CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;24 of 24 results for author: <span class="mathjax">Tacchetti, A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cs" aria-role="search"> Searching in archive <strong>cs</strong>. <a href="/search/?searchtype=author&amp;query=Tacchetti%2C+A">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Tacchetti, A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Tacchetti%2C+A&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Tacchetti, A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.09369">arXiv:2502.09369</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.09369">pdf</a>, <a href="https://arxiv.org/format/2502.09369">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computers and Society">cs.CY</span> </div> </div> <p class="title is-5 mathjax"> Language Agents as Digital Representatives in Collective Decision-Making </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Jarrett%2C+D">Daniel Jarrett</a>, <a href="/search/cs?searchtype=author&amp;query=P%C3%AEslar%2C+M">Miruna P卯slar</a>, <a href="/search/cs?searchtype=author&amp;query=Bakker%2C+M+A">Michiel A. Bakker</a>, <a href="/search/cs?searchtype=author&amp;query=Tessler%2C+M+H">Michael Henry Tessler</a>, <a href="/search/cs?searchtype=author&amp;query=K%C3%B6ster%2C+R">Raphael K枚ster</a>, <a href="/search/cs?searchtype=author&amp;query=Balaguer%2C+J">Jan Balaguer</a>, <a href="/search/cs?searchtype=author&amp;query=Elie%2C+R">Romuald Elie</a>, <a href="/search/cs?searchtype=author&amp;query=Summerfield%2C+C">Christopher Summerfield</a>, <a href="/search/cs?searchtype=author&amp;query=Tacchetti%2C+A">Andrea Tacchetti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.09369v1-abstract-short" style="display: inline;"> Consider the process of collective decision-making, in which a group of individuals interactively select a preferred outcome from among a universe of alternatives. In this context, &#34;representation&#34; is the activity of making an individual&#39;s preferences present in the process via participation by a proxy agent -- i.e. their &#34;representative&#34;. To this end, learned models of human behavior have the pot&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.09369v1-abstract-full').style.display = 'inline'; document.getElementById('2502.09369v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.09369v1-abstract-full" style="display: none;"> Consider the process of collective decision-making, in which a group of individuals interactively select a preferred outcome from among a universe of alternatives. In this context, &#34;representation&#34; is the activity of making an individual&#39;s preferences present in the process via participation by a proxy agent -- i.e. their &#34;representative&#34;. To this end, learned models of human behavior have the potential to fill this role, with practical implications for multi-agent scenario studies and mechanism design. In this work, we investigate the possibility of training \textit{language agents} to behave in the capacity of representatives of human agents, appropriately expressing the preferences of those individuals whom they stand for. First, we formalize the setting of \textit{collective decision-making} -- as the episodic process of interaction between a group of agents and a decision mechanism. On this basis, we then formalize the problem of \textit{digital representation} -- as the simulation of an agent&#39;s behavior to yield equivalent outcomes from the mechanism. Finally, we conduct an empirical case study in the setting of \textit{consensus-finding} among diverse humans, and demonstrate the feasibility of fine-tuning large language models to act as digital representatives. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.09369v1-abstract-full').style.display = 'none'; document.getElementById('2502.09369v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.15059">arXiv:2404.15059</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.15059">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computers and Society">cs.CY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> </div> </div> <p class="title is-5 mathjax"> Using deep reinforcement learning to promote sustainable human behaviour on a common pool resource problem </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Koster%2C+R">Raphael Koster</a>, <a href="/search/cs?searchtype=author&amp;query=P%C3%AEslar%2C+M">Miruna P卯slar</a>, <a href="/search/cs?searchtype=author&amp;query=Tacchetti%2C+A">Andrea Tacchetti</a>, <a href="/search/cs?searchtype=author&amp;query=Balaguer%2C+J">Jan Balaguer</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+L">Leqi Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Elie%2C+R">Romuald Elie</a>, <a href="/search/cs?searchtype=author&amp;query=Hauser%2C+O+P">Oliver P. Hauser</a>, <a href="/search/cs?searchtype=author&amp;query=Tuyls%2C+K">Karl Tuyls</a>, <a href="/search/cs?searchtype=author&amp;query=Botvinick%2C+M">Matt Botvinick</a>, <a href="/search/cs?searchtype=author&amp;query=Summerfield%2C+C">Christopher Summerfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.15059v1-abstract-short" style="display: inline;"> A canonical social dilemma arises when finite resources are allocated to a group of people, who can choose to either reciprocate with interest, or keep the proceeds for themselves. What resource allocation mechanisms will encourage levels of reciprocation that sustain the commons? Here, in an iterated multiplayer trust game, we use deep reinforcement learning (RL) to design an allocation mechanism&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.15059v1-abstract-full').style.display = 'inline'; document.getElementById('2404.15059v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.15059v1-abstract-full" style="display: none;"> A canonical social dilemma arises when finite resources are allocated to a group of people, who can choose to either reciprocate with interest, or keep the proceeds for themselves. What resource allocation mechanisms will encourage levels of reciprocation that sustain the commons? Here, in an iterated multiplayer trust game, we use deep reinforcement learning (RL) to design an allocation mechanism that endogenously promotes sustainable contributions from human participants to a common pool resource. We first trained neural networks to behave like human players, creating a stimulated economy that allowed us to study how different mechanisms influenced the dynamics of receipt and reciprocation. We then used RL to train a social planner to maximise aggregate return to players. The social planner discovered a redistributive policy that led to a large surplus and an inclusive economy, in which players made roughly equal gains. The RL agent increased human surplus over baseline mechanisms based on unrestricted welfare or conditional cooperation, by conditioning its generosity on available resources and temporarily sanctioning defectors by allocating fewer resources to them. Examining the AI policy allowed us to develop an explainable mechanism that performed similarly and was more popular among players. Deep reinforcement learning can be used to discover mechanisms that promote sustainable human behaviour. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.15059v1-abstract-full').style.display = 'none'; document.getElementById('2404.15059v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.03084">arXiv:2404.03084</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.03084">pdf</a>, <a href="https://arxiv.org/format/2404.03084">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> </div> </div> <p class="title is-5 mathjax"> Rethinking Teacher-Student Curriculum Learning through the Cooperative Mechanics of Experience </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Diaz%2C+M">Manfred Diaz</a>, <a href="/search/cs?searchtype=author&amp;query=Paull%2C+L">Liam Paull</a>, <a href="/search/cs?searchtype=author&amp;query=Tacchetti%2C+A">Andrea Tacchetti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.03084v2-abstract-short" style="display: inline;"> Teacher-Student Curriculum Learning (TSCL) is a curriculum learning framework that draws inspiration from human cultural transmission and learning. It involves a teacher algorithm shaping the learning process of a learner algorithm by exposing it to controlled experiences. Despite its success, understanding the conditions under which TSCL is effective remains challenging. In this paper, we propose&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03084v2-abstract-full').style.display = 'inline'; document.getElementById('2404.03084v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.03084v2-abstract-full" style="display: none;"> Teacher-Student Curriculum Learning (TSCL) is a curriculum learning framework that draws inspiration from human cultural transmission and learning. It involves a teacher algorithm shaping the learning process of a learner algorithm by exposing it to controlled experiences. Despite its success, understanding the conditions under which TSCL is effective remains challenging. In this paper, we propose a data-centric perspective to analyze the underlying mechanics of the teacher-student interactions in TSCL. We leverage cooperative game theory to describe how the composition of the set of experiences presented by the teacher to the learner, as well as their order, influences the performance of the curriculum that is found by TSCL approaches. To do so, we demonstrate that for every TSCL problem, an equivalent cooperative game exists, and several key components of the TSCL framework can be reinterpreted using game-theoretic principles. Through experiments covering supervised learning, reinforcement learning, and classical games, we estimate the cooperative values of experiences and use value-proportional curriculum mechanisms to construct curricula, even in cases where TSCL struggles. The framework and experimental setup we present in this work represents a novel foundation for a deeper exploration of TSCL, shedding light on its underlying mechanisms and providing insights into its broader applicability in machine learning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03084v2-abstract-full').style.display = 'none'; document.getElementById('2404.03084v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted at TMLR (https://openreview.net/forum?id=qWh82br6KT)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.08295">arXiv:2403.08295</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.08295">pdf</a>, <a href="https://arxiv.org/format/2403.08295">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Gemma: Open Models Based on Gemini Research and Technology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Gemma+Team"> Gemma Team</a>, <a href="/search/cs?searchtype=author&amp;query=Mesnard%2C+T">Thomas Mesnard</a>, <a href="/search/cs?searchtype=author&amp;query=Hardin%2C+C">Cassidy Hardin</a>, <a href="/search/cs?searchtype=author&amp;query=Dadashi%2C+R">Robert Dadashi</a>, <a href="/search/cs?searchtype=author&amp;query=Bhupatiraju%2C+S">Surya Bhupatiraju</a>, <a href="/search/cs?searchtype=author&amp;query=Pathak%2C+S">Shreya Pathak</a>, <a href="/search/cs?searchtype=author&amp;query=Sifre%2C+L">Laurent Sifre</a>, <a href="/search/cs?searchtype=author&amp;query=Rivi%C3%A8re%2C+M">Morgane Rivi猫re</a>, <a href="/search/cs?searchtype=author&amp;query=Kale%2C+M+S">Mihir Sanjay Kale</a>, <a href="/search/cs?searchtype=author&amp;query=Love%2C+J">Juliette Love</a>, <a href="/search/cs?searchtype=author&amp;query=Tafti%2C+P">Pouya Tafti</a>, <a href="/search/cs?searchtype=author&amp;query=Hussenot%2C+L">L茅onard Hussenot</a>, <a href="/search/cs?searchtype=author&amp;query=Sessa%2C+P+G">Pier Giuseppe Sessa</a>, <a href="/search/cs?searchtype=author&amp;query=Chowdhery%2C+A">Aakanksha Chowdhery</a>, <a href="/search/cs?searchtype=author&amp;query=Roberts%2C+A">Adam Roberts</a>, <a href="/search/cs?searchtype=author&amp;query=Barua%2C+A">Aditya Barua</a>, <a href="/search/cs?searchtype=author&amp;query=Botev%2C+A">Alex Botev</a>, <a href="/search/cs?searchtype=author&amp;query=Castro-Ros%2C+A">Alex Castro-Ros</a>, <a href="/search/cs?searchtype=author&amp;query=Slone%2C+A">Ambrose Slone</a>, <a href="/search/cs?searchtype=author&amp;query=H%C3%A9liou%2C+A">Am茅lie H茅liou</a>, <a href="/search/cs?searchtype=author&amp;query=Tacchetti%2C+A">Andrea Tacchetti</a>, <a href="/search/cs?searchtype=author&amp;query=Bulanova%2C+A">Anna Bulanova</a>, <a href="/search/cs?searchtype=author&amp;query=Paterson%2C+A">Antonia Paterson</a>, <a href="/search/cs?searchtype=author&amp;query=Tsai%2C+B">Beth Tsai</a>, <a href="/search/cs?searchtype=author&amp;query=Shahriari%2C+B">Bobak Shahriari</a> , et al. (83 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.08295v4-abstract-short" style="display: inline;"> This work introduces Gemma, a family of lightweight, state-of-the art open models built from the research and technology used to create Gemini models. Gemma models demonstrate strong performance across academic benchmarks for language understanding, reasoning, and safety. We release two sizes of models (2 billion and 7 billion parameters), and provide both pretrained and fine-tuned checkpoints. Ge&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.08295v4-abstract-full').style.display = 'inline'; document.getElementById('2403.08295v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.08295v4-abstract-full" style="display: none;"> This work introduces Gemma, a family of lightweight, state-of-the art open models built from the research and technology used to create Gemini models. Gemma models demonstrate strong performance across academic benchmarks for language understanding, reasoning, and safety. We release two sizes of models (2 billion and 7 billion parameters), and provide both pretrained and fine-tuned checkpoints. Gemma outperforms similarly sized open models on 11 out of 18 text-based tasks, and we present comprehensive evaluations of safety and responsibility aspects of the models, alongside a detailed description of model development. We believe the responsible release of LLMs is critical for improving the safety of frontier models, and for enabling the next wave of LLM innovations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.08295v4-abstract-full').style.display = 'none'; document.getElementById('2403.08295v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.05530">arXiv:2403.05530</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.05530">pdf</a>, <a href="https://arxiv.org/format/2403.05530">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Gemini+Team"> Gemini Team</a>, <a href="/search/cs?searchtype=author&amp;query=Georgiev%2C+P">Petko Georgiev</a>, <a href="/search/cs?searchtype=author&amp;query=Lei%2C+V+I">Ving Ian Lei</a>, <a href="/search/cs?searchtype=author&amp;query=Burnell%2C+R">Ryan Burnell</a>, <a href="/search/cs?searchtype=author&amp;query=Bai%2C+L">Libin Bai</a>, <a href="/search/cs?searchtype=author&amp;query=Gulati%2C+A">Anmol Gulati</a>, <a href="/search/cs?searchtype=author&amp;query=Tanzer%2C+G">Garrett Tanzer</a>, <a href="/search/cs?searchtype=author&amp;query=Vincent%2C+D">Damien Vincent</a>, <a href="/search/cs?searchtype=author&amp;query=Pan%2C+Z">Zhufeng Pan</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+S">Shibo Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Mariooryad%2C+S">Soroosh Mariooryad</a>, <a href="/search/cs?searchtype=author&amp;query=Ding%2C+Y">Yifan Ding</a>, <a href="/search/cs?searchtype=author&amp;query=Geng%2C+X">Xinyang Geng</a>, <a href="/search/cs?searchtype=author&amp;query=Alcober%2C+F">Fred Alcober</a>, <a href="/search/cs?searchtype=author&amp;query=Frostig%2C+R">Roy Frostig</a>, <a href="/search/cs?searchtype=author&amp;query=Omernick%2C+M">Mark Omernick</a>, <a href="/search/cs?searchtype=author&amp;query=Walker%2C+L">Lexi Walker</a>, <a href="/search/cs?searchtype=author&amp;query=Paduraru%2C+C">Cosmin Paduraru</a>, <a href="/search/cs?searchtype=author&amp;query=Sorokin%2C+C">Christina Sorokin</a>, <a href="/search/cs?searchtype=author&amp;query=Tacchetti%2C+A">Andrea Tacchetti</a>, <a href="/search/cs?searchtype=author&amp;query=Gaffney%2C+C">Colin Gaffney</a>, <a href="/search/cs?searchtype=author&amp;query=Daruki%2C+S">Samira Daruki</a>, <a href="/search/cs?searchtype=author&amp;query=Sercinoglu%2C+O">Olcan Sercinoglu</a>, <a href="/search/cs?searchtype=author&amp;query=Gleicher%2C+Z">Zach Gleicher</a>, <a href="/search/cs?searchtype=author&amp;query=Love%2C+J">Juliette Love</a> , et al. (1112 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.05530v5-abstract-short" style="display: inline;"> In this report, we introduce the Gemini 1.5 family of models, representing the next generation of highly compute-efficient multimodal models capable of recalling and reasoning over fine-grained information from millions of tokens of context, including multiple long documents and hours of video and audio. The family includes two new models: (1) an updated Gemini 1.5 Pro, which exceeds the February&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05530v5-abstract-full').style.display = 'inline'; document.getElementById('2403.05530v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.05530v5-abstract-full" style="display: none;"> In this report, we introduce the Gemini 1.5 family of models, representing the next generation of highly compute-efficient multimodal models capable of recalling and reasoning over fine-grained information from millions of tokens of context, including multiple long documents and hours of video and audio. The family includes two new models: (1) an updated Gemini 1.5 Pro, which exceeds the February version on the great majority of capabilities and benchmarks; (2) Gemini 1.5 Flash, a more lightweight variant designed for efficiency with minimal regression in quality. Gemini 1.5 models achieve near-perfect recall on long-context retrieval tasks across modalities, improve the state-of-the-art in long-document QA, long-video QA and long-context ASR, and match or surpass Gemini 1.0 Ultra&#39;s state-of-the-art performance across a broad set of benchmarks. Studying the limits of Gemini 1.5&#39;s long-context ability, we find continued improvement in next-token prediction and near-perfect retrieval (&gt;99%) up to at least 10M tokens, a generational leap over existing models such as Claude 3.0 (200k) and GPT-4 Turbo (128k). Finally, we highlight real-world use cases, such as Gemini 1.5 collaborating with professionals on completing their tasks achieving 26 to 75% time savings across 10 different job categories, as well as surprising new capabilities of large language models at the frontier; when given a grammar manual for Kalamang, a language with fewer than 200 speakers worldwide, the model learns to translate English to Kalamang at a similar level to a person who learned from the same content. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05530v5-abstract-full').style.display = 'none'; document.getElementById('2403.05530v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.12568">arXiv:2312.12568</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.12568">pdf</a>, <a href="https://arxiv.org/format/2312.12568">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Scaling Opponent Shaping to High Dimensional Games </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Khan%2C+A">Akbir Khan</a>, <a href="/search/cs?searchtype=author&amp;query=Willi%2C+T">Timon Willi</a>, <a href="/search/cs?searchtype=author&amp;query=Kwan%2C+N">Newton Kwan</a>, <a href="/search/cs?searchtype=author&amp;query=Tacchetti%2C+A">Andrea Tacchetti</a>, <a href="/search/cs?searchtype=author&amp;query=Lu%2C+C">Chris Lu</a>, <a href="/search/cs?searchtype=author&amp;query=Grefenstette%2C+E">Edward Grefenstette</a>, <a href="/search/cs?searchtype=author&amp;query=Rockt%C3%A4schel%2C+T">Tim Rockt盲schel</a>, <a href="/search/cs?searchtype=author&amp;query=Foerster%2C+J">Jakob Foerster</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.12568v3-abstract-short" style="display: inline;"> In multi-agent settings with mixed incentives, methods developed for zero-sum games have been shown to lead to detrimental outcomes. To address this issue, opponent shaping (OS) methods explicitly learn to influence the learning dynamics of co-players and empirically lead to improved individual and collective outcomes. However, OS methods have only been evaluated in low-dimensional environments du&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.12568v3-abstract-full').style.display = 'inline'; document.getElementById('2312.12568v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.12568v3-abstract-full" style="display: none;"> In multi-agent settings with mixed incentives, methods developed for zero-sum games have been shown to lead to detrimental outcomes. To address this issue, opponent shaping (OS) methods explicitly learn to influence the learning dynamics of co-players and empirically lead to improved individual and collective outcomes. However, OS methods have only been evaluated in low-dimensional environments due to the challenges associated with estimating higher-order derivatives or scaling model-free meta-learning. Alternative methods that scale to more complex settings either converge to undesirable solutions or rely on unrealistic assumptions about the environment or co-players. In this paper, we successfully scale an OS-based approach to general-sum games with temporally-extended actions and long-time horizons for the first time. After analysing the representations of the meta-state and history used by previous algorithms, we propose a simplified version called Shaper. We show empirically that Shaper leads to improved individual and collective outcomes in a range of challenging settings from literature. We further formalize a technique previously implicit in the literature, and analyse its contribution to opponent shaping. We show empirically that this technique is helpful for the functioning of prior methods in certain environments. Lastly, we show that previous environments, such as the CoinGame, are inadequate for analysing temporally-extended general-sum interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.12568v3-abstract-full').style.display = 'none'; document.getElementById('2312.12568v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.11805">arXiv:2312.11805</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.11805">pdf</a>, <a href="https://arxiv.org/format/2312.11805">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Gemini: A Family of Highly Capable Multimodal Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Gemini+Team"> Gemini Team</a>, <a href="/search/cs?searchtype=author&amp;query=Anil%2C+R">Rohan Anil</a>, <a href="/search/cs?searchtype=author&amp;query=Borgeaud%2C+S">Sebastian Borgeaud</a>, <a href="/search/cs?searchtype=author&amp;query=Alayrac%2C+J">Jean-Baptiste Alayrac</a>, <a href="/search/cs?searchtype=author&amp;query=Yu%2C+J">Jiahui Yu</a>, <a href="/search/cs?searchtype=author&amp;query=Soricut%2C+R">Radu Soricut</a>, <a href="/search/cs?searchtype=author&amp;query=Schalkwyk%2C+J">Johan Schalkwyk</a>, <a href="/search/cs?searchtype=author&amp;query=Dai%2C+A+M">Andrew M. Dai</a>, <a href="/search/cs?searchtype=author&amp;query=Hauth%2C+A">Anja Hauth</a>, <a href="/search/cs?searchtype=author&amp;query=Millican%2C+K">Katie Millican</a>, <a href="/search/cs?searchtype=author&amp;query=Silver%2C+D">David Silver</a>, <a href="/search/cs?searchtype=author&amp;query=Johnson%2C+M">Melvin Johnson</a>, <a href="/search/cs?searchtype=author&amp;query=Antonoglou%2C+I">Ioannis Antonoglou</a>, <a href="/search/cs?searchtype=author&amp;query=Schrittwieser%2C+J">Julian Schrittwieser</a>, <a href="/search/cs?searchtype=author&amp;query=Glaese%2C+A">Amelia Glaese</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+J">Jilin Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Pitler%2C+E">Emily Pitler</a>, <a href="/search/cs?searchtype=author&amp;query=Lillicrap%2C+T">Timothy Lillicrap</a>, <a href="/search/cs?searchtype=author&amp;query=Lazaridou%2C+A">Angeliki Lazaridou</a>, <a href="/search/cs?searchtype=author&amp;query=Firat%2C+O">Orhan Firat</a>, <a href="/search/cs?searchtype=author&amp;query=Molloy%2C+J">James Molloy</a>, <a href="/search/cs?searchtype=author&amp;query=Isard%2C+M">Michael Isard</a>, <a href="/search/cs?searchtype=author&amp;query=Barham%2C+P+R">Paul R. Barham</a>, <a href="/search/cs?searchtype=author&amp;query=Hennigan%2C+T">Tom Hennigan</a>, <a href="/search/cs?searchtype=author&amp;query=Lee%2C+B">Benjamin Lee</a> , et al. (1325 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.11805v4-abstract-short" style="display: inline;"> This report introduces a new family of multimodal models, Gemini, that exhibit remarkable capabilities across image, audio, video, and text understanding. The Gemini family consists of Ultra, Pro, and Nano sizes, suitable for applications ranging from complex reasoning tasks to on-device memory-constrained use-cases. Evaluation on a broad range of benchmarks shows that our most-capable Gemini Ultr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.11805v4-abstract-full').style.display = 'inline'; document.getElementById('2312.11805v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.11805v4-abstract-full" style="display: none;"> This report introduces a new family of multimodal models, Gemini, that exhibit remarkable capabilities across image, audio, video, and text understanding. The Gemini family consists of Ultra, Pro, and Nano sizes, suitable for applications ranging from complex reasoning tasks to on-device memory-constrained use-cases. Evaluation on a broad range of benchmarks shows that our most-capable Gemini Ultra model advances the state of the art in 30 of 32 of these benchmarks - notably being the first model to achieve human-expert performance on the well-studied exam benchmark MMLU, and improving the state of the art in every one of the 20 multimodal benchmarks we examined. We believe that the new capabilities of the Gemini family in cross-modal reasoning and language understanding will enable a wide variety of use cases. We discuss our approach toward post-training and deploying Gemini models responsibly to users through services including Gemini, Gemini Advanced, Google AI Studio, and Cloud Vertex AI. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.11805v4-abstract-full').style.display = 'none'; document.getElementById('2312.11805v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.06607">arXiv:2302.06607</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.06607">pdf</a>, <a href="https://arxiv.org/format/2302.06607">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> </div> </div> <p class="title is-5 mathjax"> Generative Adversarial Equilibrium Solvers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Goktas%2C+D">Denizalp Goktas</a>, <a href="/search/cs?searchtype=author&amp;query=Parkes%2C+D+C">David C. Parkes</a>, <a href="/search/cs?searchtype=author&amp;query=Gemp%2C+I">Ian Gemp</a>, <a href="/search/cs?searchtype=author&amp;query=Marris%2C+L">Luke Marris</a>, <a href="/search/cs?searchtype=author&amp;query=Piliouras%2C+G">Georgios Piliouras</a>, <a href="/search/cs?searchtype=author&amp;query=Elie%2C+R">Romuald Elie</a>, <a href="/search/cs?searchtype=author&amp;query=Lever%2C+G">Guy Lever</a>, <a href="/search/cs?searchtype=author&amp;query=Tacchetti%2C+A">Andrea Tacchetti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.06607v2-abstract-short" style="display: inline;"> We introduce the use of generative adversarial learning to compute equilibria in general game-theoretic settings, specifically the generalized Nash equilibrium (GNE) in pseudo-games, and its specific instantiation as the competitive equilibrium (CE) in Arrow-Debreu competitive economies. Pseudo-games are a generalization of games in which players&#39; actions affect not only the payoffs of other playe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.06607v2-abstract-full').style.display = 'inline'; document.getElementById('2302.06607v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.06607v2-abstract-full" style="display: none;"> We introduce the use of generative adversarial learning to compute equilibria in general game-theoretic settings, specifically the generalized Nash equilibrium (GNE) in pseudo-games, and its specific instantiation as the competitive equilibrium (CE) in Arrow-Debreu competitive economies. Pseudo-games are a generalization of games in which players&#39; actions affect not only the payoffs of other players but also their feasible action spaces. Although the computation of GNE and CE is intractable in the worst-case, i.e., PPAD-hard, in practice, many applications only require solutions with high accuracy in expectation over a distribution of problem instances. We introduce Generative Adversarial Equilibrium Solvers (GAES): a family of generative adversarial neural networks that can learn GNE and CE from only a sample of problem instances. We provide computational and sample complexity bounds, and apply the framework to finding Nash equilibria in normal-form games, CE in Arrow-Debreu competitive economies, and GNE in an environmental economic model of the Kyoto mechanism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.06607v2-abstract-full').style.display = 'none'; document.getElementById('2302.06607v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">41 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.09257">arXiv:2210.09257</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.09257">pdf</a>, <a href="https://arxiv.org/format/2210.09257">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> </div> </div> <p class="title is-5 mathjax"> Turbocharging Solution Concepts: Solving NEs, CEs and CCEs with Neural Equilibrium Solvers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Marris%2C+L">Luke Marris</a>, <a href="/search/cs?searchtype=author&amp;query=Gemp%2C+I">Ian Gemp</a>, <a href="/search/cs?searchtype=author&amp;query=Anthony%2C+T">Thomas Anthony</a>, <a href="/search/cs?searchtype=author&amp;query=Tacchetti%2C+A">Andrea Tacchetti</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+S">Siqi Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Tuyls%2C+K">Karl Tuyls</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.09257v2-abstract-short" style="display: inline;"> Solution concepts such as Nash Equilibria, Correlated Equilibria, and Coarse Correlated Equilibria are useful components for many multiagent machine learning algorithms. Unfortunately, solving a normal-form game could take prohibitive or non-deterministic time to converge, and could fail. We introduce the Neural Equilibrium Solver which utilizes a special equivariant neural network architecture to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.09257v2-abstract-full').style.display = 'inline'; document.getElementById('2210.09257v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.09257v2-abstract-full" style="display: none;"> Solution concepts such as Nash Equilibria, Correlated Equilibria, and Coarse Correlated Equilibria are useful components for many multiagent machine learning algorithms. Unfortunately, solving a normal-form game could take prohibitive or non-deterministic time to converge, and could fail. We introduce the Neural Equilibrium Solver which utilizes a special equivariant neural network architecture to approximately solve the space of all games of fixed shape, buying speed and determinism. We define a flexible equilibrium selection framework, that is capable of uniquely selecting an equilibrium that minimizes relative entropy, or maximizes welfare. The network is trained without needing to generate any supervised training data. We show remarkable zero-shot generalization to larger games. We argue that such a network is a powerful component for many possible multiagent algorithms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.09257v2-abstract-full').style.display = 'none'; document.getElementById('2210.09257v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">NeurIPS 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.10958">arXiv:2209.10958</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.10958">pdf</a>, <a href="https://arxiv.org/ps/2209.10958">ps</a>, <a href="https://arxiv.org/format/2209.10958">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Developing, Evaluating and Scaling Learning Agents in Multi-Agent Environments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Gemp%2C+I">Ian Gemp</a>, <a href="/search/cs?searchtype=author&amp;query=Anthony%2C+T">Thomas Anthony</a>, <a href="/search/cs?searchtype=author&amp;query=Bachrach%2C+Y">Yoram Bachrach</a>, <a href="/search/cs?searchtype=author&amp;query=Bhoopchand%2C+A">Avishkar Bhoopchand</a>, <a href="/search/cs?searchtype=author&amp;query=Bullard%2C+K">Kalesha Bullard</a>, <a href="/search/cs?searchtype=author&amp;query=Connor%2C+J">Jerome Connor</a>, <a href="/search/cs?searchtype=author&amp;query=Dasagi%2C+V">Vibhavari Dasagi</a>, <a href="/search/cs?searchtype=author&amp;query=De+Vylder%2C+B">Bart De Vylder</a>, <a href="/search/cs?searchtype=author&amp;query=Duenez-Guzman%2C+E">Edgar Duenez-Guzman</a>, <a href="/search/cs?searchtype=author&amp;query=Elie%2C+R">Romuald Elie</a>, <a href="/search/cs?searchtype=author&amp;query=Everett%2C+R">Richard Everett</a>, <a href="/search/cs?searchtype=author&amp;query=Hennes%2C+D">Daniel Hennes</a>, <a href="/search/cs?searchtype=author&amp;query=Hughes%2C+E">Edward Hughes</a>, <a href="/search/cs?searchtype=author&amp;query=Khan%2C+M">Mina Khan</a>, <a href="/search/cs?searchtype=author&amp;query=Lanctot%2C+M">Marc Lanctot</a>, <a href="/search/cs?searchtype=author&amp;query=Larson%2C+K">Kate Larson</a>, <a href="/search/cs?searchtype=author&amp;query=Lever%2C+G">Guy Lever</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+S">Siqi Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Marris%2C+L">Luke Marris</a>, <a href="/search/cs?searchtype=author&amp;query=McKee%2C+K+R">Kevin R. McKee</a>, <a href="/search/cs?searchtype=author&amp;query=Muller%2C+P">Paul Muller</a>, <a href="/search/cs?searchtype=author&amp;query=Perolat%2C+J">Julien Perolat</a>, <a href="/search/cs?searchtype=author&amp;query=Strub%2C+F">Florian Strub</a>, <a href="/search/cs?searchtype=author&amp;query=Tacchetti%2C+A">Andrea Tacchetti</a>, <a href="/search/cs?searchtype=author&amp;query=Tarassov%2C+E">Eugene Tarassov</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.10958v1-abstract-short" style="display: inline;"> The Game Theory &amp; Multi-Agent team at DeepMind studies several aspects of multi-agent learning ranging from computing approximations to fundamental concepts in game theory to simulating social dilemmas in rich spatial environments and training 3-d humanoids in difficult team coordination tasks. A signature aim of our group is to use the resources and expertise made available to us at DeepMind in d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10958v1-abstract-full').style.display = 'inline'; document.getElementById('2209.10958v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.10958v1-abstract-full" style="display: none;"> The Game Theory &amp; Multi-Agent team at DeepMind studies several aspects of multi-agent learning ranging from computing approximations to fundamental concepts in game theory to simulating social dilemmas in rich spatial environments and training 3-d humanoids in difficult team coordination tasks. A signature aim of our group is to use the resources and expertise made available to us at DeepMind in deep reinforcement learning to explore multi-agent systems in complex environments and use these benchmarks to advance our understanding. Here, we summarise the recent work of our team and present a taxonomy that we feel highlights many important open challenges in multi-agent research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10958v1-abstract-full').style.display = 'none'; document.getElementById('2209.10958v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in AI Communications 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.10135">arXiv:2202.10135</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.10135">pdf</a>, <a href="https://arxiv.org/format/2202.10135">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Economics">econ.GN</span> </div> </div> <p class="title is-5 mathjax"> The Good Shepherd: An Oracle Agent for Mechanism Design </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Balaguer%2C+J">Jan Balaguer</a>, <a href="/search/cs?searchtype=author&amp;query=Koster%2C+R">Raphael Koster</a>, <a href="/search/cs?searchtype=author&amp;query=Summerfield%2C+C">Christopher Summerfield</a>, <a href="/search/cs?searchtype=author&amp;query=Tacchetti%2C+A">Andrea Tacchetti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.10135v1-abstract-short" style="display: inline;"> From social networks to traffic routing, artificial learning agents are playing a central role in modern institutions. We must therefore understand how to leverage these systems to foster outcomes and behaviors that align with our own values and aspirations. While multiagent learning has received considerable attention in recent years, artificial agents have been primarily evaluated when interacti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.10135v1-abstract-full').style.display = 'inline'; document.getElementById('2202.10135v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.10135v1-abstract-full" style="display: none;"> From social networks to traffic routing, artificial learning agents are playing a central role in modern institutions. We must therefore understand how to leverage these systems to foster outcomes and behaviors that align with our own values and aspirations. While multiagent learning has received considerable attention in recent years, artificial agents have been primarily evaluated when interacting with fixed, non-learning co-players. While this evaluation scheme has merit, it fails to capture the dynamics faced by institutions that must deal with adaptive and continually learning constituents. Here we address this limitation, and construct agents (&#34;mechanisms&#34;) that perform well when evaluated over the learning trajectory of their adaptive co-players (&#34;participants&#34;). The algorithm we propose consists of two nested learning loops: an inner loop where participants learn to best respond to fixed mechanisms; and an outer loop where the mechanism agent updates its policy based on experience. We report the performance of our mechanism agents when paired with both artificial learning agents and humans as co-players. Our results show that our mechanisms are able to shepherd the participants strategies towards favorable outcomes, indicating a path for modern institutions to effectively and automatically influence the strategies and behaviors of their constituents. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.10135v1-abstract-full').style.display = 'none'; document.getElementById('2202.10135v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.10122">arXiv:2202.10122</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.10122">pdf</a>, <a href="https://arxiv.org/format/2202.10122">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Economics">econ.GN</span> </div> </div> <p class="title is-5 mathjax"> HCMD-zero: Learning Value Aligned Mechanisms from Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Balaguer%2C+J">Jan Balaguer</a>, <a href="/search/cs?searchtype=author&amp;query=Koster%2C+R">Raphael Koster</a>, <a href="/search/cs?searchtype=author&amp;query=Weinstein%2C+A">Ari Weinstein</a>, <a href="/search/cs?searchtype=author&amp;query=Campbell-Gillingham%2C+L">Lucy Campbell-Gillingham</a>, <a href="/search/cs?searchtype=author&amp;query=Summerfield%2C+C">Christopher Summerfield</a>, <a href="/search/cs?searchtype=author&amp;query=Botvinick%2C+M">Matthew Botvinick</a>, <a href="/search/cs?searchtype=author&amp;query=Tacchetti%2C+A">Andrea Tacchetti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.10122v2-abstract-short" style="display: inline;"> Artificial learning agents are mediating a larger and larger number of interactions among humans, firms, and organizations, and the intersection between mechanism design and machine learning has been heavily investigated in recent years. However, mechanism design methods often make strong assumptions on how participants behave (e.g. rationality), on the kind of knowledge designers have access to a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.10122v2-abstract-full').style.display = 'inline'; document.getElementById('2202.10122v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.10122v2-abstract-full" style="display: none;"> Artificial learning agents are mediating a larger and larger number of interactions among humans, firms, and organizations, and the intersection between mechanism design and machine learning has been heavily investigated in recent years. However, mechanism design methods often make strong assumptions on how participants behave (e.g. rationality), on the kind of knowledge designers have access to a priori (e.g. access to strong baseline mechanisms), or on what the goal of the mechanism should be (e.g. total welfare). Here we introduce HCMD-zero, a general purpose method to construct mechanisms making none of these three assumptions. HCMD-zero learns to mediate interactions among participants and adjusts the mechanism parameters to make itself more likely to be preferred by participants. It does so by remaining engaged in an electoral contest with copies of itself, thereby accessing direct feedback from participants. We test our method on a stylized resource allocation game that highlights the tension between productivity, equality and the temptation to free ride. HCMD-zero produces a mechanism that is preferred by human participants over a strong baseline, it does so automatically, without requiring prior knowledge, and using human behavioral trajectories sparingly and effectively. Our analysis shows HCMD-zero consistently makes the mechanism policy more and more likely to be preferred by human participants over the course of training, and that it results in a mechanism with an interpretable and intuitive policy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.10122v2-abstract-full').style.display = 'none'; document.getElementById('2202.10122v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.11441">arXiv:2201.11441</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.11441">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Human-Computer Interaction">cs.HC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Economics">econ.GN</span> </div> </div> <p class="title is-5 mathjax"> Human-centered mechanism design with Democratic AI </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Koster%2C+R">Raphael Koster</a>, <a href="/search/cs?searchtype=author&amp;query=Balaguer%2C+J">Jan Balaguer</a>, <a href="/search/cs?searchtype=author&amp;query=Tacchetti%2C+A">Andrea Tacchetti</a>, <a href="/search/cs?searchtype=author&amp;query=Weinstein%2C+A">Ari Weinstein</a>, <a href="/search/cs?searchtype=author&amp;query=Zhu%2C+T">Tina Zhu</a>, <a href="/search/cs?searchtype=author&amp;query=Hauser%2C+O">Oliver Hauser</a>, <a href="/search/cs?searchtype=author&amp;query=Williams%2C+D">Duncan Williams</a>, <a href="/search/cs?searchtype=author&amp;query=Campbell-Gillingham%2C+L">Lucy Campbell-Gillingham</a>, <a href="/search/cs?searchtype=author&amp;query=Thacker%2C+P">Phoebe Thacker</a>, <a href="/search/cs?searchtype=author&amp;query=Botvinick%2C+M">Matthew Botvinick</a>, <a href="/search/cs?searchtype=author&amp;query=Summerfield%2C+C">Christopher Summerfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.11441v1-abstract-short" style="display: inline;"> Building artificial intelligence (AI) that aligns with human values is an unsolved problem. Here, we developed a human-in-the-loop research pipeline called Democratic AI, in which reinforcement learning is used to design a social mechanism that humans prefer by majority. A large group of humans played an online investment game that involved deciding whether to keep a monetary endowment or to share&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.11441v1-abstract-full').style.display = 'inline'; document.getElementById('2201.11441v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.11441v1-abstract-full" style="display: none;"> Building artificial intelligence (AI) that aligns with human values is an unsolved problem. Here, we developed a human-in-the-loop research pipeline called Democratic AI, in which reinforcement learning is used to design a social mechanism that humans prefer by majority. A large group of humans played an online investment game that involved deciding whether to keep a monetary endowment or to share it with others for collective benefit. Shared revenue was returned to players under two different redistribution mechanisms, one designed by the AI and the other by humans. The AI discovered a mechanism that redressed initial wealth imbalance, sanctioned free riders, and successfully won the majority vote. By optimizing for human preferences, Democratic AI may be a promising method for value-aligned policy innovation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.11441v1-abstract-full').style.display = 'none'; document.getElementById('2201.11441v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 4 figures, 54 pages including supplemental materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.01285">arXiv:2106.01285</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.01285">pdf</a>, <a href="https://arxiv.org/format/2106.01285">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> </div> </div> <p class="title is-5 mathjax"> Sample-based Approximation of Nash in Large Many-Player Games via Gradient Descent </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Gemp%2C+I">Ian Gemp</a>, <a href="/search/cs?searchtype=author&amp;query=Savani%2C+R">Rahul Savani</a>, <a href="/search/cs?searchtype=author&amp;query=Lanctot%2C+M">Marc Lanctot</a>, <a href="/search/cs?searchtype=author&amp;query=Bachrach%2C+Y">Yoram Bachrach</a>, <a href="/search/cs?searchtype=author&amp;query=Anthony%2C+T">Thomas Anthony</a>, <a href="/search/cs?searchtype=author&amp;query=Everett%2C+R">Richard Everett</a>, <a href="/search/cs?searchtype=author&amp;query=Tacchetti%2C+A">Andrea Tacchetti</a>, <a href="/search/cs?searchtype=author&amp;query=Eccles%2C+T">Tom Eccles</a>, <a href="/search/cs?searchtype=author&amp;query=Kram%C3%A1r%2C+J">J谩nos Kram谩r</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.01285v3-abstract-short" style="display: inline;"> Nash equilibrium is a central concept in game theory. Several Nash solvers exist, yet none scale to normal-form games with many actions and many players, especially those with payoff tensors too big to be stored in memory. In this work, we propose an approach that iteratively improves an approximation to a Nash equilibrium through joint play. It accomplishes this by tracing a previously establishe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.01285v3-abstract-full').style.display = 'inline'; document.getElementById('2106.01285v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.01285v3-abstract-full" style="display: none;"> Nash equilibrium is a central concept in game theory. Several Nash solvers exist, yet none scale to normal-form games with many actions and many players, especially those with payoff tensors too big to be stored in memory. In this work, we propose an approach that iteratively improves an approximation to a Nash equilibrium through joint play. It accomplishes this by tracing a previously established homotopy that defines a continuum of equilibria for the game regularized with decaying levels of entropy. This continuum asymptotically approaches the limiting logit equilibrium, proven by McKelvey and Palfrey (1995) to be unique in almost all games, thereby partially circumventing the well-known equilibrium selection problem of many-player games. To encourage iterates to remain near this path, we efficiently minimize average deviation incentive via stochastic gradient descent, intelligently sampling entries in the payoff tensor as needed. Monte Carlo estimates of the stochastic gradient from joint play are biased due to the appearance of a nonlinear max operator in the objective, so we introduce additional innovations to the algorithm to alleviate gradient bias. The descent process can also be viewed as repeatedly constructing and reacting to a polymatrix approximation to the game. In these ways, our proposed approach, average deviation incentive descent with adaptive sampling (ADIDAS), is most similar to three classical approaches, namely homotopy-type, Lyapunov, and iterative polymatrix solvers. The lack of local convergence guarantees for biased gradient descent prevents guaranteed convergence to Nash, however, we demonstrate through extensive experiments the ability of this approach to approximate a unique Nash in normal-form games with as many as seven players and twenty one actions (several billion outcomes) that are orders of magnitude larger than those possible with prior algorithms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.01285v3-abstract-full').style.display = 'none'; document.getElementById('2106.01285v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in AAMAS 2022 (code available as part of open_spiel on github -- search ADIDAS in repo)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.00575">arXiv:2010.00575</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.00575">pdf</a>, <a href="https://arxiv.org/format/2010.00575">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> </div> </div> <p class="title is-5 mathjax"> D3C: Reducing the Price of Anarchy in Multi-Agent Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Gemp%2C+I">Ian Gemp</a>, <a href="/search/cs?searchtype=author&amp;query=McKee%2C+K+R">Kevin R. McKee</a>, <a href="/search/cs?searchtype=author&amp;query=Everett%2C+R">Richard Everett</a>, <a href="/search/cs?searchtype=author&amp;query=Du%C3%A9%C3%B1ez-Guzm%C3%A1n%2C+E+A">Edgar A. Du茅帽ez-Guzm谩n</a>, <a href="/search/cs?searchtype=author&amp;query=Bachrach%2C+Y">Yoram Bachrach</a>, <a href="/search/cs?searchtype=author&amp;query=Balduzzi%2C+D">David Balduzzi</a>, <a href="/search/cs?searchtype=author&amp;query=Tacchetti%2C+A">Andrea Tacchetti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.00575v5-abstract-short" style="display: inline;"> In multiagent systems, the complex interaction of fixed incentives can lead agents to outcomes that are poor (inefficient) not only for the group, but also for each individual. Price of anarchy is a technical, game-theoretic definition that quantifies the inefficiency arising in these scenarios -- it compares the welfare that can be achieved through perfect coordination against that achieved by se&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.00575v5-abstract-full').style.display = 'inline'; document.getElementById('2010.00575v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.00575v5-abstract-full" style="display: none;"> In multiagent systems, the complex interaction of fixed incentives can lead agents to outcomes that are poor (inefficient) not only for the group, but also for each individual. Price of anarchy is a technical, game-theoretic definition that quantifies the inefficiency arising in these scenarios -- it compares the welfare that can be achieved through perfect coordination against that achieved by self-interested agents at a Nash equilibrium. We derive a differentiable, upper bound on a price of anarchy that agents can cheaply estimate during learning. Equipped with this estimator, agents can adjust their incentives in a way that improves the efficiency incurred at a Nash equilibrium. Agents do so by learning to mix their reward (equiv. negative loss) with that of other agents by following the gradient of our derived upper bound. We refer to this approach as D3C. In the case where agent incentives are differentiable, D3C resembles the celebrated Win-Stay, Lose-Shift strategy from behavioral game theory, thereby establishing a connection between the global goal of maximum welfare and an established agent-centric learning rule. In the non-differentiable setting, as is common in multiagent reinforcement learning, we show the upper bound can be reduced via evolutionary strategies, until a compromise is reached in a distributed fashion. We demonstrate that D3C improves outcomes for each agent and the group as a whole on several social dilemmas including a traffic network exhibiting Braess&#39;s paradox, a prisoner&#39;s dilemma, and several multiagent domains. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.00575v5-abstract-full').style.display = 'none'; document.getElementById('2010.00575v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in AAMAS 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.04635">arXiv:2006.04635</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.04635">pdf</a>, <a href="https://arxiv.org/format/2006.04635">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Learning to Play No-Press Diplomacy with Best Response Policy Iteration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Anthony%2C+T">Thomas Anthony</a>, <a href="/search/cs?searchtype=author&amp;query=Eccles%2C+T">Tom Eccles</a>, <a href="/search/cs?searchtype=author&amp;query=Tacchetti%2C+A">Andrea Tacchetti</a>, <a href="/search/cs?searchtype=author&amp;query=Kram%C3%A1r%2C+J">J谩nos Kram谩r</a>, <a href="/search/cs?searchtype=author&amp;query=Gemp%2C+I">Ian Gemp</a>, <a href="/search/cs?searchtype=author&amp;query=Hudson%2C+T+C">Thomas C. Hudson</a>, <a href="/search/cs?searchtype=author&amp;query=Porcel%2C+N">Nicolas Porcel</a>, <a href="/search/cs?searchtype=author&amp;query=Lanctot%2C+M">Marc Lanctot</a>, <a href="/search/cs?searchtype=author&amp;query=P%C3%A9rolat%2C+J">Julien P茅rolat</a>, <a href="/search/cs?searchtype=author&amp;query=Everett%2C+R">Richard Everett</a>, <a href="/search/cs?searchtype=author&amp;query=Werpachowski%2C+R">Roman Werpachowski</a>, <a href="/search/cs?searchtype=author&amp;query=Singh%2C+S">Satinder Singh</a>, <a href="/search/cs?searchtype=author&amp;query=Graepel%2C+T">Thore Graepel</a>, <a href="/search/cs?searchtype=author&amp;query=Bachrach%2C+Y">Yoram Bachrach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.04635v4-abstract-short" style="display: inline;"> Recent advances in deep reinforcement learning (RL) have led to considerable progress in many 2-player zero-sum games, such as Go, Poker and Starcraft. The purely adversarial nature of such games allows for conceptually simple and principled application of RL methods. However real-world settings are many-agent, and agent interactions are complex mixtures of common-interest and competitive aspects.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.04635v4-abstract-full').style.display = 'inline'; document.getElementById('2006.04635v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.04635v4-abstract-full" style="display: none;"> Recent advances in deep reinforcement learning (RL) have led to considerable progress in many 2-player zero-sum games, such as Go, Poker and Starcraft. The purely adversarial nature of such games allows for conceptually simple and principled application of RL methods. However real-world settings are many-agent, and agent interactions are complex mixtures of common-interest and competitive aspects. We consider Diplomacy, a 7-player board game designed to accentuate dilemmas resulting from many-agent interactions. It also features a large combinatorial action space and simultaneous moves, which are challenging for RL algorithms. We propose a simple yet effective approximate best response operator, designed to handle large combinatorial action spaces and simultaneous moves. We also introduce a family of policy iteration methods that approximate fictitious play. With these methods, we successfully apply RL to Diplomacy: we show that our agents convincingly outperform the previous state-of-the-art, and game theoretic equilibrium analysis shows that the new process yields consistent improvements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.04635v4-abstract-full').style.display = 'none'; document.getElementById('2006.04635v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.07625">arXiv:2004.07625</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.07625">pdf</a>, <a href="https://arxiv.org/format/2004.07625">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> </div> </div> <p class="title is-5 mathjax"> Should I tear down this wall? Optimizing social metrics by evaluating novel actions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Kram%C3%A1r%2C+J">J谩nos Kram谩r</a>, <a href="/search/cs?searchtype=author&amp;query=Rabinowitz%2C+N">Neil Rabinowitz</a>, <a href="/search/cs?searchtype=author&amp;query=Eccles%2C+T">Tom Eccles</a>, <a href="/search/cs?searchtype=author&amp;query=Tacchetti%2C+A">Andrea Tacchetti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.07625v1-abstract-short" style="display: inline;"> One of the fundamental challenges of governance is deciding when and how to intervene in multi-agent systems in order to impact group-wide metrics of success. This is particularly challenging when proposed interventions are novel and expensive. For example, one may wish to modify a building&#39;s layout to improve the efficiency of its escape route. Evaluating such interventions would generally requir&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.07625v1-abstract-full').style.display = 'inline'; document.getElementById('2004.07625v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.07625v1-abstract-full" style="display: none;"> One of the fundamental challenges of governance is deciding when and how to intervene in multi-agent systems in order to impact group-wide metrics of success. This is particularly challenging when proposed interventions are novel and expensive. For example, one may wish to modify a building&#39;s layout to improve the efficiency of its escape route. Evaluating such interventions would generally require access to an elaborate simulator, which must be constructed ad-hoc for each environment, and can be prohibitively costly or inaccurate. Here we examine a simple alternative: Optimize By Observational Extrapolation (OBOE). The idea is to use observed behavioural trajectories, without any interventions, to learn predictive models mapping environment states to individual agent outcomes, and then use these to evaluate and select changes. We evaluate OBOE in socially complex gridworld environments and consider novel physical interventions that our models were not trained on. We show that neural network models trained to predict agent returns on baseline environments are effective at selecting among the interventions. Thus, OBOE can provide guidance for challenging questions like: &#34;which wall should I tear down in order to minimize the Gini index of this group?&#34; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.07625v1-abstract-full').style.display = 'none'; document.getElementById('2004.07625v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.05181">arXiv:1907.05181</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.05181">pdf</a>, <a href="https://arxiv.org/format/1907.05181">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Learning Truthful, Efficient, and Welfare Maximizing Auction Rules </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Tacchetti%2C+A">Andrea Tacchetti</a>, <a href="/search/cs?searchtype=author&amp;query=Strouse%2C+D">DJ Strouse</a>, <a href="/search/cs?searchtype=author&amp;query=Garnelo%2C+M">Marta Garnelo</a>, <a href="/search/cs?searchtype=author&amp;query=Graepel%2C+T">Thore Graepel</a>, <a href="/search/cs?searchtype=author&amp;query=Bachrach%2C+Y">Yoram Bachrach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.05181v2-abstract-short" style="display: inline;"> From social networks to supply chains, more and more aspects of how humans, firms and organizations interact is mediated by artificial learning agents. As the influence of machine learning systems grows, it is paramount that we study how to imbue our modern institutions with our own values and principles. Here we consider the problem of allocating goods to buyers who have preferences over them in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.05181v2-abstract-full').style.display = 'inline'; document.getElementById('1907.05181v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.05181v2-abstract-full" style="display: none;"> From social networks to supply chains, more and more aspects of how humans, firms and organizations interact is mediated by artificial learning agents. As the influence of machine learning systems grows, it is paramount that we study how to imbue our modern institutions with our own values and principles. Here we consider the problem of allocating goods to buyers who have preferences over them in settings where the seller&#39;s aim is not to maximize their monetary gains, but rather to advance some notion of social welfare (e.g. the government trying to award construction licenses for hospitals or schools). This problem has a long history in economics, and solutions take the form of auction rules. Researchers have proposed reliable auction rules that work in extremely general settings, and in the presence of information asymmetry and strategic buyers. However, these protocols require significant payments from participants resulting in low aggregate welfare. Here we address this shortcoming by casting auction rule design as a statistical learning problem, and trade generality for participant welfare effectively and automatically with a novel deep learning network architecture and auction representation. Our analysis shows that our auction rules outperform state-of-the art approaches in terms of participants welfare, applicability, robustness. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.05181v2-abstract-full').style.display = 'none'; document.getElementById('1907.05181v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.11044">arXiv:1809.11044</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1809.11044">pdf</a>, <a href="https://arxiv.org/format/1809.11044">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Relational Forward Models for Multi-Agent Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Tacchetti%2C+A">Andrea Tacchetti</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+H+F">H. Francis Song</a>, <a href="/search/cs?searchtype=author&amp;query=Mediano%2C+P+A+M">Pedro A. M. Mediano</a>, <a href="/search/cs?searchtype=author&amp;query=Zambaldi%2C+V">Vinicius Zambaldi</a>, <a href="/search/cs?searchtype=author&amp;query=Rabinowitz%2C+N+C">Neil C. Rabinowitz</a>, <a href="/search/cs?searchtype=author&amp;query=Graepel%2C+T">Thore Graepel</a>, <a href="/search/cs?searchtype=author&amp;query=Botvinick%2C+M">Matthew Botvinick</a>, <a href="/search/cs?searchtype=author&amp;query=Battaglia%2C+P+W">Peter W. Battaglia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.11044v1-abstract-short" style="display: inline;"> The behavioral dynamics of multi-agent systems have a rich and orderly structure, which can be leveraged to understand these systems, and to improve how artificial agents learn to operate in them. Here we introduce Relational Forward Models (RFM) for multi-agent learning, networks that can learn to make accurate predictions of agents&#39; future behavior in multi-agent environments. Because these mode&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.11044v1-abstract-full').style.display = 'inline'; document.getElementById('1809.11044v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.11044v1-abstract-full" style="display: none;"> The behavioral dynamics of multi-agent systems have a rich and orderly structure, which can be leveraged to understand these systems, and to improve how artificial agents learn to operate in them. Here we introduce Relational Forward Models (RFM) for multi-agent learning, networks that can learn to make accurate predictions of agents&#39; future behavior in multi-agent environments. Because these models operate on the discrete entities and relations present in the environment, they produce interpretable intermediate representations which offer insights into what drives agents&#39; behavior, and what events mediate the intensity and valence of social interactions. Furthermore, we show that embedding RFM modules inside agents results in faster learning systems compared to non-augmented baselines. As more and more of the autonomous systems we develop and interact with become multi-agent in nature, developing richer analysis tools for characterizing how and why agents make decisions is increasingly necessary. Moreover, developing artificial agents that quickly and safely learn to coordinate with one another, and with humans in shared environments, is crucial. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.11044v1-abstract-full').style.display = 'none'; document.getElementById('1809.11044v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.01261">arXiv:1806.01261</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.01261">pdf</a>, <a href="https://arxiv.org/format/1806.01261">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Relational inductive biases, deep learning, and graph networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Battaglia%2C+P+W">Peter W. Battaglia</a>, <a href="/search/cs?searchtype=author&amp;query=Hamrick%2C+J+B">Jessica B. Hamrick</a>, <a href="/search/cs?searchtype=author&amp;query=Bapst%2C+V">Victor Bapst</a>, <a href="/search/cs?searchtype=author&amp;query=Sanchez-Gonzalez%2C+A">Alvaro Sanchez-Gonzalez</a>, <a href="/search/cs?searchtype=author&amp;query=Zambaldi%2C+V">Vinicius Zambaldi</a>, <a href="/search/cs?searchtype=author&amp;query=Malinowski%2C+M">Mateusz Malinowski</a>, <a href="/search/cs?searchtype=author&amp;query=Tacchetti%2C+A">Andrea Tacchetti</a>, <a href="/search/cs?searchtype=author&amp;query=Raposo%2C+D">David Raposo</a>, <a href="/search/cs?searchtype=author&amp;query=Santoro%2C+A">Adam Santoro</a>, <a href="/search/cs?searchtype=author&amp;query=Faulkner%2C+R">Ryan Faulkner</a>, <a href="/search/cs?searchtype=author&amp;query=Gulcehre%2C+C">Caglar Gulcehre</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+F">Francis Song</a>, <a href="/search/cs?searchtype=author&amp;query=Ballard%2C+A">Andrew Ballard</a>, <a href="/search/cs?searchtype=author&amp;query=Gilmer%2C+J">Justin Gilmer</a>, <a href="/search/cs?searchtype=author&amp;query=Dahl%2C+G">George Dahl</a>, <a href="/search/cs?searchtype=author&amp;query=Vaswani%2C+A">Ashish Vaswani</a>, <a href="/search/cs?searchtype=author&amp;query=Allen%2C+K">Kelsey Allen</a>, <a href="/search/cs?searchtype=author&amp;query=Nash%2C+C">Charles Nash</a>, <a href="/search/cs?searchtype=author&amp;query=Langston%2C+V">Victoria Langston</a>, <a href="/search/cs?searchtype=author&amp;query=Dyer%2C+C">Chris Dyer</a>, <a href="/search/cs?searchtype=author&amp;query=Heess%2C+N">Nicolas Heess</a>, <a href="/search/cs?searchtype=author&amp;query=Wierstra%2C+D">Daan Wierstra</a>, <a href="/search/cs?searchtype=author&amp;query=Kohli%2C+P">Pushmeet Kohli</a>, <a href="/search/cs?searchtype=author&amp;query=Botvinick%2C+M">Matt Botvinick</a>, <a href="/search/cs?searchtype=author&amp;query=Vinyals%2C+O">Oriol Vinyals</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.01261v3-abstract-short" style="display: inline;"> Artificial intelligence (AI) has undergone a renaissance recently, making major progress in key domains such as vision, language, control, and decision-making. This has been due, in part, to cheap data and cheap compute resources, which have fit the natural strengths of deep learning. However, many defining characteristics of human intelligence, which developed under much different pressures, rema&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.01261v3-abstract-full').style.display = 'inline'; document.getElementById('1806.01261v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.01261v3-abstract-full" style="display: none;"> Artificial intelligence (AI) has undergone a renaissance recently, making major progress in key domains such as vision, language, control, and decision-making. This has been due, in part, to cheap data and cheap compute resources, which have fit the natural strengths of deep learning. However, many defining characteristics of human intelligence, which developed under much different pressures, remain out of reach for current approaches. In particular, generalizing beyond one&#39;s experiences--a hallmark of human intelligence from infancy--remains a formidable challenge for modern AI. The following is part position paper, part review, and part unification. We argue that combinatorial generalization must be a top priority for AI to achieve human-like abilities, and that structured representations and computations are key to realizing this objective. Just as biology uses nature and nurture cooperatively, we reject the false choice between &#34;hand-engineering&#34; and &#34;end-to-end&#34; learning, and instead advocate for an approach which benefits from their complementary strengths. We explore how using relational inductive biases within deep learning architectures can facilitate learning about entities, relations, and rules for composing them. We present a new building block for the AI toolkit with a strong relational inductive bias--the graph network--which generalizes and extends various approaches for neural networks that operate on graphs, and provides a straightforward interface for manipulating structured knowledge and producing structured behaviors. We discuss how graph networks can support relational reasoning and combinatorial generalization, laying the foundation for more sophisticated, interpretable, and flexible patterns of reasoning. As a companion to this paper, we have released an open-source software library for building graph networks, with demonstrations of how to use them in practice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.01261v3-abstract-full').style.display = 'none'; document.getElementById('1806.01261v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.01433">arXiv:1706.01433</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1706.01433">pdf</a>, <a href="https://arxiv.org/format/1706.01433">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Visual Interaction Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Watters%2C+N">Nicholas Watters</a>, <a href="/search/cs?searchtype=author&amp;query=Tacchetti%2C+A">Andrea Tacchetti</a>, <a href="/search/cs?searchtype=author&amp;query=Weber%2C+T">Theophane Weber</a>, <a href="/search/cs?searchtype=author&amp;query=Pascanu%2C+R">Razvan Pascanu</a>, <a href="/search/cs?searchtype=author&amp;query=Battaglia%2C+P">Peter Battaglia</a>, <a href="/search/cs?searchtype=author&amp;query=Zoran%2C+D">Daniel Zoran</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.01433v1-abstract-short" style="display: inline;"> From just a glance, humans can make rich predictions about the future state of a wide range of physical systems. On the other hand, modern approaches from engineering, robotics, and graphics are often restricted to narrow domains and require direct measurements of the underlying states. We introduce the Visual Interaction Network, a general-purpose model for learning the dynamics of a physical sys&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.01433v1-abstract-full').style.display = 'inline'; document.getElementById('1706.01433v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.01433v1-abstract-full" style="display: none;"> From just a glance, humans can make rich predictions about the future state of a wide range of physical systems. On the other hand, modern approaches from engineering, robotics, and graphics are often restricted to narrow domains and require direct measurements of the underlying states. We introduce the Visual Interaction Network, a general-purpose model for learning the dynamics of a physical system from raw visual observations. Our model consists of a perceptual front-end based on convolutional neural networks and a dynamics predictor based on interaction networks. Through joint training, the perceptual front-end learns to parse a dynamic visual scene into a set of factored latent object representations. The dynamics predictor learns to roll these states forward in time by computing their interactions and dynamics, producing a predicted physical trajectory of arbitrary length. We found that from just six input video frames the Visual Interaction Network can generate accurate future trajectories of hundreds of time steps on a wide range of physical systems. Our model can also be applied to scenes with invisible objects, inferring their future states from their effects on the visible objects, and can implicitly infer the unknown mass of objects. Our results demonstrate that the perceptual module and the object-based dynamics predictor module can induce factored latent representations that support accurate dynamical predictions. This work opens new opportunities for model-based decision-making and planning from raw sensory observations in complex physical environments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.01433v1-abstract-full').style.display = 'none'; document.getElementById('1706.01433v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.04775">arXiv:1703.04775</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1703.04775">pdf</a>, <a href="https://arxiv.org/format/1703.04775">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Discriminate-and-Rectify Encoders: Learning from Image Transformation Sets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Tacchetti%2C+A">Andrea Tacchetti</a>, <a href="/search/cs?searchtype=author&amp;query=Voinea%2C+S">Stephen Voinea</a>, <a href="/search/cs?searchtype=author&amp;query=Evangelopoulos%2C+G">Georgios Evangelopoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.04775v1-abstract-short" style="display: inline;"> The complexity of a learning task is increased by transformations in the input space that preserve class identity. Visual object recognition for example is affected by changes in viewpoint, scale, illumination or planar transformations. While drastically altering the visual appearance, these changes are orthogonal to recognition and should not be reflected in the representation or feature encoding&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.04775v1-abstract-full').style.display = 'inline'; document.getElementById('1703.04775v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.04775v1-abstract-full" style="display: none;"> The complexity of a learning task is increased by transformations in the input space that preserve class identity. Visual object recognition for example is affected by changes in viewpoint, scale, illumination or planar transformations. While drastically altering the visual appearance, these changes are orthogonal to recognition and should not be reflected in the representation or feature encoding used for learning. We introduce a framework for weakly supervised learning of image embeddings that are robust to transformations and selective to the class distribution, using sets of transforming examples (orbit sets), deep parametrizations and a novel orbit-based loss. The proposed loss combines a discriminative, contrastive part for orbits with a reconstruction error that learns to rectify orbit transformations. The learned embeddings are evaluated in distance metric-based tasks, such as one-shot classification under geometric transformations, as well as face verification and retrieval under more realistic visual variability. Our results suggest that orbit sets, suitably computed or observed, can be used for efficient, weakly-supervised learning of semantically relevant image embeddings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.04775v1-abstract-full').style.display = 'none'; document.getElementById('1703.04775v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1311.4158">arXiv:1311.4158</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1311.4158">pdf</a>, <a href="https://arxiv.org/format/1311.4158">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Unsupervised Learning of Invariant Representations in Hierarchical Architectures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Anselmi%2C+F">Fabio Anselmi</a>, <a href="/search/cs?searchtype=author&amp;query=Leibo%2C+J+Z">Joel Z. Leibo</a>, <a href="/search/cs?searchtype=author&amp;query=Rosasco%2C+L">Lorenzo Rosasco</a>, <a href="/search/cs?searchtype=author&amp;query=Mutch%2C+J">Jim Mutch</a>, <a href="/search/cs?searchtype=author&amp;query=Tacchetti%2C+A">Andrea Tacchetti</a>, <a href="/search/cs?searchtype=author&amp;query=Poggio%2C+T">Tomaso Poggio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1311.4158v5-abstract-short" style="display: inline;"> The present phase of Machine Learning is characterized by supervised learning algorithms relying on large sets of labeled examples ($n \to \infty$). The next phase is likely to focus on algorithms capable of learning from very few labeled examples ($n \to 1$), like humans seem able to do. We propose an approach to this problem and describe the underlying theory, based on the unsupervised, automati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.4158v5-abstract-full').style.display = 'inline'; document.getElementById('1311.4158v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1311.4158v5-abstract-full" style="display: none;"> The present phase of Machine Learning is characterized by supervised learning algorithms relying on large sets of labeled examples ($n \to \infty$). The next phase is likely to focus on algorithms capable of learning from very few labeled examples ($n \to 1$), like humans seem able to do. We propose an approach to this problem and describe the underlying theory, based on the unsupervised, automatic learning of a ``good&#39;&#39; representation for supervised learning, characterized by small sample complexity ($n$). We consider the case of visual object recognition though the theory applies to other domains. The starting point is the conjecture, proved in specific cases, that image representations which are invariant to translations, scaling and other transformations can considerably reduce the sample complexity of learning. We prove that an invariant and unique (discriminative) signature can be computed for each image patch, $I$, in terms of empirical distributions of the dot-products between $I$ and a set of templates stored during unsupervised learning. A module performing filtering and pooling, like the simple and complex cells described by Hubel and Wiesel, can compute such estimates. Hierarchical architectures consisting of this basic Hubel-Wiesel moduli inherit its properties of invariance, stability, and discriminability while capturing the compositional organization of the visual world in terms of wholes and parts. The theory extends existing deep learning convolutional architectures for image and speech recognition. It also suggests that the main computational goal of the ventral stream of visual cortex is to provide a hierarchical representation of new objects/images which is invariant to transformations, stable, and discriminative for recognition---and that this representation may be continuously learned in an unsupervised way during development and visual experience. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.4158v5-abstract-full').style.display = 'none'; document.getElementById('1311.4158v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 10 figures. November 21 2013: Added acknowledgment of NSF funding. No other changes. December 18 (2013): Fixed a figure. January 10 (2014): Fixed a figure and some math in SI. March 10 2014: modified abstract and implementation section (main and SI); added a paragraph about sample complexity in SI</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1303.0934">arXiv:1303.0934</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1303.0934">pdf</a>, <a href="https://arxiv.org/format/1303.0934">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Software">cs.MS</span> </div> </div> <p class="title is-5 mathjax"> GURLS: a Least Squares Library for Supervised Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Tacchetti%2C+A">Andrea Tacchetti</a>, <a href="/search/cs?searchtype=author&amp;query=Mallapragada%2C+P+K">Pavan K Mallapragada</a>, <a href="/search/cs?searchtype=author&amp;query=Santoro%2C+M">Matteo Santoro</a>, <a href="/search/cs?searchtype=author&amp;query=Rosasco%2C+L">Lorenzo Rosasco</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1303.0934v1-abstract-short" style="display: inline;"> We present GURLS, a least squares, modular, easy-to-extend software library for efficient supervised learning. GURLS is targeted to machine learning practitioners, as well as non-specialists. It offers a number state-of-the-art training strategies for medium and large-scale learning, and routines for efficient model selection. The library is particularly well suited for multi-output problems (mult&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1303.0934v1-abstract-full').style.display = 'inline'; document.getElementById('1303.0934v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1303.0934v1-abstract-full" style="display: none;"> We present GURLS, a least squares, modular, easy-to-extend software library for efficient supervised learning. GURLS is targeted to machine learning practitioners, as well as non-specialists. It offers a number state-of-the-art training strategies for medium and large-scale learning, and routines for efficient model selection. The library is particularly well suited for multi-output problems (multi-category/multi-label). GURLS is currently available in two independent implementations: Matlab and C++. It takes advantage of the favorable properties of regularized least squares algorithm to exploit advanced tools in linear algebra. Routines to handle computations with very large matrices by means of memory-mapped storage and distributed task execution are available. The package is distributed under the BSD licence and is available for download at https://github.com/CBCL/GURLS. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1303.0934v1-abstract-full').style.display = 'none'; document.getElementById('1303.0934v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2013. </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10