CINXE.COM

Search results for: airborne

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: airborne</title> <meta name="description" content="Search results for: airborne"> <meta name="keywords" content="airborne"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="airborne" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="airborne"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 139</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: airborne</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">139</span> A Generalized Model for Performance Analysis of Airborne Radar in Clutter Scenario</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vinod%20Kumar%20Jaysaval">Vinod Kumar Jaysaval</a>, <a href="https://publications.waset.org/abstracts/search?q=Prateek%20Agarwal"> Prateek Agarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Performance prediction of airborne radar is a challenging and cumbersome task in clutter scenario for different types of targets. A generalized model requires to predict the performance of Radar for air targets as well as ground moving targets. In this paper, we propose a generalized model to bring out the performance of airborne radar for different Pulsed Repetition Frequency (PRF) as well as different type of targets. The model provides a platform to bring out different subsystem parameters for different applications and performance requirements under different types of clutter terrain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airborne%20radar" title="airborne radar">airborne radar</a>, <a href="https://publications.waset.org/abstracts/search?q=blind%20zone" title=" blind zone"> blind zone</a>, <a href="https://publications.waset.org/abstracts/search?q=clutter" title=" clutter"> clutter</a>, <a href="https://publications.waset.org/abstracts/search?q=probability%20of%20detection" title=" probability of detection"> probability of detection</a> </p> <a href="https://publications.waset.org/abstracts/13998/a-generalized-model-for-performance-analysis-of-airborne-radar-in-clutter-scenario" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">138</span> Allergenic Potential of Airborne Algae Isolated from Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chu%20Wan-Loy">Chu Wan-Loy</a>, <a href="https://publications.waset.org/abstracts/search?q=Kok%20Yih-Yih"> Kok Yih-Yih</a>, <a href="https://publications.waset.org/abstracts/search?q=Choong%20Siew-Ling"> Choong Siew-Ling </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The human health risks due to poor air quality caused by a wide array of microorganisms have attracted much interest. Airborne algae have been reported as early as 19th century and they can be found in the air of tropic and warm atmospheres. Airborne algae normally originate from water surfaces, soil, trees, buildings and rock surfaces. It is estimated that at least 2880 algal cells are inhaled per day by human. However, there are relatively little data published on airborne algae and its related adverse health effects except sporadic reports of algae associated clinical allergenicity. A collection of airborne algae cultures has been established following a recent survey on the occurrence of airborne algae in indoor and outdoor environments in Kuala Lumpur. The aim of this study was to investigate the allergenic potential of the isolated airborne green and blue-green algae, namely Scenedesmus sp., Cylindrospermum sp. and Hapalosiphon sp.. The suspensions of freeze-dried airborne algae were adminstered into balb-c mice model through intra-nasal route to determine their allergenic potential. Results showed that Scenedesmus sp. (1 mg/mL) increased the systemic Ig E levels in mice by 3-8 fold compared to pre-treatment. On the other hand, Cylindrospermum sp. and Hapalosiphon sp. at similar concentration caused the Ig E to increase by 2-4 fold. The potential of airborne algae causing Ig E mediated type 1 hypersensitivity was elucidated using other immunological markers such as cytokine interleukin (IL)- 4, 5, 6 and interferon-ɣ. When we compared the amount of interleukins in mouse serum between day 0 and day 53 (day of sacrifice), Hapalosiphon sp. (1mg/mL) increased the expression of IL4 and 6 by 8 fold while the Cylindrospermum sp. (1mg/mL) increased the expression of IL4 and IFɣ by 8 and 2 fold respectively. In conclusion, repeated exposure to the three selected airborne algae may stimulate the immune response and generate Ig E in a mouse model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airborne%20algae" title="airborne algae">airborne algae</a>, <a href="https://publications.waset.org/abstracts/search?q=respiratory" title=" respiratory"> respiratory</a>, <a href="https://publications.waset.org/abstracts/search?q=allergenic" title=" allergenic"> allergenic</a>, <a href="https://publications.waset.org/abstracts/search?q=immune%20response" title=" immune response"> immune response</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaysia" title=" Malaysia"> Malaysia</a> </p> <a href="https://publications.waset.org/abstracts/41701/allergenic-potential-of-airborne-algae-isolated-from-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">137</span> Cognitive SATP for Airborne Radar Based on Slow-Time Coding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fanqiang%20Kong">Fanqiang Kong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jindong%20Zhang"> Jindong Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Daiyin%20Zhu"> Daiyin Zhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Space-time adaptive processing (STAP) techniques have been motivated as a key enabling technology for advanced airborne radar applications. In this paper, the notion of cognitive radar is extended to STAP technique, and cognitive STAP is discussed. The principle for improving signal-to-clutter ratio (SCNR) based on slow-time coding is given, and the corresponding optimization algorithm based on cyclic and power-like algorithms is presented. Numerical examples show the effectiveness of the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=space-time%20adaptive%20processing%20%28STAP%29" title="space-time adaptive processing (STAP)">space-time adaptive processing (STAP)</a>, <a href="https://publications.waset.org/abstracts/search?q=airborne%20radar" title=" airborne radar"> airborne radar</a>, <a href="https://publications.waset.org/abstracts/search?q=signal-to-clutter%20ratio" title=" signal-to-clutter ratio"> signal-to-clutter ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=slow-time%20coding" title=" slow-time coding"> slow-time coding</a> </p> <a href="https://publications.waset.org/abstracts/71518/cognitive-satp-for-airborne-radar-based-on-slow-time-coding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71518.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">136</span> Permeodynamic Particulate Matter Filtration for Improved Air Quality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamad%20M.%20Alnagran">Hamad M. Alnagran</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20S.%20Imbabi"> Mohammed S. Imbabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Particulate matter (PM) in the air we breathe is detrimental to health. Overcoming this problem has attracted interest and prompted research on the use of PM filtration in commercial buildings and homes to be carried out. The consensus is that tangible health benefits can result from the use of PM filters in most urban environments, to clean up the building’s fresh air supply and thereby reduce exposure of residents to airborne PM. The authors have investigated and are developing a new large-scale Permeodynamic Filtration Technology (PFT) capable of permanently filtering and removing airborne PMs from outdoor spaces, thus also benefiting internal spaces such as the interiors of buildings. Theoretical models were developed, and laboratory trials carried out to determine, and validate through measurement permeodynamic filtration efficiency and pressure drop as functions of PM particle size distributions. The conclusion is that PFT offers a potentially viable, cost effective end of pipe solution to the problem of airborne PM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20filtration" title="air filtration">air filtration</a>, <a href="https://publications.waset.org/abstracts/search?q=particulate%20matter" title=" particulate matter"> particulate matter</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size%20distribution" title=" particle size distribution"> particle size distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=permeodynamic" title=" permeodynamic "> permeodynamic </a> </p> <a href="https://publications.waset.org/abstracts/99556/permeodynamic-particulate-matter-filtration-for-improved-air-quality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99556.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">135</span> 3D Modeling for Frequency and Time-Domain Airborne EM Systems with Topography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Yin">C. Yin</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Zhang"> B. Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Liu"> Y. Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Cai"> J. Cai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Airborne EM (AEM) is an effective geophysical exploration tool, especially suitable for ridged mountain areas. In these areas, topography will have serious effects on AEM system responses. However, until now little study has been reported on topographic effect on airborne EM systems. In this paper, an edge-based unstructured finite-element (FE) method is developed for 3D topographic modeling for both frequency and time-domain airborne EM systems. Starting from the frequency-domain Maxwell equations, a vector Helmholtz equation is derived to obtain a stable and accurate solution. Considering that the AEM transmitter and receiver are both located in the air, the scattered field method is used in our modeling. The Galerkin method is applied to discretize the Helmholtz equation for the final FE equations. Solving the FE equations, the frequency-domain AEM responses are obtained. To accelerate the calculation speed, the response of source in free-space is used as the primary field and the PARDISO direct solver is used to deal with the problem with multiple transmitting sources. After calculating the frequency-domain AEM responses, a Hankel’s transform is applied to obtain the time-domain AEM responses. To check the accuracy of present algorithm and to analyze the characteristic of topographic effect on airborne EM systems, both the frequency- and time-domain AEM responses for 3 model groups are simulated: 1) a flat half-space model that has a semi-analytical solution of EM response; 2) a valley or hill earth model; 3) a valley or hill earth with an abnormal body embedded. Numerical experiments show that close to the node points of the topography, AEM responses demonstrate sharp changes. Special attentions need to be paid to the topographic effects when interpreting AEM survey data over rugged topographic areas. Besides, the profile of the AEM responses presents a mirror relation with the topographic earth surface. In comparison to the topographic effect that mainly occurs at the high-frequency end and early time channels, the EM responses of underground conductors mainly occur at low frequencies and later time channels. For the signal of the same time channel, the dB/dt field reflects the change of conductivity better than the B-field. The research of this paper will serve airborne EM in the identification and correction of the topographic effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D" title="3D">3D</a>, <a href="https://publications.waset.org/abstracts/search?q=Airborne%20EM" title=" Airborne EM"> Airborne EM</a>, <a href="https://publications.waset.org/abstracts/search?q=forward%20modeling" title=" forward modeling"> forward modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=topographic%20effect" title=" topographic effect"> topographic effect</a> </p> <a href="https://publications.waset.org/abstracts/46216/3d-modeling-for-frequency-and-time-domain-airborne-em-systems-with-topography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">134</span> Laboratory Evaluation of the Airborne Sound Insulation of Plasterboard Sandwich Panels Filled with Recycled Textile Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Svetlana%20Trifonova%20Djambova">Svetlana Trifonova Djambova</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalia%20Bobeva%20Ivanova"> Natalia Bobeva Ivanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Roumiana%20Asenova%20Zaharieva"> Roumiana Asenova Zaharieva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Small size acoustic chamber test method has been applied to experimentally evaluate and compare the airborne sound insulation provided by plasterboard sandwich panels filled with mineral wool and with its alternative from recycled textile material (produced by two different technologies). A sound source room is used as an original small-size acoustic chamber, specially built in a real-size room, utilized as a sound receiving room. The experimental results of one of the recycled textile material specimens have demonstrated sound insulation properties similar to those of the mineral wool specimen and even superior in the 1600-3150 Hz frequency range. This study contributes to the improvement of recycled textile material production, as well as to the synergy of heat insulation and sound insulation performances of building materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airborne%20sound%20insulation" title="airborne sound insulation">airborne sound insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20insulation%20products" title=" heat insulation products"> heat insulation products</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20wool" title=" mineral wool"> mineral wool</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20textile%20material" title=" recycled textile material"> recycled textile material</a> </p> <a href="https://publications.waset.org/abstracts/165689/laboratory-evaluation-of-the-airborne-sound-insulation-of-plasterboard-sandwich-panels-filled-with-recycled-textile-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165689.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">133</span> Impact of Climate Variability on Dispersal and Distribution of Airborne Pollen and Fungal Spores in Nsukka, South-East Nigeria: Implication on Public Health</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dimphna%20Ezikanyi">Dimphna Ezikanyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gloria%20Sakwari"> Gloria Sakwari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Airborne pollen and fungal spores are major triggers of allergies, and their abundance and seasonality depend on plant responses to climatic and meteorological variables. A survey of seasonal prevalence of airborne pollen and fungal spores in Nsukka, Enugu, South- East Nigeria and relationship to climatic variables were carried out from Jan-June, 2017. The aim of the study was to access climate change and variability over time in the area and their accrued influence on modern pollen and spores rain. Decadal change in climate was accessed from variables collected from meteorological centre in the study area. Airborne samples were collected monthly using a modified Tauber-like pollen samplers raised 5 ft above ground level. Aerosamples collected were subjected to acetolysis. Dominant pollen recorded were those of Poaceae, Elaeis guinensis Jacq. and Casuarina equisetifolia L. Change in weather brought by onset of rainfall evoked sporulation and dispersal of diverse spores into ambient air especially potent allergenic spores with the spores of Ovularia, Bispora, Curvularia, Nigrospora, Helminthosporium preponderant; these 'hydrophilic fungi' were abundant in the rainy season though in varying quantities. Total fungal spores correlated positively with monthly rainfall and humidity but negatively with temperature. There was a negative though not significant correlation between total pollen count and rainfall. The study revealed a strong influence of climatic variables on abundance and spatial distribution of pollen and fungal spores in the ambient atmosphere. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=allergy" title="allergy">allergy</a>, <a href="https://publications.waset.org/abstracts/search?q=fungal%20spores" title=" fungal spores"> fungal spores</a>, <a href="https://publications.waset.org/abstracts/search?q=pollen" title=" pollen"> pollen</a>, <a href="https://publications.waset.org/abstracts/search?q=weather%20parameters" title=" weather parameters"> weather parameters</a> </p> <a href="https://publications.waset.org/abstracts/78605/impact-of-climate-variability-on-dispersal-and-distribution-of-airborne-pollen-and-fungal-spores-in-nsukka-south-east-nigeria-implication-on-public-health" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">132</span> Airborne SAR Data Analysis for Impact of Doppler Centroid on Image Quality and Registration Accuracy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chhabi%20Nigam">Chhabi Nigam</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ramakrishnan"> S. Ramakrishnan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper brings out the analysis of the airborne Synthetic Aperture Radar (SAR) data to study the impact of Doppler centroid on Image quality and geocoding accuracy from the perspective of Stripmap mode of data acquisition. Although in Stripmap mode of data acquisition radar beam points at 90 degrees broad side (side looking), shift in the Doppler centroid is invariable due to platform motion. In-accurate estimation of Doppler centroid leads to poor image quality and image miss-registration. The effect of Doppler centroid is analyzed in this paper using multiple sets of data collected from airborne platform. Occurrences of ghost (ambiguous) targets and their power levels have been analyzed that impacts appropriate choice of PRF. Effect of aircraft attitudes (roll, pitch and yaw) on the Doppler centroid is also analyzed with the collected data sets. Various stages of the RDA (Range Doppler Algorithm) algorithm used for image formation in Stripmap mode, range compression, Doppler centroid estimation, azimuth compression, range cell migration correction are analyzed to find the performance limits and the dependence of the imaging geometry on the final image. The ability of Doppler centroid estimation to enhance the imaging accuracy for registration are also illustrated in this paper. The paper also tries to bring out the processing of low squint SAR data, the challenges and the performance limits imposed by the imaging geometry and the platform dynamics on the final image quality metrics. Finally, the effect on various terrain types, including land, water and bright scatters is also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ambiguous%20target" title="ambiguous target">ambiguous target</a>, <a href="https://publications.waset.org/abstracts/search?q=Doppler%20Centroid" title=" Doppler Centroid"> Doppler Centroid</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20registration" title=" image registration"> image registration</a>, <a href="https://publications.waset.org/abstracts/search?q=Airborne%20SAR" title=" Airborne SAR"> Airborne SAR</a> </p> <a href="https://publications.waset.org/abstracts/62254/airborne-sar-data-analysis-for-impact-of-doppler-centroid-on-image-quality-and-registration-accuracy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">131</span> Analysis of Airborne Data Using Range Migration Algorithm for the Spotlight Mode of Synthetic Aperture Radar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peter%20Joseph%20Basil%20Morris">Peter Joseph Basil Morris</a>, <a href="https://publications.waset.org/abstracts/search?q=Chhabi%20Nigam"> Chhabi Nigam</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ramakrishnan"> S. Ramakrishnan</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Radhakrishna"> P. Radhakrishna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper brings out the analysis of the airborne Synthetic Aperture Radar (SAR) data using the Range Migration Algorithm (RMA) for the spotlight mode of operation. Unlike in polar format algorithm (PFA), space-variant defocusing and geometric distortion effects are mitigated in RMA since it does not assume that the illuminating wave-fronts are planar. This facilitates the use of RMA for imaging scenarios involving severe differential range curvatures enabling the imaging of larger scenes at fine resolution and at shorter ranges with low center frequencies. The RMA algorithm for the spotlight mode of SAR is analyzed in this paper using the airborne data. Pre-processing operations viz: - range de-skew and motion compensation to a line are performed on the raw data before being fed to the RMA component. Various stages of the RMA viz:- 2D Matched Filtering, Along Track Fourier Transform and Slot Interpolation are analyzed to find the performance limits and the dependence of the imaging geometry on the resolution of the final image. The ability of RMA to compensate for severe differential range curvatures in the two-dimensional spatial frequency domain are also illustrated in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=range%20migration%20algorithm" title="range migration algorithm">range migration algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=spotlight%20SAR" title=" spotlight SAR"> spotlight SAR</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20aperture%20radar" title=" synthetic aperture radar"> synthetic aperture radar</a>, <a href="https://publications.waset.org/abstracts/search?q=matched%20filtering" title=" matched filtering"> matched filtering</a>, <a href="https://publications.waset.org/abstracts/search?q=slot%20interpolation" title=" slot interpolation"> slot interpolation</a> </p> <a href="https://publications.waset.org/abstracts/61445/analysis-of-airborne-data-using-range-migration-algorithm-for-the-spotlight-mode-of-synthetic-aperture-radar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61445.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">130</span> Airborne Molecular Contamination in Clean Room Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Rajam%C3%A4ki">T. Rajamäki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In clean room environment molecular contamination in very small concentrations can cause significant harm for the components and processes. This is commonly referred as airborne molecular contamination (AMC). There is a shortage of high sensitivity continuous measurement data for existence and behavior of several of these contaminants. Accordingly, in most cases correlation between concentration of harmful molecules and their effect on processes is not known. In addition, the formation and distribution of contaminating molecules are unclear. In this work sensitive optical techniques are applied in clean room facilities for investigation of concentrations, forming mechanisms and effects of contaminating molecules. Special emphasis is on reactive acid and base gases ammonia (NH3) and hydrogen fluoride (HF). They are the key chemicals in several operations taking place in clean room processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AMC" title="AMC">AMC</a>, <a href="https://publications.waset.org/abstracts/search?q=clean%20room" title=" clean room"> clean room</a>, <a href="https://publications.waset.org/abstracts/search?q=concentration" title=" concentration"> concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20gas" title=" reactive gas"> reactive gas</a> </p> <a href="https://publications.waset.org/abstracts/44284/airborne-molecular-contamination-in-clean-room-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44284.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">129</span> Rapid Detection System of Airborne Pathogens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shigenori%20Togashi">Shigenori Togashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kei%20Takenaka"> Kei Takenaka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We developed new processes which can collect and detect rapidly airborne pathogens such as the avian flu virus for the pandemic prevention. The fluorescence antibody technique is known as one of high-sensitive detection methods for viruses, but this needs up to a few hours to bind sufficient fluorescence dyes to viruses for detection. In this paper, we developed a mist-labeling can detect substitution viruses in a short time to improve the binding rate of fluorescent dyes and substitution viruses by the micro reaction process. Moreover, we developed the rapid detection system with the above 'mist labeling'. The detection system set with a sampling bag collecting patient’s breath and a cartridge can detect automatically pathogens within 10 minutes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=viruses" title="viruses">viruses</a>, <a href="https://publications.waset.org/abstracts/search?q=sampler" title=" sampler"> sampler</a>, <a href="https://publications.waset.org/abstracts/search?q=mist" title=" mist"> mist</a>, <a href="https://publications.waset.org/abstracts/search?q=detection" title=" detection"> detection</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescent%20dyes" title=" fluorescent dyes"> fluorescent dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=microreaction" title=" microreaction"> microreaction</a> </p> <a href="https://publications.waset.org/abstracts/2700/rapid-detection-system-of-airborne-pathogens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2700.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">128</span> Near Field Focusing Behaviour of Airborne Ultrasonic Phased Arrays Influenced by Airflows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Sun">D. Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20F.%20Lu"> T. F. Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Zander"> A. Zander</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Trinkle"> M. Trinkle</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the potential use of airborne ultrasonic phased arrays for imaging in outdoor environments as a means of overcoming the limitations experienced by kinect sensors, which may fail to work in the outdoor environments due to the oversaturation of the infrared photo diodes. Ultrasonic phased arrays have been well studied for static media, yet there appears to be no comparable examination in the literature of the impact of a flowing medium on the focusing behaviour of near field focused ultrasonic arrays. This paper presents a method for predicting the sound pressure fields produced by a single ultrasound element or an ultrasonic phased array influenced by airflows. The approach can be used to determine the actual focal point location of an array exposed in a known flow field. From the presented simulation results based upon this model, it can be concluded that uniform flows in the direction orthogonal to the acoustic propagation have a noticeable influence on the sound pressure field, which is reflected in the twisting of the steering angle of the array. Uniform flows in the same direction as the acoustic propagation have negligible influence on the array. For an array impacted by a turbulent flow, determining the location of the focused sound field becomes difficult due to the irregularity and continuously changing direction and the speed of the turbulent flow. In some circumstances, ultrasonic phased arrays impacted by turbulent flows may not be capable of producing a focused sound field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airborne" title="airborne">airborne</a>, <a href="https://publications.waset.org/abstracts/search?q=airflow" title=" airflow"> airflow</a>, <a href="https://publications.waset.org/abstracts/search?q=focused%20sound%20field" title=" focused sound field"> focused sound field</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20phased%20array" title=" ultrasonic phased array"> ultrasonic phased array</a> </p> <a href="https://publications.waset.org/abstracts/42051/near-field-focusing-behaviour-of-airborne-ultrasonic-phased-arrays-influenced-by-airflows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">127</span> Health Exposure Assessment of Sulfur Loading Operation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayman%20M.%20Arfaj">Ayman M. Arfaj</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20Lauro%20M.%20Llamas"> Jose Lauro M. Llamas</a>, <a href="https://publications.waset.org/abstracts/search?q=Saleh%20Y%20Qahtani">Saleh Y Qahtani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sulfur Loading Operation (SLO) is an operation that poses risk of exposure to toxic gases such as Hydrogen Sulfid and Sulfur Dioxide during molten sulfur loading operation. In this operation molten sulfur is loaded into a truck tanker in a liquid state and the temperature of the tanker must maintain liquid sulfur within a 43-degree range — between 266 degrees and 309 degrees Fahrenheit in order for safe loading and unloading to occur. Accordingly, in this study, the e potential risk of occupational exposure to the airborne toxic gases was assessed at three sulfur loading facilities. The concentrations of toxic airborne substances such as Hydrogen Sulfide (H2S) and Sulfur Dioxide (SO2), were monitored during operations at the different locations within the sulfur loading operation facilities. In addition to extensive real-time monitoring, over one hundred and fifty samples were collected and analysed at internationally accredited laboratories. The concentrations of H2S, and SO2 were all found to be well below their respective occupational exposure limits. Very low levels of H2S account for the odours observed intermittingly during mixing and application operations but do not pose a considerable health risk and hence these levels are considered a nuisance. These results were comparable to those reported internationally. Aside from observing the usual general safe work practices such as wearing safety glasses, there are no specific occupational health related concerns at the examined sulfur loading facilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exposure%20assessment" title="exposure assessment">exposure assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfur%20loading%20operation" title=" sulfur loading operation"> sulfur loading operation</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20risk%20study" title=" health risk study"> health risk study</a>, <a href="https://publications.waset.org/abstracts/search?q=molten%20sulfur" title=" molten sulfur"> molten sulfur</a>, <a href="https://publications.waset.org/abstracts/search?q=toxic%20airborne%20substances" title=" toxic airborne substances"> toxic airborne substances</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20contaminants%20monitoring" title=" air contaminants monitoring"> air contaminants monitoring</a> </p> <a href="https://publications.waset.org/abstracts/163487/health-exposure-assessment-of-sulfur-loading-operation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">126</span> Space Time Adaptive Algorithm in Bi-Static Passive Radar Systems for Clutter Mitigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Venu">D. Venu</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20V.%20Koteswara%20Rao"> N. V. Koteswara Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Space – time adaptive processing (STAP) is an effective tool for detecting a moving target in spaceborne or airborne radar systems. Since airborne passive radar systems utilize broadcast, navigation and excellent communication signals to perform various surveillance tasks and also has attracted significant interest from the distinct past, therefore the need of the hour is to have cost effective systems as compared to conventional active radar systems. Moreover, requirements of small number of secondary samples for effective clutter suppression in bi-static passive radar offer abundant illuminator resources for passive surveillance radar systems. This paper presents a framework for incorporating knowledge sources directly in the space-time beam former of airborne adaptive radars. STAP algorithm for clutter mitigation for passive bi-static radar has better quantitation of the reduction in sample size thereby amalgamating the earlier data bank with existing radar data sets. Also, we proposed a novel method to estimate the clutter matrix and perform STAP for efficient clutter suppression based on small sample size. Furthermore, the effectiveness of the proposed algorithm is verified using MATLAB simulations in order to validate STAP algorithm for passive bi-static radar. In conclusion, this study highlights the importance for various applications which augments traditional active radars using cost-effective measures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bistatic%20radar" title="bistatic radar">bistatic radar</a>, <a href="https://publications.waset.org/abstracts/search?q=clutter" title=" clutter"> clutter</a>, <a href="https://publications.waset.org/abstracts/search?q=covariance%20matrix%20passive%20radar" title=" covariance matrix passive radar"> covariance matrix passive radar</a>, <a href="https://publications.waset.org/abstracts/search?q=STAP" title=" STAP"> STAP</a> </p> <a href="https://publications.waset.org/abstracts/62372/space-time-adaptive-algorithm-in-bi-static-passive-radar-systems-for-clutter-mitigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">125</span> Control of Airborne Aromatic Hydrocarbons over TiO2-Carbon Nanotube Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joon%20Y.%20Lee">Joon Y. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung%20H.%20Shin"> Seung H. Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ho%20H.%20Chun"> Ho H. Chun</a>, <a href="https://publications.waset.org/abstracts/search?q=Wan%20K.%20Jo"> Wan K. Jo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Poly vinyl acetate (PVA)-based titania (TiO2)–carbon nanotube composite nanofibers (PVA-TCCNs) with various PVA-to-solvent ratios and PVA-based TiO2 composite nanofibers (PVA-TN) were synthesized using an electrospinning process, followed by thermal treatment. The photocatalytic activities of these nanofibers in the degradation of airborne monocyclic aromatics under visible-light irradiation were examined. This study focuses on the application of these photocatalysts to the degradation of the target compounds at sub-part-per-million indoor air concentrations. The characteristics of the photocatalysts were examined using scanning electron microscopy, X-ray diffraction, ultraviolet-visible spectroscopy, and Fourier-transform infrared spectroscopy. For all the target compounds, the PVA-TCCNs showed photocatalytic degradation efficiencies superior to those of the reference PVA-TN. Specifically, the average photocatalytic degradation efficiencies for benzene, toluene, ethyl benzene, and o-xylene (BTEX) obtained using the PVA-TCCNs with a PVA-to-solvent ratio of 0.3 (PVA-TCCN-0.3) were 11%, 59%, 89%, and 92%, respectively, whereas those observed using PVA-TNs were 5%, 9%, 28%, and 32%, respectively. PVA-TCCN-0.3 displayed the highest photocatalytic degradation efficiency for BTEX, suggesting the presence of an optimal PVA-to-solvent ratio for the synthesis of PVA-TCCNs. The average photocatalytic efficiencies for BTEX decreased from 11% to 4%, 59% to 18%, 89% to 37%, and 92% to 53%, respectively, when the flow rate was increased from 1.0 to 4.0 L min1. In addition, the average photocatalytic efficiencies for BTEX increased 11% to ~0%, 59% to 3%, 89% to 7%, and 92% to 13% , respectively, when the input concentration increased from 0.1 to 1.0 ppm. The prepared PVA-TCCNs were effective for the purification of airborne aromatics at indoor concentration levels, particularly when the operating conditions were optimized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mixing%20ratio" title="mixing ratio">mixing ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofiber" title=" nanofiber"> nanofiber</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer" title=" polymer"> polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=reference%20photocatalyst" title=" reference photocatalyst"> reference photocatalyst</a> </p> <a href="https://publications.waset.org/abstracts/19294/control-of-airborne-aromatic-hydrocarbons-over-tio2-carbon-nanotube-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">124</span> Extracting Terrain Points from Airborne Laser Scanning Data in Densely Forested Areas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ziad%20Abdeldayem">Ziad Abdeldayem</a>, <a href="https://publications.waset.org/abstracts/search?q=Jakub%20Markiewicz"> Jakub Markiewicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Kunal%20Kansara"> Kunal Kansara</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Edwards"> Laura Edwards</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Airborne Laser Scanning (ALS) is one of the main technologies for generating high-resolution digital terrain models (DTMs). DTMs are crucial to several applications, such as topographic mapping, flood zone delineation, geographic information systems (GIS), hydrological modelling, spatial analysis, etc. Laser scanning system generates irregularly spaced three-dimensional cloud of points. Raw ALS data are mainly ground points (that represent the bare earth) and non-ground points (that represent buildings, trees, cars, etc.). Removing all the non-ground points from the raw data is referred to as <em>filtering</em>. Filtering heavily forested areas is considered a difficult and challenging task as the canopy stops laser pulses from reaching the terrain surface. This research presents an approach for removing non-ground points from raw ALS data in densely forested areas. Smoothing splines are exploited to interpolate and fit the noisy ALS data. The presented filter utilizes a weight function to allocate weights for each point of the data. Furthermore, unlike most of the methods, the presented filtering algorithm is designed to be automatic. Three different forested areas in the United Kingdom are used to assess the performance of the algorithm. The results show that the generated DTMs from the filtered data are accurate (when compared against reference terrain data) and the performance of the method is stable for all the heavily forested data samples. The average root mean square error (RMSE) value is 0.35 m. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airborne%20laser%20scanning" title="airborne laser scanning">airborne laser scanning</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20terrain%20models" title=" digital terrain models"> digital terrain models</a>, <a href="https://publications.waset.org/abstracts/search?q=filtering" title=" filtering"> filtering</a>, <a href="https://publications.waset.org/abstracts/search?q=forested%20areas" title=" forested areas"> forested areas</a> </p> <a href="https://publications.waset.org/abstracts/114916/extracting-terrain-points-from-airborne-laser-scanning-data-in-densely-forested-areas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">123</span> Filtration Efficacy of Reusable Full-Face Snorkel Masks for Personal Protective Equipment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adrian%20Kong">Adrian Kong</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20Chang"> William Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Rolando%20Valdes"> Rolando Valdes</a>, <a href="https://publications.waset.org/abstracts/search?q=Alec%20Rodriguez"> Alec Rodriguez</a>, <a href="https://publications.waset.org/abstracts/search?q=Roberto%20Miki"> Roberto Miki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Pneumask consists of a custom snorkel-specific adapter that attaches a snorkel-port of the mask to a 3D-printed filter. This full-face snorkel mask was designed for use as personal protective equipment (PPE) during the COVID-19 pandemic when there was a widespread shortage of PPE for medical personnel. Various clinical validation tests have been conducted, including the sealing capability of the mask, filter performance, CO2 buildup, and clinical usability. However, data regarding the filter efficiencies of Pneumask and multiple filter types have not been determined. Using an experimental system, we evaluated the filtration efficiency across various masks and filters during inhalation. Eighteen combinations of respirator models (5 P100 FFRs, 4 Dolfino Masks) and filters (2091, 7093, 7093CN, BB50T) were evaluated for their exposure to airborne particles sized 0.3 - 10.0 microns using an electronic airborne particle counter. All respirator model combinations provided similar performance levels for 1.0-micron, 3.0-micron, 5.0-micron, 10.0-microns, with the greatest differences in the 0.3-micron and 0.5-micron range. All models provided expected performances against all particle sizes, with Class P100 respirators providing the highest performance levels across all particle size ranges. In conclusion, the modified snorkel mask has the potential to protect providers who care for patients with COVID-19 from increased airborne particle exposure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title="COVID-19">COVID-19</a>, <a href="https://publications.waset.org/abstracts/search?q=PPE" title=" PPE"> PPE</a>, <a href="https://publications.waset.org/abstracts/search?q=mask" title=" mask"> mask</a>, <a href="https://publications.waset.org/abstracts/search?q=filtration" title=" filtration"> filtration</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a> </p> <a href="https://publications.waset.org/abstracts/142196/filtration-efficacy-of-reusable-full-face-snorkel-masks-for-personal-protective-equipment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142196.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">122</span> 3D Building Model Utilizing Airborne LiDAR Dataset and Terrestrial Photographic Images </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Jasmee">J. Jasmee</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Roslina"> I. Roslina</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mohammed%20Yaziz%20%26%20A.H%20Juazer%20Rizal"> A. Mohammed Yaziz &amp; A.H Juazer Rizal </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The need of an effective building information collection method is vital to support a diversity of land development activities. At present, advances in remote sensing such as airborne LiDAR (Light Detection and Ranging) is an established technology for building information collection, location, and elevation of the reflecting laser points towards the construction of 3D building models. In this study, LiDAR datasets and terrestrial photographic images of buildings towards the construction of 3D building models is explored. It is found that, the quantitative accuracy of the constructed 3D building model, namely in the horizontal and vertical components were ± 0.31m (RMSEx,y) and ± 0.145m (RMSEz) respectively. The accuracies were computed based on sixty nine (69) horizontal and twenty (20) vertical surveyed points. As for the qualitative assessment, it is shown that the appearance of the 3D building model is adequate to support the requirements of LOD3 presentation based on the OGC (Open Geospatial Consortium) standard CityGML. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LiDAR%20datasets" title="LiDAR datasets">LiDAR datasets</a>, <a href="https://publications.waset.org/abstracts/search?q=DSM" title=" DSM"> DSM</a>, <a href="https://publications.waset.org/abstracts/search?q=DTM" title=" DTM"> DTM</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20building%20models" title=" 3D building models"> 3D building models</a> </p> <a href="https://publications.waset.org/abstracts/13620/3d-building-model-utilizing-airborne-lidar-dataset-and-terrestrial-photographic-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">121</span> Airborne CO₂ Lidar Measurements for Atmospheric Carbon and Transport: America (ACT-America) Project and Active Sensing of CO₂ Emissions over Nights, Days, and Seasons 2017-2018 Field Campaigns </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joel%20F.%20Campbell">Joel F. Campbell</a>, <a href="https://publications.waset.org/abstracts/search?q=Bing%20Lin"> Bing Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Obland"> Michael Obland</a>, <a href="https://publications.waset.org/abstracts/search?q=Susan%20Kooi"> Susan Kooi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tai-Fang%20Fan"> Tai-Fang Fan</a>, <a href="https://publications.waset.org/abstracts/search?q=Byron%20Meadows"> Byron Meadows</a>, <a href="https://publications.waset.org/abstracts/search?q=Edward%20Browell"> Edward Browell</a>, <a href="https://publications.waset.org/abstracts/search?q=Wayne%20Erxleben"> Wayne Erxleben</a>, <a href="https://publications.waset.org/abstracts/search?q=Doug%20McGregor"> Doug McGregor</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeremy%20Dobler"> Jeremy Dobler</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandip%20Pal"> Sandip Pal</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20O%27Dell"> Christopher O&#039;Dell</a>, <a href="https://publications.waset.org/abstracts/search?q=Ken%20Davis"> Ken Davis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Active Sensing of CO₂ Emissions over Nights, Days, and Seasons (ASCENDS) CarbonHawk Experiment Simulator (ACES) is a NASA Langley Research Center instrument funded by NASA’s Science Mission Directorate that seeks to advance technologies critical to measuring atmospheric column carbon dioxide (CO₂ ) mixing ratios in support of the NASA ASCENDS mission. The ACES instrument, an Intensity-Modulated Continuous-Wave (IM-CW) lidar, was designed for high-altitude aircraft operations and can be directly applied to space instrumentation to meet the ASCENDS mission requirements. The ACES design demonstrates advanced technologies critical for developing an airborne simulator and spaceborne instrument with lower platform consumption of size, mass, and power, and with improved performance. The Atmospheric Carbon and Transport – America (ACT-America) is an Earth Venture Suborbital -2 (EVS-2) mission sponsored by the Earth Science Division of NASA’s Science Mission Directorate. A major objective is to enhance knowledge of the sources/sinks and transport of atmospheric CO₂ through the application of remote and in situ airborne measurements of CO₂ and other atmospheric properties on spatial and temporal scales. ACT-America consists of five campaigns to measure regional carbon and evaluate transport under various meteorological conditions in three regional areas of the Continental United States. Regional CO₂ distributions of the lower atmosphere were observed from the C-130 aircraft by the Harris Corp. Multi-Frequency Fiber Laser Lidar (MFLL) and the ACES lidar. The airborne lidars provide unique data that complement the more traditional in situ sensors. This presentation shows the applications of CO₂ lidars in support of these science needs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20measurement" title="CO₂ measurement">CO₂ measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=IMCW" title=" IMCW"> IMCW</a>, <a href="https://publications.waset.org/abstracts/search?q=CW%20lidar" title=" CW lidar"> CW lidar</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20spectroscopy" title=" laser spectroscopy"> laser spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/96472/airborne-co2-lidar-measurements-for-atmospheric-carbon-and-transport-america-act-america-project-and-active-sensing-of-co2-emissions-over-nights-days-and-seasons-2017-2018-field-campaigns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96472.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">120</span> Exposure Assessment to Airborne Particulate Matter in Agriculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Rumchev">K. Rumchev</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Gilbey"> S. Gilbey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Airborne particulate matter is a known hazard to human health, with a considerable body of evidence linking agricultural dust exposures to adverse human health effects in exposed populations. It is also known that agricultural workers are exposed to high levels of soil dust and other types of airborne particulate matter within the farming environment. The aim of this study was to examine exposure to agricultural dust among farm workers during the seeding season. Twenty-one wheat-belt farms consented to participate in the study with 30 workers being monitored for dust exposure whilst seeding or undertaking seeding associated tasks. Each farm was visited once and farmers’ were asked to wear a personal air sampler for a 4-hour sampling period. Simultaneous, real-time, tractor cabin air quality monitoring was also undertaken. Data for this study was collected using real-time aerosol dust monitors to determine in-tractor cabin PM exposure to five size fractions (total, PM10, respirable, PM2.5 and PM1), and personal sampling was undertaken to establish individual exposure to inhalable and respirable dust concentrations. The study established a significant difference between personal exposures and simultaneous real-time in-cabin exposures for both inhalable and respirable fractions. No significant difference was shown between in-cabin and personal inhalable dust concentrations during seeding and spraying tasks, although both in-cabin and personal concentrations were two times greater for seeding than spraying. Future research should focus on educating and providing farm owners and workers with more information on adopting safe work practices to minimise harmful exposures to agricultural dust. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture" title="agriculture">agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20quality" title=" air quality"> air quality</a>, <a href="https://publications.waset.org/abstracts/search?q=Australia" title=" Australia"> Australia</a>, <a href="https://publications.waset.org/abstracts/search?q=particulate%20matter" title=" particulate matter"> particulate matter</a> </p> <a href="https://publications.waset.org/abstracts/72033/exposure-assessment-to-airborne-particulate-matter-in-agriculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">119</span> Predicting the Exposure Level of Airborne Contaminants in Occupational Settings via the Well-Mixed Room Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Fallahfard">Alireza Fallahfard</a>, <a href="https://publications.waset.org/abstracts/search?q=Ludwig%20Vinches"> Ludwig Vinches</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephane%20Halle"> Stephane Halle</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the workplace, the exposure level of airborne contaminants should be evaluated due to health and safety issues. It can be done by numerical models or experimental measurements, but the numerical approach can be useful when it is challenging to perform experiments. One of the simplest models is the well-mixed room (WMR) model, which has shown its usefulness to predict inhalation exposure in many situations. However, since the WMR is limited to gases and vapors, it cannot be used to predict exposure to aerosols. The main objective is to modify the WMR model to expand its application to exposure scenarios involving aerosols. To reach this objective, the standard WMR model has been modified to consider the deposition of particles by gravitational settling and Brownian and turbulent deposition. Three deposition models were implemented in the model. The time-dependent concentrations of airborne particles predicted by the model were compared to experimental results conducted in a 0.512 m3 chamber. Polystyrene particles of 1, 2, and 3 µm in aerodynamic diameter were generated with a nebulizer under two air changes per hour (ACH). The well-mixed condition and chamber ACH were determined by the tracer gas decay method. The mean friction velocity on the chamber surfaces as one of the input variables for the deposition models was determined by computational fluid dynamics (CFD) simulation. For the experimental procedure, the particles were generated until reaching the steady-state condition (emission period). Then generation stopped, and concentration measurements continued until reaching the background concentration (decay period). The results of the tracer gas decay tests revealed that the ACHs of the chamber were: 1.4 and 3.0, and the well-mixed condition was achieved. The CFD results showed the average mean friction velocity and their standard deviations for the lowest and highest ACH were (8.87 ± 0.36) ×10-2 m/s and (8.88 ± 0.38) ×10-2 m/s, respectively. The numerical results indicated the difference between the predicted deposition rates by the three deposition models was less than 2%. The experimental and numerical aerosol concentrations were compared in the emission period and decay period. In both periods, the prediction accuracy of the modified model improved in comparison with the classic WMR model. However, there is still a difference between the actual value and the predicted value. In the emission period, the modified WMR results closely follow the experimental data. However, the model significantly overestimates the experimental results during the decay period. This finding is mainly due to an underestimation of the deposition rate in the model and uncertainty related to measurement devices and particle size distribution. Comparing the experimental and numerical deposition rates revealed that the actual particle deposition rate is significant, but the deposition mechanisms considered in the model were ten times lower than the experimental value. Thus, particle deposition was significant and will affect the airborne concentration in occupational settings, and it should be considered in the airborne exposure prediction model. The role of other removal mechanisms should be investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerosol" title="aerosol">aerosol</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=exposure%20assessment" title=" exposure assessment"> exposure assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=occupational%20settings" title=" occupational settings"> occupational settings</a>, <a href="https://publications.waset.org/abstracts/search?q=well-mixed%20room%20model" title=" well-mixed room model"> well-mixed room model</a>, <a href="https://publications.waset.org/abstracts/search?q=zonal%20model" title=" zonal model"> zonal model</a> </p> <a href="https://publications.waset.org/abstracts/150194/predicting-the-exposure-level-of-airborne-contaminants-in-occupational-settings-via-the-well-mixed-room-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">118</span> Effect of Temperature and Relative Humidity on Aerosol Spread</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Getu%20Hailu">Getu Hailu</a>, <a href="https://publications.waset.org/abstracts/search?q=Catelynn%20Hettick"> Catelynn Hettick</a>, <a href="https://publications.waset.org/abstracts/search?q=Niklas%20Pieper"> Niklas Pieper</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Kim"> Paul Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Augustine%20Hamner"> Augustine Hamner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Airborne transmission is a problem that all viral respiratory diseases have in common. In late 2019, a disease outbreak, now known as SARS-CoV-2, suddenly expanded across China and the rest of the world in a matter of months. Research on the spread and transmission of SARS-CoV-2 airborne particles is ongoing, as well as the development of strategies for the prevention of the spread of these pathogens using indoor air quality (IAQ) methods. By evaluating the surface area of pollutants on the surface of a mannequin in a mock-based clinic room, this study aims to better understand how altering temperature and relative humidity affect aerosol spread and contamination. Four experiments were carried out at a constant temperature of 70 degrees Fahrenheit but with four different humidity levels of 0%, 30%, 45 percent, and 60%. The mannequin was placed in direct aerosol flow since it was discovered that this was the position with the largest exposed surface area. The findings demonstrate that as relative humidity increased while the temperature remained constant, the amount of surface area infected by virus particles decreased. These findings point to approaches to reduce the spread of viral particles, such as SARS-CoV-2 and emphasize the significance of IAQ controls in enclosed environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IAQ" title="IAQ">IAQ</a>, <a href="https://publications.waset.org/abstracts/search?q=ventilation" title=" ventilation"> ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title=" COVID-19"> COVID-19</a>, <a href="https://publications.waset.org/abstracts/search?q=humidity" title=" humidity"> humidity</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a> </p> <a href="https://publications.waset.org/abstracts/148688/effect-of-temperature-and-relative-humidity-on-aerosol-spread" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148688.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">117</span> Aerofloral Studies and Allergenicity Potentials of Dominant Atmospheric Pollen Types at Some Locations in Northwestern Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olugbenga%20S.%20Alebiosu">Olugbenga S. Alebiosu</a>, <a href="https://publications.waset.org/abstracts/search?q=Olusola%20H.%20Adekanmbi"> Olusola H. Adekanmbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Oluwatoyin%20T.%20Ogundipe"> Oluwatoyin T. Ogundipe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pollen and spores have been identified as major airborne bio-particles inducing respiratory disorders such as asthma, allergic rhinitis and atopic dermatitis among hypersensitive individuals. An aeropalynological study was conducted within a one year sampling period with a view to investigating the monthly depositional rate of atmospheric pollen and spores; influence of the immediate vegetation on airborne pollen distribution; allergenic potentials of dominant atmospheric pollen types at selected study locations in Bauchi and Taraba states, Northwestern Nigeria. A tauber-like pollen trap was employed in aerosampling with the sampler positioned at a height of 5 feet above the ground, followed by a monthly collection of the recipient solution for the sampling period. The collected samples were subjected to acetolysis treatment, examined microscopically with the identification of pollen grains and spores using reference materials and published photomicrographs. Plants within the surrounding vegetation were enumerated. Crude protein contents extracted from pollen types found to be commonly dominant at both study locations; Senna siamea, Terminalia cattapa, Panicum maximum and Zea mays were used to sensitize Musmusculus. Histopathological studies of bronchi and lung sections from certain dead M.musculus in the test groups was conducted. Blood samples were collected from the pre-orbital vein of M.musculus and processed for serological and haematological (differential and total white blood cell counts) studies. ELISA was used in determining the levels of serological parameters: IgE and cytokines (TNF-, IL-5, and IL-13). Statistical significance was observed in the correlation between the levels of serological and haematological parameters elicited by each test group, differences between the levels of serological and haematological parameters elicited by each test group and those of the control, as well as at varying sensitization periods. The results from this study revealed dominant airborne pollen types across the study locations; Syzygiumguineense, Tridaxprocumbens, Elaeisguineensis, Mimosa sp., Borreria sp., Terminalia sp., Senna sp. and Poaceae. Nephrolepis sp., Pteris sp. and a trilete fern also produced spores. This study also revealed that some of the airborne pollen types were produced by local plants at the study locations. Bronchi sections of M.musculus after first and second sensitizations, as well as lung section after first sensitization with Senna siamea, showed areas of necrosis. Statistical significance was recorded in the correlation between the levels of some serological and haematological parameters produced by each test group and those of the control, as well as at certain sensitization periods. The study revealed some candidate pollen allergens at the study locations allergy sufferers and also established a complexity of interaction between immune cells, IgE and cytokines at varied periods of mice sensitization and forming a paradigm of human immune response to different pollen allergens. However, it is expedient that further studies should be conducted on these candidate pollen allergens for their allergenicity potential in humans within their immediate environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airborne" title="airborne">airborne</a>, <a href="https://publications.waset.org/abstracts/search?q=hypersensitive" title=" hypersensitive"> hypersensitive</a>, <a href="https://publications.waset.org/abstracts/search?q=mus%20musculus" title=" mus musculus"> mus musculus</a>, <a href="https://publications.waset.org/abstracts/search?q=pollen%20allergens" title=" pollen allergens"> pollen allergens</a>, <a href="https://publications.waset.org/abstracts/search?q=respiratory" title=" respiratory"> respiratory</a>, <a href="https://publications.waset.org/abstracts/search?q=tauber-like" title=" tauber-like"> tauber-like</a> </p> <a href="https://publications.waset.org/abstracts/144843/aerofloral-studies-and-allergenicity-potentials-of-dominant-atmospheric-pollen-types-at-some-locations-in-northwestern-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144843.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">116</span> Metagenomics Composition During and After Wet Deposition and the Presence of Airborne Microplastics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yee%20Hui%20Lim">Yee Hui Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20Gusareva"> Elena Gusareva</a>, <a href="https://publications.waset.org/abstracts/search?q=Irvan%20Luhung"> Irvan Luhung</a>, <a href="https://publications.waset.org/abstracts/search?q=Yulia%20Frank"> Yulia Frank</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephan%20Christoph%20Schuster"> Stephan Christoph Schuster</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmental pollution from microplastics (MPs) is an emerging concern worldwide. While the presence of microplastics has been well established in the marine and terrestrial environments, the prevalence of microplastics in the atmosphere is still poorly understood. Wet depositions such as rain or snow scavenge impurities from the atmosphere as it falls to the ground. These wet depositions serve as a useful tool in the removal of airborne particles that are suspended in the air. Therefore, the aim of this study is to investigate the presence of atmospheric microplastics and fibres through the analysis of air, rainwater and snow samples. Air samples were collected with filter-based air samplers from outdoor locations in Singapore. The sampling campaigns were conducted during and after each rain event. Rainwater samples from Singapore and Siberia were collected as well. Snow samples were also collected from Siberia as part of the ongoing study. Genomic DNA was then extracted from the samples and sequenced with shotgun metagenomics approach. qPCR analysis was conducted to quantify the total bacteria and fungi in the air, rainwater and snow samples. The results compared the bioaerosol profiles of all the samples. To observe the presence of microplastics, scanning electron microscope (SEM) was used. From the preliminary results, microplastics were detected. It can be concluded that there is a significant amount of atmospheric microplastics present, and its occurrence should be investigated in greater detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20microplastics" title="atmospheric microplastics">atmospheric microplastics</a>, <a href="https://publications.waset.org/abstracts/search?q=metagenomics" title=" metagenomics"> metagenomics</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope" title=" scanning electron microscope"> scanning electron microscope</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20deposition" title=" wet deposition"> wet deposition</a> </p> <a href="https://publications.waset.org/abstracts/153093/metagenomics-composition-during-and-after-wet-deposition-and-the-presence-of-airborne-microplastics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153093.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">115</span> Bacterial Exposure and Microbial Activity in Dental Clinics during Cleaning Procedures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atin%20Adhikari">Atin Adhikari</a>, <a href="https://publications.waset.org/abstracts/search?q=Sushma%20Kurella"> Sushma Kurella</a>, <a href="https://publications.waset.org/abstracts/search?q=Pratik%20Banerjee"> Pratik Banerjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabanita%20Mukherjee"> Nabanita Mukherjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yamini%20M.%20Chandana%20Gollapudi"> Yamini M. Chandana Gollapudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bushra%20Shah"> Bushra Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Different sharp instruments, drilling machines, and high speed rotary instruments are routinely used in dental clinics during dental cleaning. Therefore, these cleaning procedures release a lot of oral microorganisms including bacteria in clinic air and may cause significant occupational bioaerosol exposure risks for dentists, dental hygienists, patients, and dental clinic employees. Two major goals of this study were to quantify volumetric airborne concentrations of bacteria and to assess overall microbial activity in this type of occupational environment. The study was conducted in several dental clinics of southern Georgia and 15 dental cleaning procedures were targeted for sampling of airborne bacteria and testing of overall microbial activity in settled dusts over clinic floors. For air sampling, a Biostage viable cascade impactor was utilized, which comprises an inlet cone, precision-drilled 400-hole impactor stage, and a base that holds an agar plate (Tryptic soy agar). A high-flow Quick-Take-30 pump connected to this impactor pulls microorganisms in air at 28.3 L/min flow rate through the holes (jets) where they are collected on the agar surface for approx. five minutes. After sampling, agar plates containing the samples were placed in an ice chest with blue ice and plates were incubated at 30±2°C for 24 to 72 h. Colonies were counted and converted to airborne concentrations (CFU/m3) followed by positive hole corrections. Most abundant bacterial colonies (selected by visual screening) were identified by PCR amplicon sequencing of 16S rRNA genes. For understanding overall microbial activity in clinic floors and estimating a general cleanliness of the clinic surfaces during or after dental cleaning procedures, ATP levels were determined in swabbed dust samples collected from 10 cm2 floor surfaces. Concentration of ATP may indicate both the cell viability and the metabolic status of settled microorganisms in this situation. An ATP measuring kit was used, which utilized standard luciferin-luciferase fluorescence reaction and a luminometer, which quantified ATP levels as relative light units (RLU). Three air and dust samples were collected during each cleaning procedure (at the beginning, during cleaning, and immediately after the procedure was completed (n = 45). Concentrations at the beginning, during, and after dental cleaning procedures were 671±525, 917±1203, and 899±823 CFU/m3, respectively for airborne bacteria and 91±101, 243±129, and 139±77 RLU/sample, respectively for ATP levels. The concentrations of bacteria were significantly higher than typical indoor residential environments. Although an increasing trend for airborne bacteria was observed during cleaning, the data collected at three different time points were not significantly different (ANOVA: p = 0.38) probably due to high standard deviations of data. The ATP levels, however, demonstrated a significant difference (ANOVA: p <0.05) in this scenario indicating significant change in microbial activity on floor surfaces during dental cleaning. The most common bacterial genera identified were: Neisseria sp., Streptococcus sp., Chryseobacterium sp., Paenisporosarcina sp., and Vibrio sp. in terms of frequencies of occurrences, respectively. The study concluded that bacterial exposure in dental clinics could be a notable occupational biohazard, and appropriate respiratory protections for the employees are urgently needed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioaerosols" title="bioaerosols">bioaerosols</a>, <a href="https://publications.waset.org/abstracts/search?q=hospital%20hygiene" title=" hospital hygiene"> hospital hygiene</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20air%20quality" title=" indoor air quality"> indoor air quality</a>, <a href="https://publications.waset.org/abstracts/search?q=occupational%20biohazards" title=" occupational biohazards"> occupational biohazards</a> </p> <a href="https://publications.waset.org/abstracts/46956/bacterial-exposure-and-microbial-activity-in-dental-clinics-during-cleaning-procedures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">114</span> Ground Effect on Marine Midge Water Surface Locomotion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chih-Hua%20Wu">Chih-Hua Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Bang-Fuh%20Chen"> Bang-Fuh Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Keryea%20Soong"> Keryea Soong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Midges can move on the surface of the water at speeds of approximately 340 body-lengths/s and can move continuously for >90 min. Their wings periodically scull the sea surface to push water backward and thus generate thrust; their other body parts, including their three pairs of legs, touch the water only occasionally. The aim of this study was to investigate the locomotion mechanism of marine midges with a size of 2 mm and living in shallow reefs in Wanliton, southern Taiwan. We assumed that midges generate lift through two mechanisms: by sculling the surface of seawater to leverage the generated tension for thrust and by retracting their wings to generate aerodynamic lift at a suitable angle of attack. We performed computational fluid dynamic simulations to determine the mechanism of midge locomotion above the surface of the water. The simulations indicated that ground effects are essential and that both the midge trunk and wing tips must be very close to the water surface to produce sufficient lift to keep the midge airborne. Furthermore, a high wing-beat frequency is crucial for the midge to produce sufficient lift during wing retraction. Accordingly, ground effects, forward speed, and high wing-beat frequency are major factors influencing the ability of midges to generate sufficient lift and remain airborne above the water surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ground%20effect" title="ground effect">ground effect</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20locomotion" title=" water locomotion"> water locomotion</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20lift" title=" aerodynamic lift"> aerodynamic lift</a> </p> <a href="https://publications.waset.org/abstracts/169099/ground-effect-on-marine-midge-water-surface-locomotion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">113</span> Morphological Characteristics and Bioreactivity of Inhalable Particles during the Temple Fair in Kaifeng</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qiao%20Yushuang">Qiao Yushuang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shao%20Longyi"> Shao Longyi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the result of plasmid assay of inhalable particulates PM10 and PM2.5 that were collected during the period of the 11th Hanyuan temple fair of ancestor worship in Kaifeng City. By use of a high-resolution Field Emission Scanning Electron Microscopy (FESEM) and image analysis (IA) technology, the morphological characteristics and Particle Size Distribution (PSD) of each were analyzed and the Bioreactivity of PM10 was evaluated by using plasmid DNA assay. The result shows that, as the dominant component of the samples taken in the urban area of Kaifeng City, the mineral particles, compared with the other components including the soot aggregates, coal ash, and unidentified particles, have a much greater amount and volume. The mineral particles exhibited a decentralized quantity - size distribution, whose presence could be available among the particles sizing 2.5μm or smaller. In contrast, the volume-size distribution of mineral particles is scattered in a relatively narrow range of between1μm and 2.5μm. According to the plasmid assay the TD50 (toxic dose of PM causing 50% of plasmid damage, expressed in μg/ml) of water-soluble PM10 and whole fraction of Kaifeng airborne PM10 was measured respectively at 220-208μg/ml and 300-400μg/ml versus 160μg/ml and 190μg/ml for PM2.5. It can be seen that the whole fraction of airborne particles caused more oxidative damage than the water-soluble fractions, and the PM2.5 has a greater oxidative capacity than the PM10. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inhalable%20particulates%20%28PM10%20and%20PM2.5%29" title="inhalable particulates (PM10 and PM2.5)">inhalable particulates (PM10 and PM2.5)</a>, <a href="https://publications.waset.org/abstracts/search?q=morphological%20features" title=" morphological features"> morphological features</a>, <a href="https://publications.waset.org/abstracts/search?q=bioreactivity" title=" bioreactivity"> bioreactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaifeng" title=" Kaifeng"> Kaifeng</a> </p> <a href="https://publications.waset.org/abstracts/42806/morphological-characteristics-and-bioreactivity-of-inhalable-particles-during-the-temple-fair-in-kaifeng" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42806.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">112</span> 3D Classification Optimization of Low-Density Airborne Light Detection and Ranging Point Cloud by Parameters Selection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Baha%20Eddine%20Aissou">Baha Eddine Aissou</a>, <a href="https://publications.waset.org/abstracts/search?q=Aichouche%20Belhadj%20Aissa"> Aichouche Belhadj Aissa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Light detection and ranging (LiDAR) is an active remote sensing technology used for several applications. Airborne LiDAR is becoming an important technology for the acquisition of a highly accurate dense point cloud. A classification of airborne laser scanning (ALS) point cloud is a very important task that still remains a real challenge for many scientists. Support vector machine (SVM) is one of the most used statistical learning algorithms based on kernels. SVM is a non-parametric method, and it is recommended to be used in cases where the data distribution cannot be well modeled by a standard parametric probability density function. Using a kernel, it performs a robust non-linear classification of samples. Often, the data are rarely linearly separable. SVMs are able to map the data into a higher-dimensional space to become linearly separable, which allows performing all the computations in the original space. This is one of the main reasons that SVMs are well suited for high-dimensional classification problems. Only a few training samples, called support vectors, are required. SVM has also shown its potential to cope with uncertainty in data caused by noise and fluctuation, and it is computationally efficient as compared to several other methods. Such properties are particularly suited for remote sensing classification problems and explain their recent adoption. In this poster, the SVM classification of ALS LiDAR data is proposed. Firstly, connected component analysis is applied for clustering the point cloud. Secondly, the resulting clusters are incorporated in the SVM classifier. Radial basic function (RFB) kernel is used due to the few numbers of parameters (C and γ) that needs to be chosen, which decreases the computation time. In order to optimize the classification rates, the parameters selection is explored. It consists to find the parameters (C and γ) leading to the best overall accuracy using grid search and 5-fold cross-validation. The exploited LiDAR point cloud is provided by the German Society for Photogrammetry, Remote Sensing, and Geoinformation. The ALS data used is characterized by a low density (4-6 points/m²) and is covering an urban area located in residential parts of the city Vaihingen in southern Germany. The class ground and three other classes belonging to roof superstructures are considered, i.e., a total of 4 classes. The training and test sets are selected randomly several times. The obtained results demonstrated that a parameters selection can orient the selection in a restricted interval of (C and γ) that can be further explored but does not systematically lead to the optimal rates. The SVM classifier with hyper-parameters is compared with the most used classifiers in literature for LiDAR data, random forest, AdaBoost, and decision tree. The comparison showed the superiority of the SVM classifier using parameters selection for LiDAR data compared to other classifiers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classification" title="classification">classification</a>, <a href="https://publications.waset.org/abstracts/search?q=airborne%20LiDAR" title=" airborne LiDAR"> airborne LiDAR</a>, <a href="https://publications.waset.org/abstracts/search?q=parameters%20selection" title=" parameters selection"> parameters selection</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a> </p> <a href="https://publications.waset.org/abstracts/133161/3d-classification-optimization-of-low-density-airborne-light-detection-and-ranging-point-cloud-by-parameters-selection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133161.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">111</span> Association of Airborne Emissions with Pulmonary Dysfunction, XRCC1 Gene Polymorphism, and Some Inflammatory Markers in Aluminum Workers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gehan%20Moubarz">Gehan Moubarz</a>, <a href="https://publications.waset.org/abstracts/search?q=Atef%20M.%20F.%20Mohammed"> Atef M. F. Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Inas%20A.%20Saleh"> Inas A. Saleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Heba%20Mahdy-Abdallah"> Heba Mahdy-Abdallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Amal%20Saad-Hussein"> Amal Saad-Hussein</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study estimates the association between respiratory outcomes among employees of a secondary aluminum plant and airborne pollutants. Additionally, it looks into the relationship between pulmonary dysfunction in workers and XRCC1 gene polymorphisms. 110 exposed workers and 58 non-exposed workers participated in the study. Measurements have been conducted on SO₂, NO₂, and particulate particles. Pulmonary function was tested. Eosinophil cationic protein (ECP), C-reactive protein (CRP), matrix metalloproteinase-1 (MMP-1), interleukin 6 (IL6), GM-CSF, X-Ray Repair Cross Complementing 1 (XRCC1) protein, and genotyping of XRCC1 gene polymorphisms were examined. Results: The annual average concentrations of (PM₂.₅, PM₁₀, TSP, SO₂, and NO₂) were lower than the permissible limit. The areas around ovens, evaporators, and cold rolling mills exhibited the highest amounts. The majority of employees in these departments had impaired lung function. With longer exposure times, the exposed group's FEV1% and FVC% considerably reduced. The exposed workers had considerably higher XRCC1 levels. The evaluated inflammatory biomarkers showed no statistically significant difference. Conclusion: Aluminum workers are at risk of developing respiratory disorders. The level of serum XRCC1 may act as a biomarker that might be very useful for detecting susceptible workers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20industry" title="aluminum industry">aluminum industry</a>, <a href="https://publications.waset.org/abstracts/search?q=particulate%20matter" title=" particulate matter"> particulate matter</a>, <a href="https://publications.waset.org/abstracts/search?q=SO%E2%82%82" title=" SO₂"> SO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=NO%E2%82%82" title=" NO₂"> NO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=lung%20function" title=" lung function"> lung function</a>, <a href="https://publications.waset.org/abstracts/search?q=XRCC1%20gene%20polymorphism" title=" XRCC1 gene polymorphism"> XRCC1 gene polymorphism</a>, <a href="https://publications.waset.org/abstracts/search?q=XRCC1%20protein" title=" XRCC1 protein"> XRCC1 protein</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammatory%20biomarkers" title=" inflammatory biomarkers"> inflammatory biomarkers</a> </p> <a href="https://publications.waset.org/abstracts/193901/association-of-airborne-emissions-with-pulmonary-dysfunction-xrcc1-gene-polymorphism-and-some-inflammatory-markers-in-aluminum-workers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193901.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">10</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">110</span> Two-Phase Flow Study of Airborne Transmission Control in Dental Practices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Zabihi">Mojtaba Zabihi</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20Munro"> Stephen Munro</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20Little"> Jonathan Little</a>, <a href="https://publications.waset.org/abstracts/search?q=Ri%20Li"> Ri Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Joshua%20Brinkerhoff"> Joshua Brinkerhoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Sina%20Kheirkhah"> Sina Kheirkhah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Occupational Safety and Health Administration (OSHA) identified dental workers at the highest risk of contracting COVID-19. This is because aerosol-generating procedures (AGP) during dental practices generate aerosols ( < 5µm) and droplets. These particles travel at varying speeds, in varying directions, and for varying durations. If these particles bear infectious viruses, their spreading causes airborne transmission of the virus in the dental room, exposing dentists, hygienists, dental assistants, and even other dental clinic clients to the infection risk. Computational fluid dynamics (CFD) simulation of two-phase flows based on a discrete phase model (DPM) is carried out to study the spreading of aerosol and droplets in a dental room. The simulation includes momentum, heat, and mass transfers between the particles and the airflow. Two simulations are conducted and compared. One simulation focuses on the effects of room ventilation in winter and summer on the particles' travel. The other simulation focuses on the control of aerosol and droplets' spreading. A suction collector is added near the source of aerosol and droplets, creating a flow sink in order to remove the particles. The effects of the suction flow on the aerosol and droplet travel are studied. The suction flow can remove aerosols and also reduce the spreading of droplets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerosols" title="aerosols">aerosols</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title=" COVID-19"> COVID-19</a>, <a href="https://publications.waset.org/abstracts/search?q=dental" title=" dental"> dental</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20phase%20model" title=" discrete phase model"> discrete phase model</a>, <a href="https://publications.waset.org/abstracts/search?q=droplets" title=" droplets"> droplets</a>, <a href="https://publications.waset.org/abstracts/search?q=two-phase%20flow" title=" two-phase flow"> two-phase flow</a> </p> <a href="https://publications.waset.org/abstracts/130160/two-phase-flow-study-of-airborne-transmission-control-in-dental-practices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=airborne&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=airborne&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=airborne&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=airborne&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=airborne&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10