CINXE.COM
Search results for: water treatment residue
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: water treatment residue</title> <meta name="description" content="Search results for: water treatment residue"> <meta name="keywords" content="water treatment residue"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="water treatment residue" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="water treatment residue"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 15492</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: water treatment residue</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15492</span> Use of Residues from Water Treatment and Porcelain Coatings Industry for Producing Eco-Bricks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Flavio%20Araujo">Flavio Araujo</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabiolla%20Lima"> Fabiolla Lima</a>, <a href="https://publications.waset.org/abstracts/search?q=Julio%20Lima"> Julio Lima</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20Scalize"> Paulo Scalize</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Albuquerque"> Antonio Albuquerque</a>, <a href="https://publications.waset.org/abstracts/search?q=Heitor%20Reis"> Heitor Reis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the great environmental problems in the management of water treatment (WTP) is on the disposal of waste generated during the treatment process. The same occurs with the waste generated during rectification of porcelain tiles. Despite environmental laws in Brazil the residues does not have an ecologically balanced destination. Thus, with the purpose to identify an environmentally sustainable disposal, residues were used to replace part of the soil, for production soil-cement bricks. It was used the residues from WTP and coatings industry Cecrisa (Brazil). Consequently, a greater amount of fine aggregate in the two samples of residues was found. The residue affects the quality of bricks produced, compared to the sample without residues. However, the results of compression and water absorption tests were obtained values that meet the standards, respectively 2.0 MPa and 20% absorption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20treatment%20residue" title="water treatment residue">water treatment residue</a>, <a href="https://publications.waset.org/abstracts/search?q=porcelain%20tile%20residue" title=" porcelain tile residue"> porcelain tile residue</a>, <a href="https://publications.waset.org/abstracts/search?q=WTP" title=" WTP"> WTP</a>, <a href="https://publications.waset.org/abstracts/search?q=brick" title=" brick"> brick</a> </p> <a href="https://publications.waset.org/abstracts/18184/use-of-residues-from-water-treatment-and-porcelain-coatings-industry-for-producing-eco-bricks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18184.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15491</span> A Social-Environmental Way for Production of Building Materials with Solid Residues</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Flavio%20Araujo">Flavio Araujo</a>, <a href="https://publications.waset.org/abstracts/search?q=Julio%20Lima"> Julio Lima</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20Scalize"> Paulo Scalize</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Albuquerque"> Antonio Albuquerque</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water treatment residues (WTR) are produced during water treatment and have recently been seen as a reusable material. The aim of this research was to perform characterizations of the residue generated in the Meia-Ponte Water Treatment Plant, in Goiania, Brazil, seeking to obtain normative parameters and consider sustainable alternatives for reincorporation of the residues in the productive chain for manufacturing various materials construction. In order to reduce the environmental liabilities generated by sanitation companies and discontinue unsustainable forms of disposal. The analyzes performed: Granulometry, Scanning Electron Microscopy, and X-Ray Diffraction demonstrated the potential application of residues to replace the soil and sand, because it has characteristics compatible with small aggregate and can be used as feed stock for the manufacture of materials as ceramic and soil-cement bricks, mortars, interlocking floors and concrete artifacts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=residue" title="residue">residue</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable" title=" sustainable"> sustainable</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment%20plants" title=" water treatment plants"> water treatment plants</a>, <a href="https://publications.waset.org/abstracts/search?q=WTR" title=" WTR"> WTR</a> </p> <a href="https://publications.waset.org/abstracts/18541/a-social-environmental-way-for-production-of-building-materials-with-solid-residues" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">548</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15490</span> Recovery of Waste: Feasibility and Sustainable Application of Residues from Drinking Water Treatment in Building Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Flavio%20Araujo">Flavio Araujo</a>, <a href="https://publications.waset.org/abstracts/search?q=Julio%20Lima"> Julio Lima</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20Scalize"> Paulo Scalize</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Albuquerque"> Antonio Albuquerque</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabela%20Santos"> Isabela Santos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to perform the physicochemical characterizations of the residue generated in the Meia-Ponte Water Treatment Plant, seeking to obtain normative parameters and consider sustainable alternatives for reincorporation of the residues in the productive chain for manufacturing various materials construction. In order to reduce the environmental liabilities generated by sanitation companies and discontinue unsustainable forms of disposal as the launching of the residue in the rivers, disposal in landfills or burning it, because such ways pollute watercourses, ground and air. The analyzes performed: Granulometry, identification of clay minerals, Scanning Electron Microscopy, and X-Ray Diffraction demonstrated the potential application of residues to replace the soil and sand, because it has characteristics compatible with small aggregate and can be used as feedstock for the manufacture of materials as ceramic and soil-cement bricks, mortars, interlocking floors and concrete artifacts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recovery%20of%20waste" title="recovery of waste">recovery of waste</a>, <a href="https://publications.waset.org/abstracts/search?q=residue" title=" residue"> residue</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable" title=" sustainable"> sustainable</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment%20plant" title=" water treatment plant"> water treatment plant</a>, <a href="https://publications.waset.org/abstracts/search?q=WTR" title=" WTR"> WTR</a> </p> <a href="https://publications.waset.org/abstracts/18375/recovery-of-waste-feasibility-and-sustainable-application-of-residues-from-drinking-water-treatment-in-building-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18375.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">542</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15489</span> Waste Recovery: A Sustainable Way for Application of Solid Waste from WTP's in Building Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Flavio%20Araujo">Flavio Araujo</a>, <a href="https://publications.waset.org/abstracts/search?q=Livia%20Dias"> Livia Dias</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabiolla%20Lima"> Fabiolla Lima</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20Scalize"> Paulo Scalize</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Albuquerque"> Antonio Albuquerque</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water treatment residues (WTR) are solid waste produced during drinking water treatment and have recently been seen as a reusable material. The aim of this research was show how to use the residue generated in a Water Treatment Plant, located in Goiania, Brazil, following the considerations of the law of solid waste to obtain normative parameters and consider sustainable alternatives for reincorporation of the residues in the productive chain for manufacturing various materials construction. In order to reduce the environmental liabilities generated by sanitation companies and discontinue unsustainable forms of disposal. The analyzes performed: Granulometry, Scanning Electron Microscopy and X-Ray Diffraction demonstrated the potential application of residues to replace the soil and sand, because it has characteristics compatible with small aggregate and can be used as feedstock for the manufacture of materials as ceramic and soil-cement bricks, mortars, interlocking floors and concrete artifacts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=residue" title="residue">residue</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable" title=" sustainable"> sustainable</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment%20plants" title=" water treatment plants"> water treatment plants</a>, <a href="https://publications.waset.org/abstracts/search?q=WTR" title=" WTR"> WTR</a>, <a href="https://publications.waset.org/abstracts/search?q=WTP" title=" WTP"> WTP</a> </p> <a href="https://publications.waset.org/abstracts/19974/waste-recovery-a-sustainable-way-for-application-of-solid-waste-from-wtps-in-building-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19974.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">494</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15488</span> Dehydration of Residues from WTP for Application in Building Materials and Reuse of Water from the Waste Treatment: A Feasible Solution to Complete Treatment Systems </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marco%20Correa">Marco Correa</a>, <a href="https://publications.waset.org/abstracts/search?q=Flavio%20Araujo"> Flavio Araujo</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20Scalize"> Paulo Scalize</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Albuquerque"> Antonio Albuquerque</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing reduction of the volumes of surface water sources which supply most municipalities, as well as the continued rise of demand for treated water, combined with the disposal of effluents from washing of decanters and filters of the water treatment plants, generates a continuous search for correct environmentally solutions to these problems. The effluents generated by the water treatment industry need to be suitably processed for return to the environment or re-use. This article shows an alternative for the dehydration of sludge from the water treatment plants (WTP) and eventual disposal of sludge drained. Using the simple design methodology, we present a case study for a drainage in tanks geotextile, full-scale, which involve five sludge drainage tanks from WTP of the Rio Verde City. Aiming to the reutilization the water drained from the sludge and enabling its reuse both at the beginning of the treatment process at the WTP and in less noble services as for watering the gardens of the local town hall. The sludge will be used to production of building materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=re-use" title="re-use">re-use</a>, <a href="https://publications.waset.org/abstracts/search?q=residue" title=" residue"> residue</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable" title=" sustainable"> sustainable</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment%20plants" title=" water treatment plants"> water treatment plants</a>, <a href="https://publications.waset.org/abstracts/search?q=sludge" title=" sludge"> sludge</a> </p> <a href="https://publications.waset.org/abstracts/22217/dehydration-of-residues-from-wtp-for-application-in-building-materials-and-reuse-of-water-from-the-waste-treatment-a-feasible-solution-to-complete-treatment-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15487</span> Conservation Agriculture and Precision Water Management in Alkaline Soils under Rice-Wheat Cropping System: Effect on Wheat Productivity and Irrigation Water Use-a Case Study from India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Kakraliya">S. K. Kakraliya</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20S.%20Jat"> H. S. Jat</a>, <a href="https://publications.waset.org/abstracts/search?q=Manish%20Kakraliya"> Manish Kakraliya</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20C.%20Sharma"> P. C. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20L.%20Jat"> M. L. Jat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The biggest challenge in agriculture is to produce more food for the continually increasing world population with in the limited land and water resources. Serious water deficits and reducing natural resources are some of the major threats to the agricultural sustainability in many regions of South Asia. Food and water security may be gained by bringing improvement in the crop water productivity and the amount produced per unit of water consumed. Improvement in the crop water productivity may be achieved by pursuing alternative modern agronomics approaches, which are more friendly and efficient in utilizing natural resources. Therefore, a research trial on conservation agriculture (CA) and precision water management (PWM) was conducted in 2018-19 at Karnal, India to evaluate the effect on crop productivity and irrigation in sodic soils under rice-wheat (RW) systems of Indo-Gangetic Plains (IGP). Eight scenarios were compared varied in the tillage, crop establishment, residue and irrigarion management i.e., {First four scenarios irrigated with flood irrigation method;Sc1-Conventional tillage (CT) without residue, Sc2-CT with residue, Sc3- Zero tillage (ZT) without residue, Sc4-ZT with residue}, and {last four scenarios irrigated with sub-surface drip irrigation method; Sc5-ZT without residue, Sc6- ZT with residue, Sc7-ZT inclusion legume without residue and Sc8- ZT inclusion legume with residue}. Results revealed that CA-flood irrigation (S3, Sc4) and CA-PWM system (Sc5, Sc6, Sc7 and Sc8) recorded about ~5% and ~15% higher wheat yield, respectively compared to Sc1. Similar, CA-PWM saved ~40% irrigation water compared to Sc1. Rice yield was not different under different scenarios in the first year (kharif 2019) but almost half irrigation water saved under CA-PWM system. Therefore, results of our study on modern agronomic practices including CA and precision water management (subsurface drip irrigation) for RW rotation would be addressed the existing and future challenges in the RW system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sub-surface%20drip" title="Sub-surface drip">Sub-surface drip</a>, <a href="https://publications.waset.org/abstracts/search?q=Crop%20residue" title=" Crop residue"> Crop residue</a>, <a href="https://publications.waset.org/abstracts/search?q=Crop%20yield" title=" Crop yield "> Crop yield </a>, <a href="https://publications.waset.org/abstracts/search?q=Zero%20tillage" title=" Zero tillage"> Zero tillage</a> </p> <a href="https://publications.waset.org/abstracts/123897/conservation-agriculture-and-precision-water-management-in-alkaline-soils-under-rice-wheat-cropping-system-effect-on-wheat-productivity-and-irrigation-water-use-a-case-study-from-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123897.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15486</span> Mechanical Properties Analysis of Masonry Residue Mortar as Cement Replacement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Camila%20Parodi">Camila Parodi</a>, <a href="https://publications.waset.org/abstracts/search?q=Viviana%20Letelier"> Viviana Letelier</a>, <a href="https://publications.waset.org/abstracts/search?q=Giacomo%20Moriconi"> Giacomo Moriconi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cement industry is responsible for around a 5% of the CO2 emissions worldwide and considering that concrete is one of the most used materials in construction its total effect is important. An alternative to reduce the environmental impact of concrete production is to incorporate certain amount of residues in the dosing, limiting the replacement percentages to avoid significant losses in the mechanical properties of the final material. Previous researches demonstrate the feasibility of using brick and rust residues, separately, as a cement replacement. This study analyses the variation in the mechanical properties of mortars by incorporating masonry residue composed of clay bricks and cement mortar. In order to improve the mechanical properties of masonry residue, this was subjected to a heat treatment of 650 ° C for four hours and its effect is analyzed in this study. Masonry residue was obtained from a demolition of masonry perimetral walls. The residues were crushed and sieved and the maximum size of particles used was 75 microns. The percentages of cement replaced by masonry residue were 0%, 10%, 20% and 30%. The effect of masonry residue addition and its heat treatment in the mechanical properties of mortars is evaluated through compressive and flexural strength tests after 7, 14 and 28 curing days. Results show that increasing the amount of masonry residue used increases the losses in compressive strength and flexural strength. However, the use of up to a 20% of masonry residue, when a heat treatment is applied, allows obtaining mortars with similar compressive strength to the control mortar. Masonry residues mortars without a heat treatment show losses in compressive strengths between 15% and 27% with respect to masonry residues with heat treatment, which demonstrates the effectiveness of the heat treatment. From this analysis it can be conclude that it is possible to use up to 20% of masonry residue with heat treatment as cement replacement without significant losses in mortars mechanical properties, reducing considerably the environmental impact of the final material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cement%20replacement" title="cement replacement">cement replacement</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact" title=" environmental impact"> environmental impact</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry%20residue" title=" masonry residue"> masonry residue</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties%20of%20recycled%20mortars" title=" mechanical properties of recycled mortars"> mechanical properties of recycled mortars</a> </p> <a href="https://publications.waset.org/abstracts/67858/mechanical-properties-analysis-of-masonry-residue-mortar-as-cement-replacement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15485</span> Soil-Cement Floor Produced with Alum Water Treatment Residues</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Flavio%20Araujo">Flavio Araujo</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20Scalize"> Paulo Scalize</a>, <a href="https://publications.waset.org/abstracts/search?q=Julio%20Lima"> Julio Lima</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalia%20Vieira"> Natalia Vieira</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Albuquerque"> Antonio Albuquerque</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabela%20Santos"> Isabela Santos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> From a concern regarding the environmental impacts caused by the disposal of residues generated in Water Treatment Plants (WTP's), alternatives ways have been studied to use these residues as raw material for manufacture of building materials, avoiding their discharge on water streams, disposal on sanitary landfills or incineration. This paper aims to present the results of a research work, which is using WTR for replacing the soil content in the manufacturing of soil-cement floor with proportions of 0, 5, 10 and 15%. The samples tests showed a reduction mechanical strength in so far as has increased the amount of waste. The water absorption was below the maximum of 6% required by the standard. The application of WTR contributes to the reduction of the environmental damage in the water treatment industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=residue" title="residue">residue</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-cement%20floor" title=" soil-cement floor"> soil-cement floor</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable" title=" sustainable"> sustainable</a>, <a href="https://publications.waset.org/abstracts/search?q=WTP" title=" WTP"> WTP</a> </p> <a href="https://publications.waset.org/abstracts/18183/soil-cement-floor-produced-with-alum-water-treatment-residues" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">570</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15484</span> Valorization of Argan Residuals for the Treatment of Industrial Effluents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salim%20Ahmed">Salim Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to recover a natural residue in the form of activated carbon prepared from Moroccan "argan pits and date pits" plant waste. After preparing the raw material for manufacture, the carbon was carbonised at 300°C and chemically activated with phosphoric acid of purity 85. The various characterisation results (moisture and ash content, specific surface area, pore volume, etc.) showed that the carbons obtained are comparable to those manufactured industrially and could therefore be tested, for example, in water treatment processes and especially for the depollution of effluents used in the agri-food and textile industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=argan" title=" argan"> argan</a> </p> <a href="https://publications.waset.org/abstracts/171094/valorization-of-argan-residuals-for-the-treatment-of-industrial-effluents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15483</span> Utilization of Soymilk Residue for Wheat Flour Substitution in Gyoza skin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naruemon%20Prapasuwannakul">Naruemon Prapasuwannakul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soy milk residue is obtained as a byproduct from soy milk and tofu production with little economic value. It contains high protein and fiber as well as various minerals and phyto-chemical compounds. The objective of this research was to substitute soy milk residue for wheat flour in gyoza skin in order to enhance value of soy milk residue and increase protein and fiber content of gyoza skin. Wheat flour was replaced with soy milk residue from 0 to 40%. The soy milk residue prepared in this research contains 26.92% protein, 3.58% fiber, 2.88% lipid, 6.29% ash and 60.33% carbohydrate. The results showed that increasing soy milk residue decreased lightness (L*value), tensile strength and sensory attributes but increased redness (a*), yellowness (b*), protein and fiber contents of product. The result also showed that the gyoza skin substituted with 30% soy milk residue was the most acceptable (p≤0.05) and its protein and fiber content increased up to 45 % and 867 % respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gyoza%20skin" title="Gyoza skin">Gyoza skin</a>, <a href="https://publications.waset.org/abstracts/search?q=sensory" title=" sensory"> sensory</a>, <a href="https://publications.waset.org/abstracts/search?q=soymilk%20residue" title=" soymilk residue"> soymilk residue</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat%20flour" title=" wheat flour"> wheat flour</a> </p> <a href="https://publications.waset.org/abstracts/1611/utilization-of-soymilk-residue-for-wheat-flour-substitution-in-gyoza-skin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15482</span> Review on Optimization of Drinking Water Treatment Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Farhaoui">M. Farhaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Derraz"> M. Derraz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the drinking water treatment processes, the optimization of the treatment is an issue of particular concern. In general, the process consists of many units as settling, coagulation, flocculation, sedimentation, filtration and disinfection. The optimization of the process consists of some measures to decrease the managing and monitoring expenses and improve the quality of the produced water. The objective of this study is to provide water treatment operators with methods and practices that enable to attain the most effective use of the facility and, in consequence, optimize the of the cubic meter price of the treated water. This paper proposes a review on optimization of drinking water treatment process by analyzing all of the water treatment units and gives some solutions in order to maximize the water treatment performances without compromising the water quality standards. Some solutions and methods are performed in the water treatment plant located in the middle of Morocco (Meknes). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coagulation%20process" title="coagulation process">coagulation process</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=turbidity%20removal" title=" turbidity removal"> turbidity removal</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a> </p> <a href="https://publications.waset.org/abstracts/44937/review-on-optimization-of-drinking-water-treatment-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44937.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15481</span> Effect of Polymer Residues for Wastewater Treatment from Petroleum Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chayonnat%20Thanamun">Chayonnat Thanamun</a>, <a href="https://publications.waset.org/abstracts/search?q=Kreangkrai%20Maneeintr"> Kreangkrai Maneeintr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For petroleum industry, polymer flooding is the one of the main methods in enhanced oil recovery (EOR) that is used water-soluble polymer such as partially hydrolyzed polyacrylamide (HPAM) to increase oil production. It is added to the flooding water to improve the mobility ratio in the flooding process. During the polymer flooding process, water is produced as a by-product along with oil and gas production. This produced water is a mixture of inorganic and organic compound. Moreover, produced water is more difficult to treat than that from water flooding. In this work, the effect of HPAM residue on the wastewater treatment from polymer flooding is studied. Polyaluminium chloride (PAC) is selected to use as a flocculant. Therefore, the objective of this study is to evaluate the effect of polymer residues in produced water on the wastewater treatment by using PAC. The operating parameters of this study are flocculant dosage ranging from 300,400 and 500 mg/L temperature from 30-50 Celsius degree and HPAM concentrations from 500, 1000 and 2000 mg/L. Furthermore, the turbidity, as well as total suspended solids (TSS), are also studied. The results indicated that with an increase in HPAM concentration, the TSS and turbidity increase gradually with the increasing of coagulant dosage under the same temperature. Also, the coagulation-flocculation performance is improved with the increasing temperature. This can be applied to use in the wastewater treatment from oil production before this water can be injected back to the reservoir. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title="wastewater treatment">wastewater treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20production" title=" petroleum production"> petroleum production</a>, <a href="https://publications.waset.org/abstracts/search?q=polyaluminium%20chloride" title=" polyaluminium chloride"> polyaluminium chloride</a>, <a href="https://publications.waset.org/abstracts/search?q=polyacrylamide" title=" polyacrylamide"> polyacrylamide</a> </p> <a href="https://publications.waset.org/abstracts/97516/effect-of-polymer-residues-for-wastewater-treatment-from-petroleum-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97516.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15480</span> Separation of Chlorinated Plastics and Immobilization of Heavy Metals in Hazardous Automotive Shredder Residue</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Srinivasa%20Reddy%20Mallampati">Srinivasa Reddy Mallampati</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi-Hyeon%20Lee"> Chi-Hyeon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Thi%20Thanh%20Truc"> Nguyen Thi Thanh Truc</a>, <a href="https://publications.waset.org/abstracts/search?q=Byeong-Kyu%20Lee"> Byeong-Kyu Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, feasibility of the selective surface hydrophilization of polyvinyl chloride (PVC) by microwave treatment was evaluated to facilitate the separation from automotive shredder residue (ASR), by the froth flotation. The combination of 60 sec microwave treatment with PAC, a sharp and significant decrease about 16.5° contact angle of PVC was observed in ASR plastic compared with other plastics. The microwave treatment with the addition of PAC resulted in a synergetic effect for the froth flotation, which may be a result of the 90% selective separation of PVC from ASR plastics, with 82% purity. While, simple mixing with a nanometallic Ca/CaO/PO4 dispersion mixture immobilized 95-100% of heavy metals in ASR soil/residues. The quantity of heavy metals leached from thermal residues after treatment by nanometallic Ca/CaO/PO4 was lower than the Korean standard regulatory limit for hazardous waste landfills. Microwave treatment can be a simple and effective method for PVC separation from ASR plastics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automotive%20shredder%20residue" title="automotive shredder residue">automotive shredder residue</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorinated%20plastics" title=" chlorinated plastics"> chlorinated plastics</a>, <a href="https://publications.waset.org/abstracts/search?q=hazardous%20waste" title=" hazardous waste"> hazardous waste</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilization" title=" immobilization"> immobilization</a>, <a href="https://publications.waset.org/abstracts/search?q=separation" title=" separation"> separation</a> </p> <a href="https://publications.waset.org/abstracts/32517/separation-of-chlorinated-plastics-and-immobilization-of-heavy-metals-in-hazardous-automotive-shredder-residue" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15479</span> Energy Budgeting, Carbon and Water Footprints Under Conventional and Conservation Tillage Practices of Rice-Wheat Double Cropping System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Latif%20Virk">Ahmad Latif Virk</a>, <a href="https://publications.waset.org/abstracts/search?q=Naeem%20Ahmad"> Naeem Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ishaq%20Asif%20Rehmani"> Muhammad Ishaq Asif Rehmani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Amid the present environmental crises, developing environment-resilient and cost-effective conservation agriculture strategies to feed the world's ever-growing population is pertinent. Therefore, a field study was conducted to test the hypothesis that residue retention under no-till (NTR) would enhance energy productivity (EP) and energy use efficiency (EUE) while offsetting the carbon footprints (CF), water footprints (WF) and greenhouse gases emissions (GHGs) in rice (Oryza sativa L.)-wheat (Triticum aestivum L.) double cropping system. Two tillage systems viz., conventional tillage (CT) and conservation tillage (no-till; NT), with or without residue retention, were combined into four treatments as CT0 (puddled rice, conventional wheat - residue); CTR (puddled rice, conventional wheat + residue); NT0 (direct rice seeding, zero-tilled wheat - residue); NTR (direct rice seeding, zero-tilled wheat + residue) were evaluated. Overall, results showed that the NT system had 34.2% lower energy consumption, 1.2 times more EP than CT system. Moreover, NTR had 19.8% higher EUE than CT0. The overall system grain yield ranged from 7.8 to 9.3 Mg ha−1 under NT0 and CTR, respectively. The NTR had 56.6% and 17.9% lesser CF and WF, respectively, than CT0. The net GHGs emissions (CO2-eq kg ha−1) under CT0 were the highest, while NTR had the lowest emissions. The NTR enhanced carbon sequestration in soil that can offset half of the system's CO2 emissions. The findings of this study might help develop a suitable strategy for resource/energy conservation and higher productivity while offsetting GHGs emissions in the Indo-Gangetic Plains. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=residue" title="residue">residue</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a>, <a href="https://publications.waset.org/abstracts/search?q=indirect%20emissions" title=" indirect emissions"> indirect emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20use%20efficiency" title=" energy use efficiency"> energy use efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20sequestration" title=" carbon sequestration"> carbon sequestration</a> </p> <a href="https://publications.waset.org/abstracts/164551/energy-budgeting-carbon-and-water-footprints-under-conventional-and-conservation-tillage-practices-of-rice-wheat-double-cropping-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15478</span> Ecological-Economics Evaluation of Water Treatment Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hwasuk%20Jung">Hwasuk Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Seoi%20Lee"> Seoi Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Dongchoon%20Ryou"> Dongchoon Ryou</a>, <a href="https://publications.waset.org/abstracts/search?q=Pyungjong%20Yoo"> Pyungjong Yoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Seokmo%20Lee"> Seokmo Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Nakdong River being used as drinking water sources for Pusan metropolitan city has the vulnerability of water management due to the fact that industrial areas are located in the upper Nakdong River. Most citizens of Busan think that the water quality of Nakdong River is not good, so they boil or use home filter to drink tap water, which causes unnecessary individual costs to Busan citizens. We need to diversify water intake to reduce the cost and to change the weak water source. Under this background, this study was carried out for the environmental accounting of Namgang dam water treatment system compared to Nakdong River water treatment system by using emergy analysis method to help making reasonable decision. Emergy analysis method evaluates quantitatively both natural environment and human economic activities as an equal unit of measure. The emergy transformity of Namgang dam’s water was 1.16 times larger than that of Nakdong River’s water. Namgang Dam’s water shows larger emergy transformity than that of Nakdong River’s water due to its good water quality. The emergy used in making 1 m3 tap water from Namgang dam water treatment system was 1.26 times larger than that of Nakdong River water treatment system. Namgang dam water treatment system shows larger emergy input than that of Nakdong river water treatment system due to its construction cost of new pipeline for intaking Namgang daw water. If the Won used in making 1 m3 tap water from Nakdong river water treatment system is 1, Namgang dam water treatment system used 1.66. If the Em-won used in making 1 m3 tap water from Nakdong river water treatment system is 1, Namgang dam water treatment system used 1.26. The cost-benefit ratio of Em-won was smaller than that of Won. When we use emergy analysis, which considers the benefit of a natural environment such as good water quality of Namgang dam, Namgang dam water treatment system could be a good alternative for diversifying intake source. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emergy" title="emergy">emergy</a>, <a href="https://publications.waset.org/abstracts/search?q=emergy%20transformity" title=" emergy transformity"> emergy transformity</a>, <a href="https://publications.waset.org/abstracts/search?q=Em-won" title=" Em-won"> Em-won</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment%20system" title=" water treatment system"> water treatment system</a> </p> <a href="https://publications.waset.org/abstracts/50976/ecological-economics-evaluation-of-water-treatment-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15477</span> Utilization of Logging Residue to Reduce Soil Disturbance of Timber Harvesting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juang%20R.%20Matangaran">Juang R. Matangaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Adlan"> Qi Adlan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Industrial plantation forest in Indonesia was developed in 1983, and since then, several companies have been successfully planted a total area of concessionaire approximately 10 million hectares. Currently, these plantation forests have their annual harvesting period. In the timber harvesting process, amount part of the trees generally become logging residue. Tree parts such as branches, twigs, defected stem and leaves are unused section of tree on the ground after timber harvesting. The use of heavy machines in timber harvesting area has caused damage to the forest soil. The negative impact of such machines includes loss of topsoil, soil erosion, and soil compaction. Forest soil compaction caused reduction of forest water infiltration, increase runoff and causes difficulty for root penetration. In this study, we used logging residue as soil covers on the passages passed by skidding machines in order to observe the reduction soil compaction. Bulk density of soil was measured and analyzed after several times of skidding machines passage on skid trail. The objective of the research was to analyze the effect of logging residue on reducing soil compaction. The research was taken place at one of the industrial plantation forest area of South Sumatra Indonesia. The result of the study showed that percentage increase of soil compaction bare soil was larger than soil surface covered by logging residue. The maximum soil compaction occurred after 4 to 5 passes on soil without logging residue or bare soil and after 7 to 8 passes on soil cover by logging residue. The use of logging residue coverings could reduce soil compaction from 45% to 60%. The logging residue was effective in decreasing soil disturbance of timber harvesting at the plantation forest area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bulk%20density" title="bulk density">bulk density</a>, <a href="https://publications.waset.org/abstracts/search?q=logging%20residue" title=" logging residue"> logging residue</a>, <a href="https://publications.waset.org/abstracts/search?q=plantation%20forest" title=" plantation forest"> plantation forest</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20compaction" title=" soil compaction"> soil compaction</a>, <a href="https://publications.waset.org/abstracts/search?q=timber%20harvesting" title=" timber harvesting"> timber harvesting</a> </p> <a href="https://publications.waset.org/abstracts/73651/utilization-of-logging-residue-to-reduce-soil-disturbance-of-timber-harvesting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73651.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15476</span> Effects of Tillage and Crop Residues Management in Improving Rainfall-Use Efficiency in Dryland Crops under Sandy Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cosmas%20Parwada">Cosmas Parwada</a>, <a href="https://publications.waset.org/abstracts/search?q=Ronald%20Mandumbu"> Ronald Mandumbu</a>, <a href="https://publications.waset.org/abstracts/search?q=Handseni%20Tibugari"> Handseni Tibugari</a>, <a href="https://publications.waset.org/abstracts/search?q=Trust%20Chinyama"> Trust Chinyama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A 3-yr field experiment to evaluate effects of tillage and residue management on soil water storage (SWS), grain yield, harvest index (HI) and water use efficiency (WUE) of sorghum was done in sandy soils. Treatments were conventional (CT) and minimum (MT) tillage without residue retention and conventional (CT × RT) and minimum (MT × RT) tillage with residue retention. Change in SWS was higher under CT and MT than in CT × RT and MT × RT, especially in the 0-10 cm soil layer. Grain yield and HI were significantly (P < 0.05) lower in CT and MT than CT × RT and MT × RT. Grain yield and HI were significantly (P < 0.05) positively correlated to WUE but WUE significantly (P < 0.05) negatively correlated to sand (%) particle content. The SWS was lower in winter but higher in summer and was significantly correlated to soil organic carbon (SOC), sand (%), grain yield (t/ha), HI and WUE. The WUE linearly increasing from first to last cropping seasons in tillage with returned residues; higher in CT × RT and MT × RT that promoted SOC buildup than where crop residues were removed. Soil tillage decreased effects of residues on SWS, WUE, grain yield and HI. Minimum tillage coupled to residue retention sustainably enhanced WUE but further research to investigate the interaction effects of the tillage on WUE and soil fertility management is required. Understanding and considering the WUE in crops can be a primary condition for cropping system designs. The findings pave way for further research and crop management programmes, allowing to valorize the water in crop production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evapotranspiration" title="evapotranspiration">evapotranspiration</a>, <a href="https://publications.waset.org/abstracts/search?q=infiltration%20rate" title=" infiltration rate"> infiltration rate</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20mulch" title=" organic mulch"> organic mulch</a>, <a href="https://publications.waset.org/abstracts/search?q=sand" title=" sand"> sand</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20use%20efficiency" title=" water use efficiency"> water use efficiency</a> </p> <a href="https://publications.waset.org/abstracts/95785/effects-of-tillage-and-crop-residues-management-in-improving-rainfall-use-efficiency-in-dryland-crops-under-sandy-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15475</span> A Study on Energy Efficiency of Vertical Water Treatment System with DC Power Supply</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Young-Kwan%20Choi">Young-Kwan Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gang-Wook%20Shin"> Gang-Wook Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung-Taek%20Hong"> Sung-Taek Hong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water supply system consumes large amount of power load during water treatment and transportation of purified water. Many energy conserving high efficiency materials such as DC motor and LED light have recently been introduced to water supply system for energy conservation. This paper performed empirical analysis on BLDC, AC motors, and comparatively analyzed the change in power according to DC power supply ratio in order to conserve energy of a next-generation water treatment system called vertical water treatment system. In addition, a DC distribution system linked with photovoltaic generation was simulated to analyze the energy conserving effect of DC load. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vertical%20water%20treatment%20system" title="vertical water treatment system">vertical water treatment system</a>, <a href="https://publications.waset.org/abstracts/search?q=DC%20power%20supply" title=" DC power supply"> DC power supply</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=BLDC" title=" BLDC"> BLDC</a> </p> <a href="https://publications.waset.org/abstracts/4300/a-study-on-energy-efficiency-of-vertical-water-treatment-system-with-dc-power-supply" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4300.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15474</span> Modeling Water Resources Carrying Capacity, Optimizing Water Treatment, Smart Water Management, and Conceptualizing a Watershed Management Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pius%20Babuna">Pius Babuna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sustainable water use is important for the existence of the human race. Water resources carrying capacity (WRCC) measures the sustainability of water use; however, the calculation and optimization of WRCC remain challenging. This study used a mathematical model (the Logistics Growth of Water Resources -LGWR) and a linear objective function to model water sustainability. We tested the validity of the models using data from Ghana. Total freshwater resources, water withdrawal, and population data were used in MATLAB. The results show that the WRCC remains sustainable until the year 2132 ±18, when half of the total annual water resources will be used. The optimized water treatment cost suggests that Ghana currently wastes GHȼ 1115.782± 50 cedis (~$182.21± 50) per water treatment plant per month or ~ 0.67 million gallons of water in an avoidable loss. Adopting an optimized water treatment scheme and a watershed management approach will help sustain the WRCC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20resources%20carrying%20capacity" title="water resources carrying capacity">water resources carrying capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20water%20management" title=" smart water management"> smart water management</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20water%20use" title=" sustainable water use"> sustainable water use</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20withdrawal" title=" water withdrawal"> water withdrawal</a> </p> <a href="https://publications.waset.org/abstracts/159894/modeling-water-resources-carrying-capacity-optimizing-water-treatment-smart-water-management-and-conceptualizing-a-watershed-management-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159894.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15473</span> Application of Nonlinear Model to Optimize the Coagulant Dose in Drinking Water Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Derraz">M. Derraz</a>, <a href="https://publications.waset.org/abstracts/search?q=M.Farhaoui"> M.Farhaoui </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the water treatment processes, the determination of the optimal dose of the coagulant is an issue of particular concern. Coagulant dosing is correlated to raw water quality which depends on some parameters (turbidity, ph, temperature, conductivity…). The objective of this study is to provide water treatment operators with a tool that enables to predict and replace, sometimes, the manual method (jar testing) used in this plant to predict the optimum coagulant dose. The model is constructed using actual process data for a water treatment plant located in the middle of Morocco (Meknes). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coagulation%20process" title="coagulation process">coagulation process</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum%20sulfate" title=" aluminum sulfate"> aluminum sulfate</a>, <a href="https://publications.waset.org/abstracts/search?q=model" title=" model"> model</a>, <a href="https://publications.waset.org/abstracts/search?q=coagulant%20dose" title=" coagulant dose"> coagulant dose</a> </p> <a href="https://publications.waset.org/abstracts/45249/application-of-nonlinear-model-to-optimize-the-coagulant-dose-in-drinking-water-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45249.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15472</span> Conservation Agriculture in North America</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ying%20Chen">Ying Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conservation Agriculture in a sustainable way of farming, as it brings many benefits, such as preventing soil from erosion and degradation, improving soil health, conserving energy, and sequestrating carbon. However, adoption of conservation agriculture has been progressing slowly in some part of the world due to some challenges. Among them, seeding in heavy crop residue is challenging, especially in corn production systems. Weed control is also challenging in conservation agriculture. This research aimed to investigate some technologies that can address these challenges. For crop residue management, vertical tillage and vertical seeding have been studied in multiple research projects. Results showed that vertical tillage and seeding were able to deal with crop residue through cutting residue into small segments, which would not plug seeder in the sub-sequent seeding. Vertical tillage is a conservation tillage system, as it leaves more than 30% crop residue on soil surface while incorporating some residue into the shallow soil layer for fast residue decomposition. For weed control, mechanical weeding can reduce chemical inputs in crop production. A tine weeder was studied for weed control during the early growing season of several field crops (corn, soybean, flax, and pea). Detail results of these studies will be shared at the conference. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tillage" title="tillage">tillage</a>, <a href="https://publications.waset.org/abstracts/search?q=seeding" title=" seeding"> seeding</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20weeding" title=" mechanical weeding"> mechanical weeding</a>, <a href="https://publications.waset.org/abstracts/search?q=crop%20residue" title=" crop residue"> crop residue</a> </p> <a href="https://publications.waset.org/abstracts/172388/conservation-agriculture-in-north-america" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15471</span> Removal of Deposits and Improvement of Shelf Life in CO₂-Rich Mineral Water by Ozone-Microbubbles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Un%20Hwa%20Choe">Un Hwa Choe</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Hyon%20Choe"> Jong Hyon Choe</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Jun%20Kim"> Yong Jun Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to effectively remove Fe2+ by using ozone microbubbles in bottled mineral water to prevent sediment from occurring during storage and increase shelf life. By considering the characteristics of mineral water with low solubility of ozone and high CO2 content, a suitable ozone injection step was chosen and a new mineral water treatment method using microbubbles was proposed. As a result of the treatment of the bottled mineral water with ozone microbubbles, the iron ion concentration was reduced from 0.14 mg/L to 0.01 mg/L, and the shelf life increased to 360 days. During the treatment, the concentrations of K+ and Na+ were almost unchanged, and the deposition time was reduced to one-third compared to the natural oxidation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82-rich%20mineral%20water" title="CO₂-rich mineral water">CO₂-rich mineral water</a>, <a href="https://publications.waset.org/abstracts/search?q=ozone-micro%20bubble" title=" ozone-micro bubble"> ozone-micro bubble</a>, <a href="https://publications.waset.org/abstracts/search?q=shelf%20life" title=" shelf life"> shelf life</a>, <a href="https://publications.waset.org/abstracts/search?q=bottled%20mineral%20water" title=" bottled mineral water"> bottled mineral water</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a> </p> <a href="https://publications.waset.org/abstracts/178817/removal-of-deposits-and-improvement-of-shelf-life-in-co2-rich-mineral-water-by-ozone-microbubbles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178817.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15470</span> Sustainable Management of Water and Soil Resources for Agriculture in Dry Areas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Nejadmohammad%20Namaghi">Alireza Nejadmohammad Namaghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Investigators have reported that mulches increase production potential in arid and semi arid lands. Mulches are covering materials that are used on soil surface for efficiency irrigation, erosion control, weed control, evaporation decrease and improvement of water perpetration. Our aim and local situation determine the kind of material that we can use. In this research we used different mulches including chemical mulch (M1), Aquasorb polymer, manure mulch (M2), Residue mulch (M3) and polyethylene mulch (M4), with control treatment (M0), without usage of mulch, on germination, biomass dry matter and cottonseed yield (Varamin variety) in Kashan area. Randomized complete block (RCB) design have measured the cotton yield with 3 replications for measuring the biomass dry matter and 4 replication in tow irrigation periods as 7 and 14 days. Germination percentage for M0, M1, M2, M3 and M4 treatment were receptivity 64, 65, 76, 57 and 72% Biomass dry matter average for M0, M1, M2, M3 and M4 treatment were receptivity 276, 306, 426, 403 and 476 gram per plot. M4 treatment (polyethylene Mulch) had the most effect, M2 and M3 had no significant as well as M0 and M1. Total yield average with respect to 7 days irrigation for M0, M1, M2, M3 and M4 treatment were receptivity 700, 725, 857, 1057 and 1273 gram per plot. Dunken ne multiple showed no significant different among M0, M1, M2, and M3, but M4 ahs the most effect on yield. Total yield average with respect to 14 days irrigation for M0, M1, M2, M3 and M4 treatment were receptivity 535, 507, 690, 957 and 1047 gram per plot. These were significant difference between all treatments and control treatment. Results showed that used different mulches with water decrease in dry situation can increase the yield significantly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mulch" title="mulch">mulch</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton" title=" cotton"> cotton</a>, <a href="https://publications.waset.org/abstracts/search?q=arid%20land%20management" title=" arid land management"> arid land management</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation%20systems" title=" irrigation systems"> irrigation systems</a> </p> <a href="https://publications.waset.org/abstracts/172516/sustainable-management-of-water-and-soil-resources-for-agriculture-in-dry-areas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172516.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15469</span> Determination of Carbofuran Residue in Brinjal (Solanum melongena L.) and Soil of Brinjal Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Islam">R. Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Haque"> M. A. Haque</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20H.%20Kabir"> K. H. Kabir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A supervised trail was set with brinjal at research field, Entomology Division, Bangladesh Agricultural Research Institute, Joydebpur, Gazipur to determine the residue of Carbofuran in soil and fruit samples at different days after application (DAA) of Furadan 5 G @ 2 kg AI/ ha. Field collected samples were analyzed by GCMS-EI. Results of the experiment indicated the presence of Carbofuran residue up to 60 DAA in soil samples and 25 DAA in brinjal fruit samples. In case of soil samples, the detected residues were 7.04, 2.78, 0.79, 0.43, 0.12, 0.06 and 0.05 ppm at 0, 2, 5, 10, 20, 30 and 60 DAA respectively. On the other hand, in brinjal fruit samples Carbofuran residues were 0.005 ppm, 0.095 ppm, 0.084 ppm, 0.065 ppm, 0.063 ppm, 0.056 ppm, 0.050 ppm, 0.030 ppm and 0.016 ppm at 0, 2, 4, 6, 8, 10, 12, 15 and 25-DAA, respectively. None of this amount was above the recommended MRL (0.1 mg / kg crop) of Carborufan for agricultural crops. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brinjal" title="brinjal">brinjal</a>, <a href="https://publications.waset.org/abstracts/search?q=carbofuran" title=" carbofuran"> carbofuran</a>, <a href="https://publications.waset.org/abstracts/search?q=MRL" title=" MRL"> MRL</a>, <a href="https://publications.waset.org/abstracts/search?q=residue" title=" residue"> residue</a> </p> <a href="https://publications.waset.org/abstracts/29583/determination-of-carbofuran-residue-in-brinjal-solanum-melongena-l-and-soil-of-brinjal-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29583.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">511</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15468</span> Generalized Model Estimating Strength of Bauxite Residue-Lime Mix</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sujeet%20Kumar">Sujeet Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Arun%20Prasad"> Arun Prasad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work investigates the effect of multiple parameters on the unconfined compressive strength of the bauxite residue-lime mix. A number of unconfined compressive strength tests considering various curing time, lime content, dry density and moisture content were carried out. The results show that an empirical correlation may be successfully developed using volumetric lime content, porosity, moisture content, curing time unconfined compressive strength for the range of the bauxite residue-lime mix studied. The proposed empirical correlations efficiently predict the strength of bauxite residue-lime mix, and it can be used as a generalized empirical equation to estimate unconfined compressive strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bauxite%20residue" title="bauxite residue">bauxite residue</a>, <a href="https://publications.waset.org/abstracts/search?q=curing%20time" title=" curing time"> curing time</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity%2Fvolumetric%20lime%20ratio" title=" porosity/volumetric lime ratio"> porosity/volumetric lime ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=unconfined%20compressive%20strength" title=" unconfined compressive strength"> unconfined compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/80378/generalized-model-estimating-strength-of-bauxite-residue-lime-mix" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80378.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15467</span> Fractional Residue Number System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parisa%20Khoshvaght">Parisa Khoshvaght</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Hosseinzadeh"> Mehdi Hosseinzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the past few years, the Residue Number System (RNS) has been receiving considerable interest due to its parallel and fault-tolerant properties. This system is a useful tool for Digital Signal Processing (DSP) since it can support parallel, carry-free, high-speed and low power arithmetic. One of the drawbacks of Residue Number System is the fractional numbers, that is, the corresponding circuit is very hard to realize in conventional CMOS technology. In this paper, we propose a method in which the numbers of transistors are significantly reduced. The related delay is extremely diminished, in the first glance we use this method to solve concerning problem of one decimal functional number some how this proposition can be extended to generalize the idea. Another advantage of this method is the independency on the kind of moduli. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20arithmetic" title="computer arithmetic">computer arithmetic</a>, <a href="https://publications.waset.org/abstracts/search?q=residue%20number%20system" title=" residue number system"> residue number system</a>, <a href="https://publications.waset.org/abstracts/search?q=number%20system" title=" number system"> number system</a>, <a href="https://publications.waset.org/abstracts/search?q=one-Hot" title=" one-Hot"> one-Hot</a>, <a href="https://publications.waset.org/abstracts/search?q=VLSI" title=" VLSI"> VLSI</a> </p> <a href="https://publications.waset.org/abstracts/30341/fractional-residue-number-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30341.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15466</span> Iranian Refinery Vacuum Residue Upgrading Using Microwave Irradiation: Effects of Catalyst Type and Amount</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zarrin%20Nasri">Zarrin Nasri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microwave irradiation is an innovative technology in the petroleum industry. This kind of energy has been considered to convert vacuum residue of oil refineries into useful products. The advantages of microwaves energy are short time, fast heating, high energy efficiency, and precise process control. In this paper, the effects of catalyst type and amount have been investigated on upgrading of vacuum residue using microwave irradiation. The vacuum residue used in this research is from Tehran oil refinery, Iran. Additives include different catalysts, active carbon as sensitizer, and sodium borohydride as a solid hydrogen donor. Various catalysts contain iron, nickel, molybdenum disulfide, iron oxide and copper. The amount of catalysts in two cases of presence and absence of sodium borohydride have been evaluated. The objective parameters include temperature, asphaltene, viscosity, and API. The specifications of vacuum residue are API, 8.79, viscosity, 16391 cSt (60°C), asphaltene, 13.3 wt %. The results show that there is a significant difference between the effects of catalysts. Among the used catalysts, Fe powder is the best catalyst for upgrading vacuum residue using microwave irradiation and resulted in asphaltene reduction, 31.3 %; viscosity reduction, 76.43 %; and 23.43 % in API increase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphaltene" title="asphaltene">asphaltene</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave" title=" microwave"> microwave</a>, <a href="https://publications.waset.org/abstracts/search?q=upgrading" title=" upgrading"> upgrading</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20residue" title=" vacuum residue"> vacuum residue</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a> </p> <a href="https://publications.waset.org/abstracts/81731/iranian-refinery-vacuum-residue-upgrading-using-microwave-irradiation-effects-of-catalyst-type-and-amount" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15465</span> Study on Technological Development for Reducing the Sulfur Dioxide Residue Problem in Fresh Longan for Exporting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wittaya%20Apai">Wittaya Apai</a>, <a href="https://publications.waset.org/abstracts/search?q=Satippong%20Rattanakam"> Satippong Rattanakam</a>, <a href="https://publications.waset.org/abstracts/search?q=Suttinee%20Likhittragulrung"> Suttinee Likhittragulrung</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuttanai%20Tungmunkongvorakul"> Nuttanai Tungmunkongvorakul</a>, <a href="https://publications.waset.org/abstracts/search?q=Sompetch%20Jaroensuk"> Sompetch Jaroensuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to find some alternative ways to decrease sulfur dioxide (SO₂) residue problem and prolong storage life in fresh longan for export. Office of Agricultural Research and Development Region 1, Chiang Mai province conducted the research and development from 2016-2018. A grade longan cv. Daw fruit with panicle attached was placed in 11.5 kg commercial perforated plastic basket. They had 5 selected treatments comprising of 3 baskets as replication for each treatment, i.e. 1.5% SO₂ fumigation prior to insert SO₂-generated pads (Uvasys®) (1.5% SO₂+SO₂ pad), dipping in 5% hydrochloric acid (HCl) mixed with 1% sodium metabisulfite (SMS) for 5 min (5% HCl +1% SMS), ozone (O₃) fumigation for 1 hours (h) prior to 1.5% SO₂ fumigation (O₃ 1 h+1.5% SO₂), 1.5% SO₂ fumigation prior to O₃ fumigation for 1 h (1.5% SO₂+O₃ 1 h) and 1.5% SO₂ fumigation alone as commercial treatment (1.5% SO₂). They were stored at 5 ˚C, 90% relative humidity (RH) for 40-80 days. The results found that the possible treatments were 1.5% SO₂+O₃ 1 h and 5% HCl +1% SMS respectively and prevented pericarp browning for 80 days at 5 ºC. There were no significant changes in some parameters in any treatments; 1.5% SO₂+O₃ 1 h and 1.5% SO₂ during storage, i.e., pericarp browning, flesh discoloration, disease incidence (%) and sensory evaluation during storage. Application 1.5% SO₂+O₃ 1 h had a tendency less both SO₂ residue in fruit and disease incidence (%) including brighter pericarp color as compared with commercial 1.5% SO₂ alone. Moreover, HCl 5%+SMS 1% showed the least SO₂ residue in whole fruit below codex tolerance at 50 mg/kg throughout period of time. The fruit treated with 1.5% SO₂+O₃ 1 h, 1.5% SO₂, 5% HCl+1% SMS, O₃ 1 h+1.5% SO₂, and 1.5% SO₂+SO₂ pad could prolong storage life for 40, 40, 40, 30 and 30 days respectively at 5°C, 90% RH. Thus, application 1.5% SO₂+O₃ 1 h and/or 5% HCl +1% SMS could be used for extending shelf life fresh longan exported to restricted countries due to less SO₂ residue and fruit quality was maintained as compared with the conventional method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=longan" title="longan">longan</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfur%20dioxide" title=" sulfur dioxide"> sulfur dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=ozone%20fumigation" title=" ozone fumigation"> ozone fumigation</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20metabisulfite" title=" sodium metabisulfite"> sodium metabisulfite</a> </p> <a href="https://publications.waset.org/abstracts/104889/study-on-technological-development-for-reducing-the-sulfur-dioxide-residue-problem-in-fresh-longan-for-exporting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104889.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15464</span> Waste from Drinking Water Treatment: The Feasibility for Application in Building Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marco%20Correa">Marco Correa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing reduction of the volumes of surface water sources supplying most municipalities, as well as the rising demand for treated water, combined with the disposal of effluents from washing of decanters and filters of water treatment plants generates a continuous search for correct environmentally solutions to these problems. The effluents generated by the water treatment industry need to be suitably processed for return to the environment or re-use. This article shows alternatives for sludge dehydration from the water treatment plants (WTP) and eventual disposal of sludge drained. Using the simple design methodology, it is presented a case study for drainage in tanks geotextile, full-scale, which involve five sledge drainage tanks from WTP of the city of Rio Verde. Aiming to the reutilization of drained water from the sledge and enabling its reuse both at the beginning of the treatment process at the WTP and in less noble services as for watering the gardens of the local town hall. The sludge will be used to in the production of building materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dehydration" title="dehydration">dehydration</a>, <a href="https://publications.waset.org/abstracts/search?q=effluent%20discharges" title=" effluent discharges"> effluent discharges</a>, <a href="https://publications.waset.org/abstracts/search?q=re-use" title=" re-use"> re-use</a>, <a href="https://publications.waset.org/abstracts/search?q=sludge" title=" sludge"> sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=WTP%20sludge" title=" WTP sludge"> WTP sludge</a> </p> <a href="https://publications.waset.org/abstracts/26664/waste-from-drinking-water-treatment-the-feasibility-for-application-in-building-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26664.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15463</span> Preliminary Study on Using of Thermal Energy from Effluent Water for the SBR Process of RO</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gyeong-Sung%20Kim">Gyeong-Sung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=In-soo%20Ahn"> In-soo Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Cho"> Yong Cho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> SBR (Sequencing Batch Reactor) process is usually applied to membrane water treatment plants to treat its concentrated wastewater. The role of SBR process is to remove COD (Chemical Oxygen Demand) and NH3 from wastewater before discharging it outside of the water treatment plant using microorganism. Microorganism’s nitrification capability is influenced by water temperature because the nitrification rate of the concentrated wastewater becomes ‘zero’ as water temperature approach 0℃. Heating system is necessary to operate SBR in winter season even though the operating cost increase sharply. The operating cost of SBR at ‘D’ RO water treatment plant in Korea was 51.8 times higher in winter (October to March) compare to summer (April to September) season in 2014. Otherwise the effluent water temperature maintained around 8℃ constantly in winter. This study focuses on application heat pump system to recover the thermal energy from the effluent water of ‘D’ RO plant so that the operating cost will be reduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title="water treatment">water treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20thermal%20energy" title=" water thermal energy"> water thermal energy</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20saving" title=" energy saving"> energy saving</a>, <a href="https://publications.waset.org/abstracts/search?q=RO" title=" RO"> RO</a>, <a href="https://publications.waset.org/abstracts/search?q=SBR" title=" SBR"> SBR</a> </p> <a href="https://publications.waset.org/abstracts/32300/preliminary-study-on-using-of-thermal-energy-from-effluent-water-for-the-sbr-process-of-ro" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32300.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20treatment%20residue&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20treatment%20residue&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20treatment%20residue&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20treatment%20residue&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20treatment%20residue&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20treatment%20residue&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20treatment%20residue&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20treatment%20residue&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20treatment%20residue&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20treatment%20residue&page=516">516</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20treatment%20residue&page=517">517</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20treatment%20residue&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>