CINXE.COM

Search results for: micropropagation

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: micropropagation</title> <meta name="description" content="Search results for: micropropagation"> <meta name="keywords" content="micropropagation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="micropropagation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="micropropagation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 15</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: micropropagation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Micropropagation of Pelargonium odoratissimum (L.) L’Her., Using Petiole and Leaf Explants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ali%20Aazami%20Mavaloo">Mohammad Ali Aazami Mavaloo</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Bagher%20Hassanpouraghdam"> Mohammad Bagher Hassanpouraghdam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intact leaves, leaf segments and petiole sections derived from nodal explants in vitro were employed for the optimization of Pelargonium odoratissimum micropropagation. MS and ½ MS media enriched with BAP (1, 1.5, 2 and 4.5 mg/l) and NAA (0.1, 1 and 1.5 mg/l) were the treatment combinations used for. With leaf segments, the lowest browning incidence, the greatest callogenesis and the highest number of shoots were obtained with the media containing 1.5 mg/L BAP and 1 mg/L NAA. Two mg/L BAP + 0.1 mg/L NAA hold the same results for petiole explants. Intact leaves showed the best results for the three before-mentioned traits with 1 mg/L BAP + 1 mg/L NAA. 0.2 mg/L NAA caused the highest rooting percentage and the greatest mean data for the number and length of the roots. Rooted plantlets were transferred to the pots containing 1:1 peat-moss and perlite. Acclimatization of the plantlets was followed by 90 percent of survival rate in the greenhouse. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pelargonium%20odoratissimum" title="Pelargonium odoratissimum">Pelargonium odoratissimum</a>, <a href="https://publications.waset.org/abstracts/search?q=micropropagation" title=" micropropagation"> micropropagation</a>, <a href="https://publications.waset.org/abstracts/search?q=BAP" title=" BAP"> BAP</a>, <a href="https://publications.waset.org/abstracts/search?q=NAA" title=" NAA"> NAA</a> </p> <a href="https://publications.waset.org/abstracts/55026/micropropagation-of-pelargonium-odoratissimum-l-lher-using-petiole-and-leaf-explants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Micropropagation of Rhododendron tomentosum (Ledum palustre): An Endangered Plant of Scientific Interest as the Example of Ex Situ Conservation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anna%20Jesionek">Anna Jesionek</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksandra%20Szreniawa-Sztajnert"> Aleksandra Szreniawa-Sztajnert</a>, <a href="https://publications.waset.org/abstracts/search?q=Zbigniew%20Jaremicz"> Zbigniew Jaremicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Kokotkiewicz"> Adam Kokotkiewicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalia%20Filipowicz"> Natalia Filipowicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Renata%20Ochocka"> Renata Ochocka</a>, <a href="https://publications.waset.org/abstracts/search?q=Bozena%20Zabiegala"> Bozena Zabiegala</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Luczkiewicz"> Maria Luczkiewicz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rhododendron tomentosum (formerly Ledum palustre), an evergreen shrub grows in peaty soils in northern Europe, Asia and North America. In Poland, it is classified as an endangered species not only due to the drainage of wetlands, but also to the excessive collection of this repellent plant by human. The other valuable biological properties of R. tomentosum, used for years in folk medicine, include anti-inflammatory, analgesic and anti-microbial activity, conditioned by the essential oil content. Taking into account the importance of biodiversity and the potential therapeutic application, it was decided to establish, for the first time, the micropropagation protocol for R. tomentosum, for ex-situ conservation of this endangered species as well as to obtain the continuous source of in vivo and in-vitro plant material for further studies. This object was achieved by the selection of the explant and the media, which were modified within the scope of mineral composition, sugar content, pH and the growth regulators. As a result, the four-stage micropropagation protocol for R. tomentosum was specified, including shoot multiplication, elongation, rooting and ex-vitro adaptation. The genetic identification of the examined species and the compatibility of progeny plants with maternal ones was tested with molecular biology methods. Moreover, during the research process, the chemical composition of initial and regenerated plant and in vitro shoots was controlled in terms of volatile fraction by phytochemical analysis (GC and TLC methods). The correctness of the micropropagation procedure was confirmed by both types of studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ex%20situ%20conservation" title="ex situ conservation">ex situ conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=Ledum%20palustre" title=" Ledum palustre"> Ledum palustre</a>, <a href="https://publications.waset.org/abstracts/search?q=micropropagation" title=" micropropagation"> micropropagation</a>, <a href="https://publications.waset.org/abstracts/search?q=Rhododendron%20tomentosum" title=" Rhododendron tomentosum"> Rhododendron tomentosum</a> </p> <a href="https://publications.waset.org/abstracts/25285/micropropagation-of-rhododendron-tomentosum-ledum-palustre-an-endangered-plant-of-scientific-interest-as-the-example-of-ex-situ-conservation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> In Vitro Micropropagation of Rosa damascena Mill</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asghar%20Ebrahimzadeh">Asghar Ebrahimzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Sattar%20Malekian"> Sattar Malekian</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ali%20Aazami"> Mohammad Ali Aazami</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Bagher%20Hassanpouraghdam"> Mohammad Bagher Hassanpouraghdam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Roses are of main ornamental flowers worldwide. Rosa damascena Mill., besides being an ornamental plant, has major pharmaceutical, cosmetic and fragrance applications. Traditional propagation methods of the plant are using suckers, cutting and grafting. In the present experiment, we used the different explants (leaf section, petioles and nodal cutting) for the optimization of this high-valued ornamental from a native clonal plant. Diverse explants were acquired from mature plants during the growing season and were planted on MS medium supplemented with different hormonal combinations. 70% alcohol and sodium hypochloride were utilized for the surface sterilization. For proliferation, BAP and BA (1-5 mg L-1) and NAA (1-2 mg L-1) were tested. The highest proliferation rate was afforded from MS medium supplemented with 1.5 mg L-1 BA and 5 mg L-1 BAP. Callogenesis from leaf samples and petioles was the best with 1/2 MS medium enriched with 1mg L-1 BAP and 4 mg L-1 2,4-D. Rooting was occurred with the highest frequency in a medium containing 0.1 mg L-1 IBA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rosa%20damascene" title="Rosa damascene">Rosa damascene</a>, <a href="https://publications.waset.org/abstracts/search?q=micropropagation" title=" micropropagation"> micropropagation</a>, <a href="https://publications.waset.org/abstracts/search?q=petiole" title=" petiole"> petiole</a>, <a href="https://publications.waset.org/abstracts/search?q=IBA" title=" IBA"> IBA</a>, <a href="https://publications.waset.org/abstracts/search?q=BAP" title=" BAP"> BAP</a> </p> <a href="https://publications.waset.org/abstracts/35255/in-vitro-micropropagation-of-rosa-damascena-mill" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35255.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">582</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Beneficial Effect of Micropropagation Coupled with Mycorrhization on Enhancement of Growth Performance of Medicinal Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20H.%20Tejavathi">D. H. Tejavathi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Medicinal plants are globally valuable sources of herbal products. Wild populations of many medicinal plants are facing threat of extinction because of their narrow distribution, endemicity, and degradation of specific habitats. Micropropagation is an established in vitro technique by which large number of clones can be obtained from a small bit of explants in a short span of time within a limited space. Mycorrhization can minimize the transient transplantation shock, experienced by the micropropagated plants when they are transferred from lab to land. AM fungal association improves the physiological status of the host plants through better uptake of water and nutrients, particularly phosphorus. Consequently, the growth performance and biosynthesis of active principles are significantly enhanced in AM fungal treated plants. Bacopa monnieri, Andrographis paniculata, Agave vera-curz, Drymaria cordata and Majorana hortensis, important medicinal plants used in various indigenous systems of medicines, are selected for the present study. They form the main constituents of many herbal formulations. Standard in vitro techniques were followed to obtain the micropropagated plants. Shoot tips and nodal segments were used as explants. Explants were cultured on Murashige and Skoog, and Phillips and Collins media supplemented with various combinations of growth regulators. Multiple shoots were obtained on a media containing both auxins and cytokinins at various concentrations and combinations. Multiple shoots were then transferred to rooting media containing auxins for root induction. Thus, obtained in vitro regenerated plants were subjected to brief acclimatization before transferring them to land. One-month-old in vitro plants were treated with AM fungi, and the symbiotic effect on the overall growth parameters was analyzed. It was found that micropropagation coupled with mycorrhization has significant effect on the enhancement of biomass and biosynthesis of active principles in these selected medicinal plants. In vitro techniques coupled with mycorrhization have opened a possibility of obtaining better clones in respect of enhancement of biomass and biosynthesis of active principles. Beneficial effects of AM fungal association with medicinal plants are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cultivation" title="cultivation">cultivation</a>, <a href="https://publications.waset.org/abstracts/search?q=medicinal%20plants" title=" medicinal plants"> medicinal plants</a>, <a href="https://publications.waset.org/abstracts/search?q=micropropagation" title=" micropropagation"> micropropagation</a>, <a href="https://publications.waset.org/abstracts/search?q=mycorrhization" title=" mycorrhization"> mycorrhization</a> </p> <a href="https://publications.waset.org/abstracts/75872/beneficial-effect-of-micropropagation-coupled-with-mycorrhization-on-enhancement-of-growth-performance-of-medicinal-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Molecular Insights into the Genetic Integrity of Long-Term Micropropagated Clones Using Start Codon Targeted (SCoT) Markers: A Case Study with Ansellia africana, an Endangered, Medicinal Orchid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paromik%20Bhattacharyya">Paromik Bhattacharyya</a>, <a href="https://publications.waset.org/abstracts/search?q=Vijay%20Kumar"> Vijay Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Johannes%20Van%20Staden"> Johannes Van Staden</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Micropropagation is an important tool for the conservation of threatened and commercially important plant species of which orchids deserve special attention. Ansellia africana is one such medicinally important orchid species having much commercial significance. Thus, development of regeneration protocols for producing clonally stable regenerates using axillary buds is of much importance. However, for large-scale micropropagation to become not only successful but also acceptable by end-users, somaclonal variations occurring in the plantlets need to be eliminated. In the light of the various factors (genotype, ploidy level, in vitro culture age, explant and culture type, etc.) that may account for the somaclonal variations of divergent genetic changes at the cellular and molecular levels, genetic analysis of micropropagated plants using a multidisciplinary approach is of utmost importance. In the present study, the clonal integrity of the long term micropropagated A. africana plants were assessed using advanced molecular marker system i.e. Start Codon Targeted Polymorphism (SCoT). Our studies recorded a clonally stable regeneration protocol for A. africana with a very high degree of clonal fidelity amongst the regenerates. The results obtained from these molecular analyses could help in modifying the regeneration protocols for obtaining clonally stable true to type plantlets for sustainable commercial use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=medicinal%20orchid%20micropropagation" title="medicinal orchid micropropagation">medicinal orchid micropropagation</a>, <a href="https://publications.waset.org/abstracts/search?q=start%20codon%20targeted%20polymorphism%20%28SCoT%29" title=" start codon targeted polymorphism (SCoT)"> start codon targeted polymorphism (SCoT)</a>, <a href="https://publications.waset.org/abstracts/search?q=RAP%29" title="RAP)">RAP)</a>, <a href="https://publications.waset.org/abstracts/search?q=traditional%20African%20pharmacopoeia" title=" traditional African pharmacopoeia"> traditional African pharmacopoeia</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20%20fidelity" title=" genetic fidelity"> genetic fidelity</a> </p> <a href="https://publications.waset.org/abstracts/53547/molecular-insights-into-the-genetic-integrity-of-long-term-micropropagated-clones-using-start-codon-targeted-scot-markers-a-case-study-with-ansellia-africana-an-endangered-medicinal-orchid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Micropropagation and in vitro Conservation via Slow Growth Techniques of Prunus webbii (Spach) Vierh: An Endangered Plant Species in Albania</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Valbona%20Sota">Valbona Sota</a>, <a href="https://publications.waset.org/abstracts/search?q=Efigjeni%20Kongjika"> Efigjeni Kongjika</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wild almond is a woody species, which is difficult to propagate either generatively by seed or by vegetative methods (grafting or cuttings) and also considered as Endangered (EN) in Albania based on IUCN criteria. As a wild relative of cultivated fruit trees, this species represents a source of genetic variability and can be very important in breeding programs and cultivation. For this reason, it would be of interest to use an effective method of in vitro mid-term conservation, which involves strategies to slow plant growth through physicochemical alterations of in vitro growth conditions. Multiplication of wild almond was carried out using zygotic embryos, as primary explants, with the purpose to develop a successful propagation protocol. Results showed that zygotic embryos can proliferate through direct or indirect organogenesis. During subculture, stage was obtained a great number of new plantlets identical to mother plants derived from the zygotic embryos. All in vitro plantlets obtained from subcultures underwent in vitro conservation by minimal growth in low temperature (4&ordm;C) and darkness. The efficiency of this technique was evaluated for 3, 6, and 10 months of conservation period. Maintenance in these conditions reduced micro cuttings growth. Survival and regeneration rates for each period were evaluated and resulted that the maximal time of conservation without subculture on 4&ordm;C was 10 months, but survival and regeneration rates were significantly reduced, specifically 15.6% and 7.6%. An optimal period of conservation in these conditions can be considered the 5-6 months storage, which can lead to 60-50% of survival and regeneration rates. This protocol may be beneficial for mass propagation, mid-term conservation, and for genetic manipulation of wild almond. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micropropagation" title="micropropagation">micropropagation</a>, <a href="https://publications.waset.org/abstracts/search?q=minimal%20growth" title=" minimal growth"> minimal growth</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a>, <a href="https://publications.waset.org/abstracts/search?q=wild%20almond" title=" wild almond"> wild almond</a> </p> <a href="https://publications.waset.org/abstracts/110346/micropropagation-and-in-vitro-conservation-via-slow-growth-techniques-of-prunus-webbii-spach-vierh-an-endangered-plant-species-in-albania" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Effects of Bulblet Induction Medium on Bulb Size and Weight of Endemic Fritillaria aurea Schoot after Treatment with Putrescine for Different Durations of Time</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suleyman%20Kizil">Suleyman Kizil</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalid%20Mahmood%20Khavar"> Khalid Mahmood Khavar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fritillaria aurea Schott is an important horticultural crop with high economic potential for the ornamental plant industry and is endemic to the Central and South-Eastern Anatolian regions of Türkiye. This study reports an experiment conducted under in vitro conditions to improve the weight and diameter of the in vitro regenerated bulblets. The micro bulblets used in this study were obtained from callus induced on half-sliced bulblets cultured on MS medium containing 0.1 mg L⁻¹ NAA + 0.05 TDZ (R₁ medium) and 0.1 mg L⁻¹ NAA + 0.10 mg L⁻¹ TDZ (R₂ medium). Thereafter, the micro bulblets obtained from here were treated with 50 mg L⁻¹ putrescine, (tetramethylenediamine) for 3, 5, and 7 weeks. The putrescine treatment has a significant effect on the increase in diameter and weight of bulblets when compared to initial diameters, irrespective of the treatment periods and seed germination medium. When the duration of putrescine in weeks was compared, 7 weeks of treatments with putrescine were more conducive for induction in bulblet weight compared to 3 and 5 weeks treatment periods. Maximum seed weight of 0.52 grams was noted on 7 weeks of putrescine treated bulblets regenerated on 0.1 mg L⁻¹ TDZ. This strategy to increase bulb weight and diameter could be positively used to conserve and multiply this beautiful ornamental and endemic plant species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fritillaria%20aurea" title="Fritillaria aurea">Fritillaria aurea</a>, <a href="https://publications.waset.org/abstracts/search?q=bulblet" title=" bulblet"> bulblet</a>, <a href="https://publications.waset.org/abstracts/search?q=diameter" title=" diameter"> diameter</a>, <a href="https://publications.waset.org/abstracts/search?q=weight" title=" weight"> weight</a>, <a href="https://publications.waset.org/abstracts/search?q=micropropagation" title=" micropropagation"> micropropagation</a>, <a href="https://publications.waset.org/abstracts/search?q=polyamine" title=" polyamine"> polyamine</a> </p> <a href="https://publications.waset.org/abstracts/189235/effects-of-bulblet-induction-medium-on-bulb-size-and-weight-of-endemic-fritillaria-aurea-schoot-after-treatment-with-putrescine-for-different-durations-of-time" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">25</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> In Vitro Morphogenic Response of the Alginate Encapsulated Nodal Segment and Antioxidative Enzymes Analysis during Acclimatization of Cassia Angustifolia Vahl</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iram%20Siddique">Iram Siddique</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synthetic seed technology is an alternative to traditional micropropagation for production and delivery of cloned plantlets. Synthetic seeds were produced by encapsulating nodal segments of C. angustifolia in calcium alginate gel. 3% (w/v) sodium alginate and 100 mM CaCl2. 2H2O were found most suitable for encapsulation of nodal segments. Synthetic seeds cultured on half strength Murashige and Skoog (MS) medium supplemented with thidiazuron (5.0 µM) + indole -3- acetic acid (1.0 µM) produced maximum number of shoots (10.9 ± 0.78) after 8 weeks of culture exhibiting (78%) in vitro conversion response. Encapsulated nodal segments demonstrated successful regeneration after different period (1-6 weeks) of cold storage at 4 °C. The synthetic seeds stored at 4 °C for a period of 4 weeks resulted in maximum conversion frequency (93%) after 8 weeks when placed back to regeneration medium. The isolated shoots when cultured on half strength MS medium supplemented with 1.0 µM indole -3- butyric acid (IBA), produced healthy roots and plantlets with well developed shoot and roots were successfully hardened off in plastic pots containing sterile soilrite inside the growth chamber and gradually transferred to greenhouse where they grew well with 85% survival rate. Changes in the content of photosynthetic pigments, net photosynthetic rate (PN), superoxide dismutase (SOD) and catalase (CAT) activity in C. angustifolia indicated the adaptation of micropropagated plants to ex vitro conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biochemical%20studies" title="biochemical studies">biochemical studies</a>, <a href="https://publications.waset.org/abstracts/search?q=nodal%20segments" title=" nodal segments"> nodal segments</a>, <a href="https://publications.waset.org/abstracts/search?q=rooting" title=" rooting"> rooting</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20seeds" title=" synthetic seeds"> synthetic seeds</a>, <a href="https://publications.waset.org/abstracts/search?q=thidiazuron" title=" thidiazuron"> thidiazuron</a> </p> <a href="https://publications.waset.org/abstracts/17510/in-vitro-morphogenic-response-of-the-alginate-encapsulated-nodal-segment-and-antioxidative-enzymes-analysis-during-acclimatization-of-cassia-angustifolia-vahl" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> In Vitro Propagation in Barleria prionitis L. Via Callus Organogenesis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rashmi%20Ranade">Rashmi Ranade</a>, <a href="https://publications.waset.org/abstracts/search?q=Neelu%20Joshi"> Neelu Joshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Barleria prionitis L. is a well explored Indian medicinal plant valued for its stem and leaf which forms an important ingredient of many Ayurvedic formulations. It is used for the treatment of various disorders like toothache, bleeding gums, strengthening gums, whooping cough, inflammation, arthritis, enlargement of scrotum and sciatica etc. The plant is propagated vegetatively through stem cuttings. Frequent harvesting of this plant has led to the shortage of planting material, and it has acquired the status of vulnerable plant species. Plant tissue culture technology offers a very good alternative for propagation and conservation of such plant species. The present investigation was undertaken to develop in vitro regeneration protocol for B. prionitis L. via callus organogenesis pathway. Stem and leaf explants were used for this purpose. Different media and plant growth regulators were optimized to develop the protocol. The problem of phenol secretion and browning and in vitro cultures at the establishment phase was successfully curbed with the usage of antibrowning agents such as ascorbic acid and activated charcoal. Optimum shoot multiplication was achieved by the use of liquid media and incorporation of silver nitrate and TIBA (triiodobenzoic acid) into the media. High percent rooting (76%) was observed on WPM media supplemented with IBA (2.0 mg/l), IAA (0.5 mg/l), GA3(0.5) and activated charcoal(500 mg/l). The rooted plantlets were subjected to in vitro hardening on sterile potting mix (soil:farmyard manure:compost; 1:2:1) and acclimatized under greenhouse conditions. Around 85% survival of plantlets was recorded upon acclimatization. This lab scale protocol would be tested for in vitro scaling up production of B. prionitis L. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=explant%20browning" title="explant browning">explant browning</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20culture" title=" liquid culture"> liquid culture</a>, <a href="https://publications.waset.org/abstracts/search?q=micropropagation" title=" micropropagation"> micropropagation</a>, <a href="https://publications.waset.org/abstracts/search?q=shoot%20multiplication" title=" shoot multiplication"> shoot multiplication</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20secretion" title=" phenolic secretion"> phenolic secretion</a> </p> <a href="https://publications.waset.org/abstracts/62342/in-vitro-propagation-in-barleria-prionitis-l-via-callus-organogenesis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62342.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> In Vitro Propagation of Aloe vera and Aloe littoralis Plants: Gamma Radiation, Biochemical and Genetic Changes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Nourmohammadi">Z. Nourmohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Farahani"> F. Farahani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Shaker"> M. Shaker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aloe is an important commercial crop available in a wide range of species and varieties in international markets. The applications of this plant have been recorded in the ancient cultures of India, Egypt, Greece, Rome and China. Aloe has been used for centuries and is currently being actively studied for medicinal purposes. Aloe is propagated through lateral buds, which is slow, very expensive and low income practice. Nowadays, it has been cultured by in vitro propagation for rapid multiplication of plants, genetic improvement of crops, obtaining disease-free clones and for progressive valuable germplasm. The present study focused on the influence of different phytohormones on rapid in vitro propagation of Aloe plants. We also investigated the effect of gamma radiation on biochemical characters as well as genetic changes. Shoot tip of 2-3 cm were collected from offshoot of Aloe barbadensis and Aloe littoralis, and were inoculated with MS medium containing various concentrations of BA (0.5, 1, 2 mg/l), IAA (0.5, 1 mg/l). The best treatment for a highest shoot number and bud proliferation was MS medium containing 2 mg/l BAP and 0.5 mg/l IAA in A. barbadensis and A. littoralis. Maximum percentage of proliferated shoot buds (90% and 95%) from a single explant were obtained in MS medium after 4-5 weeks of the second and the first subcultures, respectively. Different genome sizes were also indicated among treatments and subcultures. The mixoploids identified in flow cytometery histograms in different treatments. The effect of gamma radiation on A. littoralis showed that by increasing the dose of gamma radiation, amounts of chlorophyll A, B, carotenoids, total protein content and superoxide dismutase were significantly increased compared to control plants. Genetic variation analysis also revealed significant genetic differences between control and gamma radiation treated regenerated plants by AMOVA test. Higher genetic heterozygocity was observed in radiation treated plants. Our findings may provide useful method for improving of Aloe plant proliferation with increasing of useful material such as antioxidant enzymes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aloe" title="aloe">aloe</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20enzyme" title=" antioxidant enzyme"> antioxidant enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=micropropagation" title=" micropropagation"> micropropagation</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20radiation" title=" gamma radiation"> gamma radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20variation" title=" genetic variation"> genetic variation</a> </p> <a href="https://publications.waset.org/abstracts/35879/in-vitro-propagation-of-aloe-vera-and-aloe-littoralis-plants-gamma-radiation-biochemical-and-genetic-changes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Evaluation of Genetic Fidelity and Phytochemical Profiling of Micropropagated Plants of Cephalantheropsis obcordata: An Endangered Medicinal Orchid </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gargi%20Prasad">Gargi Prasad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashiho%20A.%20Mao"> Ashiho A. Mao</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepu%20Vijayan"> Deepu Vijayan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mandal"> S. Mandal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of the present study was to optimize and develop an efficient protocol for in vitro propagation of a medicinally important orchid Cephalantheropsis obcordata (Lindl.) Ormerod along with genetic stability analysis of regenerated plants. This plant has been traditionally used in Chinese folk medicine and the decoction of whole plant is known to possess anticancer activity. Nodal segments used as explants were inoculated on Murashige and Skoog (MS) medium supplemented with various concentrations of isopentenyl adenine (2iP). The rooted plants were successfully acclimatized in the greenhouse with 100% survival rate. Inter-simple sequence repeats (ISSR) markers were used to assess the genetic fidelity of in vitro raised plants and the mother plant. It was revealed that monomorphic bands showing the absence of polymorphism in all in vitro raised plantlets analyzed, confirming the genetic uniformity among the regenerants. Phytochemical analysis was done to compare the antioxidant activities and HPLC fingerprinting assay of 80% aqueous ethanol extract of the leaves and stem of in vitro and in vivo grown C. obcordata. The extracts of the plants were examined for their antioxidant activities by using free radical 1, 1-diphenyl-2-picryl hydrazyl (DPPH) scavenging method, 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging ability, reducing power capacity, estimation of total phenolic content, flavonoid content and flavonol content. A simplified method for the detection of ascorbic acid, phenolic acids and flavonoids content was also developed by using reversed phase high-performance liquid chromatography (HPLC). This is the first report on the micropropagation, genetic integrity study and quantitative phytochemical analysis of in vitro regenerated plants of C. obcordata. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cephalantheropsis%20obcordata" title="Cephalantheropsis obcordata">Cephalantheropsis obcordata</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20fidelity" title=" genetic fidelity"> genetic fidelity</a>, <a href="https://publications.waset.org/abstracts/search?q=ISSR%20markers" title=" ISSR markers"> ISSR markers</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC" title=" HPLC "> HPLC </a> </p> <a href="https://publications.waset.org/abstracts/92601/evaluation-of-genetic-fidelity-and-phytochemical-profiling-of-micropropagated-plants-of-cephalantheropsis-obcordata-an-endangered-medicinal-orchid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92601.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Highly Efficient in Vitro Regeneration of Swertia chirayita (Roxb. ex Fleming) Karsten: A Critically Endangered Medicinal Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahendran%20Ganesan">Mahendran Ganesan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjeet%20Kumar%20Verma"> Sanjeet Kumar Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=Zafar%20Iqbal"> Zafar Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Chandran"> Ashish Chandran</a>, <a href="https://publications.waset.org/abstracts/search?q=Zakir%20Husain"> Zakir Husain</a>, <a href="https://publications.waset.org/abstracts/search?q=Shama%20Afroz"> Shama Afroz</a>, <a href="https://publications.waset.org/abstracts/search?q=Sana%20Shahid"> Sana Shahid</a>, <a href="https://publications.waset.org/abstracts/search?q=Laiq%20Ur%20Rahman"> Laiq Ur Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Highly efficient in vitro regeneration system has been developed for Swertia chirayita (Roxb. ex Fleming) H. Karst, a high prized traditional medicinal plant to treat numerous ailments such as liver disorders, malaria and diabetes and are reported to have a wide spectrum of pharmacological properties. Its medicinal usage is well-documented in Indian pharmaceutical codex, the British and the American pharmacopeias, and in different traditional medicine such as the Ayurveda, Unani and Siddha medical systems. Nodal explants were cultured on MS medium supplemented with various phytohormones for multiple shoot induction. The nodal segments failed to respond in growth regulator free medium. All the concentrations of BAP, Kin and TDZ facilitated shoot bud break and multiple shoot induction. Among the various cytokinins tested, BAP was found to be more effective with respect to initiation and subsequent development of shoots. Of the various concentrations BAP tested, BAP at 4.0 mg/L showed the higher average number of shoot regeneration (10.80 shoots per explant). Kin at 4 mg/L and TDZ at 4 mg/L induced 5.70 and 04.5+0 shoots per explant, respectively. Further increase in concentration did not favour an increase in the number of shoots. However, these shoots failed to elongate further. Hence, addition of GA₃ (1 mg/L) was added to the above medium. This treatment resulted in the elongation of shoots (2.50 cm) and a further increase in the number of microshoots (34.20 shoots/explant). Roots were also induced in the same medium containing BAP (4 mg/L) + GA₃ (1 mg/L) + NAA (0.5 mg/L). In vitro derived plantlets with well-developed roots were transferred to the potting media containing garden soil: sand: vermicompost (2:1:1). Plantlets were covered with a polyethylene bag and irrigated with water. The pots were maintained at 25 ± 2ºC, and then the polyethylene cover was gradually loosened, thus dropping the humidity (65–70%). This procedure subsequently resulted in in vitro hardening of the plantlet. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micropropagation" title="micropropagation">micropropagation</a>, <a href="https://publications.waset.org/abstracts/search?q=nodal%20explant" title=" nodal explant"> nodal explant</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20growth%20regulators" title=" plant growth regulators"> plant growth regulators</a>, <a href="https://publications.waset.org/abstracts/search?q=Swertia%20chirayita" title=" Swertia chirayita"> Swertia chirayita</a> </p> <a href="https://publications.waset.org/abstracts/114471/highly-efficient-in-vitro-regeneration-of-swertia-chirayita-roxb-ex-fleming-karsten-a-critically-endangered-medicinal-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Assesment of Genetic Fidelity of Micro-Clones of an Aromatic Medicinal Plant Murraya koenigii (L.) Spreng</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramesh%20Joshi">Ramesh Joshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nisha%20Khatik">Nisha Khatik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Murraya koenigii (L.) Spreng locally known as “Curry patta” or “Meetha neem” belonging to the family Rutaceae that grows wildly in Southern Asia. Its aromatic leaves are commonly used as the raw material for traditional medicinal formulations in India. The leaves contain essential oil and also used as a condiment. Several monomeric and binary carbazol alkaloids present in the various plant parts. These alkaloids have been reported to possess anti-microbial, mosquitocidal, topo-isomerase inhibition and antioxidant properties. Some of the alkaloids reported in this plant have showed anti carcinogenic and anti-diabetic properties. The conventional method of propagation of this tree is limited to seeds only, which retain their viability for only a short period. Hence, a biotechnological approach might have an advantage edging over traditional breeding as well as the genetic improvement of M. koenigii within a short period. The development of a reproducible regeneration protocol is the prerequisite for ex situ conservation and micropropagation. An efficient protocol for high frequency regeneration of in vitro plants of Murraya koenigii via different explants such as- nodal segments, intermodal segments, leaf, root segments, hypocotyle, cotyledons and cotyledonary node explants is described. In the present investigation, assessment of clonal fidelity in the micropropagated plantlets of Murraya koenigii was attempted using RAPD and ISSR markers at different pathways of plant tissue culture technique. About 20 ISSR and 40 RAPD primers were used for all the samples. Genomic DNA was extracted by CTAB method. ISSR primer were found to be more suitable as compared to RAPD for the analysis of clonal fidelity of M. koenigii. The amplifications however, were finally performed using RAPD, ISSR markers owing to their better performance in terms of generation of amplification products. In RAPD primer maximum 75% polymorphism was recorded in OPU-2 series which exhibited out of 04 scorable bands, three bands were polymorphic with a band range of size 600-1500 bp. In ISSR primers the UBC 857 showed 50% polymorphism with 02 band were polymorphic of band range size between 400-1000 bp. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20fidelity" title="genetic fidelity">genetic fidelity</a>, <a href="https://publications.waset.org/abstracts/search?q=Murraya%20koenigii" title=" Murraya koenigii"> Murraya koenigii</a>, <a href="https://publications.waset.org/abstracts/search?q=aromatic%20plants" title=" aromatic plants"> aromatic plants</a>, <a href="https://publications.waset.org/abstracts/search?q=ISSR%20primers" title=" ISSR primers "> ISSR primers </a> </p> <a href="https://publications.waset.org/abstracts/20710/assesment-of-genetic-fidelity-of-micro-clones-of-an-aromatic-medicinal-plant-murraya-koenigii-l-spreng" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20710.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">501</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> In Vitro Propagation of Vanilla Planifolia Using Nodal Explants and Varied Concentrations of Naphthaleneacetic acid (NAA) and 6-Benzylaminopurine (BAP).</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jessica%20Arthur">Jessica Arthur</a>, <a href="https://publications.waset.org/abstracts/search?q=Duke%20Amegah"> Duke Amegah</a>, <a href="https://publications.waset.org/abstracts/search?q=Kingsley%20Akenten%20Wiafe"> Kingsley Akenten Wiafe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Vanilla planifolia is the only edible fruit of the orchid family (Orchidaceae) among the over 35,000 Orchidaceae species found worldwide. In Ghana, Vanilla was discovered in the wild, but it is underutilized for commercial production, most likely due to a lack of knowledge on the best NAA and BAP combinations for in vitro propagation to promote successfully regenerated plant acclimatization. The growing interest and global demand for elite Vanilla planifolia plants and natural vanilla flavour emphasize the need for an effective industrial-scale micropropagation protocol. Tissue culture systems are increasingly used to grow disease-free plants and reliable in vitro methods can also produce plantlets with typically modest proliferation rates. This study sought to develop an efficient protocol for in vitro propagation of vanilla using nodal explants by testing different concentrations of NAA and BAP, for the proliferation of the entire plant. Methods: Nodal explants with dormant axillary buds were obtained from year-old laboratory-grown Vanilla planifolia plants. MS media was prepared with a nutrient stock solution (containing macronutrients, micronutrients, iron solution and vitamins) and semi-solidified using phytagel. It was supplemented with different concentrations of NAA and BAP to induce multiple shoots and roots (0.5mg/L BAP with NAA at 0, 0.5, 1, 1.5, 2.0mg/L and vice-versa). The explants were sterilized, cultured in labelled test tubes and incubated at 26°C ± 2°C with 16/8 hours light/dark cycle. Data on shoot and root growth, leaf number, node number, and survival percentage were collected over three consecutive two-week periods. The data were square root transformed and subjected to ANOVA and LSD at a 5% significance level using the R statistical package. Results: Shoots emerged at 8 days and roots at 12 days after inoculation with 94% survival rate. It was discovered that for the NAA treatments, MS media supplemented with 2.00 mg/l NAA resulted in the highest shoot length (10.45cm), maximum root number (1.51), maximum shoot number (1.47) and the highest number of leaves (1.29). MS medium containing 1.00 mg/l NAA produced the highest number of nodes (1.62) and root length (14.27cm). Also, a similar growth pattern for the BAP treatments was observed. MS medium supplemented with 1.50 mg/l BAP resulted in the highest shoot length (14.98 cm), the highest number of nodes (4.60), the highest number of leaves (1.75) and the maximum shoot number (1.57). MS medium containing 0.50 mg/l BAP and 1.0 mg/l BAP generated a maximum root number (1.44) and the highest root length (13.25cm), respectively. However, the best concentration combination for maximizing shoot and root was media containing 1.5mg/l BAP combined with 0.5mg/l NAA, and 1.0mg/l NAA combined with 0.5mg/l of BAP respectively. These concentrations were optimum for in vitro growth and production of Vanilla planifolia. Significance: This study presents a standardized protocol for labs to produce clean vanilla plantlets, enhancing cultivation in Ghana and beyond. It provides insights into Vanilla planifolia's growth patterns and hormone responses, aiding future research and cultivation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vanilla%20planifolia" title="Vanilla planifolia">Vanilla planifolia</a>, <a href="https://publications.waset.org/abstracts/search?q=In%20vitro%20propagation" title=" In vitro propagation"> In vitro propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20hormones" title=" plant hormones"> plant hormones</a>, <a href="https://publications.waset.org/abstracts/search?q=MS%20media" title=" MS media"> MS media</a> </p> <a href="https://publications.waset.org/abstracts/184543/in-vitro-propagation-of-vanilla-planifolia-using-nodal-explants-and-varied-concentrations-of-naphthaleneacetic-acid-naa-and-6-benzylaminopurine-bap" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184543.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Enhanced Bioproduction of Moscatilin in Dendrobium ovatum through Hairy Root Culture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ipsita%20Pujari">Ipsita Pujari</a>, <a href="https://publications.waset.org/abstracts/search?q=Abitha%20Thomas"> Abitha Thomas</a>, <a href="https://publications.waset.org/abstracts/search?q=Vidhu%20S.%20Babu"> Vidhu S. Babu</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Satyamoorthy"> K. Satyamoorthy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Orchids are esteemed as celebrities in cut flower industry globally, due to their long-lasting fragrance and freshness. Apart from splendor, the unique metabolites endowed with pharmaceutical potency have made them one of the most hunted in plant kingdom. This had led to their trafficking, resulting in habitat loss, subsequently making them occupiers of IUCN red list as RET species. Many of the orchids especially wild varieties still remain undiscovered. In view to protect and conserve the wild germplasm, researchers have been inventing novel micropropagation protocols; thereby conserving Orchids. India is overflowing with exclusive wild cultivars of Orchids, whose pharmaceutical properties remain untapped and are not marketed owing to relatively small flowers. However, their germplasm is quite pertinent to be preserved for making unusual hybrids. Dendrobium genus is the second largest among Orchids exists in India and has highest demand attributable to enduring cut flowers and significant therapeutic uses in traditional medicinal system. Though the genus is quite endemic in Western Ghat regions of the country, many species are still anonymous with their unknown curative properties. A standard breeding cycle in Orchids usually takes five to seven years (Dendrobium hybrids taking a long juvenile phase of two to five years reaching maturity and flowering stage) and this extensive life cycle has always hindered the development of Dendrobium breeding. Dendrobium is reported with essential therapeutic plant bio-chemicals and ‘Moscatilin’ is one, found exclusive to this famous Dendrobium genus. Moscatilin is reported to have anti-mutagenic and anti-cancer properties, whose positive action has very recently been demonstrated against a range of cancers. Our preliminary study here established a simple and economic small-scale propagation protocol of Dendrobium ovatum describing in vitro production of Moscatilin. Subsequently for enhancing the content of Moscatilin, an efficient experimental related to the organization of transgenic (hairy) D. ovatum root cultures through infection of Agrobacterium rhizogenes 2364 strain on MS basal medium is being reported in the present study. Hairy roots generated on almost half of the explants used (spherules, in vitro plantlets and calli) maintained through suspension cultures, after 8 weeks of co-cultivation with Agrobacterium rhizogenes. GFP assay performed with isolated hairy roots has confirmed the integrative transformation which was further positively confirmed by PCR using rolB gene specific primers. Reverse phase-high performance liquid chromatography and mass spectrometry techniques were used for quantification and accurate identification of Moscatilin respectively from transgenic systems. A noticeable ~3 fold increase in contents were observed in transformed D. ovatum root cultures as compared to the simple in vitro culture, callus culture and callus regeneration plantlets. Role of elicitors e.g., Methyl jasmonate, Salicylic acid, Yeast extract and Chitosan were tested for elevating the Moscatilin content to obtain a comprehensive optimized protocol facilitating the in vitro production of valuable Moscatilin with larger yield. This study would provide evidence towards the in vitro assembly of Moscatilin within a short time-period through not a so-expensive technology for the first time. It also serves as an appropriate basis for bioreactor scale-up resulting in commercial bioproduction of Moscatilin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioproduction" title="bioproduction">bioproduction</a>, <a href="https://publications.waset.org/abstracts/search?q=Dendrobium%20ovatum" title=" Dendrobium ovatum"> Dendrobium ovatum</a>, <a href="https://publications.waset.org/abstracts/search?q=hairy%20root%20culture" title=" hairy root culture"> hairy root culture</a>, <a href="https://publications.waset.org/abstracts/search?q=moscatilin" title=" moscatilin"> moscatilin</a> </p> <a href="https://publications.waset.org/abstracts/44011/enhanced-bioproduction-of-moscatilin-in-dendrobium-ovatum-through-hairy-root-culture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10