CINXE.COM
Search results for: Multiplex
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Multiplex</title> <meta name="description" content="Search results for: Multiplex"> <meta name="keywords" content="Multiplex"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Multiplex" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Multiplex"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 80</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Multiplex</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">80</span> Qualitative Detection of HCV and GBV-C Co-infection in Cirrhotic Patients Using a SYBR Green Multiplex Real Time RT-PCR Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahzamani%20Kiana">Shahzamani Kiana</a>, <a href="https://publications.waset.org/abstracts/search?q=Esmaeil%20Lashgarian%20Hamed"> Esmaeil Lashgarian Hamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Merat%20Shahin"> Merat Shahin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> HCV and GBV-C belong to the Flaviviridae family of viruses and GBV-C is the closest virus to HCV genetically. Accumulative research is in progress all over the world to clarify clinical aspects of GBV-C. Possibility of interaction between HCV and GBV-C and also its consequence with other liver diseases are the most important clinical aspects which encourage researchers to develop a technique for simultaneous detection of these viruses. In this study a SYBR Green multiplex real time RT-PCR technique as a new economical and sensitive method was optimized for simultaneous detection of HCV/GBV-C in HCV positive plasma samples. After designing and selection of two pairs of specific primers for HCV and GBV-C, SYBR Green Real time RT-PCR technique optimization was performed separately for each virus. Establishment of multiplex PCR was the next step. Finally our technique was performed on positive and negative plasma samples. 89 cirrhotic HCV positive plasma samples (29 of genotype 3 a and 27 of genotype 1a) were collected from patients before receiving treatment. 14% of genotype 3a and 17.1% of genotype 1a showed HCV/GBV-C co-infection. As a result, 13.48% of 89 samples had HCV/GBV-C co-infection that was compatible with other results from all over the world. Data showed no apparent influence of HGV co-infection on the either clinical or virological aspect of HCV infection. Furthermore, with application of multiplex Real time RT-PCR technique, more time and cost could be saved in clinical-research settings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HCV" title="HCV">HCV</a>, <a href="https://publications.waset.org/abstracts/search?q=GBV-C" title=" GBV-C"> GBV-C</a>, <a href="https://publications.waset.org/abstracts/search?q=cirrhotic%20patients" title=" cirrhotic patients"> cirrhotic patients</a>, <a href="https://publications.waset.org/abstracts/search?q=multiplex%20real%20time%20RT-%20PCR" title=" multiplex real time RT- PCR"> multiplex real time RT- PCR</a> </p> <a href="https://publications.waset.org/abstracts/31403/qualitative-detection-of-hcv-and-gbv-c-co-infection-in-cirrhotic-patients-using-a-sybr-green-multiplex-real-time-rt-pcr-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31403.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">79</span> Increase in the Persistence of Various Invaded Multiplex Metacommunities Induced by Heterogeneity of Motifs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dweepabiswa%20Bagchi">Dweepabiswa Bagchi</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20V.%20Senthilkumar"> D. V. Senthilkumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerous studies have typically demonstrated the devastation of invasions on an isolated ecosystem or, at most, a network of dispersively coupled similar ecosystem patches. Using such a simplistic 2-D network model, one can only consider dispersal coupling and inter-species trophic interactions. However, in a realistic ecosystem, numerous species co-exist and interact trophically and non-trophically in groups of 2 or more. Even different types of dispersal can introduce complexity in an ecological network. Therefore, a more accurate representation of actual ecosystems (or ecological networks) is a complex network consisting of motifs formed by two or more interacting species. Here, the apropos structure of the network should be multiplex or multi-layered. Motifs between different patches or species should be identical within the same layer and vary from one layer to another. This study investigates three distinct ecological multiplex networks facing invasion from one or more external species. This work determines and quantifies the criteria for the increased extinction risk of these networks. The dynamical states of the network with high extinction risk, i.e., the danger states, and those with low extinction risk, i.e., the resistive network states, are both subsequently identified. The analysis done in this study further quantifies the persistence of the entire network corresponding to simultaneous changes in the strength of invasive dispersal and higher-order trophic and non-trophic interactions. This study also demonstrates that the ecosystems enjoy an inherent advantage against invasions due to their multiplex network structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=increased%20ecosystem%20persistence" title="increased ecosystem persistence">increased ecosystem persistence</a>, <a href="https://publications.waset.org/abstracts/search?q=invasion%20on%20ecosystems" title=" invasion on ecosystems"> invasion on ecosystems</a>, <a href="https://publications.waset.org/abstracts/search?q=multiplex%20networks" title=" multiplex networks"> multiplex networks</a>, <a href="https://publications.waset.org/abstracts/search?q=non-trophic%20interactions" title=" non-trophic interactions"> non-trophic interactions</a> </p> <a href="https://publications.waset.org/abstracts/176495/increase-in-the-persistence-of-various-invaded-multiplex-metacommunities-induced-by-heterogeneity-of-motifs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">78</span> Molecular Detection and Characterization of Shiga Toxogenic Escherichia coli Associated with Dairy Product</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Al-Hazmi">Mohamed Al-Hazmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Al-Arfaj"> Abdullah Al-Arfaj</a>, <a href="https://publications.waset.org/abstracts/search?q=Moussa%20Ihab"> Moussa Ihab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Raw, unpasteurized milk can carry dangerous bacteria such as Salmonella, E. coli, and Listeria, which are responsible for causing numerous foodborne illnesses. The objective of this study was molecular characterization of shiga toxogenic E. coli in raw milk collected from different Egyptian governorates by multiplex PCR. During the period of 25th May to 25th October 2012, a total of 320 bulk-tank milk samples were collected from 10 cow farms located in different Egyptian governorates. Bacteriological examination of milk samples revealed the presence of E. coli organisms in 65 samples (20.3%), serotyping of the E. coli isolates revealed, 35 strains (10.94%) O111, 15 strains (4.69%) O157: H7, 10 strains (3.13%) O128 and 5 strains (1.56%) O119. Multiplex PCR for detection of shiga toxin type 2 and intimin genes revealed positive amplification of 255 bp fragment of shiga toxin type 2 gene and 384 bp fragment of intimin gene from all E. coli serovar O157: H7, while from serovar O111 were 25 (71.43%), 20 (57.14%) and from serovar O128 were 6 (60%), 8 (80%), respectively. The results of multiplex PCR assay are useful for identification of STEC possessing the eaeA and stx2 genes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=raw%20milk" title="raw milk">raw milk</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20coli" title=" E. coli"> E. coli</a>, <a href="https://publications.waset.org/abstracts/search?q=multiplex%20PCR" title=" multiplex PCR"> multiplex PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiga%20toxin%20type%202" title=" Shiga toxin type 2"> Shiga toxin type 2</a>, <a href="https://publications.waset.org/abstracts/search?q=intimin%20gene" title=" intimin gene"> intimin gene</a> </p> <a href="https://publications.waset.org/abstracts/2617/molecular-detection-and-characterization-of-shiga-toxogenic-escherichia-coli-associated-with-dairy-product" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2617.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">77</span> Rapid Detection and Differentiation of Camel Pox, Contagious Ecthyma and Papilloma Viruses in Clinical Samples of Camels Using a Multiplex PCR</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20I.%20Khalafalla">A. I. Khalafalla</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Al-Busada"> K. A. Al-Busada</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20M.%20El-Sabagh"> I. M. El-Sabagh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pox and pox-like diseases of camels are a group of exanthematous skin conditions that have become increasingly important economically. They may be caused by three distinct viruses: camelpox virus (CMPV), camel contagious ecthyma virus (CCEV) and camel papillomavirus (CAPV). These diseases are difficult to differentiate based on clinical presentation in disease outbreaks. Molecular methods such as PCR targeting species-specific genes have been developed and used to identify CMPV and CCEV, but not simultaneously in a single tube. Recently, multiplex PCR has gained reputation as a convenient diagnostic method with cost- and time–saving benefits. In the present communication, we describe the development, optimization and validation a multiplex PCR assays able to detect simultaneously the genome of the three viruses in one single test allowing for rapid and efficient molecular diagnosis. The assay was developed based on the evaluation and combination of published and new primer sets, and was applied to the detection of 110 tissue samples. The method showed high sensitivity, and the specificity was confirmed by PCR-product sequencing. In conclusion, this rapid, sensitive and specific assay is considered a useful method for identifying three important viruses in specimens from camels and as part of a molecular diagnostic regime. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiplex%20PCR" title="multiplex PCR">multiplex PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnosis" title=" diagnosis"> diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=pox%20and%20pox-like%20diseases" title=" pox and pox-like diseases"> pox and pox-like diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=camels" title=" camels "> camels </a> </p> <a href="https://publications.waset.org/abstracts/23894/rapid-detection-and-differentiation-of-camel-pox-contagious-ecthyma-and-papilloma-viruses-in-clinical-samples-of-camels-using-a-multiplex-pcr" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23894.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">76</span> Frequency of BCR-ABL Fusion Transcript Types with Chronic Myeloid Leukemia by Multiplex Polymerase Chain Reaction in Srinagarind Hospital, Khon Kaen Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kanokon%20Chaicom">Kanokon Chaicom</a>, <a href="https://publications.waset.org/abstracts/search?q=Chitima%20Sirijerachai"> Chitima Sirijerachai</a>, <a href="https://publications.waset.org/abstracts/search?q=Kanchana%20%20Chansung"> Kanchana Chansung</a>, <a href="https://publications.waset.org/abstracts/search?q=Pinsuda%20Klangsang"> Pinsuda Klangsang</a>, <a href="https://publications.waset.org/abstracts/search?q=Boonpeng%20Palaeng"> Boonpeng Palaeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Prajuab%20Chaimanee"> Prajuab Chaimanee</a>, <a href="https://publications.waset.org/abstracts/search?q=Pimjai%20Ananta"> Pimjai Ananta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chronic myeloid leukemia (CML) is characterized by the consistent involvement of the Philadelphia chromosome (Ph), which is derived from a reciprocal translocation between chromosome 9 and 22, the main product of the t(9;22) (q34;q11) translocation, is found in the leukemic clone of at least 95% of CML patients. There are two major forms of the BCR/ABL fusion gene, involving ABL exon 2, but including different exons of BCR gene. The transcripts b2a2 (e13a2) or b3a2 (e14a2) code for a p210 protein. Another fusion gene leads to the expression of an e1a2 transcript, which codes for a p190 protein. Other less common fusion genes are b3a3 or b2a3, which codes for a p203 protein and e19a2 (c3a2) transcript, which codes for a p230 protein. Its frequency varies in different populations. In this study, we aimed to report the frequency of BCR-ABL fusion transcript types with CML by multiplex PCR (polymerase chain reaction) in Srinagarind Hospital, Khon Kaen, Thailand. Multiplex PCR for BCR-ABL was performed on 58 patients, to detect different types of BCR-ABL transcripts of the t (9; 22). All patients examined were positive for some type of BCR/ABL rearrangement. The majority of the patients (93.10%) expressed one of the p210 BCR-ABL transcripts, b3a2 and b2a2 transcripts were detected in 53.45% and 39.65% respectively. The expression of an e1a2 transcript showed 3.75%. Co-expression of p210/p230 was detected in 3.45%. Co-expression of p210/p190 was not detected. Multiplex PCR is useful, saves time and reliable in the detection of BCR-ABL transcript types. The frequency of one or other rearrangement in CML varies in different population. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chronic%20myeloid%20leukemia" title="chronic myeloid leukemia">chronic myeloid leukemia</a>, <a href="https://publications.waset.org/abstracts/search?q=BCR-ABL%20fusion%20transcript%20types" title=" BCR-ABL fusion transcript types"> BCR-ABL fusion transcript types</a>, <a href="https://publications.waset.org/abstracts/search?q=multiplex%20PCR" title=" multiplex PCR"> multiplex PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20of%20BCR-ABL%20fusion" title=" frequency of BCR-ABL fusion"> frequency of BCR-ABL fusion</a> </p> <a href="https://publications.waset.org/abstracts/91777/frequency-of-bcr-abl-fusion-transcript-types-with-chronic-myeloid-leukemia-by-multiplex-polymerase-chain-reaction-in-srinagarind-hospital-khon-kaen-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91777.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">75</span> Molecular Biomonitoring of Bacterial Pathogens in Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Desouky%20Abd%20El%20Haleem">Desouky Abd El Haleem</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahar%20Zaki"> Sahar Zaki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work was conducted to develop a one-step multiplex PCR system for rapid, sensitive, and specific detection of three different bacterial pathogens, Escherichia coli, Pseudomonas aeruginosa, and Salmonella spp, directly in wastewater without prior isolation on selective media. As a molecular confirmatory test after isolation of the pathogens by classical microbiological methods, PCR-RFLP of their amplified 16S rDNA genes was performed. It was observed that the developed protocols have significance impact in the ability to detect sensitively, rapidly and specifically the three pathogens directly in water within short-time, represents a considerable advancement over more time-consuming and less-sensitive methods for identification and characterization of these kinds of pathogens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiplex%20PCR" title="multiplex PCR">multiplex PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=bacterial%20pathogens" title=" bacterial pathogens"> bacterial pathogens</a>, <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title=" Escherichia coli"> Escherichia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=Pseudomonas%20aeruginosa" title=" Pseudomonas aeruginosa"> Pseudomonas aeruginosa</a>, <a href="https://publications.waset.org/abstracts/search?q=Salmonella%20spp." title=" Salmonella spp."> Salmonella spp.</a> </p> <a href="https://publications.waset.org/abstracts/36823/molecular-biomonitoring-of-bacterial-pathogens-in-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> South African Breast Cancer Mutation Spectrum: Pitfalls to Copy Number Variation Detection Using Internationally Designed Multiplex Ligation-Dependent Probe Amplification and Next Generation Sequencing Panels </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaco%20Oosthuizen">Jaco Oosthuizen</a>, <a href="https://publications.waset.org/abstracts/search?q=Nerina%20C.%20Van%20Der%20Merwe"> Nerina C. Van Der Merwe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The National Health Laboratory Services in Bloemfontien has been the diagnostic testing facility for 1830 patients for familial breast cancer since 1997. From the cohort, 540 were comprehensively screened using High-Resolution Melting Analysis or Next Generation Sequencing for the presence of point mutations and/or indels. Approximately 90% of these patients stil remain undiagnosed as they are BRCA1/2 negative. Multiplex ligation-dependent probe amplification was initially added to screen for copy number variation detection, but with the introduction of next generation sequencing in 2017, was substituted and is currently used as a confirmation assay. The aim was to investigate the viability of utilizing internationally designed copy number variation detection assays based on mostly European/Caucasian genomic data for use within a South African context. The multiplex ligation-dependent probe amplification technique is based on the hybridization and subsequent ligation of multiple probes to a targeted exon. The ligated probes are amplified using conventional polymerase chain reaction, followed by fragment analysis by means of capillary electrophoresis. The experimental design of the assay was performed according to the guidelines of MRC-Holland. For BRCA1 (P002-D1) and BRCA2 (P045-B3), both multiplex assays were validated, and results were confirmed using a secondary probe set for each gene. The next generation sequencing technique is based on target amplification via multiplex polymerase chain reaction, where after the amplicons are sequenced parallel on a semiconductor chip. Amplified read counts are visualized as relative copy numbers to determine the median of the absolute values of all pairwise differences. Various experimental parameters such as DNA quality, quantity, and signal intensity or read depth were verified using positive and negative patients previously tested internationally. DNA quality and quantity proved to be the critical factors during the verification of both assays. The quantity influenced the relative copy number frequency directly whereas the quality of the DNA and its salt concentration influenced denaturation consistency in both assays. Multiplex ligation-dependent probe amplification produced false positives due to ligation failure when ligation was inhibited due to a variant present within the ligation site. Next generation sequencing produced false positives due to read dropout when primer sequences did not meet optimal multiplex binding kinetics due to population variants in the primer binding site. The analytical sensitivity and specificity for the South African population have been proven. Verification resulted in repeatable reactions with regards to the detection of relative copy number differences. Both multiplex ligation-dependent probe amplification and next generation sequencing multiplex panels need to be optimized to accommodate South African polymorphisms present within the genetically diverse ethnic groups to reduce the false copy number variation positive rate and increase performance efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=familial%20breast%20cancer" title="familial breast cancer">familial breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=multiplex%20ligation-dependent%20probe%20amplification" title=" multiplex ligation-dependent probe amplification"> multiplex ligation-dependent probe amplification</a>, <a href="https://publications.waset.org/abstracts/search?q=next%20generation%20sequencing" title=" next generation sequencing"> next generation sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=South%20Africa" title=" South Africa"> South Africa</a> </p> <a href="https://publications.waset.org/abstracts/79169/south-african-breast-cancer-mutation-spectrum-pitfalls-to-copy-number-variation-detection-using-internationally-designed-multiplex-ligation-dependent-probe-amplification-and-next-generation-sequencing-panels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> Bacterial Profiling and Development of Molecular Diagnostic Assays for Detection of Bacterial Pathogens Associated with Bovine mastitis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aqeela%20Ashraf">Aqeela Ashraf</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Imran"> Muhammad Imran</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahir%20Yaqub"> Tahir Yaqub</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Tayyab"> Muhammad Tayyab</a>, <a href="https://publications.waset.org/abstracts/search?q=Yung%20Fu%20Chang"> Yung Fu Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For the identification of bovine mastitic pathogen, an economical, rapid and sensitive molecular diagnostic assay is developed by PCR multiplexing of gene and pathogenic species specific DNA sequences. The multiplex PCR assay is developed for detecting nine important bacterial pathogens causing mastitis Worldwide. The bacterial species selected for this study are Streptococcus agalactiae, Streptococcus dysagalactiae, Streptococcus uberis, Staphylococcus aureus, Escherichia coli, Staphylococcus haemolyticus, Staphylococcus chromogenes Mycoplasma bovis and Staphylococcus epidermidis. A single reaction assay was developed and validated by 27 reference strains and further tested on 276 bacterial strains obtained from culturing mastitic milk. The multiplex PCR assay developed here is further evaluated by applying directly on genomic DNA isolated from 200 mastitic milk samples. It is compared with bacterial culturing method and proved to be more sensitive, rapid, economical and can specifically identify 9 bacterial pathogens in a single reaction. It has detected the pathogens in few culture negative mastitic samples. Recognition of disease is the foundation of disease control and prevention. This assay can be very helpful for maintaining the udder health and milk monitoring. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiplex%20PCR" title="multiplex PCR">multiplex PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=mastitis" title=" mastitis"> mastitis</a>, <a href="https://publications.waset.org/abstracts/search?q=milk" title=" milk"> milk</a> </p> <a href="https://publications.waset.org/abstracts/58424/bacterial-profiling-and-development-of-molecular-diagnostic-assays-for-detection-of-bacterial-pathogens-associated-with-bovine-mastitis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58424.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> Genotyping of Salmonella enterica Collected from Poultry Farms Located in Riyadh, KSA by Multiplex-PCR</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moussa%20I.%20Mohamed">Moussa I. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Turki"> Turki</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Al-Faraj"> K. A. Al-Faraj</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20A.%20Al-Arfaj"> Abdullah A. Al-Arfaj</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashgan%20M.%20Hessain"> Ashgan M. Hessain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of the present study is to detect the incidences of Salmonella enterica from different poultry farms located in Egypt on molecular basis. During the summer of 2012, a total of 1800 cloacal swabs were collected from poultry farms located I Cairo, Egypt to be subjected for isolation of Salmonella enteric. Moreover, a total of 300 samples of poultry and poultry products were collected from different retail establishment markets in Cairo, Egypt including, 150 local whole frozen chickens, 50 imported whole frozen chickens, 100 local chicken cut samples. The highest rate of isolation 8% was obtained from imported frozen chickens and local chicken cuts, followed by local frozen chickens 6.66% and finally rectal swabs from apparently health chickens 6.4 %. Salmonella Typhimurium and Salmonella Enteritidis were most frequent among the total Salmonella isolates. Multiplex-PCR for the rapid detection of Salmonella Typhimurium and Salmonella Enteritidis from field samples especially after pre-enrichment on Rappaport-Vassiliadis (RV) selective broth (PCR-RV), revealed the same positive samples. Therefore PCR-RV technique is rabid, time saving and applicable to detect Salmonella serovars directly from chicken samples. Moreover, detecting Salmonella Typhimurium and Salmonella Enteritidis by this assay was carried out within 2 days opposed to 5–6 d by the bacteriological and serological methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salmonella%20enterica" title="Salmonella enterica">Salmonella enterica</a>, <a href="https://publications.waset.org/abstracts/search?q=Salmonella%20typhimurium" title=" Salmonella typhimurium"> Salmonella typhimurium</a>, <a href="https://publications.waset.org/abstracts/search?q=Salmonella%20enteritidis%20enrichment" title=" Salmonella enteritidis enrichment"> Salmonella enteritidis enrichment</a>, <a href="https://publications.waset.org/abstracts/search?q=multiplex-PCR" title=" multiplex-PCR"> multiplex-PCR</a> </p> <a href="https://publications.waset.org/abstracts/4053/genotyping-of-salmonella-enterica-collected-from-poultry-farms-located-in-riyadh-ksa-by-multiplex-pcr" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4053.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> Prevalence of Clostridium perfringens β2-Toxin in Type a Isolates of Sheep and Goats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mudassar%20Mohiuddin">Mudassar Mohiuddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahid%20Iqbal"> Zahid Iqbal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Clostridium perfringens is an important pathogen responsible for causing enteric diseases in both human and animals. The bacteria produce several toxins. These toxins play vital role in the pathogenesis of various fatal enteric diseases and are classified into five types, on the basis of the differential production of Alpha, Beta, Epsilon and Iota toxins. In addition to the so-called major toxins, there are other toxins like beta2 toxin, produced by some strains of C. perfringens which may play a role in the pathogenesis of disease. Aim of the study: In this study a multiplex PCR assay was developed and used for detection of cpb2 gene to identify the Beta2 harboring isolates among different types of C. perfringens. Objectives: The primary objective of this study was to identify the prevalence of β2-toxin gene in local isolates of Clostridium perfringens. Methodology: This was an experimental study. Random sampling technique was used. A total of 97 sheep and goats were included in this study. All were Pakistani local breeds. The samples were collected during the period from Sep, 2014 to Mar, 2015 from selected districts of Punjab province (Pakistan). Faecal samples were cultured in cooked meat media. The identification of Clostridium perfringens was made on the basis of biochemical tests. Multiplex PCR was performed to identify the toxin genes. Results: A total of 43 C. perfringens isolates were genotyped using multiplex PCR assay. The gene encoding C. perfringens β2-toxin (cpb2) was present in more than 50% of the isolates genotyped. However, the prevalence of this gene varied between sheep and goat isolates. Conclusion: The present study suggests the high occurrence of C. perfringens b2-toxin (cpb2) in the local isolates of Pakistan. As β2-toxin is present in both healthy and diseased animals, so further studies are suggested to establish the role of β2-toxin in pathogenesis of the clostridial enteric diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beta%202%20toxin%20gene" title="beta 2 toxin gene">beta 2 toxin gene</a>, <a href="https://publications.waset.org/abstracts/search?q=clostridium%20perfringens" title=" clostridium perfringens"> clostridium perfringens</a>, <a href="https://publications.waset.org/abstracts/search?q=enteric%20diseases" title=" enteric diseases"> enteric diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=goats" title=" goats"> goats</a>, <a href="https://publications.waset.org/abstracts/search?q=multiplex%20PCR" title=" multiplex PCR"> multiplex PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=sheep" title=" sheep"> sheep</a> </p> <a href="https://publications.waset.org/abstracts/36854/prevalence-of-clostridium-perfringens-v2-toxin-in-type-a-isolates-of-sheep-and-goats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> Robust Electrical Segmentation for Zone Coherency Delimitation Base on Multiplex Graph Community Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noureddine%20Henka">Noureddine Henka</a>, <a href="https://publications.waset.org/abstracts/search?q=Sami%20Tazi"> Sami Tazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Assaad"> Mohamad Assaad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The electrical grid is a highly intricate system designed to transfer electricity from production areas to consumption areas. The Transmission System Operator (TSO) is responsible for ensuring the efficient distribution of electricity and maintaining the grid's safety and quality. However, due to the increasing integration of intermittent renewable energy sources, there is a growing level of uncertainty, which requires a faster responsive approach. A potential solution involves the use of electrical segmentation, which involves creating coherence zones where electrical disturbances mainly remain within the zone. Indeed, by means of coherent electrical zones, it becomes possible to focus solely on the sub-zone, reducing the range of possibilities and aiding in managing uncertainty. It allows faster execution of operational processes and easier learning for supervised machine learning algorithms. Electrical segmentation can be applied to various applications, such as electrical control, minimizing electrical loss, and ensuring voltage stability. Since the electrical grid can be modeled as a graph, where the vertices represent electrical buses and the edges represent electrical lines, identifying coherent electrical zones can be seen as a clustering task on graphs, generally called community detection. Nevertheless, a critical criterion for the zones is their ability to remain resilient to the electrical evolution of the grid over time. This evolution is due to the constant changes in electricity generation and consumption, which are reflected in graph structure variations as well as line flow changes. One approach to creating a resilient segmentation is to design robust zones under various circumstances. This issue can be represented through a multiplex graph, where each layer represents a specific situation that may arise on the grid. Consequently, resilient segmentation can be achieved by conducting community detection on this multiplex graph. The multiplex graph is composed of multiple graphs, and all the layers share the same set of vertices. Our proposal involves a model that utilizes a unified representation to compute a flattening of all layers. This unified situation can be penalized to obtain (K) connected components representing the robust electrical segmentation clusters. We compare our robust segmentation to the segmentation based on a single reference situation. The robust segmentation proves its relevance by producing clusters with high intra-electrical perturbation and low variance of electrical perturbation. We saw through the experiences when robust electrical segmentation has a benefit and in which context. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=community%20detection" title="community detection">community detection</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20segmentation" title=" electrical segmentation"> electrical segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=multiplex%20graph" title=" multiplex graph"> multiplex graph</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20grid" title=" power grid"> power grid</a> </p> <a href="https://publications.waset.org/abstracts/165221/robust-electrical-segmentation-for-zone-coherency-delimitation-base-on-multiplex-graph-community-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> Microfluidic Paper-Based Electrochemical Biosensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Manbohi">Ahmad Manbohi</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyyed%20Hamid%20Ahmadi"> Seyyed Hamid Ahmadi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A low-cost paper-based microfluidic device (PAD) for the multiplex electrochemical determination of glucose, uric acid, and dopamine in biological fluids was developed. Using wax printing, PAD containing a central zone, six channels, and six detection zones was fabricated, and the electrodes were printed on detection zones using pre-made electrodes template. For each analyte, two detection zones were used. The carbon working electrode was coated with chitosan-BSA (and enzymes for glucose and uric acid). To detect glucose and uric acid, enzymatic reactions were employed. These reactions involve enzyme-catalyzed redox reactions of the analytes and produce free electrons for electrochemical measurement. Calibration curves were linear (R<sup>²</sup> > 0.980) in the range of 0-80 mM for glucose, 0.09–0.9 mM for dopamine, and 0–50 mM for uric acid, respectively. Blood samples were successfully analyzed by the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20fluids" title="biological fluids">biological fluids</a>, <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title=" biomarkers"> biomarkers</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidic%20paper-based%20electrochemical%20biosensors" title="microfluidic paper-based electrochemical biosensors">microfluidic paper-based electrochemical biosensors</a>, <a href="https://publications.waset.org/abstracts/search?q=Multiplex" title=" Multiplex"> Multiplex</a> </p> <a href="https://publications.waset.org/abstracts/77212/microfluidic-paper-based-electrochemical-biosensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77212.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> Development of a Bead Based Fully Automated Mutiplex Tool to Simultaneously Diagnose FIV, FeLV and FIP/FCoV</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Latz">Andreas Latz</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniela%20Heinz"> Daniela Heinz</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Hashemi"> Fatima Hashemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Melek%20Bayg%C3%BCl"> Melek Baygül</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Feline leukemia virus (FeLV), feline immunodeficiency virus (FIV), and feline coronavirus (FCoV) are serious infectious diseases affecting cats worldwide. Transmission of these viruses occurs primarily through close contact with infected cats (via saliva, nasal secretions, faeces, etc.). FeLV, FIV, and FCoV infections can occur in combination and are expressed in similar clinical symptoms. Diagnosis can therefore be challenging: Symptoms are variable and often non-specific. Sick cats show very similar clinical symptoms: apathy, anorexia, fever, immunodeficiency syndrome, anemia, etc. Sample volume for small companion animals for diagnostic purposes can be challenging to collect. In addition, multiplex diagnosis of diseases can contribute to an easier, cheaper, and faster workflow in the lab as well as to the better differential diagnosis of diseases. For this reason, we wanted to develop a new diagnostic tool that utilizes less sample volume, reagents, and consumables than multiplesingleplex ELISA assays Methods: The Multiplier from Dynextechonogies (USA) has been used as platform to develop a Multiplex diagnostic tool for the detection of antibodies against FIV and FCoV/FIP and antigens for FeLV. Multiplex diagnostics. The Dynex®Multiplier®is a fully automated chemiluminescence immunoassay analyzer that significantly simplifies laboratory workflow. The Multiplier®ease-of-use reduces pre-analytical steps by combining the power of efficiently multiplexing multiple assays with the simplicity of automated microplate processing. Plastic beads have been coated with antigens for FIV and FCoV/FIP, as well as antibodies for FeLV. Feline blood samples are incubated with the beads. Read out of results is performed via chemiluminescence Results: Bead coating was optimized for each individual antigen or capture antibody and then combined in the multiplex diagnostic tool. HRP: Antibody conjugates for FIV and FCoV antibodies, as well as detection antibodies for FeLV antigen, have been adjusted and mixed. 3 individual prototyple batches of the assay have been produced. We analyzed for each disease 50 well defined positive and negative samples. Results show an excellent diagnostic performance of the simultaneous detection of antibodies or antigens against these feline diseases in a fully automated system. A 100% concordance with singleplex methods like ELISA or IFA can be observed. Intra- and Inter-Assays showed a high precision of the test with CV values below 10% for each individual bead. Accelerated stability testing indicate a shelf life of at least 1 year. Conclusion: The new tool can be used for multiplex diagnostics of the most important feline infectious diseases. Only a very small sample volume is required. Fully automation results in a very convenient and fast method for diagnosing animal diseases.With its large specimen capacity to process over 576 samples per 8-hours shift and provide up to 3,456 results, very high laboratory productivity and reagent savings can be achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Multiplex" title="Multiplex">Multiplex</a>, <a href="https://publications.waset.org/abstracts/search?q=FIV" title=" FIV"> FIV</a>, <a href="https://publications.waset.org/abstracts/search?q=FeLV" title=" FeLV"> FeLV</a>, <a href="https://publications.waset.org/abstracts/search?q=FCoV" title=" FCoV"> FCoV</a>, <a href="https://publications.waset.org/abstracts/search?q=FIP" title=" FIP"> FIP</a> </p> <a href="https://publications.waset.org/abstracts/152511/development-of-a-bead-based-fully-automated-mutiplex-tool-to-simultaneously-diagnose-fiv-felv-and-fipfcov" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152511.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> Use of a New Multiplex Quantitative Polymerase Chain Reaction Based Assay for Simultaneous Detection of Neisseria Meningitidis, Escherichia Coli K1, Streptococcus agalactiae, and Streptococcus pneumoniae</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nastaran%20Hemmati">Nastaran Hemmati</a>, <a href="https://publications.waset.org/abstracts/search?q=Farhad%20Nikkhahi"> Farhad Nikkhahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Javadi"> Amir Javadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahar%20Eskandarion"> Sahar Eskandarion</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mahmuod%20%20Amin%20Marashi"> Seyed Mahmuod Amin Marashi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neisseria meningitidis, Escherichia coli K, Streptococcus agalactiae, and Streptococcus pneumoniae cause 90% of bacterial meningitis. Almost all infected people die or have irreversible neurological complications. Therefore, it is essential to have a diagnostic kit with the ability to quickly detect these fatal infections. The project involved 212 patients from whom cerebrospinal fluid samples were obtained. After total genome extraction and performing multiplex quantitative polymerase chain reaction (qPCR), the presence or absence of each infectious factor was determined by comparing with standard strains. The specificity, sensitivity, positive predictive value, and negative predictive value calculated were 100%, 92.9%, 50%, and 100%, respectively. So, due to the high specificity and sensitivity of the designed primers, they can be used instead of bacterial culture that takes at least 24 to 48 hours. The remarkable benefit of this method is associated with the speed (up to 3 hours) at which the procedure could be completed. It is also worth noting that this method can reduce the personnel unintentional errors which may occur in the laboratory. On the other hand, as this method simultaneously identifies four common factors that cause bacterial meningitis, it could be used as an auxiliary method diagnostic technique in laboratories particularly in cases of emergency medicine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cerebrospinal%20fluid" title="cerebrospinal fluid">cerebrospinal fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=meningitis" title=" meningitis"> meningitis</a>, <a href="https://publications.waset.org/abstracts/search?q=quantitative%20polymerase%20chain%20reaction" title=" quantitative polymerase chain reaction"> quantitative polymerase chain reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=simultaneous%20detection" title=" simultaneous detection"> simultaneous detection</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnosis%20testing" title=" diagnosis testing"> diagnosis testing</a> </p> <a href="https://publications.waset.org/abstracts/151315/use-of-a-new-multiplex-quantitative-polymerase-chain-reaction-based-assay-for-simultaneous-detection-of-neisseria-meningitidis-escherichia-coli-k1-streptococcus-agalactiae-and-streptococcus-pneumoniae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> Profile of Cross-Reactivity Allergens Highlighted by Multiplex Technology “Alex Microchip Technique” in the Diagnosis of Type I Hypersensitivity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gadiri%20Sabiha">Gadiri Sabiha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Current allergy diagnostic tools using Multiplex technology have made it possible to increase the efficiency of the search for specific IgE. This opportunity is provided by the newly developed “Alex Biochip”, consisting of a panel of 282 allergens in native and molecular form, a CCD inhibitor, and the potential for detecting cross-reactive allergens. We evaluated the performance of this technology in detecting cross-reactivity in previously explored patients. Material/Method: The sera of 39 patients presenting sensitization and polysensitization profiles were explored. The search for specific IgE is carried out by the Alex ® IgE Biochip, and the results are analyzed by nature and by molecular family of allergens using specific software. Results/Discussion: The analysis gave a particular profile of cross-reactivity allergens: 33% for the Ole e1 family, 31% for NPC2, 26% for storage proteins, 20% for Tropomyosin, 10% for LTPs, 10% for Arginine Kinase and 10% for Uteroglobin CCDs were absent in all patients. The “Ole e1” allergen is responsible for a pollen-pollen cross allergy. The storage proteins found and LTP are not species-specific, causing cross-pollen-food allergy. The nDer p2 of the NPC2 family is responsible for cross-reactivity between mite species. Conclusion: The cross-reactivities responsible for mixed syndromes at diagnosis in our patients were dominated by pollen-pollen and pollen-food syndromes. They allow the identification of severity factors linked to the prognosis and the best-adapted immunotherapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=specific%20IgE" title="specific IgE">specific IgE</a>, <a href="https://publications.waset.org/abstracts/search?q=allergy" title=" allergy"> allergy</a>, <a href="https://publications.waset.org/abstracts/search?q=cross%20reactivity" title=" cross reactivity"> cross reactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20allergens" title=" molecular allergens"> molecular allergens</a> </p> <a href="https://publications.waset.org/abstracts/172601/profile-of-cross-reactivity-allergens-highlighted-by-multiplex-technology-alex-microchip-technique-in-the-diagnosis-of-type-i-hypersensitivity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172601.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> Mesenteric Vasculitis Causing Perforated Diverticulitis Mimicking Abdominal Sepsis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Leung">Christopher Leung</a>, <a href="https://publications.waset.org/abstracts/search?q=Assad%20Zahid"> Assad Zahid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mesenteric vasculitis can often mimic abdominal sepsis in a postoperative setting leading to a predicament where steroids could improve mesenteric vasculitis whilst worsening abdominal sepsis. Here this study presents a unique and rare case of perforated sigmoid diverticulitis secondary to systemic vasculitis. A 68-year-old gentleman presented with perforated sigmoid diverticulitis requiring an emergency Hartmann’s procedure. Early in his postoperative course, he had painful and asymmetrical neuropathy that, after a careful history and examination, revealed a patient with mono neuritis multiplex on a background history of longstanding rheumatoid arthritis. On day seven of his postoperative course, he had rising inflammatory markers and a CT abdomen and pelvis showing fluid around the mesentery. Whilst contamination from sigmoid perforation was somewhat congruent with these signs, a diagnosis of polyarteritis nodosa, a common cause of mononeuritis multiplex, is also possible, although involvement of the large bowel in polyarteritis nodosa is extremely rare. The histopathology from the initial Hartmann’s procedure was re-examined, showing medium vessel disease vasculitis. Given his lack of fevers, absence of abdominal pain, and worsening neurology, he was given a provisional diagnosis of polyarteritis nodosa and was treated successfully, not on IV antibiotics but on steroids. Large bowel involvement of polyarteritis nodosa is extremely rare and this is the first case of polyarteritis nodosa causing perforated diverticulitis. The learning point here is to obtain a good clinical picture of a patient to identify mesenteric vasculitis as compared to abdominal sepsis as the treatment of one worsens the other. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abdominal%20sepsis" title="abdominal sepsis">abdominal sepsis</a>, <a href="https://publications.waset.org/abstracts/search?q=diverticulitis" title=" diverticulitis"> diverticulitis</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenteric%20vasculitis" title=" mesenteric vasculitis"> mesenteric vasculitis</a>, <a href="https://publications.waset.org/abstracts/search?q=polyarteritis%20nodosa" title=" polyarteritis nodosa"> polyarteritis nodosa</a> </p> <a href="https://publications.waset.org/abstracts/140513/mesenteric-vasculitis-causing-perforated-diverticulitis-mimicking-abdominal-sepsis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140513.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> Improving Sample Analysis and Interpretation Using QIAGENs Latest Investigator STR Multiplex PCR Assays with a Novel Quality Sensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Mueller">Daniel Mueller</a>, <a href="https://publications.waset.org/abstracts/search?q=Melanie%20Breitbach"> Melanie Breitbach</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Cornelius"> Stefan Cornelius</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarah%20Pakulla-Dickel"> Sarah Pakulla-Dickel</a>, <a href="https://publications.waset.org/abstracts/search?q=Margaretha%20Koenig"> Margaretha Koenig</a>, <a href="https://publications.waset.org/abstracts/search?q=Anke%20Prochnow"> Anke Prochnow</a>, <a href="https://publications.waset.org/abstracts/search?q=Mario%20Scherer"> Mario Scherer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The European STR standard set (ESS) of loci as well as the new expanded CODIS core loci set as recommended by the CODIS Core Loci Working Group, has led to a higher standardization and harmonization in STR analysis across borders. Various multiplex PCRs assays have since been developed for the analysis of these 17 ESS or 23 CODIS expansion STR markers that all meet high technical demands. However, forensic analysts are often faced with difficult STR results and the questions thereupon. What is the reason that no peaks are visible in the electropherogram? Did the PCR fail? Was the DNA concentration too low? QIAGEN’s newest Investigator STR kits contain a novel Quality Sensor (QS) that acts as internal performance control and gives useful information for evaluating the amplification efficiency of the PCR. QS indicates if the reaction has worked in general and furthermore allows discriminating between the presence of inhibitors or DNA degradation as a cause for the typical ski slope effect observed in STR profiles of such challenging samples. This information can be used to choose the most appropriate rework strategy.Based on the latest PCR chemistry called FRM 2.0, QIAGEN now provides the next technological generation for STR analysis, the Investigator ESSplex SE QS and Investigator 24plex QS Kits. The new PCR chemistry ensures robust and fast PCR amplification with improved inhibitor resistance and easy handling for a manual or automated setup. The short cycling time of 60 min reduces the duration of the total PCR analysis to make a whole workflow analysis in one day more likely. To facilitate the interpretation of STR results a smart primer design was applied for best possible marker distribution, highest concordance rates and a robust gender typing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PCR" title="PCR">PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=QIAGEN" title=" QIAGEN"> QIAGEN</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20sensor" title=" quality sensor"> quality sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=STR" title=" STR"> STR</a> </p> <a href="https://publications.waset.org/abstracts/23012/improving-sample-analysis-and-interpretation-using-qiagens-latest-investigator-str-multiplex-pcr-assays-with-a-novel-quality-sensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23012.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> Generating a Multiplex Sensing Platform for the Accurate Diagnosis of Sepsis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Demertzis">N. Demertzis</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20L.%20Bowen"> J. L. Bowen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sepsis is a complex and rapidly evolving condition, resulting from uncontrolled prolonged activation of host immune system due to pathogenic insult. The aim of this study is the development of a multiplex electrochemical sensing platform, capable of detecting both pathogen associated and host immune markers to enable the rapid and definitive diagnosis of sepsis. A combination of aptamers and molecular imprinting approaches have been employed to generate sensing systems for lipopolysaccharide (LPS), c-reactive protein (CRP) and procalcitonin (PCT). Gold working electrodes were mechanically polished and electrochemically cleaned with 0.1 M sulphuric acid using cyclic voltammetry (CV). Following activation, a self-assembled monolayer (SAM) was generated, by incubating the electrodes with a thiolated anti-LPS aptamer / dithiodibutiric acid (DTBA) mixture (1:20). 3-aminophenylboronic acid (3-APBA) in combination with the anti-LPS aptamer was used for the development of the hybrid molecularly imprinted sensor (apta-MIP). Aptasensors, targeting PCT and CRP were also fabricated, following the same approach as in the case of LPS, with mercaptohexanol (MCH) replacing DTBA. In the case of the CRP aptasensor, the SAM was formed following incubation of a 1:1 aptamer: MCH mixture. However, in the case of PCT, the SAM was formed with the aptamer itself, with subsequent backfilling with 1 μM MCH. The binding performance of all systems has been evaluated using electrochemical impedance spectroscopy. The apta-MIP’s polymer thickness is controlled by varying the number of electropolymerisation cycles. In the ideal number of polymerisation cycles, the polymer must cover the electrode surface and create a binding pocket around LPS and its aptamer binding site. Less polymerisation cycles will create a hybrid system which resembles an aptasensor, while more cycles will be able to cover the complex and demonstrate a bulk polymer-like behaviour. Both aptasensor and apta-MIP were challenged with LPS and compared to conventional imprinted (absence of aptamer from the binding site, polymer formed in presence of LPS) and non-imprinted polymers (NIPS, absence of LPS whilst hybrid polymer is formed). A stable LPS aptasensor, capable of detecting down to 5 pg/ml of LPS was generated. The apparent Kd of the system was estimated at 17 pM, with a Bmax of approximately 50 pM. The aptasensor demonstrated high specificity to LPS. The apta-MIP demonstrated superior recognition properties with a limit of detection of 1 fg/ml and a Bmax of 100 pg/ml. The CRP and PCT aptasensors were both able to detect down to 5 pg/ml. Whilst full binding performance is currently being evaluated, there is none of the sensors demonstrate cross-reactivity towards LPS, CRP or PCT. In conclusion, stable aptasensors capable of detecting LPS, PCT and CRP at low concentrations have been generated. The realisation of a multiplex panel such as described herein, will effectively contribute to the rapid, personalised diagnosis of sepsis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aptamer" title="aptamer">aptamer</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20impedance%20spectroscopy" title=" electrochemical impedance spectroscopy"> electrochemical impedance spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=molecularly%20imprinted%20polymers" title=" molecularly imprinted polymers"> molecularly imprinted polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=sepsis" title=" sepsis"> sepsis</a> </p> <a href="https://publications.waset.org/abstracts/99827/generating-a-multiplex-sensing-platform-for-the-accurate-diagnosis-of-sepsis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> An Unbiased Profiling of Immune Repertoire via Sequencing and Analyzing T-Cell Receptor Genes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yi-Lin%20Chen">Yi-Lin Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheng-Jou%20Hung"> Sheng-Jou Hung</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsunglin%20Liu"> Tsunglin Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adaptive immune system recognizes a wide range of antigens via expressing a large number of structurally distinct T cell and B cell receptor genes. The distinct receptor genes arise from complex rearrangements called V(D)J recombination, and constitute the immune repertoire. A common method of profiling immune repertoire is via amplifying recombined receptor genes using multiple primers and high-throughput sequencing. This multiplex-PCR approach is efficient; however, the resulting repertoire can be distorted because of primer bias. To eliminate primer bias, 5’ RACE is an alternative amplification approach. However, the application of RACE approach is limited by its low efficiency (i.e., the majority of data are non-regular receptor sequences, e.g., containing intronic segments) and lack of the convenient tool for analysis. We propose a computational tool that can correctly identify non-regular receptor sequences in RACE data via aligning receptor sequences against the whole gene instead of only the exon regions as done in all other tools. Using our tool, the remaining regular data allow for an accurate profiling of immune repertoire. In addition, a RACE approach is improved to yield a higher fraction of regular T-cell receptor sequences. Finally, we quantify the degree of primer bias of a multiplex-PCR approach via comparing it to the RACE approach. The results reveal significant differences in frequency of VJ combination by the two approaches. Together, we provide a new experimental and computation pipeline for an unbiased profiling of immune repertoire. As immune repertoire profiling has many applications, e.g., tracing bacterial and viral infection, detection of T cell lymphoma and minimal residual disease, monitoring cancer immunotherapy, etc., our work should benefit scientists who are interested in the applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=immune%20repertoire" title="immune repertoire">immune repertoire</a>, <a href="https://publications.waset.org/abstracts/search?q=T-cell%20receptor" title=" T-cell receptor"> T-cell receptor</a>, <a href="https://publications.waset.org/abstracts/search?q=5%27%20RACE" title=" 5' RACE"> 5' RACE</a>, <a href="https://publications.waset.org/abstracts/search?q=high-throughput%20sequencing" title=" high-throughput sequencing"> high-throughput sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=sequence%20alignment" title=" sequence alignment"> sequence alignment</a> </p> <a href="https://publications.waset.org/abstracts/88972/an-unbiased-profiling-of-immune-repertoire-via-sequencing-and-analyzing-t-cell-receptor-genes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88972.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> Development of a Multi-Locus DNA Metabarcoding Method for Endangered Animal Species Identification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meimei%20Shi">Meimei Shi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: The identification of endangered species, especially simultaneous detection of multiple species in complex samples, plays a critical role in alleged wildlife crime incidents and prevents illegal trade. This study was to develop a multi-locus DNA metabarcoding method for endangered animal species identification. Methods: Several pairs of universal primers were designed according to the mitochondria conserved gene regions. Experimental mixtures were artificially prepared by mixing well-defined species, including endangered species, e.g., forest musk, bear, tiger, pangolin, and sika deer. The artificial samples were prepared with 1-16 well-characterized species at 1% to 100% DNA concentrations. After multiplex-PCR amplification and parameter modification, the amplified products were analyzed by capillary electrophoresis and used for NGS library preparation. The DNA metabarcoding was carried out based on Illumina MiSeq amplicon sequencing. The data was processed with quality trimming, reads filtering, and OTU clustering; representative sequences were blasted using BLASTn. Results: According to the parameter modification and multiplex-PCR amplification results, five primer sets targeting COI, Cytb, 12S, and 16S, respectively, were selected as the NGS library amplification primer panel. High-throughput sequencing data analysis showed that the established multi-locus DNA metabarcoding method was sensitive and could accurately identify all species in artificial mixtures, including endangered animal species Moschus berezovskii, Ursus thibetanus, Panthera tigris, Manis pentadactyla, Cervus nippon at 1% (DNA concentration). In conclusion, the established species identification method provides technical support for customs and forensic scientists to prevent the illegal trade of endangered animals and their products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA%20metabarcoding" title="DNA metabarcoding">DNA metabarcoding</a>, <a href="https://publications.waset.org/abstracts/search?q=endangered%20animal%20species" title=" endangered animal species"> endangered animal species</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondria%20nucleic%20acid" title=" mitochondria nucleic acid"> mitochondria nucleic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-locus" title=" multi-locus"> multi-locus</a> </p> <a href="https://publications.waset.org/abstracts/151353/development-of-a-multi-locus-dna-metabarcoding-method-for-endangered-animal-species-identification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> Carbon Nanotubes (CNTs) as Multiplex Surface Enhanced Raman Scattering Sensing Platforms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pola%20Goldberg%20Oppenheimer">Pola Goldberg Oppenheimer</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephan%20Hofmann"> Stephan Hofmann</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumeet%20Mahajan"> Sumeet Mahajan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Owing to its fingerprint molecular specificity and high sensitivity, surface-enhanced Raman scattering (SERS) is an established analytical tool for chemical and biological sensing capable of single-molecule detection. A strong Raman signal can be generated from SERS-active platforms given the analyte is within the enhanced plasmon field generated near a noble-metal nanostructured substrate. The key requirement for generating strong plasmon resonances to provide this electromagnetic enhancement is an appropriate metal surface roughness. Controlling nanoscale features for generating these regions of high electromagnetic enhancement, the so-called SERS ‘hot-spots’, is still a challenge. Significant advances have been made in SERS research, with wide-ranging techniques to generate substrates with tunable size and shape of the nanoscale roughness features. Nevertheless, the development and application of SERS has been inhibited by the irreproducibility and complexity of fabrication routes. The ability to generate straightforward, cost-effective, multiplex-able and addressable SERS substrates with high enhancements is of profound interest for miniaturised sensing devices. Carbon nanotubes (CNTs) have been concurrently, a topic of extensive research however, their applications for plasmonics has been only recently beginning to gain interest. CNTs can provide low-cost, large-active-area patternable substrates which, coupled with appropriate functionalization capable to provide advanced SERS-platforms. Herein, advanced methods to generate CNT-based SERS active detection platforms will be discussed. First, a novel electrohydrodynamic (EHD) lithographic technique will be introduced for patterning CNT-polymer composites, providing a straightforward, single-step approach for generating high-fidelity sub-micron-sized nanocomposite structures within which anisotropic CNTs are vertically aligned. The created structures are readily fine-tuned, which is an important requirement for optimizing SERS to obtain the highest enhancements with each of the EHD-CNTs individual structural units functioning as an isolated sensor. Further, gold-functionalized VACNTFs are fabricated as SERS micro-platforms. The dependence on the VACNTs’ diameters and density play an important role in the Raman signal strength, thus highlighting the importance of structural parameters, previously overlooked in designing and fabricating optimized CNTs-based SERS nanoprobes. VACNTs forests patterned into predesigned pillar structures are further utilized for multiplex detection of bio-analytes. Since CNTs exhibit electrical conductivity and unique adsorption properties, these are further harnessed in the development of novel chemical and bio-sensing platforms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes%20%28CNTs%29" title="carbon nanotubes (CNTs)">carbon nanotubes (CNTs)</a>, <a href="https://publications.waset.org/abstracts/search?q=EHD%20patterning" title=" EHD patterning"> EHD patterning</a>, <a href="https://publications.waset.org/abstracts/search?q=SERS" title=" SERS"> SERS</a>, <a href="https://publications.waset.org/abstracts/search?q=vertically%20aligned%20carbon%20nanotube%20forests%20%28VACNTF%29" title=" vertically aligned carbon nanotube forests (VACNTF)"> vertically aligned carbon nanotube forests (VACNTF)</a> </p> <a href="https://publications.waset.org/abstracts/42545/carbon-nanotubes-cnts-as-multiplex-surface-enhanced-raman-scattering-sensing-platforms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> Fluorescence Sensing as a Tool to Estimate Palm Oil Quality and Yield</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Norul%20Husna%20A.%20Kasim">Norul Husna A. Kasim</a>, <a href="https://publications.waset.org/abstracts/search?q=Siva%20K.%20Balasundram"> Siva K. Balasundram </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The gap between ‘actual yield’ and ‘potential yield’ has remained a problem in the Malaysian oil palm industry. Ineffective maturity assessment and untimely harvesting have compounded this problem. Typically, the traditional method of palm oil quality and yield assessment is destructive, costly and laborious. Fluorescence-sensing offers a new means of assessing palm oil quality and yield non-destructively. This work describes the estimation of palm oil quality and yield using a multi-parametric fluorescence sensor (Multiplex®) to quantify the concentration of secondary metabolites, such as anthocyanin and flavonoid, in fresh fruit bunches across three different palm ages (6, 9, and 12 years-old). Results show that fluorescence sensing is an effective means of assessing FFB maturity, in terms of palm oil quality and yield quantifications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anthocyanin" title="anthocyanin">anthocyanin</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonoid%20fluorescence%20sensor" title=" flavonoid fluorescence sensor"> flavonoid fluorescence sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20oil%20yield%20and%20quality" title=" palm oil yield and quality"> palm oil yield and quality</a> </p> <a href="https://publications.waset.org/abstracts/18494/fluorescence-sensing-as-a-tool-to-estimate-palm-oil-quality-and-yield" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">809</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Genetic Polymorphisms of the Human Organic Cation Transporter 2 gene, SLC22A2, in the Zulu population</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Hoosain">N. Hoosain</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Nene"> S. Nene</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Pearce"> B. Pearce</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Jacobs"> C. Jacobs</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Du%20Plessis"> M. Du Plessis</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Benjeddou"> M. Benjeddou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organic Cation Transporters play a vital role in the absorption, tissue distribution and elimination of various substrates. Numerous studies have suggested that variations in non-synonymous single nucleotide polymorphisms (SNPs) of SLC22A2 could influence an individual’s response to various treatments, including clinically important drugs. This study is the first to determine the baseline frequency distribution for twenty SNPs of SLC22A2in the Zulu population. DNA was collected from 101 unrelated “healthy” Zulu participants. Genotypes of all samples were determined using a multiplex PCR and SNaPshot assay followed by the generation of the haplotype structure. This is the first time that the baseline frequency distribution of SNPs is reported for the Zulu population. Data from this study could be used in in vitro and in vivo pharmacogenetic and pharmacokinetic studies to evaluate the potential role the studied SNPs play in the therapeutic efficacy of clinically important drugs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SLC22A2%20gene" title="SLC22A2 gene">SLC22A2 gene</a>, <a href="https://publications.waset.org/abstracts/search?q=SNaPshot%20assay" title=" SNaPshot assay"> SNaPshot assay</a>, <a href="https://publications.waset.org/abstracts/search?q=PCR" title=" PCR"> PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=Zulu%20population" title=" Zulu population"> Zulu population</a> </p> <a href="https://publications.waset.org/abstracts/9257/genetic-polymorphisms-of-the-human-organic-cation-transporter-2-gene-slc22a2-in-the-zulu-population" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> Two-Step Patterning of Microfluidic Structures in Paper by Laser Cutting and Wax Printing for Mass Fabrication of Biosensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bong%20Keun%20Kang">Bong Keun Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung%20Suk%20Oh"> Sung Suk Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong-Woo%20Sohn"> Jeong-Woo Sohn</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong-Ryul%20Choi"> Jong-Ryul Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Ho%20Kim"> Young Ho Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we describe two-step micro-pattering by using laser cutting and wax printing. Wax printing is performed only on the bridges for hydrophobic barriers. We prepared 405nm blue-violet laser module and wax pencil module. And, this two modules combine x-y plot. The hollow microstructure formed by laser patterning define the hydrophilic flowing paths. However, bridges are essential to avoid the cutting area being the island. Through the support bridges, microfluidic solution spread out to the unnecessary areas. Chromatography blotting paper was purchased from Whatman. We used 20x20 cm and 46x57 cm of chromatography blotting paper. Axis moving speed of x-y plot was the main parameter of optimization. For aligning between the two patterning, the paper sheet was taped at the bottom. After the two-step patterning, temperature curing step was done at 110-130 °C. The resolution of the fabrication and the potential of the multiplex detection were investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C2%B5PADs" title="µPADs">µPADs</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidic" title=" microfluidic"> microfluidic</a>, <a href="https://publications.waset.org/abstracts/search?q=biosensor" title=" biosensor"> biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=mass-fabrication" title=" mass-fabrication"> mass-fabrication</a> </p> <a href="https://publications.waset.org/abstracts/62844/two-step-patterning-of-microfluidic-structures-in-paper-by-laser-cutting-and-wax-printing-for-mass-fabrication-of-biosensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62844.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> High-Throughput, Purification-Free, Multiplexed Profiling of Circulating miRNA for Discovery, Validation, and Diagnostics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Hidalgo%20de%20Quintana">J. Hidalgo de Quintana</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Stoner"> I. Stoner</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Tackett"> M. Tackett</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Doran"> G. Doran</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Rafferty"> C. Rafferty</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Windemuth"> A. Windemuth</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Tytell"> J. Tytell</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Pregibon"> D. Pregibon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have developed the Multiplexed Circulating microRNA assay that allows the detection of up to 68 microRNA targets per sample. The assay combines particlebased multiplexing, using patented Firefly hydrogel particles, with single step RT-PCR signal. Thus, the Circulating microRNA assay leverages PCR sensitivity while eliminating the need for separate reverse transcription reactions and mitigating amplification biases introduced by target-specific qPCR. Furthermore, the ability to multiplex targets in each well eliminates the need to split valuable samples into multiple reactions. Results from the Circulating microRNA assay are interpreted using Firefly Analysis Workbench, which allows visualization, normalization, and export of experimental data. To aid discovery and validation of biomarkers, we have generated fixed panels for Oncology, Cardiology, Neurology, Immunology, and Liver Toxicology. Here we present the data from several studies investigating circulating and tumor microRNA, showcasing the ability of the technology to sensitively and specifically detect microRNA biomarker signatures from fluid specimens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title="biomarkers">biomarkers</a>, <a href="https://publications.waset.org/abstracts/search?q=biofluids" title=" biofluids"> biofluids</a>, <a href="https://publications.waset.org/abstracts/search?q=miRNA" title=" miRNA"> miRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=photolithography" title=" photolithography"> photolithography</a>, <a href="https://publications.waset.org/abstracts/search?q=flowcytometry" title=" flowcytometry"> flowcytometry</a> </p> <a href="https://publications.waset.org/abstracts/46466/high-throughput-purification-free-multiplexed-profiling-of-circulating-mirna-for-discovery-validation-and-diagnostics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Obstructive Bronchitis and Pneumonia by a Mixed Infection of HPIV- 3, S. pneumoniae in an Immunocompromised 10M Infant: Case Report</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olga%20Smilevska%20Spasova">Olga Smilevska Spasova</a>, <a href="https://publications.waset.org/abstracts/search?q=Katerina%20Boshkovska"> Katerina Boshkovska</a>, <a href="https://publications.waset.org/abstracts/search?q=Gorica%20Popova"> Gorica Popova</a>, <a href="https://publications.waset.org/abstracts/search?q=Mirjana%20Popovska"> Mirjana Popovska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Pneumonia is an infection of the pulmonary parenchyma. HPIV 3 is one of four viruses that is a member of the Paramyxoviridae family designated types 1-4 that have a nonsegmented, single-stranded RNA genome with a lipid-containing envelope. They are spread from the respiratory tract by aerosolized secretions or by direct contact with secretions. Type 3 is endemic and can cause serious illness in immunocompromised patients. Illness caused by parainfluenza occurs shortly after inoculation with the virus. The level of immunoglobulin A antibody in serum is the best predictor of susceptibility to infection. Streptococcus pneumonia or pneumococcus is a Gram-positive, spherical bacteria, usually found in pairs and it is a member of the genus Streptococcus. Streptococcus pneumonia resides asymptomatically in healthy carriers typically colonizing the respiratory tract, sinuses, and nasal cavity. In individuals with weaker immune systems like young infants, pneumococcal bacterium is the most common cause of community-acquired pneumonia in the world. Case Report: The aim is to present a case of lower respiratory tract infection in an infant caused by parainfluenza virus 3, S. pneumonia and undifferentiated gram-negative bacteria that was successfully treated. The infant is with a history of recurrent episodes of wheezing in the past 3mounts.Infant of 10months presents 2weeks before admittance with high fever, runny nose, and cough. The primary pediatrician prescribed oral cefpodoxime for 10days and inhaled salbutamol. Two days before admittance in hospital the infant with high fever, cough, and difficulty breathing. At admittance, infant is pale, anxious with rapid respirations, cough, wheezing and tachycardia. On auscultation: vesicular breathing sounds with high pitched wheezing and on the right coarse crackles. Investigations: Blood analysis: RBC: 4, 7 x1012L, WBC: 8,3x109L: Neut: 42.73% Lym: 41.57%, Hgb: 9.38 g/dl MCV: 62.7fl, MCH: 20.0pg MCHC: 31.8 g/dl RDW: 18.7% Plt-307.9 x109LCRP: 2,5mg/l, serum iron-7.92umol/l, O2sat-97% on blood gas analysis, puls-125/min.X-ray of chest with hyperinflationand right pericardial consolidation. Microbiological analysis of sputum sample is positive for undifferentiated gram-negative bacteria (colonizer)–resistant to cefotaxime, ampicillin, cefoxitin, sulfamet.+trimetoprim and sensitive to amikacin, gentamicin, and ciprofloxacin. Molecular multiplex RT-PCR for 19 viruses and multiplex PCR for 7 bacteria test for respiratory pathogens positive for Parainfluenza virus 3(Ct=22.73), Streptococcus pneumonia (Ct=26.75).IED: IgG-9.31g/l, IgA-0.351g/l, IgM-0.86g/l. Therapy: Treatment was started with inhaled salbutamol, intravenous antibiotic cefotaxime as well as systemic corticosteroids. On day 7 because of slow clinical resolution of chest auscultation findings and an etiologic clue with a positive sputum sample for resistant undifferentiated gram negative bacteria, a second intravenous antibiotic was administered amikacin. The infant is discharged on day 14 with resolution of clinical findings. Conclusion: Mixed co-infections with respiratory viruses and bacteria in immunocompromised infants are likely to lead to a more severe form of community acquired pneumonia that will need hospitalization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HPIV-%203" title="HPIV- 3">HPIV- 3</a>, <a href="https://publications.waset.org/abstracts/search?q=infant" title=" infant"> infant</a>, <a href="https://publications.waset.org/abstracts/search?q=pneumonia" title=" pneumonia"> pneumonia</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20pneumonia" title=" S. pneumonia"> S. pneumonia</a>, <a href="https://publications.waset.org/abstracts/search?q=x-ray%20chest" title=" x-ray chest"> x-ray chest</a> </p> <a href="https://publications.waset.org/abstracts/149986/obstructive-bronchitis-and-pneumonia-by-a-mixed-infection-of-hpiv-3-s-pneumoniae-in-an-immunocompromised-10m-infant-case-report" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Analysis of the AZF Region in Slovak Men with Azoospermia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Bernasovsk%C3%A1">J. Bernasovská</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Lohajov%C3%A1%20Behulov%C3%A1"> R. Lohajová Behulová</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Petrej%C4%8Dikov%C3%A1"> E. Petrejčiková</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Boro%C5%88ov%C3%A1"> I. Boroňová</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Bernasovsk%C3%BD"> I. Bernasovský</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Y chromosome microdeletions are the most common genetic cause of male infertility and screening for these microdeletions in azoospermic or severely oligospermic men is now standard practice. Analysis of the Y chromosome in men with azoospermia or severe oligozoospermia has resulted in the identification of three regions in the euchromatic part of the long arm of the human Y chromosome (Yq11) that are frequently deleted in men with otherwise unexplained spermatogenic failure. PCR analysis of microdeletions in the AZFa, AZFb and AZFc regions of the human Y chromosome is an important screening tool. The aim of this study was to analyse the type of microdeletions in men with fertility disorders in Slovakia. We evaluated 227 patients with azoospermia and with normal karyotype. All patient samples were analyzed cytogenetically. For PCR amplification of sequence-tagged sites (STS) of the AZFa, AZFb and AZFc regions of the Y chromosome was used Devyser AZF set. Fluorescently labeled primers for all markers in one multiplex PCR reaction were used and for automated visualization and identification of the STS markers we used genetic analyzer ABi 3500xl (Life Technologies). We reported 13 cases of deletions in the AZF region 5,73%. Particular types of deletions were recorded in each region AZFa,b,c .The presence of microdeletions in the AZFc region was the most frequent. The study confirmed that percentage of microdeletions in the AZF region is low in Slovak azoospermic patients, but important from a prognostic view. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AZF" title="AZF">AZF</a>, <a href="https://publications.waset.org/abstracts/search?q=male%20infertility" title=" male infertility"> male infertility</a>, <a href="https://publications.waset.org/abstracts/search?q=microdeletions" title=" microdeletions"> microdeletions</a>, <a href="https://publications.waset.org/abstracts/search?q=Y%20chromosome" title=" Y chromosome"> Y chromosome</a> </p> <a href="https://publications.waset.org/abstracts/12638/analysis-of-the-azf-region-in-slovak-men-with-azoospermia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12638.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Clinical Utility of Salivary Cytokines for Children with Attention Deficit Hyperactivity Disorder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masaki%20Yamaguchi">Masaki Yamaguchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Daimei%20Sasayama"> Daimei Sasayama</a>, <a href="https://publications.waset.org/abstracts/search?q=Shinsuke%20Washizuka"> Shinsuke Washizuka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of this study was to examine the possibility of salivary cytokines for the screening of attention deficit hyperactivity disorder (ADHD) in children. We carried out a case-control study, including 19 children with ADHD and 17 healthy children (controls). A multiplex bead array immunoassay was used to conduct a multi-analysis of 27 different salivary cytokines. Six salivary cytokines (interleukin (IL)-1β, IL-8, IL12p70, granulocyte colony-stimulating factor (G-CSF), interferon gamma (IFN-γ), and vascular endothelial growth factor (VEGF)) were significantly associated with the presence of ADHD (p < 0.05). An informative salivary cytokine panel was developed using VEGF by logistic regression analysis (odds ratio: 0.251). Receiver operating characteristic analysis revealed that assessment of a panel using VEGF showed “good” capability for discriminating between ADHD patients and controls (area under the curve: 0.778). ADHD has been hypothesized to be associated with reduced cerebral blood flow in the frontal cortex, due to reduced VEGF levels. Our study highlights the possibility of utilizing differential salivary cytokine levels for point-of-care testing (POCT) of biomarkers in children with ADHD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cytokine" title="cytokine">cytokine</a>, <a href="https://publications.waset.org/abstracts/search?q=saliva" title=" saliva"> saliva</a>, <a href="https://publications.waset.org/abstracts/search?q=attention%20deficit%20hyperactivity%20disorder" title=" attention deficit hyperactivity disorder"> attention deficit hyperactivity disorder</a>, <a href="https://publications.waset.org/abstracts/search?q=child" title=" child"> child</a> </p> <a href="https://publications.waset.org/abstracts/101966/clinical-utility-of-salivary-cytokines-for-children-with-attention-deficit-hyperactivity-disorder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> THRAP2 Gene Identified as a Candidate Susceptibility Gene of Thyroid Autoimmune Diseases Pedigree in Tunisian Population</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghazi%20Chabchoub">Ghazi Chabchoub</a>, <a href="https://publications.waset.org/abstracts/search?q=Mouna%20Feki"> Mouna Feki</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Abid"> Mohamed Abid</a>, <a href="https://publications.waset.org/abstracts/search?q=Hammadi%20Ayadi"> Hammadi Ayadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Autoimmune thyroid diseases (AITDs), including Graves’ disease (GD) and Hashimoto’s thyroiditis (HT), are inherited as complex traits. Genetic factors associated with AITDs have been tentatively identified by candidate gene and genome scanning approaches. We analysed three intragenic microsatellite markers in the thyroid hormone receptor associated protein 2 gene (THRAP2), mapped near D12S79 marker, which have a potential role in immune function and inflammation [THRAP2-1(TG)n, THRAP2-2 (AC)n and THRAP2-3 (AC)n]. Our study population concerned 12 patients affected with AITDs belonging to a multiplex Tunisian family with high prevalence of AITDs. Fluorescent genotyping was carried out on ABI 3100 sequencers (Applied Biosystems USA) with the use of GENESCAN for semi-automated fragment sizing and GENOTYPER peak-calling software. Statistical analysis was performed using the non parametric Lod score (NPL) by Merlin software. Merlin outputs non-parametric NPLall (Z) and LOD scores and their corresponding asymptotic P values. The analysis for three intragenic markers in the THRAP2 gene revealed strong evidence for linkage (NPL=3.68, P=0.00012). Our results suggested the possible role of THRAP2 gene in AITDs susceptibility in this family. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autoimmunity" title="autoimmunity">autoimmunity</a>, <a href="https://publications.waset.org/abstracts/search?q=autoimmune%20disease" title=" autoimmune disease"> autoimmune disease</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic" title=" genetic"> genetic</a>, <a href="https://publications.waset.org/abstracts/search?q=linkage%20analysis" title=" linkage analysis"> linkage analysis</a> </p> <a href="https://publications.waset.org/abstracts/113119/thrap2-gene-identified-as-a-candidate-susceptibility-gene-of-thyroid-autoimmune-diseases-pedigree-in-tunisian-population" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Investigation of Carbapenem-Resistant Genes in Acinetobacter spp. Isolated from Patients at Tertiary Health Care Center, Northeastern Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20J.%20Sirima">S. J. Sirima</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Thirawan"> C. Thirawan</a>, <a href="https://publications.waset.org/abstracts/search?q=R.Puntharikorn"> R.Puntharikorn</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Ungsumalin"> K. Ungsumalin</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Kaemwich"> J. Kaemwich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acinetobacter spp. is a gram negative bacterium causing the high incidence of multi-drug resistance in patients admitted to an intensive care unit. A hundred isolates of Imipenem-resistant Acinetobacter spp. isolated from patients admitted at tertiary health care center, Northeastern region, Ubon Ratchathani, Thailand, were subjected to modified Hodge test and combined disc test in order to evaluate the production of carbapenemases. The results revealed that about 35% of isolates were found to be carbapenemases producers. In addition, multiplex polymerase chain reactions were performed to detect blaOXA-like genes. It showed that 92% of isolates possess blaOXA-51-like and blaOXA-23-like genes. However, blaOXA-58-like gene was detected in only 8 isolates. No detection of blaOXA-24-like gene was observed in all isolates. In conclusion, an ability to produce carbepenemases would be an important mechanism of multi-drug resistance among clinical isolates of Acinetobacter spp. at tertiary health care center, Northeastern region, Ubon Ratchathani, Thailand. Furthermore, it was likely that the class D carbapenemases genes, blaOXA-51-like and blaOXA-23-like, might contribute to imipenem-resistance exhibiting among isolates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Acinetobacter%20spp." title="Acinetobacter spp.">Acinetobacter spp.</a>, <a href="https://publications.waset.org/abstracts/search?q=blaOXA-like%20genes" title=" blaOXA-like genes"> blaOXA-like genes</a>, <a href="https://publications.waset.org/abstracts/search?q=carbapenemases" title=" carbapenemases"> carbapenemases</a>, <a href="https://publications.waset.org/abstracts/search?q=tertiary%20health%20care%20center" title=" tertiary health care center"> tertiary health care center</a> </p> <a href="https://publications.waset.org/abstracts/15446/investigation-of-carbapenem-resistant-genes-in-acinetobacter-spp-isolated-from-patients-at-tertiary-health-care-center-northeastern-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Multiplex&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Multiplex&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Multiplex&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>