction"> electron-phonon interaction</a>, <a href="https://publications.waset.org/search?q=kinetic%20equation%20method." title=" kinetic equation method."> kinetic equation method.</a> </p> <a href="https://publications.waset.org/10003713/influence-of-an-external-magnetic-field-on-the-acoustomagnetoelectric-field-in-a-rectangular-quantum-wire-with-an-infinite-potential-by-using-a-quantum-kinetic-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003713/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003713/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003713/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003713/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003713/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003713/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003713/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003713/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003713/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003713/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1418</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Magnetic%20field&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Magnetic%20field&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Magnetic%20field&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Magnetic%20field&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Magnetic%20field&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Magnetic%20field&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Magnetic%20field&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Magnetic%20field&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Magnetic%20field&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Magnetic%20field&amp;page=89">89</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Magnetic%20field&amp;page=90">90</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Magnetic%20field&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10