CINXE.COM

Search results for: turnip greens

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: turnip greens</title> <meta name="description" content="Search results for: turnip greens"> <meta name="keywords" content="turnip greens"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="turnip greens" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="turnip greens"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: turnip greens</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Quantification of Glucosinolates in Turnip Greens and Turnip Tops by Near-Infrared Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Obregon-Cano">S. Obregon-Cano</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Moreno-Rojas"> R. Moreno-Rojas</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Cartea-Gonzalez"> E. Cartea-Gonzalez</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20De%20Haro-Bailon"> A. De Haro-Bailon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The potential of near-infrared spectroscopy (NIRS) for screening the total glucosinolate (t-GSL) content, and also, the aliphatic glucosinolates gluconapin (GNA), progoitrin (PRO) and glucobrassicanapin (GBN) in turnip greens and turnip tops was assessed. This crop is grown for edible leaves and stems for human consumption. The reference values for glucosinolates, as they were obtained by high performance liquid chromatography on the vegetable samples, were regressed against different spectral transformations by modified partial least-squares (MPLS) regression (calibration set of samples n= 350). The resulting models were satisfactory, with calibration coefficient values from 0.72 (GBN) to 0.98 (tGSL). The predictive ability of the equations obtained was tested using a set of samples (n=70) independent of the calibration set. The determination coefficients and prediction errors (SEP) obtained in the external validation were: GNA=0.94 (SEP=3.49); PRO=0.41 (SEP=1.08); GBN=0.55 (SEP=0.60); tGSL=0.96 (SEP=3.28). These results show that the equations developed for total glucosinolates, as well as for gluconapin can be used for screening these compounds in the leaves and stems of this species. In addition, the progoitrin and glucobrassicanapin equations obtained can be used to identify those samples with high, medium and low contents. The calibration equations obtained were accurate enough for a fast, non-destructive and reliable analysis of the content in GNA and tGSL directly from NIR spectra. The equations for PRO and GBN can be employed to identify samples with high, medium and low contents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brassica%20rapa" title="brassica rapa">brassica rapa</a>, <a href="https://publications.waset.org/abstracts/search?q=glucosinolates" title=" glucosinolates"> glucosinolates</a>, <a href="https://publications.waset.org/abstracts/search?q=gluconapin" title=" gluconapin"> gluconapin</a>, <a href="https://publications.waset.org/abstracts/search?q=NIRS" title=" NIRS"> NIRS</a>, <a href="https://publications.waset.org/abstracts/search?q=turnip%20greens" title=" turnip greens"> turnip greens</a> </p> <a href="https://publications.waset.org/abstracts/134246/quantification-of-glucosinolates-in-turnip-greens-and-turnip-tops-by-near-infrared-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134246.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Phyto-Therapeutic, Functional and Nutritional Acclaims of Turnip (Brassica rapus L.): An Overview</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tabussam%20Tufail">Tabussam Tufail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: The core purpose of the current review article is to elaborate the phytochemicals present in turnip (brassica rapus l.) and also allied health claims. Plant-based foods contain a significant amount of bioactive compounds which provide desirable health benefits beyond the basic nutrition. Epidemiological evidence suggests that consumption of a diet rich in vegetables and fruits has positive implications for human health. Design: Potential of turnip peroxidase (TP) for the treatment of phenolic-contaminated solutions has been reviewed. However, issues of taste along with behavioral nutrition ought to be considered. So in the last decades, special attention has been paid towards edible plants, especially those that are rich in secondary metabolites (frequently called phytochemicals) and nowadays, there is an increasing interest in the antioxidant activity of such phytochemicals present in the diet. These chemicals favor nutritional and phytotherapy that is emerging as new concepts of health aid in recent years. Turnip is rich in these valuable ingredients though it can be employed as having health promoting and healing properties. Findings: Numerous bioactive components i.e. organic acids, phenolic compounds, turnip peroxidase, kaempeferol, vitamin-K, etc. are present in turnip. The review focused on the significance of plant derived (especially turnip) phenolic compounds as a source of certain beneficial compounds for human health. Owing to the presence of bioactive moieties, the turnip has high antioxidant activity, positive role in blood clotting, effectual in phenobarbital-induced sleeping time, effective against hepatic injury in diabetics and also have a good hepatoprotective role. Strong recommendations for consumption of nutraceuticals from turnip have become progressively popular to improve health, and to prevent from diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phytochemicals" title="phytochemicals">phytochemicals</a>, <a href="https://publications.waset.org/abstracts/search?q=turnip" title=" turnip"> turnip</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidants" title=" antioxidants"> antioxidants</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20benefits" title=" health benefits"> health benefits</a> </p> <a href="https://publications.waset.org/abstracts/56115/phyto-therapeutic-functional-and-nutritional-acclaims-of-turnip-brassica-rapus-l-an-overview" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Synchrotron X-Ray Based Investigation of As and Fe Bonding Environment in Collard Green Tissue Samples at Different Growth Stages</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sunil%20Dehipawala">Sunil Dehipawala</a>, <a href="https://publications.waset.org/abstracts/search?q=Aregama%20Sirisumana"> Aregama Sirisumana</a>, <a href="https://publications.waset.org/abstracts/search?q=stephan%20Smith"> stephan Smith</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Schneider"> P. Schneider</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Tremberger%20Jr"> G. Tremberger Jr</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Lieberman"> D. Lieberman</a>, <a href="https://publications.waset.org/abstracts/search?q=Todd%20Holden"> Todd Holden</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Cheung"> T. Cheung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The arsenic and iron environments in different growth stages have been studied with EXAFS and XANES using Brookhaven Synchrotron Light Source. Collard Greens plants were grown and tissue samples were harvested. The project studied the EXAFS and XANES of tissue samples using As and Fe K-edges. The Fe absorption and the Fourier transform bond length information were used as a control comparison. The Fourier transform of the XAFS data revealed the coexistence of As (III) and As (V) in the As bonding environment inside the studied plant tissue samples, although the soil only had As (III). The data suggests that Collard Greens has a novel pathway to handle arsenic absorption in soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EXAFS" title="EXAFS">EXAFS</a>, <a href="https://publications.waset.org/abstracts/search?q=fourier%20transform" title=" fourier transform"> fourier transform</a>, <a href="https://publications.waset.org/abstracts/search?q=metalloproteins" title=" metalloproteins"> metalloproteins</a>, <a href="https://publications.waset.org/abstracts/search?q=XANES" title=" XANES"> XANES</a> </p> <a href="https://publications.waset.org/abstracts/29476/synchrotron-x-ray-based-investigation-of-as-and-fe-bonding-environment-in-collard-green-tissue-samples-at-different-growth-stages" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Inventory and Pollinating Role of Bees (Hymenoptera: apoidea) on Turnip (Brassica rapa L.) and Radish (Raphanus sativus L.) (Brassicaceae) in Constantine Area (Algeria)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benachour%20Karima">Benachour Karima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pollination is a key factor in crop production and the presence of insect pollinators, mainly wild bees, is essential for improving yields. In this work, visiting apoids of two vegetable crops, the turnip (Brassica rapa L.) and the radish (Raphanus sativus L.) (Brassicaceae) were recorded during flowering times of 2003 and 2004 in Constantine area (36°22’N 06°37’E, 660 m). The observations were conducted in a plot of approximately 308 m2 of the Institute of Nutrition, Food and Food Technology (University of Mentouri Brothers). To estimate the density of bees (per 100 flowers or m2), 07 plots (01m2 for each one) are defined from the edge of the culture and in the first two rows. From flowering and every two days, foraging insects are recorded from 09 am until 17 pm (Gmt+1).The purpose of visit (collecting nectar, pollen or both) and pollinating efficiency (estimated by the number of flowers visited per minute and the number of positive visits) were noted for the most abundant bees on flowers. The action of pollinating insects is measured by comparing seed yields of 07 plots covered with tulle with 07 other accessible to pollinators. 04 families of Apoidea: Apidae, Halictidae, Andrenidae and Megachilidae were observed on the two plants. On turnip, the honeybee is the most common visitor (on average 214visites/ m2), it is followed by the Halictidae Lasioglossum mediterraneum whose visits are less intense (20 individuals/m2). Visits by Andrenidae, represented by several species such as Andrena lagopus, A.flavipes, A.agilissima and A.rhypara were episodic. The honeybee collected mainly nectar, its visits were all potentially fertilizing (contact with stigma) and more frequent (on average 14 flowers/min. L.mediterraneum visited only 05 flrs/min, it collected mostly the two products together and all its visits were also positive. On radish, the wild bee Ceratina cucurbitina recorded the highest number of visits (on average 06 individuals/100flo wers), the Halictidae represented mainly by L.mediterraneum, and L.malachurum, L.pauxillum were less abundant. C.cucurbitina visited on average 10 flowers /min and all its visits are positive. Visits of Halictidae were less frequent (05-06 flowers/min) and not all fertilizing. Seed yield of Brassica rapa (average number of pods /plant, seeds/ pods and average weight of 1000 seeds) was significantly higher in the presence of pollinators. Similarly, the pods of caged plants gave a percentage of aborted seeds (10.3%) significantly higher than that obtained on free plants (4.12%), the pods of caged plants also gave a percentage of malformed seeds (1.9%) significantly higher than that of the free plants (0.9%). For radish, the seed yield in the presence and absence of insects are almost similar. Only the percentage of malformed seeds (3.8%) obtained from the pods of caged plants was significantly higher in comparison with pods of free plants (1.9%). Following these results, it is clear that pollinators especially bees are essential for the production and improvement of crop yields and therefore it is necessary to protect this fauna increasingly threatened. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=foraging%20behavior" title="foraging behavior">foraging behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=honey%20bee" title=" honey bee"> honey bee</a>, <a href="https://publications.waset.org/abstracts/search?q=radish" title=" radish"> radish</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20yield" title=" seed yield"> seed yield</a>, <a href="https://publications.waset.org/abstracts/search?q=turnip" title=" turnip"> turnip</a>, <a href="https://publications.waset.org/abstracts/search?q=wild%20bee" title=" wild bee"> wild bee</a> </p> <a href="https://publications.waset.org/abstracts/38554/inventory-and-pollinating-role-of-bees-hymenoptera-apoidea-on-turnip-brassica-rapa-l-and-radish-raphanus-sativus-l-brassicaceae-in-constantine-area-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38554.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Cold Stunned Sea Turtle Diet Analysis In Cape Cod Bay from 2015-2020</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lucille%20McWilliams">Lucille McWilliams</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As water temperatures drop in November, Kemp’s Ridley, Loggerhead, and Green sea turtles cold-stun in Cape Cod Bay. The foraging ecology of these sea turtles remains an understudied area of research. In this study, we aim to assess the diet of these turtles using a multi-tissue stable isotope analysis of cold-stunned kemp’s ridley, loggerhead, and green sea turtles stranded from 2015 to 2020. Stable isotope ratios of carbon and nitrogen were measured in blood, front and rear flipper, liver, muscle, skin, and scute tissue samples. We predict an elevated level of Nitrogen isotope ratios in kemp’s ridley and loggerhead turtles compared to green turtles due to the carnivorous loggerheads and kemp ridleys’ carnivorous diet and the greens herbivorous diet. We anticipate empty stomachs due to starvation while stranded, and a variety of foraging strategies, migration patterns, and trophic positions between these species. Data collected from this study will add to the knowledge of these turtles’ prey species and aid managers in the preservation of these species as a mitigation strategy for these turtles' extinction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sea%20turtles" title="sea turtles">sea turtles</a>, <a href="https://publications.waset.org/abstracts/search?q=kemp%27s%20ridleys" title=" kemp&#039;s ridleys"> kemp&#039;s ridleys</a>, <a href="https://publications.waset.org/abstracts/search?q=greens" title=" greens"> greens</a>, <a href="https://publications.waset.org/abstracts/search?q=loggerheads" title=" loggerheads"> loggerheads</a>, <a href="https://publications.waset.org/abstracts/search?q=cold-stunning" title=" cold-stunning"> cold-stunning</a>, <a href="https://publications.waset.org/abstracts/search?q=diet%20analysis" title=" diet analysis"> diet analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=stable%20isotope%20analysis" title=" stable isotope analysis"> stable isotope analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20science" title=" environmental science"> environmental science</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20biology" title=" marine biology"> marine biology</a> </p> <a href="https://publications.waset.org/abstracts/146703/cold-stunned-sea-turtle-diet-analysis-in-cape-cod-bay-from-2015-2020" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146703.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Screening of Different Native Genotypes of Broadleaf Mustard against Different Diseases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nisha%20Thapa">Nisha Thapa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ram%20Prasad%20Mainali"> Ram Prasad Mainali</a>, <a href="https://publications.waset.org/abstracts/search?q=Prakriti%20Chand"> Prakriti Chand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Broadleaf mustard is a commercialized leafy vegetable of Nepal. However, its utilization is hindered in terms of production and productivity due to the high intensity of insects, pests, and diseases causing great loss. The plant protection part of the crop’s disease and damage intensity has not been studied much from research perspectives in Nepal. The research aimed to evaluate broadleaf mustard genotypes for resistance against different diseases. A total of 35 native genotypes of broadleaf mustard were screened at weekly intervals by scoring the plants for ten weeks. Five different diseases, such as Rhizoctonia root rot, Alternaria blight, black rot, turnip mosaic virus disease, and white rust, were reported from the broad leaf mustard genotypes. Out of 35 genotypes, 23 genotypes were found with very high Rhizoctonia Root Rot severity, whereas 8 genotypes showed very high Alternaria blight severity. Likewise, 3 genotypes were found with high Black rot severity, and 1 genotype was found with very high Turnip mosaic virus disease incidence. Similarly, 2 genotypes were found to have very high White rust severity. Among the disease of national importance, Rhizoctonia root rot was found to be the most severe disease with the greatest loss. Broadleaf mustard genotypes like Rato Rayo, CO 1002, and CO 11007 showed average to the high level of field resistance; therefore, these genotypes should be used, conserved, and stored in a mustard improvement program as the disease resistance quality or susceptibility of these genotypes can be helpful for seed producing farmers, companies and other stakeholders through varietal improvement and developmental works that further aids in sustainable disease management of the vegetable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genotype" title="genotype">genotype</a>, <a href="https://publications.waset.org/abstracts/search?q=disease%20resistance" title=" disease resistance"> disease resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=Rhizoctonia%20root%20rot%20severity" title=" Rhizoctonia root rot severity"> Rhizoctonia root rot severity</a>, <a href="https://publications.waset.org/abstracts/search?q=varietal%20improvement" title=" varietal improvement"> varietal improvement</a> </p> <a href="https://publications.waset.org/abstracts/160605/screening-of-different-native-genotypes-of-broadleaf-mustard-against-different-diseases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Understanding Face-to-Face Household Gardens’ Profitability and Local Economic Opportunity Pathways</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Annika%20Freudenberger">Annika Freudenberger</a>, <a href="https://publications.waset.org/abstracts/search?q=Sin%20Sokhong"> Sin Sokhong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In just a few years, the Face-to-Face Victory Gardens Project (F2F) in Cambodia has developed a high-impact project that has provided immediate and tangible benefits to local families. This has been accomplished with a relatively hands-off approach that relies on households’ own motivation and personal investments of time and resources -which is both unique and impressive in the landscape of NGO and government initiatives in the area. Households have been growing food both for their own consumption and to sell or exchange. Not all targeted beneficiaries are equally motivated and maximizing their involvement, but there is a clear subset of households -particularly those who serve as facilitators- whose circumstances have been transformed as a result of F2F. A number of household factors and contextual economic factors affect families’ income generation opportunities. All the households we spoke with became involved with F2F with the goal of selling some proportion of their produce (i.e., not exclusively for their own consumption). For some, this income is marginal and supplemental to their core household income; for others, it is substantial and transformative. Some engage directly with customers/buyers in their immediate community, while others sell in larger nearby markets, and others link up with intermediary vendors. All struggle, to a certain extent, to compete in a local economy flooded with cheap produce imported from large-scale growers in neighboring provinces, Thailand, and Vietnam, although households who grow and sell herbs and greens popular in Khmer cuisine have found a stronger local market. Some are content with the scale of their garden, the income they make, and the current level of effort required to maintain it; others would like to expand but are faced with land constraints and water management challenges. Households making a substantial income from selling their products have achieved success in different ways, making it difficult to pinpoint a clear “model” for replication. Within our small sample size of interviewees, it seems as though the families with a clear passion for their gardens and high motivation to work hard to bring their products to market have succeeded in doing so. Khmer greens and herbs have been the most successful; they are not high-value crops, but they are fairly easy to grow, and there is a constant demand. These crops are also not imported as much, so prices are more stable than those of crops such as long beans. Although we talked to a limited number of individuals, it also appears as though successful families either restricted their crops to those that would grow well in drought or flood conditions (depending on which they are affected by most); or benefit already from water management infrastructure such as water tanks which helps them diversify their crops and helps them build their resilience. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=food%20security" title="food security">food security</a>, <a href="https://publications.waset.org/abstracts/search?q=Victory%20Gardens" title=" Victory Gardens"> Victory Gardens</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrition" title=" nutrition"> nutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=Cambodia" title=" Cambodia"> Cambodia</a> </p> <a href="https://publications.waset.org/abstracts/155189/understanding-face-to-face-household-gardens-profitability-and-local-economic-opportunity-pathways" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">56</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Dietary Exposure Assessment of Potentially Toxic Trace Elements in Fruits and Vegetables Grown in Akhtala, Armenia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Davit%20Pipoyan">Davit Pipoyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Meline%20Beglaryan"> Meline Beglaryan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicol%C3%B2%20%20Merendino"> Nicolò Merendino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mining industry is one of the priority sectors of Armenian economy. Along with the solution of some socio-economic development, it brings about numerous environmental problems, especially toxic element pollution, which largely influences the safety of agricultural products. In addition, accumulation of toxic elements in agricultural products, mainly in edible parts of plants represents a direct pathway for their penetration into the human food chain. In Armenia, the share of plant origin food in overall diet is significantly high, so estimation of dietary intakes of toxic trace elements via consumption of selected fruits and vegetables are of great importance for observing the underlying health risks. Therefore, the present study was aimed to assess dietary exposure of potentially toxic trace elements through the intake of locally grown fruits and vegetables in Akhtala community (Armenia), where not only mining industry is developed, but also cultivation of fruits and vegetables. Moreover, this investigation represents one of the very first attempts to estimate human dietary exposure of potentially toxic trace elements in the study area. Samples of some commonly grown fruits and vegetables (fig, cornel, raspberry, grape, apple, plum, maize, bean, potato, cucumber, onion, greens) were randomly collected from several home gardens located near mining areas in Akhtala community. The concentration of Cu, Mo, Ni, Cr, Pb, Zn, Hg, As and Cd in samples were determined by using an atomic absorption spectrophotometer (AAS). Precision and accuracy of analyses were guaranteed by repeated analysis of samples against NIST Standard Reference Materials. For a diet study, individual-based approach was used, so the consumption of selected fruits and vegetables was investigated through food frequency questionnaire (FFQ). Combining concentration data with contamination data, the estimated daily intakes (EDI) and cumulative daily intakes were assessed and compared with health-based guidance values (HBGVs). According to the determined concentrations of the studied trace elements in fruits and vegetables, it can be stressed that some trace elements (Cu, Ni, Pb, Zn) among the majority of samples exceeded maximum allowable limits set by international organizations. Meanwhile, others (Cr, Hg, As, Cd, Mo) either did not exceed these limits or still do not have established allowable limits. The obtained results indicated that only for Cu the EDI values exceeded dietary reference intake (0.01 mg/kg/Bw/day) for some investigated fruits and vegetables in decreasing order of potato > grape > bean > raspberry > fig > greens. In contrast to this, for combined consumption of selected fruits and vegetables estimated cumulative daily intakes exceeded reference doses in the following sequence: Zn > Cu > Ni > Mo > Pb. It may be concluded that habitual and combined consumption of the above mentioned fruits and vegetables can pose a health risk to the local population. Hence, further detailed studies are needed for the overall assessment of potential health implications taking into consideration adverse health effects posed by more than one toxic trace element. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=daily%20intake" title="daily intake">daily intake</a>, <a href="https://publications.waset.org/abstracts/search?q=dietary%20exposure" title=" dietary exposure"> dietary exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=fruits" title=" fruits"> fruits</a>, <a href="https://publications.waset.org/abstracts/search?q=trace%20elements" title=" trace elements"> trace elements</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetables" title=" vegetables"> vegetables</a> </p> <a href="https://publications.waset.org/abstracts/83600/dietary-exposure-assessment-of-potentially-toxic-trace-elements-in-fruits-and-vegetables-grown-in-akhtala-armenia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83600.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Utilization of Mustard Leaves (Brassica juncea) Powder for the Development of Cereal Based Extruded Snacks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maya%20S.%20Rathod">Maya S. Rathod</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahadur%20Singh%20Hathan"> Bahadur Singh Hathan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mustard leaves are rich in folates, vitamin A, K and B-complex. Mustard greens are low in calories and fats and rich in dietary fiber. They are rich in potassium, manganese, iron, copper, calcium, magnesium and low in sodium. It is very rich in antioxidants and Phytonutrients. For the optimization of process variables (moisture content and mustard leave powder), the experiments were conducted according to central composite Face Centered Composite design of RSM. The mustard leaves powder was replaced with composite flour (a combination of rice, chickpea and corn in the ratio of 70:15:15). The extrudate was extruded in a twin screw extruder at a barrel temperature of 120°C. The independent variables were mustard leaves powder (2-10 %) and moisture content (12-20 %). Responses analyzed were bulk density, water solubility index, water absorption index, lateral expansion, hardness, antioxidant activity, total phenolic content and overall acceptability. The optimum conditions obtained were 7.19 g mustard leaves powder in 100 g premix having 16.8 % moisture content (w.b). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extrusion" title="extrusion">extrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=mustard%20leaves%20powder" title=" mustard leaves powder"> mustard leaves powder</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a> </p> <a href="https://publications.waset.org/abstracts/33021/utilization-of-mustard-leaves-brassica-juncea-powder-for-the-development-of-cereal-based-extruded-snacks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">545</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Evidence Based Dietary Pattern in South Asian Patients: Setting Goals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ananya%20Pappu">Ananya Pappu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sneha%20Mishra"> Sneha Mishra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: The South Asian population experiences unique health challenges that predisposes this demographic to cardiometabolic diseases at lower BMIs. South Asians may therefore benefit from recommendations specific to their cultural needs. Here, we focus on current BMI guidelines for Asians with a discussion of South Asian dietary practices and culturally tailored interventions. By integrating traditional dietary practices with modern nutritional recommendations, this manuscript aims to highlight effective strategies to improving health outcomes among South Asians. Background: The South Asian community, including individuals from India, Pakistan, Bangladesh, and Sri Lanka, experiences high rates of cardiovascular diseases, cancers, diabetes, and strokes. Notably, the prevalence of diabetes and cardiovascular disease among Asians is elevated at BMIs below the WHO's standard overweight threshold. As it stands, a BMI of 25-30 kg/m² is considered overweight in non-Asians, while this cutoff is reduced to 23-27.4 kg/m² in Asians. This discrepancy can be attributed to studies which have shown different associations between BMI and health risks in Asians compared to other populations. Given these significant challenges, optimizing lifestyle management for cardiometabolic risk factors is crucial. Tailored interventions that consider cultural context seem to be the best approach for ensuring the success of both dietary and physical activity interventions in South Asian patients. Adopting a whole food, plant-based diet (WFPD) is one such strategy. The WFPD suggests that half of one meal should consist of non-starchy vegetables. In the South Asian diet, this includes traditional vegetables such as okra, tindora, eggplant, and leafy greens including amaranth, collards, chard, and mustards. A quarter of the meal should include plant-based protein sources like cooked beans, lentils, and paneer, with the remaining quarter comprising healthy grains or starches such as whole wheat breads, millets, tapioca, and barley. Adherence to the WFPD has been shown to improve cardiometabolic risk factors including weight, BMI, total cholesterol, HbA1c, and reduces the risk of developing non-alcoholic fatty liver disease (NAFLD). Another approach to improving dietary habits is timing meals. Many of the major cultures and religions in the Indian subcontinent incorporate religious fasting. Time-restricted eating (TRE), also known as intermittent fasting, is a practice akin to traditional fasting, which involves consuming all daily calories within a specific window. TRE has been shown to improve insulin resistance in prediabetic and diabetic patients. Common regimens include completing all meals within an 8-hour window, consuming a low-calorie diet every other day, and the 5:2 diet, which involves fasting twice weekly. These fasting practices align with the natural circadian rhythm, potentially enhancing metabolic health and reducing obesity and diabetes risks. Conclusion: South Asians develop cardiometabolic disease at lower BMIs; hence, it is important to counsel patients about lifestyle interventions that decrease their risk. Traditional South Asian diets can be made more nutrient-rich by incorporating vegetables, plant proteins like lentils and beans, and substituting refined grains for whole grains. Ultimately, the best diet is one to which a patient can adhere. It is therefore important to find a regimen that aligns with a patient’s cultural and traditional food practices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BMI" title="BMI">BMI</a>, <a href="https://publications.waset.org/abstracts/search?q=diet" title=" diet"> diet</a>, <a href="https://publications.waset.org/abstracts/search?q=obesity" title=" obesity"> obesity</a>, <a href="https://publications.waset.org/abstracts/search?q=South%20Asian" title=" South Asian"> South Asian</a>, <a href="https://publications.waset.org/abstracts/search?q=time-restricted%20eating" title=" time-restricted eating"> time-restricted eating</a> </p> <a href="https://publications.waset.org/abstracts/185826/evidence-based-dietary-pattern-in-south-asian-patients-setting-goals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185826.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">44</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10