CINXE.COM
Search results for: electrical distribution networks
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: electrical distribution networks</title> <meta name="description" content="Search results for: electrical distribution networks"> <meta name="keywords" content="electrical distribution networks"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="electrical distribution networks" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="electrical distribution networks"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9368</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: electrical distribution networks</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9368</span> Power Quality Evaluation of Electrical Distribution Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Idris%20S.%20Abozaed">Mohamed Idris S. Abozaed</a>, <a href="https://publications.waset.org/abstracts/search?q=Suliman%20Mohamed%20Elrajoubi"> Suliman Mohamed Elrajoubi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Researches and concerns in power quality gained significant momentum in the field of power electronics systems over the last two decades globally. This sudden increase in the number of concerns over power quality problems is a result of the huge increase in the use of non-linear loads. In this paper, power quality evaluation of some distribution networks at Misurata - Libya has been done using a power quality and energy analyzer (Fluke 437 Series II). The results of this evaluation are used to minimize the problems of power quality. The analysis shows the main power quality problems that exist and the level of awareness of power quality issues with the aim of generating a start point which can be used as guidelines for researchers and end users in the field of power systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20quality%20disturbances" title="power quality disturbances">power quality disturbances</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20quality%20evaluation" title=" power quality evaluation"> power quality evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20analysis" title=" statistical analysis"> statistical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20distribution%20networks" title=" electrical distribution networks "> electrical distribution networks </a> </p> <a href="https://publications.waset.org/abstracts/11250/power-quality-evaluation-of-electrical-distribution-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">533</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9367</span> Improve of Power Quality in Electrical Network Using STATCOM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Alesaadi">A. R. Alesaadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flexible AC transmission system (FACTS) devices have an important rule on expended electrical transmission networks. These devices can provide control of one or more AC transmission system parameters to enhance controllability and increase power transfer capability. In this paper the effect of these devices on reliability of electrical networks is studied and it is shown that using of FACTS devices can improve the reliability of power networks and power quality in electrical networks, significantly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FACTS%20devices" title="FACTS devices">FACTS devices</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20networks" title=" power networks"> power networks</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20quality" title=" power quality"> power quality</a>, <a href="https://publications.waset.org/abstracts/search?q=STATCOM" title=" STATCOM"> STATCOM</a> </p> <a href="https://publications.waset.org/abstracts/33525/improve-of-power-quality-in-electrical-network-using-statcom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33525.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">668</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9366</span> Impact of FACTS Devices on Power Networks Reliability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Alesaadi">Alireza Alesaadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flexible AC transmission system (FACTS) devices have an important rule on expnded electrical transmission networks. In this paper, the effect of these diveces on reliability of electrical networks is studied and it is shown that using of FACTS devices can improve the relibiability of power networks, significantly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FACTS%20devices" title="FACTS devices">FACTS devices</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20networks" title=" power networks"> power networks</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability "> reliability </a> </p> <a href="https://publications.waset.org/abstracts/14821/impact-of-facts-devices-on-power-networks-reliability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14821.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9365</span> Review on Application of DVR in Compensation of Voltage Harmonics in Power Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Sudhharani">S. Sudhharani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy distribution networks are the main link between the energy industry and consumers and are subject to the most scrutiny and testing of any category. As a result, it is important to monitor energy levels during the distribution phase. Power distribution networks, on the other hand, remain subject to common problems, including voltage breakdown, power outages, harmonics, and capacitor switching, all of which disrupt sinusoidal waveforms and reduce the quality and power of the network. Using power appliances in the form of custom power appliances is one way to deal with energy quality issues. Dynamic Voltage Restorer (DVR), integrated with network and distribution networks, is one of these devices. At the same time, by injecting voltage into the system, it can adjust the voltage amplitude and phase in the network. In the form of injections and three-phase syncing, it is used to compensate for the difficulty of energy quality. This article examines the recent use of DVR for power compensation and provides data on the control of each DVR in distribution networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20voltage%20restorer%20%28DVR%29" title="dynamic voltage restorer (DVR)">dynamic voltage restorer (DVR)</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20quality" title=" power quality"> power quality</a>, <a href="https://publications.waset.org/abstracts/search?q=distribution%20networks" title=" distribution networks"> distribution networks</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20systems%28PWM%29" title=" control systems(PWM)"> control systems(PWM)</a> </p> <a href="https://publications.waset.org/abstracts/149814/review-on-application-of-dvr-in-compensation-of-voltage-harmonics-in-power-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149814.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9364</span> Pre-Shared Key Distribution Algorithms' Attacks for Body Area Networks: A Survey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priti%20Kumari">Priti Kumari</a>, <a href="https://publications.waset.org/abstracts/search?q=Tricha%20Anjali"> Tricha Anjali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Body Area Networks (BANs) have emerged as the most promising technology for pervasive health care applications. Since they facilitate communication of very sensitive health data, information leakage in such networks can put human life at risk, and hence security inside BANs is a critical issue. Safe distribution and periodic refreshment of cryptographic keys are needed to ensure the highest level of security. In this paper, we focus on the key distribution techniques and how they are categorized for BAN. The state-of-art pre-shared key distribution algorithms are surveyed. Possible attacks on algorithms are demonstrated with examples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attacks" title="attacks">attacks</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20area%20network" title=" body area network"> body area network</a>, <a href="https://publications.waset.org/abstracts/search?q=key%20distribution" title=" key distribution"> key distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=key%20refreshment" title=" key refreshment"> key refreshment</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-shared%20keys" title=" pre-shared keys"> pre-shared keys</a> </p> <a href="https://publications.waset.org/abstracts/49001/pre-shared-key-distribution-algorithms-attacks-for-body-area-networks-a-survey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49001.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9363</span> Advanced Hybrid Particle Swarm Optimization for Congestion and Power Loss Reduction in Distribution Networks with High Distributed Generation Penetration through Network Reconfiguration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Iraklis">C. Iraklis</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Evmiridis"> G. Evmiridis</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Iraklis"> A. Iraklis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Renewable energy sources and distributed power generation units already have an important role in electrical power generation. A mixture of different technologies penetrating the electrical grid, adds complexity in the management of distribution networks. High penetration of distributed power generation units creates node over-voltages, huge power losses, unreliable power management, reverse power flow and congestion. This paper presents an optimization algorithm capable of reducing congestion and power losses, both described as a function of weighted sum. Two factors that describe congestion are being proposed. An upgraded selective particle swarm optimization algorithm (SPSO) is used as a solution tool focusing on the technique of network reconfiguration. The upgraded SPSO algorithm is achieved with the addition of a heuristic algorithm specializing in reduction of power losses, with several scenarios being tested. Results show significant improvement in minimization of losses and congestion while achieving very small calculation times. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=congestion" title="congestion">congestion</a>, <a href="https://publications.waset.org/abstracts/search?q=distribution%20networks" title=" distribution networks"> distribution networks</a>, <a href="https://publications.waset.org/abstracts/search?q=loss%20reduction" title=" loss reduction"> loss reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20grid" title=" smart grid"> smart grid</a> </p> <a href="https://publications.waset.org/abstracts/91520/advanced-hybrid-particle-swarm-optimization-for-congestion-and-power-loss-reduction-in-distribution-networks-with-high-distributed-generation-penetration-through-network-reconfiguration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9362</span> Presentation of HVA Faults in SONELGAZ Underground Network and Methods of Faults Diagnostic and Faults Location</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Toua%D1%97bia">I. Touaїbia</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Azzag"> E. Azzag</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Narjes"> O. Narjes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Power supply networks are growing continuously and their reliability is getting more important than ever. The complexity of the whole network comprises numerous components that can fail and interrupt the power supply for the end user. Underground distribution systems are normally exposed to permanent faults, due to specific construction characteristics. In these systems, visual inspection cannot be performed. In order to enhance service restoration, accurate fault location techniques must be applied. This paper describes the different faults that affect the underground distribution system of SONELGAZ (National Society of Electricity and Gas of Algeria), and cable fault location procedure with impulse reflection method (TDR), based in the analyses of the cable response of the electromagnetic impulse, allows cable fault prelocation. The results are obtained from real test in the underground distribution feeder from electrical network of energy distribution company of Souk-Ahras, in order to know the influence of cable characteristics in the types and frequency of faults. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distribution%20networks" title="distribution networks">distribution networks</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20location" title=" fault location"> fault location</a>, <a href="https://publications.waset.org/abstracts/search?q=TDR" title=" TDR"> TDR</a>, <a href="https://publications.waset.org/abstracts/search?q=underground%20cable" title=" underground cable"> underground cable</a> </p> <a href="https://publications.waset.org/abstracts/13416/presentation-of-hva-faults-in-sonelgaz-underground-network-and-methods-of-faults-diagnostic-and-faults-location" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13416.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">533</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9361</span> Optimization Method of Dispersed Generation in Electrical Distribution Systems </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Samkan">Mahmoud Samkan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dispersed Generation (DG) is a promising solution to many power system problems such as voltage regulation and power loss. This paper proposes a heuristic two-step method to optimize the location and size of DG for reducing active power losses and, therefore, improve the voltage profile in radial distribution networks. In addition to a DG placed at the system load gravity center, this method consists in assigning a DG to each lateral of the network. After having determined the central DG placement, the location and size of each lateral DG are predetermined in the first step. The results are then refined in the second step. This method is tested for 33-bus system for 100% DG penetration. The results obtained are compared with those of other methods found in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimal%20location" title="optimal location">optimal location</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20size" title=" optimal size"> optimal size</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersed%20generation%20%28DG%29" title=" dispersed generation (DG)"> dispersed generation (DG)</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20distribution%20networks" title=" radial distribution networks"> radial distribution networks</a>, <a href="https://publications.waset.org/abstracts/search?q=reducing%20losses" title=" reducing losses"> reducing losses</a> </p> <a href="https://publications.waset.org/abstracts/36660/optimization-method-of-dispersed-generation-in-electrical-distribution-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9360</span> Reliability Analysis: A Case Study in Designing Power Distribution System of Tehran Oil Refinery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Arani">A. B. Arani</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Shojaee"> R. Shojaee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrical power distribution system is one of the vital infrastructures of an oil refinery, which requires wide area of study and planning before construction. In this paper, power distribution reliability of Tehran Refinery’s KHDS/GHDS unit has been taken into consideration to investigate the importance of these kinds of studies and evaluate the designed system. In this regard, the authors chose and evaluated different configurations of electrical power distribution along with the existing configuration with the aim of finding the most suited configuration which satisfies the conditions of minimum cost of electrical system construction, minimum cost imposed by loss of load, and maximum power system reliability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20distribution%20system" title="power distribution system">power distribution system</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20refinery" title=" oil refinery"> oil refinery</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=investment%20cost" title=" investment cost"> investment cost</a>, <a href="https://publications.waset.org/abstracts/search?q=interruption%20cost" title=" interruption cost"> interruption cost</a> </p> <a href="https://publications.waset.org/abstracts/25952/reliability-analysis-a-case-study-in-designing-power-distribution-system-of-tehran-oil-refinery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25952.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">876</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9359</span> Suitable Models and Methods for the Steady-State Analysis of Multi-Energy Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juan%20Jos%C3%A9%20Mesas">Juan José Mesas</a>, <a href="https://publications.waset.org/abstracts/search?q=Luis%20Sainz"> Luis Sainz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The motivation for the development of this paper lies in the need for energy networks to reduce losses, improve performance, optimize their operation and try to benefit from the interconnection capacity with other networks enabled for other energy carriers. These interconnections generate interdependencies between some energy networks and others, which requires suitable models and methods for their analysis. Traditionally, the modeling and study of energy networks have been carried out independently for each energy carrier. Thus, there are well-established models and methods for the steady-state analysis of electrical networks, gas networks, and thermal networks separately. What is intended is to extend and combine them adequately to be able to face in an integrated way the steady-state analysis of networks with multiple energy carriers. Firstly, the added value of multi-energy networks, their operation, and the basic principles that characterize them are explained. In addition, two current aspects of great relevance are exposed: the storage technologies and the coupling elements used to interconnect one energy network with another. Secondly, the characteristic equations of the different energy networks necessary to carry out the steady-state analysis are detailed. The electrical network, the natural gas network, and the thermal network of heat and cold are considered in this paper. After the presentation of the equations, a particular case of the steady-state analysis of a specific multi-energy network is studied. This network is represented graphically, the interconnections between the different energy carriers are described, their technical data are exposed and the equations that have previously been presented theoretically are formulated and developed. Finally, the two iterative numerical resolution methods considered in this paper are presented, as well as the resolution procedure and the results obtained. The pros and cons of the application of both methods are explained. It is verified that the results obtained for the electrical network (voltages in modulus and angle), the natural gas network (pressures), and the thermal network (mass flows and temperatures) are correct since they comply with the distribution, operation, consumption and technical characteristics of the multi-energy network under study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coupling%20elements" title="coupling elements">coupling elements</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20carriers" title=" energy carriers"> energy carriers</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-energy%20networks" title=" multi-energy networks"> multi-energy networks</a>, <a href="https://publications.waset.org/abstracts/search?q=steady-state%20analysis" title=" steady-state analysis"> steady-state analysis</a> </p> <a href="https://publications.waset.org/abstracts/162363/suitable-models-and-methods-for-the-steady-state-analysis-of-multi-energy-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9358</span> Intelligent Minimal Allocation of Capacitors in Distribution Networks Using Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Neelima">S. Neelima</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20S.%20Subramanyam"> P. S. Subramanyam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A distribution system is an interface between the bulk power system and the consumers. Among these systems, radial distributions system is popular because of low cost and simple design. In distribution systems, the voltages at buses reduces when moved away from the substation, also the losses are high. The reason for a decrease in voltage and high losses is the insufficient amount of reactive power, which can be provided by the shunt capacitors. But the placement of the capacitor with an appropriate size is always a challenge. Thus, the optimal capacitor placement problem is to determine the location and size of capacitors to be placed in distribution networks in an efficient way to reduce the power losses and improve the voltage profile of the system. For this purpose, in this paper, two stage methodologies are used. In the first stage, the load flow of pre-compensated distribution system is carried out using ‘dimension reducing distribution load flow algorithm (DRDLFA)’. On the basis of this load flow the potential locations of compensation are computed. In the second stage, Genetic Algorithm (GA) technique is used to determine the optimal location and size of the capacitors such that the cost of the energy loss and capacitor cost to be a minimum. The above method is tested on IEEE 9 and 34 bus system and compared with other methods in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dimension%20reducing%20distribution%20load%20flow%20algorithm" title="dimension reducing distribution load flow algorithm">dimension reducing distribution load flow algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=DRDLFA" title=" DRDLFA"> DRDLFA</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20distribution%20network" title=" electrical distribution network"> electrical distribution network</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20capacitors%20placement" title=" optimal capacitors placement"> optimal capacitors placement</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20profile%20improvement" title=" voltage profile improvement"> voltage profile improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=loss%20reduction" title=" loss reduction"> loss reduction</a> </p> <a href="https://publications.waset.org/abstracts/34573/intelligent-minimal-allocation-of-capacitors-in-distribution-networks-using-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9357</span> Short Term Distribution Load Forecasting Using Wavelet Transform and Artificial Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Neelima">S. Neelima</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20S.%20Subramanyam"> P. S. Subramanyam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The major tool for distribution planning is load forecasting, which is the anticipation of the load in advance. Artificial neural networks have found wide applications in load forecasting to obtain an efficient strategy for planning and management. In this paper, the application of neural networks to study the design of short term load forecasting (STLF) Systems was explored. Our work presents a pragmatic methodology for short term load forecasting (STLF) using proposed two-stage model of wavelet transform (WT) and artificial neural network (ANN). It is a two-stage prediction system which involves wavelet decomposition of input data at the first stage and the decomposed data with another input is trained using a separate neural network to forecast the load. The forecasted load is obtained by reconstruction of the decomposed data. The hybrid model has been trained and validated using load data from Telangana State Electricity Board. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20distribution%20systems" title="electrical distribution systems">electrical distribution systems</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%20transform%20%28WT%29" title=" wavelet transform (WT)"> wavelet transform (WT)</a>, <a href="https://publications.waset.org/abstracts/search?q=short%20term%20load%20forecasting%20%28STLF%29" title=" short term load forecasting (STLF)"> short term load forecasting (STLF)</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network%20%28ANN%29" title=" artificial neural network (ANN) "> artificial neural network (ANN) </a> </p> <a href="https://publications.waset.org/abstracts/34572/short-term-distribution-load-forecasting-using-wavelet-transform-and-artificial-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9356</span> A Lifetime-Enhancing Monitoring Node Distribution Using Minimum Spanning Tree in Mobile Ad Hoc Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sungchul%20Ha">Sungchul Ha</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyunwoo%20Kim"> Hyunwoo Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In mobile ad hoc networks, all nodes in a network only have limited resources and calculation ability. Therefore communication topology which have long lifetime is good for all nodes in mobile ad hoc networks. There are a variety of researches on security problems in wireless ad hoc networks. The existing many researches try to make efficient security schemes to reduce network power consumption and enhance network lifetime. Because a new node can join the network at any time, the wireless ad hoc networks are exposed to various threats and can be destroyed by attacks. Resource consumption is absolutely necessary to secure networks, but more resource consumption can be a critical problem to network lifetime. This paper focuses on efficient monitoring node distribution to enhance network lifetime in wireless ad hoc networks. Since the wireless ad hoc networks cannot use centralized infrastructure and security systems of wired networks, a new special IDS scheme is necessary. The scheme should not only cover all nodes in a network but also enhance the network lifetime. In this paper, we propose an efficient IDS node distribution scheme using minimum spanning tree (MST) method. The simulation results show that the proposed algorithm has superior performance in comparison with existing algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MANETs" title="MANETs">MANETs</a>, <a href="https://publications.waset.org/abstracts/search?q=IDS" title=" IDS"> IDS</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20control" title=" power control"> power control</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20spanning%20tree" title=" minimum spanning tree "> minimum spanning tree </a> </p> <a href="https://publications.waset.org/abstracts/3530/a-lifetime-enhancing-monitoring-node-distribution-using-minimum-spanning-tree-in-mobile-ad-hoc-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3530.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9355</span> Impact of PV Distributed Generation on Loop Distribution Network at Saudi Electricity Company Substation in Riyadh City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Alruwaili%E2%80%AC">Mohammed Alruwaili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, renewable energy resources are playing an important role in replacing traditional energy resources such as fossil fuels by integrating solar energy with conventional energy. Concerns about the environment led to an intensive search for a renewable energy source. The Rapid growth of distributed energy resources will have prompted increasing interest in the integrated distributing network in the Kingdom of Saudi Arabia next few years, especially after the adoption of new laws and regulations in this regard. Photovoltaic energy is one of the promising renewable energy sources that has grown rapidly worldwide in the past few years and can be used to produce electrical energy through the photovoltaic process. The main objective of the research is to study the impact of PV in distribution networks based on real data and details. In this research, site survey and computer simulation will be dealt with using the well-known computer program software ETAB to simulate the input of electrical distribution lines with other variable inputs such as the levels of solar radiation and the field study that represent the prevailing conditions and conditions in Diriah, Riyadh region, Saudi Arabia. In addition, the impact of adding distributed generation units (DGs) to the distribution network, including solar photovoltaic (PV), will be studied and assessed for the impact of adding different power capacities. The result has been achieved with less power loss in the loop distribution network from the current condition by more than 69% increase in network power loss. However, the studied network contains 78 buses. It is hoped from this research that the efficiency, performance, quality and reliability by having an enhancement in power loss and voltage profile of the distribution networks in Riyadh City. Simulation results prove that the applied method can illustrate the positive impact of PV in loop distribution generation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title="renewable energy">renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20grid" title=" smart grid"> smart grid</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=distribution%20network" title=" distribution network"> distribution network</a> </p> <a href="https://publications.waset.org/abstracts/145032/impact-of-pv-distributed-generation-on-loop-distribution-network-at-saudi-electricity-company-substation-in-riyadh-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145032.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9354</span> Algorithmic Fault Location in Complex Gas Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soban%20Najam">Soban Najam</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Jahanzeb"> S. M. Jahanzeb</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Sohail"> Ahmed Sohail</a>, <a href="https://publications.waset.org/abstracts/search?q=Faraz%20Idris%20Khan"> Faraz Idris Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the recent increase in reliance on Gas as the primary source of energy across the world, there has been a lot of research conducted on gas distribution networks. As the complexity and size of these networks grow, so does the leakage of gas in the distribution network. One of the most crucial factors in the production and distribution of gas is UFG or Unaccounted for Gas. The presence of UFG signifies that there is a difference between the amount of gas distributed, and the amount of gas billed. Our approach is to use information that we acquire from several specified points in the network. This information will be used to calculate the loss occurring in the network using the developed algorithm. The Algorithm can also identify the leakages at any point of the pipeline so we can easily detect faults and rectify them within minimal time, minimal efforts and minimal resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FLA" title="FLA">FLA</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20location%20analysis" title=" fault location analysis"> fault location analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=GDN" title=" GDN"> GDN</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20distribution%20network" title=" gas distribution network"> gas distribution network</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=geographic%20information%20system" title=" geographic information system"> geographic information system</a>, <a href="https://publications.waset.org/abstracts/search?q=NMS" title=" NMS"> NMS</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20Management%20system" title=" network Management system"> network Management system</a>, <a href="https://publications.waset.org/abstracts/search?q=OMS" title=" OMS"> OMS</a>, <a href="https://publications.waset.org/abstracts/search?q=outage%20management%20system" title=" outage management system"> outage management system</a>, <a href="https://publications.waset.org/abstracts/search?q=SSGC" title=" SSGC"> SSGC</a>, <a href="https://publications.waset.org/abstracts/search?q=Sui%20Southern%20gas%20company" title=" Sui Southern gas company"> Sui Southern gas company</a>, <a href="https://publications.waset.org/abstracts/search?q=UFG" title=" UFG"> UFG</a>, <a href="https://publications.waset.org/abstracts/search?q=unaccounted%20for%20gas" title=" unaccounted for gas"> unaccounted for gas</a> </p> <a href="https://publications.waset.org/abstracts/34657/algorithmic-fault-location-in-complex-gas-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">626</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9353</span> Voltage Sag Characteristics during Symmetrical and Asymmetrical Faults</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ioannis%20Binas">Ioannis Binas</a>, <a href="https://publications.waset.org/abstracts/search?q=Marios%20Moschakis"> Marios Moschakis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrical faults in transmission and distribution networks can have great impact on the electrical equipment used. Fault effects depend on the characteristics of the fault as well as the network itself. It is important to anticipate the network’s behavior during faults when planning a new equipment installation, as well as troubleshooting. Moreover, working backwards, we could be able to estimate the characteristics of the fault when checking the perceived effects. Different transformer winding connections dominantly used in the Greek power transfer and distribution networks and the effects of 1-phase to neutral, phase-to-phase, 2-phases to neutral and 3-phase faults on different locations of the network were simulated in order to present voltage sag characteristics. The study was performed on a generic network with three steps down transformers on two voltage level buses (one 150 kV/20 kV transformer and two 20 kV/0.4 kV). We found that during faults, there are significant changes both on voltage magnitudes and on phase angles. The simulations and short-circuit analysis were performed using the PSCAD simulation package. This paper presents voltage characteristics calculated for the simulated network, with different approaches on the transformer winding connections during symmetrical and asymmetrical faults on various locations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phase%20angle%20shift" title="Phase angle shift">Phase angle shift</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20quality" title=" power quality"> power quality</a>, <a href="https://publications.waset.org/abstracts/search?q=transformer%20winding%20connections" title=" transformer winding connections"> transformer winding connections</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20sag%20propagation" title=" voltage sag propagation"> voltage sag propagation</a> </p> <a href="https://publications.waset.org/abstracts/123004/voltage-sag-characteristics-during-symmetrical-and-asymmetrical-faults" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123004.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9352</span> Teaching Contemporary Power Distribution and Industrial Networks in Higher Education Vocational Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rade%20M.%20Ciric">Rade M. Ciric </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper shows the development and implementation of the syllabus of the subject 'Distribution and Industrial Networks', attended by the vocational specialist Year 4 students of the Electric Power Engineering study programme at the Higher Education Technical School of Vocational Studies in Novi Sad. The aim of the subject is to equip students with the knowledge necessary for planning, exploitation and management of distributive and industrial electric power networks in an open electricity market environment. The results of the evaluation of educational outcomes on the subject are presented and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=engineering%20education" title="engineering education">engineering education</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20distribution%20network" title=" power distribution network"> power distribution network</a>, <a href="https://publications.waset.org/abstracts/search?q=syllabus%20implementation" title=" syllabus implementation"> syllabus implementation</a>, <a href="https://publications.waset.org/abstracts/search?q=outcome%20evaluation" title=" outcome evaluation"> outcome evaluation</a> </p> <a href="https://publications.waset.org/abstracts/81353/teaching-contemporary-power-distribution-and-industrial-networks-in-higher-education-vocational-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9351</span> Reliability Improvement of Power System Networks Using Adaptive Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Alesaadi">Alireza Alesaadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reliability analysis is a powerful method for determining the weak points of the electrical networks. In designing of electrical network, it is tried to design the most reliable network with minimal system shutting down, but it is usually associated with increasing the cost. In this paper, using adaptive genetic algorithm, a method was presented that provides the most reliable system with a certain economical cost. Finally, the proposed method is applied to a sample network and results will be analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reliability" title="reliability">reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20genetic%20algorithm" title=" adaptive genetic algorithm"> adaptive genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20network" title=" electrical network"> electrical network</a>, <a href="https://publications.waset.org/abstracts/search?q=communication%20engineering" title=" communication engineering"> communication engineering</a> </p> <a href="https://publications.waset.org/abstracts/6512/reliability-improvement-of-power-system-networks-using-adaptive-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6512.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">508</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9350</span> Electrical Tortuosity across Electrokinetically Remediated Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waddah%20S.%20Abdullah">Waddah S. Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20F.%20Al-Omari"> Khaled F. Al-Omari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrokinetic remediation is one of the most influential and effective methods to decontaminate contaminated soils. Electroosmosis and electromigration are the processes of electrochemical extraction of contaminants from soils. The driving force that causes removing contaminants from soils (electroosmosis process or electromigration process) is voltage gradient. Therefore, the electric field distribution throughout the soil domain is extremely important to investigate and to determine the factors that help to establish a uniform electric field distribution in order to make the clean-up process work properly and efficiently. In this study, small-sized passive electrodes (made of graphite) were placed at predetermined locations within the soil specimen, and the voltage drop between these passive electrodes was measured in order to observe the electrical distribution throughout the tested soil specimens. The electrokinetic test was conducted on two types of soils; a sandy soil and a clayey soil. The electrical distribution throughout the soil domain was conducted with different tests properties; and the electrical field distribution was observed in three-dimensional pattern in order to establish the electrical distribution within the soil domain. The effects of density, applied voltages, and degree of saturation on the electrical distribution within the remediated soil were investigated. The distribution of the moisture content, concentration of the sodium ions, and the concentration of the calcium ions were determined and established in three-dimensional scheme. The study has shown that the electrical conductivity within soil domain depends on the moisture content and concentration of electrolytes present in the pore fluid. The distribution of the electrical field in the saturated soil was found not be affected by its density. The study has also shown that high voltage gradient leads to non-uniform electric field distribution within the electroremediated soil. Very importantly, it was found that even when the electric field distribution is uniform globally (i.e. between the passive electrodes), local non-uniformity could be established within the remediated soil mass. Cracks or air gaps formed due to temperature rise (because of electric flow in low conductivity regions) promotes electrical tortuosity. Thus, fracturing or cracking formed in the remediated soil mass causes disconnection of electric current and hence, no removal of contaminant occur within these areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contaminant%20removal" title="contaminant removal">contaminant removal</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20tortuousity" title=" electrical tortuousity"> electrical tortuousity</a>, <a href="https://publications.waset.org/abstracts/search?q=electromigration" title=" electromigration"> electromigration</a>, <a href="https://publications.waset.org/abstracts/search?q=electroosmosis" title=" electroosmosis"> electroosmosis</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20distribution" title=" voltage distribution"> voltage distribution</a> </p> <a href="https://publications.waset.org/abstracts/76163/electrical-tortuosity-across-electrokinetically-remediated-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9349</span> DG Power Plants Placement and Evaluation of its Effect on Improving Voltage Security Margin in Radial Distribution Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atabak%20Faramarzpour">Atabak Faramarzpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Mohammadian"> Mohsen Mohammadian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, we introduce the stability of power system voltage and state DG power plants placement and its effect on improving voltage security margin in radial distribution networks. For this purpose, first, important definitions in voltage stability area such as small and big voltage disturbances, instability, and voltage collapse, and voltage security definitions are stated. Then, according to voltage collapse time, voltage stability is classified and each one's characteristics are stated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DG%20power%20plants" title="DG power plants">DG power plants</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluation" title=" evaluation"> evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20security" title=" voltage security"> voltage security</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20distribution%20networks" title=" radial distribution networks"> radial distribution networks</a> </p> <a href="https://publications.waset.org/abstracts/25147/dg-power-plants-placement-and-evaluation-of-its-effect-on-improving-voltage-security-margin-in-radial-distribution-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25147.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">670</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9348</span> A Multi Agent Based Protection Scheme for Smart Distribution Network in Presence of Distributed Energy Resources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Ebrahimi">M. R. Ebrahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Mahdaviani"> B. Mahdaviani </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conventional electric distribution systems are radial in nature, supplied at one end through a main source. These networks generally have a simple protection system usually implemented using fuses, re-closers, and over-current relays. Recently, great attention has been paid to applying Distributed energy resources (DERs) throughout electric distribution systems. Presence of such generation in a network leads to losing coordination of protection devices. Therefore, it is desired to develop an algorithm which is capable of protecting distribution systems that include DER. On the other hand smart grid brings opportunities to the power system. Fast advancement in communication and measurement techniques accelerates the development of multi agent system (MAS). So in this paper, a new approach for the protection of distribution networks in the presence of DERs is presented base on MAS. The proposed scheme has been implemented on a sample 27-bus distribution network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20energy%20resource" title="distributed energy resource">distributed energy resource</a>, <a href="https://publications.waset.org/abstracts/search?q=distribution%20network" title=" distribution network"> distribution network</a>, <a href="https://publications.waset.org/abstracts/search?q=protection" title=" protection"> protection</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20grid" title=" smart grid"> smart grid</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%20agent%20system" title=" multi agent system"> multi agent system</a> </p> <a href="https://publications.waset.org/abstracts/33470/a-multi-agent-based-protection-scheme-for-smart-distribution-network-in-presence-of-distributed-energy-resources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">608</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9347</span> Factorization of Computations in Bayesian Networks: Interpretation of Factors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Linda%20Smail">Linda Smail</a>, <a href="https://publications.waset.org/abstracts/search?q=Zineb%20Azouz"> Zineb Azouz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Given a Bayesian network relative to a set I of discrete random variables, we are interested in computing the probability distribution P(S) where S is a subset of I. The general idea is to write the expression of P(S) in the form of a product of factors where each factor is easy to compute. More importantly, it will be very useful to give an interpretation of each of the factors in terms of conditional probabilities. This paper considers a semantic interpretation of the factors involved in computing marginal probabilities in Bayesian networks. Establishing such a semantic interpretations is indeed interesting and relevant in the case of large Bayesian networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20networks" title="Bayesian networks">Bayesian networks</a>, <a href="https://publications.waset.org/abstracts/search?q=D-Separation" title=" D-Separation"> D-Separation</a>, <a href="https://publications.waset.org/abstracts/search?q=level%20two%20Bayesian%20networks" title=" level two Bayesian networks"> level two Bayesian networks</a>, <a href="https://publications.waset.org/abstracts/search?q=factorization%20of%20computation" title=" factorization of computation"> factorization of computation</a> </p> <a href="https://publications.waset.org/abstracts/18829/factorization-of-computations-in-bayesian-networks-interpretation-of-factors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18829.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">529</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9346</span> Assessing the Impact of Low Carbon Technology Integration on Electricity Distribution Networks: Advancing towards Local Area Energy Planning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Javier%20Sandoval%20Bustamante">Javier Sandoval Bustamante</a>, <a href="https://publications.waset.org/abstracts/search?q=Pardis%20Sheikhzadeh"> Pardis Sheikhzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Vijayanarasimha%20Hindupur%20Pakka"> Vijayanarasimha Hindupur Pakka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the pursuit of achieving net-zero carbon emissions, the integration of low carbon technologies into electricity distribution networks is paramount. This paper delves into the critical assessment of how the integration of low carbon technologies, such as heat pumps, electric vehicle chargers, and photovoltaic systems, impacts the infrastructure and operation of electricity distribution networks. The study employs rigorous methodologies, including power flow analysis and headroom analysis, to evaluate the feasibility and implications of integrating these technologies into existing distribution systems. Furthermore, the research utilizes Local Area Energy Planning (LAEP) methodologies to guide local authorities and distribution network operators in formulating effective plans to meet regional and national decarbonization objectives. Geospatial analysis techniques, coupled with building physics and electric energy systems modeling, are employed to develop geographic datasets aimed at informing the deployment of low carbon technologies at the local level. Drawing upon insights from the Local Energy Net Zero Accelerator (LENZA) project, a comprehensive case study illustrates the practical application of these methodologies in assessing the rollout potential of LCTs. The findings not only shed light on the technical feasibility of integrating low carbon technologies but also provide valuable insights into the broader transition towards a sustainable and electrified energy future. This paper contributes to the advancement of knowledge in power electrical engineering by providing empirical evidence and methodologies to support the integration of low carbon technologies into electricity distribution networks. The insights gained are instrumental for policymakers, utility companies, and stakeholders involved in navigating the complex challenges of energy transition and achieving long-term sustainability goals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20planning" title="energy planning">energy planning</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20systems" title=" energy systems"> energy systems</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20twins" title=" digital twins"> digital twins</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20flow%20analysis" title=" power flow analysis"> power flow analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=headroom%20analysis" title=" headroom analysis"> headroom analysis</a> </p> <a href="https://publications.waset.org/abstracts/186130/assessing-the-impact-of-low-carbon-technology-integration-on-electricity-distribution-networks-advancing-towards-local-area-energy-planning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">58</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9345</span> Unbalanced Distribution Optimal Power Flow to Minimize Losses with Distributed Photovoltaic Plants </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malinwo%20Estone%20Ayikpa">Malinwo Estone Ayikpa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electric power systems are likely to operate with minimum losses and voltage meeting international standards. This is made possible generally by control actions provide by automatic voltage regulators, capacitors and transformers with on-load tap changer (OLTC). With the development of photovoltaic (PV) systems technology, their integration on distribution networks has increased over the last years to the extent of replacing the above mentioned techniques. The conventional analysis and simulation tools used for electrical networks are no longer able to take into account control actions necessary for studying distributed PV generation impact. This paper presents an unbalanced optimal power flow (OPF) model that minimizes losses with association of active power generation and reactive power control of single-phase and three-phase PV systems. Reactive power can be generated or absorbed using the available capacity and the adjustable power factor of the inverter. The unbalance OPF is formulated by current balance equations and solved by primal-dual interior point method. Several simulation cases have been carried out varying the size and location of PV systems and the results show a detailed view of the impact of PV distributed generation on distribution systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distribution%20system" title="distribution system">distribution system</a>, <a href="https://publications.waset.org/abstracts/search?q=loss" title=" loss"> loss</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20generation" title=" photovoltaic generation"> photovoltaic generation</a>, <a href="https://publications.waset.org/abstracts/search?q=primal-dual%20interior%20point%20method" title=" primal-dual interior point method"> primal-dual interior point method</a> </p> <a href="https://publications.waset.org/abstracts/65488/unbalanced-distribution-optimal-power-flow-to-minimize-losses-with-distributed-photovoltaic-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9344</span> Modeling and Minimizing the Effects of Ferroresonance for Medium Voltage Transformers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hossein%20Mohammadi%20Sanjani">Mohammad Hossein Mohammadi Sanjani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashknaz%20Oraee"> Ashknaz Oraee</a>, <a href="https://publications.waset.org/abstracts/search?q=Arian%20Amirnia"> Arian Amirnia</a>, <a href="https://publications.waset.org/abstracts/search?q=Atena%20Taheri"> Atena Taheri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Arabi"> Mohammadreza Arabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmud%20Fotuhi-Firuzabad"> Mahmud Fotuhi-Firuzabad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ferroresonance effects cause overvoltage in medium voltage transformers and isolators used in electrical networks. Ferroresonance effects are nonlinear and occur between the network capacitor and the nonlinear inductance of the voltage transformer during saturation. This phenomenon is unwanted for transformers since it causes overheating, introduction of high dynamic forces in primary coils, and rise of voltage in primary coils for the voltage transformer. Furthermore, it results in electrical and thermal failure of the transformer. Expansion of distribution lines, design of the transformer in smaller sizes, and the increase of harmonics in distribution networks result in an increase of ferroresonance. There is limited literature available to improve the effects of ferroresonance; therefore, optimizing its effects for voltage transformers is of great importance. In this study, comprehensive modeling of a medium voltage block-type voltage transformer is performed. In addition, a recent model is proposed to improve the performance of voltage transformers during the occurrence of ferroresonance using damping oscillations. Also, transformer design optimization is presented in this study to show further improvements in the performance of the voltage transformer. The recently proposed model is experimentally tested and verified on a medium voltage transformer in the laboratory, and simulation results show a large reduction of the effects of ferroresonance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimization" title="optimization">optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20transformer" title=" voltage transformer"> voltage transformer</a>, <a href="https://publications.waset.org/abstracts/search?q=ferroresonance" title=" ferroresonance"> ferroresonance</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=damper" title=" damper"> damper</a> </p> <a href="https://publications.waset.org/abstracts/169686/modeling-and-minimizing-the-effects-of-ferroresonance-for-medium-voltage-transformers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9343</span> Load Forecast of the Peak Demand Based on Both the Peak Demand and Its Location</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qais%20H.%20Alsafasfeh">Qais H. Alsafasfeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to provide a forecast of the peak demand for the next 15 years for electrical distribution companies. The proposed methodology provides both the peak demand and its location for the next 15 years. This paper describes the Spatial Load Forecasting model used, the information provided by electrical distribution company in Jordan, the workflow followed, the parameters used and the assumptions made to run the model. The aim of this paper is to provide a forecast of the peak demand for the next 15 years for electrical distribution companies. The proposed methodology provides both the peak demand and its location for the next 15 years. This paper describes the Spatial Load Forecasting model used, the information provided by electrical distribution company in Jordan, the workflow followed, the parameters used and the assumptions made to run the model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=load%20forecast" title="load forecast">load forecast</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20demand" title=" peak demand"> peak demand</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20load" title=" spatial load"> spatial load</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20distribution" title=" electrical distribution"> electrical distribution</a> </p> <a href="https://publications.waset.org/abstracts/34628/load-forecast-of-the-peak-demand-based-on-both-the-peak-demand-and-its-location" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34628.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9342</span> Potential Distribution and Electric Field Analysis around a Polluted Outdoor Polymeric Insulator with Broken Sheds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adel%20Kara">Adel Kara</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhafid%20Bayadi"> Abdelhafid Bayadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hocine%20Terrab"> Hocine Terrab </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a study of electric field distribution along of 72 kV polymeric outdoor insulators with broken sheds. Different cases of damaged insulators are modeled and both of clean and polluted cases. By 3D finite element analysis using the software package COMSOL Multiphysics 4.3b. The obtained results of potential and the electrical field distribution around insulators by 3D simulation proved that finite element computations is useful tool for studying insulation electrical field distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20field%20distributions" title="electric field distributions">electric field distributions</a>, <a href="https://publications.waset.org/abstracts/search?q=insulator" title=" insulator"> insulator</a>, <a href="https://publications.waset.org/abstracts/search?q=broken%20sheds" title=" broken sheds"> broken sheds</a>, <a href="https://publications.waset.org/abstracts/search?q=potential%20distributions" title=" potential distributions"> potential distributions</a> </p> <a href="https://publications.waset.org/abstracts/31053/potential-distribution-and-electric-field-analysis-around-a-polluted-outdoor-polymeric-insulator-with-broken-sheds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31053.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9341</span> Composite Distributed Generation and Transmission Expansion Planning Considering Security </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Lotfi">Amir Lotfi</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Hamid%20Hosseini"> Seyed Hamid Hosseini </a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the recent past, due to the increase of electrical energy demand and governmental resources constraints in creating additional capacity in the generation, transmission, and distribution, privatization, and restructuring in electrical industry have been considered. So, in most of the countries, different parts of electrical industry like generation, transmission, and distribution have been separated in order to create competition. Considering these changes, environmental issues, energy growth, investment of private equity in energy generation units and difficulties of transmission lines expansion, distributed generation (DG) units have been used in power systems. Moreover, reduction in the need for transmission and distribution, the increase of reliability, improvement of power quality, and reduction of power loss have caused DG to be placed in power systems. On the other hand, considering low liquidity need, private investors tend to spend their money for DGs. In this project, the main goal is to offer an algorithm for planning and placing DGs in order to reduce the need for transmission and distribution network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=planning" title="planning">planning</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission" title=" transmission"> transmission</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20generation" title=" distributed generation"> distributed generation</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20security" title=" power security"> power security</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20systems" title=" power systems"> power systems</a> </p> <a href="https://publications.waset.org/abstracts/68494/composite-distributed-generation-and-transmission-expansion-planning-considering-security" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">480</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9340</span> Probabilistic Modeling Laser Transmitter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20S.%20Kang">H. S. Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coupled electrical and optical model for conversion of electrical energy into coherent optical energy for transmitter-receiver link by solid state device is presented. Probability distribution for travelling laser beam switching time intervals and the number of switchings in the time interval is obtained. Selector function mapping is employed to regulate optical data transmission speed. It is established that regulated laser transmission from PhotoActive Laser transmitter follows principal of invariance. This considerably simplifies design of PhotoActive Laser Transmission networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20mathematics" title="computational mathematics">computational mathematics</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20difference%20Markov%20chain%20methods" title=" finite difference Markov chain methods"> finite difference Markov chain methods</a>, <a href="https://publications.waset.org/abstracts/search?q=sequence%20spaces" title=" sequence spaces"> sequence spaces</a>, <a href="https://publications.waset.org/abstracts/search?q=singularly%20perturbed%20differential%20equations" title=" singularly perturbed differential equations"> singularly perturbed differential equations</a> </p> <a href="https://publications.waset.org/abstracts/8445/probabilistic-modeling-laser-transmitter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8445.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9339</span> Impact of Very Small Power Producers (VSPP) on Control and Protection System in Distribution Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noppatee%20Sabpayakom">Noppatee Sabpayakom</a>, <a href="https://publications.waset.org/abstracts/search?q=Somporn%20Sirisumrannukul"> Somporn Sirisumrannukul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to incentive policies to promote renewable energy and energy efficiency, high penetration levels of very small power producers (VSPP) located in distribution networks have imposed technical barriers and established new requirements for protection and control of the networks. Although VSPPs have economic and environmental benefit, they may introduce negative effects and cause several challenges on the issue of protection and control system. This paper presents comprehensive studies of possible impacts on control and protection systems based on real distribution systems located in a metropolitan area. A number of scenarios were examined primarily focusing on state of islanding, and un-disconnected VSPP during faults. It is shown that without proper measures to address the issues, the system would be unable to maintain its integrity of electricity power supply for disturbance incidents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=control%20and%20protection%20systems" title="control and protection systems">control and protection systems</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20generation" title=" distributed generation"> distributed generation</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=very%20small%20power%20producers" title=" very small power producers"> very small power producers</a> </p> <a href="https://publications.waset.org/abstracts/33565/impact-of-very-small-power-producers-vspp-on-control-and-protection-system-in-distribution-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">477</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrical%20distribution%20networks&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrical%20distribution%20networks&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrical%20distribution%20networks&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrical%20distribution%20networks&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrical%20distribution%20networks&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrical%20distribution%20networks&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrical%20distribution%20networks&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrical%20distribution%20networks&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrical%20distribution%20networks&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrical%20distribution%20networks&page=312">312</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrical%20distribution%20networks&page=313">313</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrical%20distribution%20networks&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>