CINXE.COM
Search results for: static data
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: static data</title> <meta name="description" content="Search results for: static data"> <meta name="keywords" content="static data"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="static data" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="static data"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 26094</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: static data</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26094</span> Evaluating the Baseline Chatacteristics of Static Balance in Young Adults</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Abuzayan">K. Abuzayan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Alabed"> H. Alabed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objectives of this study (baseline study, n = 20) were to implement Matlab procedures for quantifying selected static balance variables, establish baseline data of selected variables which characterize static balance activities in a population of healthy young adult males, and to examine any trial effects on these variables. The results indicated that the implementation of Matlab procedures for quantifying selected static balance variables was practical and enabled baseline data to be established for selected variables. There was no significant trial effect. Recommendations were made for suitable tests to be used in later studies. Specifically it was found that one foot-tiptoes tests either in static balance is too challenging for most participants in normal circumstances. A one foot-flat eyes open test was considered to be representative and challenging for static balance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=static%20balance" title="static balance">static balance</a>, <a href="https://publications.waset.org/abstracts/search?q=base%20of%20support" title=" base of support"> base of support</a>, <a href="https://publications.waset.org/abstracts/search?q=baseline%20data" title=" baseline data"> baseline data</a>, <a href="https://publications.waset.org/abstracts/search?q=young%20adults" title=" young adults"> young adults</a> </p> <a href="https://publications.waset.org/abstracts/10009/evaluating-the-baseline-chatacteristics-of-static-balance-in-young-adults" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10009.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26093</span> Developing the Methods for the Study of Static and Dynamic Balance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Abuzayan">K. Abuzayan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Alabed"> H. Alabed</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Ezarrugh"> J. Ezarrugh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Agila"> M. Agila</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Static and dynamic balance are essential in daily and sports life. Many factors have been identified as influencing static balance control. Therefore, the aim of this study was to apply the (XCoM) method and other relevant variables (CoP, CoM, Fh, KE, P, Q, and, AI) to investigate sport related activities such as hopping and jumping. Many studies have represented the CoP data without mentioning its accuracy, so several experiments were done to establish the agreement between the CoP and the projected CoM in a static condition. Five male healthy (Mean ± SD:- age 24.6 years ±4.5, height 177 cm ± 6.3, body mass 72.8 kg ± 6.6) participated in this study. Results found that The implementation of the XCoM method was found to be practical for evaluating both static and dynamic balance. The general findings were that the CoP, the CoM, the XCoM, Fh, and Q were more informative than the other variables (e.g. KE, P, and AI) during static and dynamic balance. The XCoM method was found to be applicable to dynamic balance as well as static balance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=centre%20of%20mass" title="centre of mass">centre of mass</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20balance" title=" static balance"> static balance</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20balance" title=" dynamic balance"> dynamic balance</a>, <a href="https://publications.waset.org/abstracts/search?q=extrapolated%20centre%20of%20mass" title=" extrapolated centre of mass"> extrapolated centre of mass</a> </p> <a href="https://publications.waset.org/abstracts/3232/developing-the-methods-for-the-study-of-static-and-dynamic-balance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3232.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26092</span> Effect of Measured and Calculated Static Torque on Instantaneous Torque Profile of Switched Reluctance Motor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Asghar%20Memon">Ali Asghar Memon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The simulation modeling of switched reluctance (SR) machine often relies and uses the three data tables identified as static torque characteristics that include flux linkage characteristics, co energy characteristics and static torque characteristics separately. It has been noticed from the literature that the data of static torque used in the simulation model is often calculated so far the literature is concerned. This paper presents the simulation model that include the data of measured and calculated static torque separately to see its effect on instantaneous torque profile of the machine. This is probably for the first time so far the literature review is concerned that static torque from co energy information, and measured static torque directly from experiments are separately used in the model. This research is helpful for accurate modeling of switched reluctance drive. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=static%20characteristics" title="static characteristics">static characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=current%20chopping" title=" current chopping"> current chopping</a>, <a href="https://publications.waset.org/abstracts/search?q=flux%20linkage%20characteristics" title=" flux linkage characteristics"> flux linkage characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=switched%20reluctance%20motor" title=" switched reluctance motor"> switched reluctance motor</a> </p> <a href="https://publications.waset.org/abstracts/49478/effect-of-measured-and-calculated-static-torque-on-instantaneous-torque-profile-of-switched-reluctance-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26091</span> Exploring SSD Suitable Allocation Schemes Incompliance with Workload Patterns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jae%20Young%20Park">Jae Young Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Hwansu%20Jung"> Hwansu Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Tae%20Kim"> Jong Tae Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Whether the data has been well parallelized is an important factor in the Solid-State-Drive (SSD) performance. SSD parallelization is affected by allocation scheme and it is directly connected to SSD performance. There are dynamic allocation and static allocation in representative allocation schemes. Dynamic allocation is more adaptive in exploiting write operation parallelism, while static allocation is better in read operation parallelism. Therefore, it is hard to select the appropriate allocation scheme when the workload is mixed read and write operations. We simulated conditions on a few mixed data patterns and analyzed the results to help the right choice for better performance. As the results, if data arrival interval is long enough prior operations to be finished and continuous read intensive data environment static allocation is more suitable. Dynamic allocation performs the best on write performance and random data patterns. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20allocation" title="dynamic allocation">dynamic allocation</a>, <a href="https://publications.waset.org/abstracts/search?q=NAND%20flash%20based%20SSD" title=" NAND flash based SSD"> NAND flash based SSD</a>, <a href="https://publications.waset.org/abstracts/search?q=SSD%20parallelism" title=" SSD parallelism"> SSD parallelism</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20allocation" title=" static allocation"> static allocation</a> </p> <a href="https://publications.waset.org/abstracts/41931/exploring-ssd-suitable-allocation-schemes-incompliance-with-workload-patterns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26090</span> Non-Destructive Static Damage Detection of Structures Using Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Abbas%20Fatemi">Amir Abbas Fatemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Tabrizian"> Zahra Tabrizian</a>, <a href="https://publications.waset.org/abstracts/search?q=Kabir%20Sadeghi"> Kabir Sadeghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To find the location and severity of damage that occurs in a structure, characteristics changes in dynamic and static can be used. The non-destructive techniques are more common, economic, and reliable to detect the global or local damages in structures. This paper presents a non-destructive method in structural damage detection and assessment using GA and static data. Thus, a set of static forces is applied to some of degrees of freedom and the static responses (displacements) are measured at another set of DOFs. An analytical model of the truss structure is developed based on the available specification and the properties derived from static data. The damages in structure produce changes to its stiffness so this method used to determine damage based on change in the structural stiffness parameter. Changes in the static response which structural damage caused choose to produce some simultaneous equations. Genetic Algorithms are powerful tools for solving large optimization problems. Optimization is considered to minimize objective function involve difference between the static load vector of damaged and healthy structure. Several scenarios defined for damage detection (single scenario and multiple scenarios). The static damage identification methods have many advantages, but some difficulties still exist. So it is important to achieve the best damage identification and if the best result is obtained it means that the method is Reliable. This strategy is applied to a plane truss. This method is used for a plane truss. Numerical results demonstrate the ability of this method in detecting damage in given structures. Also figures show damage detections in multiple damage scenarios have really efficient answer. Even existence of noise in the measurements doesn’t reduce the accuracy of damage detections method in these structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage%20detection" title="damage detection">damage detection</a>, <a href="https://publications.waset.org/abstracts/search?q=%EF%AC%81nite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20data" title=" static data"> static data</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive" title=" non-destructive"> non-destructive</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a> </p> <a href="https://publications.waset.org/abstracts/41125/non-destructive-static-damage-detection-of-structures-using-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26089</span> The Effect of Static Balance Enhance by Table Tennis Training Intervening on Deaf Children</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yi-Chun%20Chang">Yi-Chun Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ching-Ting%20Hsu"> Ching-Ting Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Hua%20Ho"> Wei-Hua Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Yueh-Tung%20Kuo"> Yueh-Tung Kuo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Children with hearing impairment have deficits of balance and motors. Although most of parents teach deaf children communication skills in early life, but rarely teach the deficits of balance. The purpose of this study was to investigate whether static balance improved after table tennis training. Table tennis training was provided four times a week for eight weeks to two 12-year-old deaf children. The table tennis training included crossover footwork, sideway attack, backhand block-sideways-flutter forehand attack, and one-on-one tight training. Data were gathered weekly and statistical comparisons were made with a paired t-test. We observed that the dominant leg is better than the non-dominant leg in static balance and girl balance ability is better than boy. The final result shows that table tennis training significantly improves the deaf children’s static balance performance. It indicates that table tennis training on deaf children helps the static balance ability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deaf%20children" title="deaf children">deaf children</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20balance" title=" static balance"> static balance</a>, <a href="https://publications.waset.org/abstracts/search?q=table%20tennis" title=" table tennis"> table tennis</a>, <a href="https://publications.waset.org/abstracts/search?q=vestibular%20structure" title=" vestibular structure"> vestibular structure</a> </p> <a href="https://publications.waset.org/abstracts/45989/the-effect-of-static-balance-enhance-by-table-tennis-training-intervening-on-deaf-children" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26088</span> Computing Continuous Skyline Queries without Discriminating between Static and Dynamic Attributes </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Gomaa">Ibrahim Gomaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Hoda%20M.%20O.%20Mokhtar"> Hoda M. O. Mokhtar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although most of the existing skyline queries algorithms focused basically on querying static points through static databases; with the expanding number of sensors, wireless communications and mobile applications, the demand for continuous skyline queries has increased. Unlike traditional skyline queries which only consider static attributes, continuous skyline queries include dynamic attributes, as well as the static ones. However, as skyline queries computation is based on checking the domination of skyline points over all dimensions, considering both the static and dynamic attributes without separation is required. In this paper, we present an efficient algorithm for computing continuous skyline queries without discriminating between static and dynamic attributes. Our algorithm in brief proceeds as follows: First, it excludes the points which will not be in the initial skyline result; this pruning phase reduces the required number of comparisons. Second, the association between the spatial positions of data points is examined; this phase gives an idea of where changes in the result might occur and consequently enables us to efficiently update the skyline result (continuous update) rather than computing the skyline from scratch. Finally, experimental evaluation is provided which demonstrates the accuracy, performance and efficiency of our algorithm over other existing approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=continuous%20query%20processing" title="continuous query processing">continuous query processing</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20database" title=" dynamic database"> dynamic database</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20object" title=" moving object"> moving object</a>, <a href="https://publications.waset.org/abstracts/search?q=skyline%20queries" title=" skyline queries"> skyline queries</a> </p> <a href="https://publications.waset.org/abstracts/54845/computing-continuous-skyline-queries-without-discriminating-between-static-and-dynamic-attributes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26087</span> Slope Stability Assessment of Himalayan Slope under Static and Seismic Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Singh">P. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mittal"> S. Mittal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stability of slope in Chamoli Distt. near River Alaknanda in Uttarakhand is essential to safeguard the infrastructure of the slope where a dam is proposed to be built near this slope. Every year the areas near the slope have been facing severe landslides (small or big) due to intensive precipitation inflicting substantial damages as per Geological Survey of India records. The stability analysis of the slope under static and pseudo static conditions are presented in this study by using FEM software PHASE2. As per the earthquake zonation map of India, the slope is found in zone V, and hence, pseudo static stability of slope has been performed considering pseudo static analysis. For analysing the slope Mohr-Coulomb shear strength criteria is adopted for soil material and self-drilling anchors are modelled as bolts with parameters like modulus of elasticity, diameter of anchors and peak pull-out resistance of the anchors with the soil present there. The slope is found to be unstable under pseudo static conditions with computed factor of safety= 0.93. Stability is provided to the slope by using Self Drilling Anchors (SDA) which gives factor of safety= 1.15 under pseudo static condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FEM" title="FEM">FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudo%20static" title=" pseudo static"> pseudo static</a>, <a href="https://publications.waset.org/abstracts/search?q=self-drilling%20anchors" title=" self-drilling anchors"> self-drilling anchors</a>, <a href="https://publications.waset.org/abstracts/search?q=slope%20stability" title=" slope stability"> slope stability</a> </p> <a href="https://publications.waset.org/abstracts/76239/slope-stability-assessment-of-himalayan-slope-under-static-and-seismic-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26086</span> Static Analysis Deployment Model for Code Quality on Research and Development Projects of Software Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeong-Hyun%20Park">Jeong-Hyun Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Young-Sik%20Park"> Young-Sik Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyo-Teag%20Jung"> Hyo-Teag Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents static analysis deployment model for code quality on R&D Projects of SW Development. The proposed model includes the scope of R&D projects and index for static analysis of source code, operation model and execution process, environments and infrastructure system for R&D projects of SW development. There is the static analysis result of pilot project as case study based on the proposed deployment model and environment, and strategic considerations for success operation of the proposed static analysis deployment model for R&D Projects of SW Development. The proposed static analysis deployment model in this paper will be adapted and improved continuously for quality upgrade of R&D projects, and customer satisfaction of developed source codes and products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=static%20analysis" title="static analysis">static analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=code%20quality" title=" code quality"> code quality</a>, <a href="https://publications.waset.org/abstracts/search?q=coding%20rules" title=" coding rules"> coding rules</a>, <a href="https://publications.waset.org/abstracts/search?q=automation%20tool" title=" automation tool"> automation tool</a> </p> <a href="https://publications.waset.org/abstracts/64450/static-analysis-deployment-model-for-code-quality-on-research-and-development-projects-of-software-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64450.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26085</span> An Experimental Study of Dynamic Compressive Strength of Bushveld Complex Brittle Rocks under Impact Loadingsa Chemicals and Fibre Corporation, Changhua Branch</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Mudau">A. Mudau</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20R.%20Stacey"> T. R. Stacey</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20A.%20Govender"> R. A. Govender</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports for the first time the findings on the dynamic compressive strength data of Bushveld Complex brittle rock materials. These rocks were subjected to both quasi-static and impact loading tests to help understand their behaviour both under quasi-static and dynamic loading conditions. Unlike quasi-static tests, characterization of dynamic behaviour of materials is challenging, in particularly brittle rock materials. The split Hopkinson pressure bar (SHPB) results reported for anorthosite and norite showed relatively low values for dynamic compressive strength compared to the quasi-static uniaxial compressive strength data. It was noticed that the dynamic stress conditions were not fully attained during testing, as well as constant strain rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bushveld%20Complex" title="Bushveld Complex">Bushveld Complex</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20comperession" title=" dynamic comperession"> dynamic comperession</a>, <a href="https://publications.waset.org/abstracts/search?q=rock%20brittleness" title=" rock brittleness"> rock brittleness</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20equilibrium" title=" stress equilibrium"> stress equilibrium</a> </p> <a href="https://publications.waset.org/abstracts/20596/an-experimental-study-of-dynamic-compressive-strength-of-bushveld-complex-brittle-rocks-under-impact-loadingsa-chemicals-and-fibre-corporation-changhua-branch" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26084</span> Methodology for Obtaining Static Alignment Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lely%20A.%20Luengas">Lely A. Luengas</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20R.%20Vizcaya"> Pedro R. Vizcaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Giovanni%20S%C3%A1nchez"> Giovanni Sánchez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a methodology is presented to obtain the Static Alignment Model for any transtibial amputee person. The proposed methodology starts from experimental data collected on the Hospital Militar Central, Bogotá, Colombia. The effects of transtibial prosthesis malalignment on amputees were measured in terms of joint angles, center of pressure (COP) and weight distribution. Some statistical tools are used to obtain the model parameters. Mathematical predictive models of prosthetic alignment were created. The proposed models are validated in amputees and finding promising results for the prosthesis Static Alignment. Static alignment process is unique to each subject; nevertheless the proposed methodology can be used in each transtibial amputee. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=information%20theory" title="information theory">information theory</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction%20model" title=" prediction model"> prediction model</a>, <a href="https://publications.waset.org/abstracts/search?q=prosthetic%20alignment" title=" prosthetic alignment"> prosthetic alignment</a>, <a href="https://publications.waset.org/abstracts/search?q=transtibial%20prosthesis" title=" transtibial prosthesis"> transtibial prosthesis</a> </p> <a href="https://publications.waset.org/abstracts/76599/methodology-for-obtaining-static-alignment-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26083</span> Comparative Study of Static and Dynamic Bending Forces during 3-Roller Cone Frustum Bending Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahesh%20K.%20Chudasama">Mahesh K. Chudasama</a>, <a href="https://publications.waset.org/abstracts/search?q=Harit%20K.%20Raval"> Harit K. Raval</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 3-roller conical bending process is widely used in the industries for manufacturing of conical sections and shells. It involves static as well dynamic bending stages. Analytical models for prediction of bending force during static as well as dynamic bending stage are available in the literature. In this paper, bending forces required for static bending stage and dynamic bending stages have been compared using the analytical models. It is concluded that force required for dynamic bending is very less as compared to the bending force required during the static bending stage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytical%20modeling" title="analytical modeling">analytical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=cone%20frustum" title=" cone frustum"> cone frustum</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20bending" title=" dynamic bending"> dynamic bending</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20bending" title=" static bending "> static bending </a> </p> <a href="https://publications.waset.org/abstracts/27189/comparative-study-of-static-and-dynamic-bending-forces-during-3-roller-cone-frustum-bending-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26082</span> Static Relaxation of Glass Fiber Reinforced Pipes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Y.%20Abdellah">Mohammed Y. Abdellah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20K.%20Hassan"> Mohamed K. Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20F.%20Mohamed"> A. F. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Shadi%20M.%20Munshi"> Shadi M. Munshi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Hashem"> A. M. Hashem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pips made from glass fiber reinforced polymer has competitive role in petroleum industry. The need of evaluating the mechanical behavior of (GRP) pipes is essential objects. Stress relaxation illustrates how polymers relieve stress under constant strain. Static relaxation test is carried out at room temperature. The material gives poor static relaxation strength, two loading cycles have been observed for the tested specimen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GRP" title="GRP">GRP</a>, <a href="https://publications.waset.org/abstracts/search?q=sandwich%20composite%20material" title=" sandwich composite material"> sandwich composite material</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20relaxation" title=" static relaxation"> static relaxation</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20relief" title=" stress relief"> stress relief</a> </p> <a href="https://publications.waset.org/abstracts/23225/static-relaxation-of-glass-fiber-reinforced-pipes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">625</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26081</span> Measurement of Turbulence with PITOT Static Tube in Low Speed Subsonic Wind Tunnel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gopikrishnan">Gopikrishnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Bharathiraja"> Bharathiraja</a>, <a href="https://publications.waset.org/abstracts/search?q=Boopalan"> Boopalan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jensin%20Joshua"> Jensin Joshua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Pitot static tube has proven their values and practicability in measuring velocity of fluids for many years. With the aim of extensive usage of such Pitot tube systems, one of the major enabling technologies is to use the design and fabricate a high sensitive pitot tube for the purpose of calibration of the subsonic wind tunnel. Calibration of wind tunnel is carried out by using different instruments to measure variety of parameters. Using too many instruments inside the tunnel may not only affect the fluid flow but also lead to drag or losses. So, it is essential to replace the different system with a single system that would give all the required information. This model of high sensitive Pitot tube has been designed to ease the calibration process. It minimizes the use of different instruments and this single system is capable of calibrating the wind tunnel test section. This Pitot static tube is completely digitalized and so that the velocity data`s can be collected directly from the instrument. Since the turbulence factors are dependent on velocity, the data’s that are collected from the pitot static tube are then processed and the level of turbulence in the fluid flow is calculated. It is also capable of measuring the pressure distribution inside the wind tunnel and the flow angularity of the fluid. Thus, the well-designed high sensitive Pitot static tube is utilized in calibrating the tunnel and also for the measurement of turbulence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pitot%20static%20tube" title="pitot static tube">pitot static tube</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence" title=" turbulence"> turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel" title=" wind tunnel"> wind tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity" title=" velocity "> velocity </a> </p> <a href="https://publications.waset.org/abstracts/20145/measurement-of-turbulence-with-pitot-static-tube-in-low-speed-subsonic-wind-tunnel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20145.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">526</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26080</span> Effects of Static Stretching Exercises on Flexibility and Sprint Performance in Inactive Healthy Girls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gulsun%20Guven">Gulsun Guven</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to examine the acute effects of static stretching exercises on the flexibility and sprint performance in 10-12 years old inactive healthy girls. A total of 27 girls were randomly divided into control group (n=15) and stretching group (n=12) who performed static stretching. Sit and reach flexibility and 30-meter sprint pre-tests were performed for both groups. Static stretching exercises were performed three times, 30 sec. practice and 15 sec. rest for each leg only on five muscle by stretching group. The post-tests were performed in five minutes after static stretching exercise. Paired t-test was used to analyze differentiations among the group parameters. According to research results, there is a significant difference between pre-test and post-test flexibility (p < 0.05) and sprint test results (p < 0.01). As a conclusion of the study, static stretching exercises improve flexibility but decrease sprint performance in 10-12 years old inactive healthy girls. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexibility" title="flexibility">flexibility</a>, <a href="https://publications.waset.org/abstracts/search?q=inactive%20girl" title=" inactive girl"> inactive girl</a>, <a href="https://publications.waset.org/abstracts/search?q=sprint" title=" sprint"> sprint</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20stretching" title=" static stretching"> static stretching</a> </p> <a href="https://publications.waset.org/abstracts/79361/effects-of-static-stretching-exercises-on-flexibility-and-sprint-performance-in-inactive-healthy-girls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26079</span> The Influence of Using Soft Knee Pads on Static and Dynamic Balance among Male Athletes and Non-Athletes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yaser%20Kazemzadeh">Yaser Kazemzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Keyvan%20Molanoruzy"> Keyvan Molanoruzy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Izady"> Mojtaba Izady</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The balance is the key component of motor skills to maintain postural control and the execution of complex skills. The present study was designed to evaluate the impact of soft knee pads on static and dynamic balance of male athletes. For this aim, thirty young athletes in different sport fields with 3 years professional sport training background and thirty healthy young men nonathletic (age: 24.5 ± 2.9, 24.3 ± 2.4, weight: 77.2 ± 4.3 and 80/9 ± 6/3 and height: 175 ± 2/84, 172 ± 5/44 respectively) as subjects selected. Then, subjects in two manner (without knee and with soft knee pads made of neoprene) execute standard error test (BESS) to assess static balance and star test to assess dynamic balance. For analyze of data, t-tests and one-way ANOVA were significant 05/0 ≥ α statistical analysis. The results showed that the use of soft knee significantly reduced error rate in static balance test (p ≥ 0/05). Also, use a soft knee pads decreased score of athlete group and increased score of nonathletic group in star test (p ≥ 0/05). These findings, indicates that use of knees affects static and dynamic balance in athletes and nonathletic in different manner and may increased athletic performance in sports that rely on static balance and decreased performance in sports that rely on dynamic balance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=static%20balance" title="static balance">static balance</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20balance" title=" dynamic balance"> dynamic balance</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20knee" title=" soft knee"> soft knee</a>, <a href="https://publications.waset.org/abstracts/search?q=athletic%20men" title=" athletic men"> athletic men</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20athletic%20men" title=" non athletic men"> non athletic men</a> </p> <a href="https://publications.waset.org/abstracts/33209/the-influence-of-using-soft-knee-pads-on-static-and-dynamic-balance-among-male-athletes-and-non-athletes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26078</span> Two Spherical Three Degrees of Freedom Parallel Robots 3-RCC and 3-RRS Static Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Abbasi%20Moshaii">Alireza Abbasi Moshaii</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaghayegh%20Nasiri"> Shaghayegh Nasiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Tale%20Masouleh"> Mehdi Tale Masouleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main purpose of this study is static analysis of two three-degree of freedom parallel mechanisms: 3-RCC and 3-RRS. Geometry of these mechanisms is expressed and static equilibrium equations are derived for the whole chains. For these mechanisms due to the equal number of equations and unknowns, the solution is as same as 3-RCC mechanism. Mathematical software is used to solve the equations. In order to prove the results obtained from solving the equations of mechanisms, their CAD model has been simulated and their static is analysed in ADAMS software. Due to symmetrical geometry of the mechanisms, the force and external torque acting on the end-effecter have been considered asymmetric to prove the generality of the solution method. Finally, the results of both softwares, for both mechanisms are extracted and compared as graphs. The good achieved comparison between the results indicates the accuracy of the analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=robotic" title="robotic">robotic</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20analysis" title=" static analysis"> static analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=3-RCC" title=" 3-RCC"> 3-RCC</a>, <a href="https://publications.waset.org/abstracts/search?q=3-RRS" title=" 3-RRS"> 3-RRS</a> </p> <a href="https://publications.waset.org/abstracts/24128/two-spherical-three-degrees-of-freedom-parallel-robots-3-rcc-and-3-rrs-static-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24128.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26077</span> Longitudinal Static and Dynamic Stability of a Typical Reentry Body in Subsonic Conditions Using Computational Fluid Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Jathaveda">M. Jathaveda</a>, <a href="https://publications.waset.org/abstracts/search?q=Joben%20Leons"> Joben Leons</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Vidya"> G. Vidya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reentry from orbit is a critical phase in the entry trajectory. For a non-propulsive ballistic entry, static and dynamic stability play an important role in the trajectory, especially for the safe deployment of parachutes, typically at subsonic Mach numbers. Static stability of flight vehicles are being estimated through CFD techniques routinely. Advances in CFD software as well as computational facilities have enabled the estimation of the dynamic stability derivatives also through CFD techniques. Longitudinal static and dynamic stability of a typical reentry body for subsonic Mach number of 0.6 is predicted using commercial software CFD++ and presented here. Steady state simulations are carried out for α = 2° on an unstructured grid using SST k-ω model. Transient simulation using forced oscillation method is used to compute pitch damping derivatives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stability" title="stability">stability</a>, <a href="https://publications.waset.org/abstracts/search?q=typical%20reentry%20body" title=" typical reentry body"> typical reentry body</a>, <a href="https://publications.waset.org/abstracts/search?q=subsonic" title=" subsonic"> subsonic</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20and%20dynamic" title=" static and dynamic"> static and dynamic</a> </p> <a href="https://publications.waset.org/abstracts/159425/longitudinal-static-and-dynamic-stability-of-a-typical-reentry-body-in-subsonic-conditions-using-computational-fluid-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26076</span> Investigation of Static Stability of Soil Slopes Using Numerical Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Abolhasan%20Naeini">Seyed Abolhasan Naeini</a>, <a href="https://publications.waset.org/abstracts/search?q=Elham%20Ghanbari%20Alamooti"> Elham Ghanbari Alamooti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Static stability of soil slopes using numerical simulation by a finite element code, ABAQUS, has been investigated, and safety factors of the slopes achieved in the case of static load of a 10-storey building. The embankments have the same soil condition but different loading distance from the slope heel. The numerical method for estimating safety factors is 'Strength Reduction Method' (SRM). Mohr-Coulomb criterion used in the numerical simulations. Two steps used for measuring the safety factors of the slopes: first is under gravity loading, and the second is under static loading of a building near the slope heel. These safety factors measured from SRM, are compared with the values from Limit Equilibrium Method, LEM. Results show that there is good agreement between SRM and LEM. Also, it is seen that by increasing the distance from slope heel, safety factors increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=limit%20equilibrium%20%20method" title="limit equilibrium method">limit equilibrium method</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20stability" title=" static stability"> static stability</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20slopes" title=" soil slopes"> soil slopes</a>, <a href="https://publications.waset.org/abstracts/search?q=strength%20reduction%20method" title=" strength reduction method"> strength reduction method</a> </p> <a href="https://publications.waset.org/abstracts/90783/investigation-of-static-stability-of-soil-slopes-using-numerical-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26075</span> A Thermodynamic Solution for the Static and Dynamic Characteristics of a Two-Lobe Journal Bearing </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Chetti">B. Chetti</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20A.%20Crosby"> W. A. Crosby</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work described in this paper is an investigation of the static and dynamic characteristics of two-lobe journal bearings taking into consideration the thermal effects. A thermo-hydrodynamic solution of a finite two-lobe journal bearing is performed by solving the generalized form Reynolds equation with the energy equation, taking into consideration viscosity variation across the film thickness. The static and dynamic characteristics were numerically obtained. The results are evaluated for different values of viscosity-temperature coefficient and Peclet number. The results show that considering the thermal effects in the solution of the two-lobe journal bearing has a marked on the study of its stability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=two-lobe%20bearing" title="two-lobe bearing">two-lobe bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20effect" title=" thermal effect"> thermal effect</a>, <a href="https://publications.waset.org/abstracts/search?q=static" title=" static"> static</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20characteristics" title=" dynamic characteristics"> dynamic characteristics</a> </p> <a href="https://publications.waset.org/abstracts/3887/a-thermodynamic-solution-for-the-static-and-dynamic-characteristics-of-a-two-lobe-journal-bearing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26074</span> Acute Effects of Active Dynamic, Static Stretching and Passive Static Stretching Exercise on Hamstrings Flexibility and Muscle Strength</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yi%20Tse%20Wang">Yi Tse Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Che%20Hsiu%20Chen"> Che Hsiu Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Zih%20Jian%20Huang"> Zih Jian Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hon%20Wen%20Cheng"> Hon Wen Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stretching treatments enhanced flexibility. On the other hand, decreases in hamstrings strength have been reported after stretching, especially with static stretching or passive stretching. Stretching has been shown to be more effective than static stretching to improve muscle performance, but a clear consensus for the effect of dynamic stretching on muscle performance has not been achieved. The purpose of this study was to compare the acute effect of a dynamic stretching, static stretching and eccentric exercise protocol on hamstrings stiffness, flexibility and muscle strength. Forty-five healthy active men (height 179.9 cm; weight 71.5 kg; age 22.5 years) were participated in 3 randomly ordered testing sessions: dynamic stretching (DS), active static stretching (ASS), and passive static stretching (PSS). All the stretch were performed 30 seconds and repeated 6 times. There was a 30-second interval between repetitions. The outcome measures were isokinetic concentric contraction (60°/s), eccentric contraction (30°/s) peak torque, muscle flexibility after stretching. The results showed that the muscle flexibility (3.6%, 3.9% and 1.59%, respectively) increased significantly after DS, PSS and ASS. Hamstring isokinetic concentric peak torque (-6.4%, -8.0% and -5.8%, respectively) and eccentric peak torque (-5.8%, -4.5% and -5.4%, respectively) decreased significantly after DS, PSS and ASS. Hence, although the stretching protocols improve hamstrings flexibility immediately, reduced hamstring muscle eccentric and concentric peak torque. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hamstrings%20injury" title="hamstrings injury">hamstrings injury</a>, <a href="https://publications.waset.org/abstracts/search?q=warm-up" title=" warm-up"> warm-up</a>, <a href="https://publications.waset.org/abstracts/search?q=muscle%20performance" title=" muscle performance"> muscle performance</a>, <a href="https://publications.waset.org/abstracts/search?q=muscle%20stretching" title=" muscle stretching"> muscle stretching</a> </p> <a href="https://publications.waset.org/abstracts/51723/acute-effects-of-active-dynamic-static-stretching-and-passive-static-stretching-exercise-on-hamstrings-flexibility-and-muscle-strength" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26073</span> Dynamic Environmental Impact Study during the Construction of the French Nuclear Power Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Er-Raki">A. Er-Raki</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Hartmann"> D. Hartmann</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20P.%20Belaud"> J. P. Belaud</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Negny"> S. Negny </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper has a double purpose: firstly, a literature review of the life cycle analysis (LCA) and secondly a comparison between conventional (static) LCA and multi-level dynamic LCA on the following items: (i) inventories evolution with time (ii) temporal evolution of the databases. The first part of the paper summarizes the state of the art of the static LCA approach. The different static LCA limits have been identified and especially the non-consideration of the spatial and temporal evolution in the inventory, for the characterization factors (FCs) and into the databases. Then a description of the different levels of integration of the notion of temporality in life cycle analysis studies was made. In the second part, the dynamic inventory has been evaluated firstly for a single nuclear plant and secondly for the entire French nuclear power fleet by taking into account the construction durations of all the plants. In addition, the databases have been adapted by integrating the temporal variability of the French energy mix. Several iterations were used to converge towards the real environmental impact of the energy mix. Another adaptation of the databases to take into account the temporal evolution of the market data of the raw material was made. An identification of the energy mix of the time studied was based on an extrapolation of the production reference values of each means of production. An application to the construction of the French nuclear power plants from 1971 to 2000 has been performed, in which a dynamic inventory of raw material has been evaluated. Then the impacts were characterized by the ILCD 2011 characterization method. In order to compare with a purely static approach, a static impact assessment was made with the V 3.4 Ecoinvent data sheets without adaptation and a static inventory considering that all the power stations would have been built at the same time. Finally, a comparison between static and dynamic LCA approaches was set up to determine the gap between them for each of the two levels of integration. The results were analyzed to identify the contribution of the evolving nuclear power fleet construction to the total environmental impacts of the French energy mix during the same period. An equivalent strategy using a dynamic approach will further be applied to identify the environmental impacts that different scenarios of the energy transition could bring, allowing to choose the best energy mix from an environmental viewpoint. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LCA" title="LCA">LCA</a>, <a href="https://publications.waset.org/abstracts/search?q=static" title=" static"> static</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic" title=" dynamic"> dynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=inventory" title=" inventory"> inventory</a>, <a href="https://publications.waset.org/abstracts/search?q=construction" title=" construction"> construction</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20energy" title=" nuclear energy"> nuclear energy</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20mix" title=" energy mix"> energy mix</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20transition" title=" energy transition"> energy transition</a> </p> <a href="https://publications.waset.org/abstracts/108601/dynamic-environmental-impact-study-during-the-construction-of-the-french-nuclear-power-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108601.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26072</span> Static and Dynamical Analysis on Clutch Discs on Different Material and Geometries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jairo%20Aparecido%20Martins">Jairo Aparecido Martins</a>, <a href="https://publications.waset.org/abstracts/search?q=Estaner%20Claro%20Rom%C3%A3o"> Estaner Claro Romão </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the static and cyclic stresses in combination with fatigue analysis resultant of loads applied on the friction discs usually utilized on industrial clutches. The material chosen to simulate the friction discs under load is aluminum. The numerical simulation was done by software COMSOL<sup>TM</sup> Multiphysics. The results obtained for static loads showed enough stiffness for both geometries and the material utilized. On the other hand, in the fatigue standpoint, failure is clearly verified, what demonstrates the importance of both approaches, mainly dynamical analysis. The results and the conclusion are based on the stresses on disc, counted stress cycles, and fatigue usage factor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum" title="aluminum">aluminum</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20clutch" title=" industrial clutch"> industrial clutch</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20and%20dynamic%20loading" title=" static and dynamic loading"> static and dynamic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/78651/static-and-dynamical-analysis-on-clutch-discs-on-different-material-and-geometries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78651.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26071</span> The Use of Additives to Prevent Fouling in Polyethylene and Polypropylene Gas and Slurry Phase Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Shafiq">L. Shafiq</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Rigby"> A. Rigby</a> </p> <p class="card-text"><strong>Abstract:</strong></p> All polyethylene processes are highly exothermic, and the safe removal of the heat of reaction is a fundamental issue in the process design. In slurry and gas processes, the velocity of the polymer particles in the reactor and external coolers can be very high, and under certain conditions, this can lead to static charging of these particles. Such static charged polymer particles may start building up on the reactor wall, limiting heat transfer, and ultimately leading to severe reactor fouling and forced reactor shut down. Statsafe™ is an FDA approved anti-fouling additive currently used around the world for polyolefin production as an anti-fouling additive. The unique polymer chemistry aids static discharge, which prevents the build-up of charged polyolefin particles, which could lead to fouling. Statsafe™ is being used and trailed in gas, slurry, and a combination of these technologies around the world. We will share data to demonstrate how the use of Statsafe™ allows more stable operation at higher solids level by eliminating static, which would otherwise prevent closer packing of particles in the hydrocarbon slurry. Because static charge generation depends also on the concentration of polymer particles in the slurry, the maximum slurry concentration can be higher when using Statsafe™, leading to higher production rates. The elimination of fouling also leads to less downtime. Special focus will be made on the impact anti-static additives have on catalyst performance within the polymerization process and how this has been measured. Lab-scale studies have investigated the effect on the activity of Ziegler Natta catalysts when anti-static additives are used at various concentrations in gas and slurry, polyethylene and polypropylene processes. An in-depth gas phase study investigated the effect of additives on the final polyethylene properties such as particle size, morphology, fines, bulk density, melt flow index, gradient density, and melting point. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-static%20additives" title="anti-static additives">anti-static additives</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst%20performance" title=" catalyst performance"> catalyst performance</a>, <a href="https://publications.waset.org/abstracts/search?q=FDA%20approved%20anti-fouling%20additive" title=" FDA approved anti-fouling additive"> FDA approved anti-fouling additive</a>, <a href="https://publications.waset.org/abstracts/search?q=polymerisation" title=" polymerisation"> polymerisation</a> </p> <a href="https://publications.waset.org/abstracts/116547/the-use-of-additives-to-prevent-fouling-in-polyethylene-and-polypropylene-gas-and-slurry-phase-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26070</span> Numerical Study on the Static Characteristics of Novel Aerostatic Thrust Bearings Possessing Elastomer Capillary Restrictor and Bearing Surface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20W.%20Lo">S. W. Lo</a>, <a href="https://publications.waset.org/abstracts/search?q=S.-H.%20Lu"> S.-H. Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20H.%20Guo"> Y. H. Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20C.%20Hsu"> L. C. Hsu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a novel design of aerostatic thrust bearing is proposed and is analyzed numerically. The capillary restrictor and bearing disk are made of elastomer like silicone and PU. The viscoelasticity of elastomer helps the capillary expand for more air flux and at the same time, allows conicity of the bearing surface to form when the air pressure is enhanced. Therefore, the bearing has the better ability of passive compensation. In the present example, as compared with the typical model, the new designs can nearly double the load capability and offer four times static stiffness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerostatic" title="aerostatic">aerostatic</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing" title=" bearing"> bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=elastomer" title=" elastomer"> elastomer</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20stiffness" title=" static stiffness"> static stiffness</a> </p> <a href="https://publications.waset.org/abstracts/7954/numerical-study-on-the-static-characteristics-of-novel-aerostatic-thrust-bearings-possessing-elastomer-capillary-restrictor-and-bearing-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26069</span> Analysis of Artificial Hip Joint Using Finite Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20Zameer">Syed Zameer</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Haneef"> Mohamed Haneef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hip joint plays very important role in human beings as it takes up the whole body forces generated due to various activities. These loads are repetitive and fluctuating depending on the activities such as standing, sitting, jogging, stair casing, climbing, etc. which may lead to failure of Hip joint. Hip joint modification and replacement are common in old aged persons as well as younger persons. In this research study static and Fatigue analysis of Hip joint model was carried out using finite element software ANSYS. Stress distribution obtained from result of static analysis, material properties and S-N curve data of fabricated Ultra High molecular weight polyethylene / 50 wt% short E glass fibres + 40 wt% TiO2 Polymer matrix composites specimens were used to estimate fatigue life of Hip joint using stiffness Degradation model for polymer matrix composites. The stress distribution obtained from static analysis was found to be within the acceptable range.The factor of safety calculated from linear Palmgren linear damage rule is less than one, which indicates the component is safe under the design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hip%20joint" title="hip joint">hip joint</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20matrix%20composite" title=" polymer matrix composite"> polymer matrix composite</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20analysis" title=" static analysis"> static analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20analysis" title=" fatigue analysis"> fatigue analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20life%20approach" title=" stress life approach"> stress life approach</a> </p> <a href="https://publications.waset.org/abstracts/20794/analysis-of-artificial-hip-joint-using-finite-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26068</span> A Comparative Study of Force Prediction Models during Static Bending Stage for 3-Roller Cone Frustum Bending</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahesh%20Chudasama">Mahesh Chudasama</a>, <a href="https://publications.waset.org/abstracts/search?q=Harit%20Raval"> Harit Raval</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conical sections and shells of metal plates manufactured by 3-roller conical bending process are widely used in the industries. The process is completed by first bending the metal plates statically and then dynamic roller bending sequentially. It is required to have an analytical model to get maximum bending force, for optimum design of the machine, for static bending stage. Analytical models assuming various stress conditions are considered and these analytical models are compared considering various parameters and reported in this paper. It is concluded from the study that for higher bottom roller inclination, the shear stress affects greatly to the static bending force whereas for lower bottom roller inclination it can be neglected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=roller-bending" title="roller-bending">roller-bending</a>, <a href="https://publications.waset.org/abstracts/search?q=static-bending" title=" static-bending"> static-bending</a>, <a href="https://publications.waset.org/abstracts/search?q=stress-conditions" title=" stress-conditions"> stress-conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical-modeling" title=" analytical-modeling"> analytical-modeling</a> </p> <a href="https://publications.waset.org/abstracts/45482/a-comparative-study-of-force-prediction-models-during-static-bending-stage-for-3-roller-cone-frustum-bending" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26067</span> Static and Dynamic Tailings Dam Monitoring with Accelerometers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cristiana%20Ortig%C3%A3o">Cristiana Ortigão</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Couto"> Antonio Couto</a>, <a href="https://publications.waset.org/abstracts/search?q=Thiago%20Gabriel"> Thiago Gabriel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the wake of Samarco Fundão’s failure in 2015 followed by Vale’s Brumadinho disaster in 2019, the Brazilian National Mining Agency started a comprehensive dam safety programmed to rank dam safety risks and establish monitoring and analysis procedures. This paper focuses on the use of accelerometers for static and dynamic applications. Static applications may employ tiltmeters, as an example shown later in this paper. Dynamic monitoring of a structure with accelerometers yields its dynamic signature and this technique has also been successfully used in Brazil and this paper gives an example of tailings dam. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=instrumentation" title="instrumentation">instrumentation</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic" title=" dynamic"> dynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring" title=" monitoring"> monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=tailings" title=" tailings"> tailings</a>, <a href="https://publications.waset.org/abstracts/search?q=dams" title=" dams"> dams</a>, <a href="https://publications.waset.org/abstracts/search?q=tiltmeters" title=" tiltmeters"> tiltmeters</a>, <a href="https://publications.waset.org/abstracts/search?q=automation" title=" automation"> automation</a> </p> <a href="https://publications.waset.org/abstracts/157581/static-and-dynamic-tailings-dam-monitoring-with-accelerometers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157581.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26066</span> Effect of Foot Posture and Fatigue on Static Balance and Electromyographic Activity of Selected Lower Limb Muscles in School Children Aged 12 to 14 Years</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Riza%20Adriyani">Riza Adriyani</a>, <a href="https://publications.waset.org/abstracts/search?q=Tommy%20Apriantono"> Tommy Apriantono</a>, <a href="https://publications.waset.org/abstracts/search?q=Suprijanto"> Suprijanto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: Several studies have revealed that flatfoot posture has some effect on altered lower limb muscle function, in comparison to normal foot posture. There were still limited studies to examine the effect of fatigue on flatfoot posture in children. Therefore, this study was aimed to find out jumping fatiguing effect on static balance and to compare lower limb muscle function between flatfoot and normal foot in school children. Methods: Thirty junior high school children aged 12 to 14 years took part in this study. Of these all children, 15 had the normal foot (8 males and 7 females) and 15 had flatfoot (6 males and 9 females). Foot posture was classified based on an arch index of the footprint by a foot scanner which calculated the data using AUTOCAD 2013 software. Surface electromyography (EMG) activity was recorded from tibialis anterior, gastrocnemius medialis, and peroneus longus muscles while those participants were standing on one leg barefoot with opened eyes. All participants completed the entire protocol (pre-fatigue data collection, fatigue protocol, and post fatigue data collection) in a single session. Static balance and electromyographic data were collected before and after a functional fatigue protocol. Results: School children with normal foot had arch index 0.25±0.01 whereas those with flatfoot had 0.36±0.01. In fact, there were no significant differences for anthropometric characteristics between children with flatfoot and normal foot. This statistical analysis showed that fatigue could influence static balance in flatfoot school children (p < 0.05), but not in normal foot school children. Based on electromyographic data, the statistical analysis showed that there were significant differences (p < 0.05) of the decreased median frequency on tibialis anterior in flatfoot compared to normal foot school children after fatigue. However, there were no significant differences on the median frequency of gastrocnemius medialis and peroneus longus between both groups. After fatigue, median frequency timing was significantly different (p < 0.05) on tibialis anterior in flatfoot compared to normal foot children and tended to appear earlier on tibialis anterior, gastrocnemius medialis and peroneus longus (at 7s, 8s, 9s) in flatfoot compared to normal foot (at 15s, 11s , 12s). Conclusion: Fatigue influenced static balance and tended to appear earlier on selected lower limb muscles while performing static balance in flatfoot school children. After fatigue, tremor (median frequency decreased) showed more significant differences on tibialis anterior in flatfoot rather than in normal foot school children. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatigue" title="fatigue">fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=foot%20postures" title=" foot postures"> foot postures</a>, <a href="https://publications.waset.org/abstracts/search?q=median%20frequency" title=" median frequency"> median frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20balance" title=" static balance"> static balance</a> </p> <a href="https://publications.waset.org/abstracts/28394/effect-of-foot-posture-and-fatigue-on-static-balance-and-electromyographic-activity-of-selected-lower-limb-muscles-in-school-children-aged-12-to-14-years" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28394.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26065</span> Static Study of Piezoelectric Bimorph Beams with Delamination Zone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zemirline%20Adel">Zemirline Adel</a>, <a href="https://publications.waset.org/abstracts/search?q=Ouali%20Mohammed"> Ouali Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahieddine%20Ali"> Mahieddine Ali </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The FOSDT (First Order Shear Deformation Theory) is taking into consideration to study the static behavior of a bimorph beam, with a delamination zone between the upper and the lower layer. The effect of limit conditions and lengths of the delamination zone are presented in this paper, with a PVDF piezoelectric material application. A FEM “Finite Element Method” is used to discretize the beam. In the axial displacement, a displacement field appears in the debonded zone with inverse effect between the upper and the lower layer was observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=static" title="static">static</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectricity" title=" piezoelectricity"> piezoelectricity</a>, <a href="https://publications.waset.org/abstracts/search?q=beam" title=" beam"> beam</a>, <a href="https://publications.waset.org/abstracts/search?q=delamination" title=" delamination"> delamination</a> </p> <a href="https://publications.waset.org/abstracts/20773/static-study-of-piezoelectric-bimorph-beams-with-delamination-zone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=static%20data&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=static%20data&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=static%20data&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=static%20data&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=static%20data&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=static%20data&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=static%20data&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=static%20data&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=static%20data&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=static%20data&page=869">869</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=static%20data&page=870">870</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=static%20data&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>