CINXE.COM

Search results for: axial compressor

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: axial compressor</title> <meta name="description" content="Search results for: axial compressor"> <meta name="keywords" content="axial compressor"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="axial compressor" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="axial compressor"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 693</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: axial compressor</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">693</span> A Compressor Map Optimizing Tool for Prediction of Compressor Off-Design Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhongzhi%20Hu">Zhongzhi Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jie%20Shen"> Jie Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiqiang%20Wang"> Jiqiang Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A high precision aeroengine model is needed when developing the engine control system. Compared with other main components, the axial compressor is the most challenging component to simulate. In this paper, a compressor map optimizing tool based on the introduction of a modifiable β function is developed for FWorks (FADEC Works). Three parameters (d density, f fitting coefficient, k₀ slope of the line β=0) are introduced to the β function to make it modifiable. The comparison of the traditional β function and the modifiable β function is carried out for a certain type of compressor. The interpolation errors show that both methods meet the modeling requirements, while the modifiable β function can predict compressor performance more accurately for some areas of the compressor map where the users are interested in. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beta%20function" title="beta function">beta function</a>, <a href="https://publications.waset.org/abstracts/search?q=compressor%20map" title=" compressor map"> compressor map</a>, <a href="https://publications.waset.org/abstracts/search?q=interpolation%20error" title=" interpolation error"> interpolation error</a>, <a href="https://publications.waset.org/abstracts/search?q=map%20optimization%20tool" title=" map optimization tool"> map optimization tool</a> </p> <a href="https://publications.waset.org/abstracts/72730/a-compressor-map-optimizing-tool-for-prediction-of-compressor-off-design-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">692</span> Research of Stalled Operational Modes of Axial-Flow Compressor for Diagnostics of Pre-Surge State</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Mohammadsadeghi">F. Mohammadsadeghi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Relevance of research: Axial compressors are used in both aircraft engine construction and ground-based gas turbine engines. The compressor is considered to be one of the main gas turbine engine units, which define absolute and relative indicators of engine in general. Failure of compressor often leads to drastic consequences. Therefore, safe (stable) operation must be maintained when using axial compressor. Currently, we can observe a tendency of increase of power unit, productivity, circumferential velocity and compression ratio of axial compressors in gas turbine engines of aircraft and ground-based application whereas metal consumption of their structure tends to fall. This causes the increase of dynamic loads as well as danger of damage of high load compressor or engine structure elements in general due to transient processes. In operating practices of aeronautical engineering and ground units with gas turbine drive the operational stability failure of gas turbine engines is one of relatively often failure causes what can lead to emergency situations. Surge occurrence is considered to be an absolute buckling failure. This is one of the most dangerous and often occurring types of instability. However detailed were the researches of this phenomenon the development of measures for surge before-the-fact prevention is still relevant. This is why the research of transient processes for axial compressors is necessary in order to provide efficient, stable and secure operation. The paper addresses the problem of automatic control system improvement by integrating the anti-surge algorithms for axial compressor of aircraft gas turbine engine. Paper considers dynamic exhaustion of gas dynamic stability of compressor stage, results of numerical simulation of airflow flowing through the airfoil at design and stalling modes, experimental researches to form the criteria that identify the compressor state at pre-surge mode detection. Authors formulated basic ways for developing surge preventing systems, i.e. forming the algorithms that allow detecting the surge origination and the systems that implement the proposed algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axial%20compressor" title="axial compressor">axial compressor</a>, <a href="https://publications.waset.org/abstracts/search?q=rotation%20stall" title=" rotation stall"> rotation stall</a>, <a href="https://publications.waset.org/abstracts/search?q=Surg" title=" Surg"> Surg</a>, <a href="https://publications.waset.org/abstracts/search?q=unstable%20operation%20of%20gas%20turbine%20engine" title=" unstable operation of gas turbine engine"> unstable operation of gas turbine engine</a> </p> <a href="https://publications.waset.org/abstracts/18711/research-of-stalled-operational-modes-of-axial-flow-compressor-for-diagnostics-of-pre-surge-state" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18711.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">691</span> Computational Analysis of the Scaling Effects on the Performance of an Axial Compressor </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junting%20Xiang">Junting Xiang</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C3%B6rg%20Uwe%20Schl%C3%BCter"> Jörg Uwe Schlüter</a>, <a href="https://publications.waset.org/abstracts/search?q=Fei%20Duan"> Fei Duan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The miniaturization of gas turbines promises many advantages. Miniature gas turbines can be used for local power generation or the propulsion of small aircraft, such as UAV and MAV. However, experience shows that the miniaturization of conventional gas turbines, which are optimized at their current large size, leads to a substantial loss of efficiency and performance at smaller scales. This may be due to a number of factors, such as the Reynolds-number effect, the increased heat transfer, and manufacturing tolerances. In the present work, we focus on computational investigations of the Reynolds number effect and the wall heat transfer on the performance of axial compressor during its size change. The NASA stage 35 compressors are selected as the configuration in this study and Computational Fluid Dynamics (CFD) is used to carry out the miniaturization process and simulations. We perform parameter studies on the effect of Reynolds number and wall thermal conditions. Our results indicate a decrease of efficiency, if the compressor is miniaturized based on its original geometry due to the increase of viscous effects. The increased heat transfer through wall has only a small effect and will actually benefit compressor performance based on our study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axial%20compressor" title="axial compressor">axial compressor</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=miniature%20gas%20turbines" title=" miniature gas turbines"> miniature gas turbines</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20number" title=" Reynolds number"> Reynolds number</a> </p> <a href="https://publications.waset.org/abstracts/8191/computational-analysis-of-the-scaling-effects-on-the-performance-of-an-axial-compressor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">690</span> Effects of Inlet Distorted Flows on the Performance of an Axial Compressor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asad%20Islam">Asad Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalid%20Parvez"> Khalid Parvez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Compressor fans in modern aircraft engines are of considerate importance, as they provide majority of thrust required by the aircraft. Their challenging environment is frequently subjected to non-uniform inflow conditions. These conditions could be either due to the flight operating requirements such as take-off and landing, wake interference from aircraft fuselage or cross-flow wind conditions. So, in highly maneuverable flights regimes of fighter aircrafts affects the overall performance of an engine. Since the flow in compressor of an aircraft application is highly sensitive because of adverse pressure gradient due to different flow orientations of the aircraft. Therefore, it is prone to unstable operations. This paper presents the study that focuses on axial compressor response to inlet flow orientations for the range of angles as 0 to 15 degrees. For this purpose, NASA Rotor-37 was taken and CFD mesh was developed. The compressor characteristics map was generated for the design conditions of pressure ratio of 2.106 with the rotor operating at rotational velocity of 17188.7 rpm using CFD simulating environment of ANSYS-CFX®. The grid study was done to see the effects of mesh upon computational solution. Then, the mesh giving the best results, (when validated with the available experimental NASA’s results); was used for further distortion analysis. The flow in the inlet nozzle was given angle orientations ranging from 0 to 15 degrees. The CFD results are analyzed and discussed with respect to stall margin and flow separations due to induced distortions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axial%20compressor" title="axial compressor">axial compressor</a>, <a href="https://publications.waset.org/abstracts/search?q=distortions" title=" distortions"> distortions</a>, <a href="https://publications.waset.org/abstracts/search?q=angle" title=" angle"> angle</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=ANSYS-CFX%C2%AE" title=" ANSYS-CFX®"> ANSYS-CFX®</a>, <a href="https://publications.waset.org/abstracts/search?q=bladegen%C2%AE" title=" bladegen®"> bladegen®</a> </p> <a href="https://publications.waset.org/abstracts/46801/effects-of-inlet-distorted-flows-on-the-performance-of-an-axial-compressor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">689</span> Online Compressor Washing for Gas Turbine Power Output</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Enyia%20James%20Diwa">Enyia James Diwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Isaiah%20Thank-God%20Ebi"> Isaiah Thank-God Ebi</a>, <a href="https://publications.waset.org/abstracts/search?q=Dodeye%20Ina%20Igbong"> Dodeye Ina Igbong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The privatization of utilities has brought about very strong competition in industries such as petrochemical and gas distribution among others, considering the continuous increase in cost of fuel. This has brought about the intense reason for gas turbine owners and operators to reduce and control performance degradation of the engine in other to minimize cost. The most common and very crucial problem of the gas turbine is the fouling of compressor, which is mostly caused by a reduction in flow capacity, compressor efficiency, and pressure ratio, this, in turn, lead to the engine compressor re-matching and output power and thermal efficiency reduction. The content of this paper encompasses a detailed presentation of the major causes, effects and control mechanism of fouling. The major emphasis is on compressor water washing to enable power augmentation. A modelled gas turbine similar to that of GE LM6000 is modelled for the current study, based on TURBOMATCH which is a Cranfield University software specifically made for gas turbine performance simulation and fouling detection. The compounded and intricate challenges of compressor online water washing of large output gas turbine are carried out. The treatment is applied to axial compressor used in the petrochemical and hydrocarbon industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine" title="gas turbine">gas turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=fouling" title=" fouling"> fouling</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation" title=" degradation"> degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=compressor%20washing" title=" compressor washing"> compressor washing</a> </p> <a href="https://publications.waset.org/abstracts/44357/online-compressor-washing-for-gas-turbine-power-output" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">688</span> One-Dimensional Performance Improvement of a Single-Stage Transonic Compressor </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Shahsavari">A. Shahsavari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Nili-Ahmadabadi"> M. Nili-Ahmadabadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an innovative one-dimensional optimization of a transonic compressor based on the radial equilibrium theory by means of increasing blade loading. Firstly, the rotor blade of the transonic compressor is redesigned based on the constant span-wise deHaller number and diffusion. The code is applied to extract compressor meridional plane and blade to blade geometry containing rotor and stator in order to design blade three-dimensional view. A structured grid is generated for the numerical domain of fluid. Finer grids are used for regions near walls to capture boundary layer effects and behavior. RANS equations are solved by finite volume method for rotating zones (rotor) and stationary zones (stator). The experimental data, available for the performance map of NASA Rotor67, is used to validate the results of simulations. Then, the capability of the design method is validated by CFD that is capable of predicting the performance map. The numerical results of new geometry show about 19% increase in pressure ratio and 11% improvement in overall efficiency of the transonic stage; however, the design point mass flow rate of the new compressor is 5.7% less than that of the original compressor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deHaller%20number" title="deHaller number">deHaller number</a>, <a href="https://publications.waset.org/abstracts/search?q=one%20dimensional%20design" title=" one dimensional design"> one dimensional design</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20equilibrium" title=" radial equilibrium"> radial equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=transonic%20compressor" title=" transonic compressor"> transonic compressor</a> </p> <a href="https://publications.waset.org/abstracts/36351/one-dimensional-performance-improvement-of-a-single-stage-transonic-compressor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36351.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">687</span> Design Optimization of a Micro Compressor for Micro Gas Turbine Using Computational Fluid Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamran%20Siddique">Kamran Siddique</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroyuki%20Asada"> Hiroyuki Asada</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoshifumi%20Ogami"> Yoshifumi Ogami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of Micro Gas Turbine (MGT) as the engine in Unmanned Aerobic Vehicles (UAVs) and power source in Robotics is widespread these days. Research has been conducted in the past decade or so to improve the performance of different components of MGT. This type of engine has interrelated components which have non-linear characteristics. Therefore, the overall engine performance depends on the individual engine element’s performance. Computational Fluid Dynamics (CFD) is one of the simulation method tools used to analyze or even optimize MGT system performance. In this study, the compressor of the MGT is designed, and performance optimization is being done using CFD. Performance of the micro compressor is improved in order to increase the overall performance of MGT. A high value of pressure ratio is to be achieved by studying the effect of change of different operating parameters like mass flow rate and revolutions per minute (RPM) and aerodynamical and geometrical parameters on the pressure ratio of the compressor. Two types of compressor designs are considered in this study; 3D centrifugal and ‘planar’ designs. For a 10 mm impeller, the planar model is the simplest compressor model with the ease in manufacturability. On the other hand, 3D centrifugal model, although more efficient, is very difficult to manufacture using current microfabrication resources. Therefore, the planar model is the best-suited model for a micro compressor. So. a planar micro compressor has been designed that has a good pressure ratio, and it is easy to manufacture using current microfabrication technologies. Future work is to fabricate the compressor to get experimental results and validate the theoretical model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title="computational fluid dynamics">computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=microfabrication" title=" microfabrication"> microfabrication</a>, <a href="https://publications.waset.org/abstracts/search?q=MEMS" title=" MEMS"> MEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=unmanned%20aerobic%20vehicles" title=" unmanned aerobic vehicles "> unmanned aerobic vehicles </a> </p> <a href="https://publications.waset.org/abstracts/107486/design-optimization-of-a-micro-compressor-for-micro-gas-turbine-using-computational-fluid-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">686</span> A Comparison of Design and Off-Design Performances of a Centrifugal Compressor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zeynep%20Ayta%C3%A7">Zeynep Aytaç</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuri%20Y%C3%BCcel"> Nuri Yücel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today, as the need for high efficiency and fuel-efficient engines have increased, centrifugal compressor designs are expected to be high-efficient and have high-pressure ratios than ever. The present study represents a design methodology of centrifugal compressor placed in a mini jet engine for the design and off-design points with the utilization of computational fluid dynamics (CFD) and compares the performance characteristics at the mentioned two points. Although the compressor is expected to provide the required specifications at the design point, it is known that it is important for the design to deliver the required parameters at the off-design point also as it will not operate at the design point always. It was observed that the obtained mass flow rate, pressure ratio, and efficiency values are within the limits of the design specifications for the design and off-design points. Despite having different design inputs for the mentioned two points, they reveal similar flow characteristics in the general frame. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=centrifugal%20compressor" title="centrifugal compressor">centrifugal compressor</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20point" title=" design point"> design point</a>, <a href="https://publications.waset.org/abstracts/search?q=off-design%20point" title=" off-design point"> off-design point</a> </p> <a href="https://publications.waset.org/abstracts/147046/a-comparison-of-design-and-off-design-performances-of-a-centrifugal-compressor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">685</span> Performance Improvement in a Micro Compressor for Micro Gas Turbine Using Computational Fluid Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamran%20Siddique">Kamran Siddique</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroyuki%20Asada"> Hiroyuki Asada</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoshifumi%20Ogami"> Yoshifumi Ogami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Micro gas turbine (MGT) nowadays has a wide variety of applications from drones to hybrid electric vehicles. As microfabrication technology getting better, the size of MGT is getting smaller. Overall performance of MGT is dependent on the individual components. Each component’s performance is dependent and interrelated with another component. Therefore, careful consideration needs to be given to each and every individual component of MGT. In this study, the focus is on improving the performance of the compressor in order to improve the overall performance of MGT. Computational Fluid Dynamics (CFD) is being performed using the software FLUENT to analyze the design of a micro compressor. Operating parameters like mass flow rate and RPM, and design parameters like inner blade angle (IBA), outer blade angle (OBA), blade thickness and number of blades are varied to study its effect on the performance of the compressor. Pressure ratio is used as a tool to measure the performance of the compressor. Higher the pressure ratio, better the design is. In the study, target mass flow rate is 0.2 g/s and RPM to be less than or equal to 900,000. So far, a pressure ratio of above 3 has been achieved at 0.2 g/s mass flow rate with 5 rotor blades, 0.36 mm blade thickness, 94.25 degrees OBA and 10.46 degrees IBA. The design in this study differs from a regular centrifugal compressor used in conventional gas turbines such that compressor is designed keeping in mind ease of manufacturability. So, this study proposes a compressor design which has a good pressure ratio, and at the same time, it is easy to manufacture using current microfabrication technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title="computational fluid dynamics">computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=FLUENT%20microfabrication" title=" FLUENT microfabrication"> FLUENT microfabrication</a>, <a href="https://publications.waset.org/abstracts/search?q=RPM" title=" RPM"> RPM</a> </p> <a href="https://publications.waset.org/abstracts/108590/performance-improvement-in-a-micro-compressor-for-micro-gas-turbine-using-computational-fluid-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">684</span> Aerodynamic Design Optimization Technique for a Tube Capsule That Uses an Axial Flow Air Compressor and an Aerostatic Bearing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20E.%20Hodaib">Ahmed E. Hodaib</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammed%20A.%20Hashem"> Muhammed A. Hashem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High-speed transportation has become a growing concern. To increase high-speed efficiencies and minimize power consumption of a vehicle, we need to eliminate the friction with the ground and minimize the aerodynamic drag acting on the vehicle. Due to the complexity and high power requirements of electromagnetic levitation, we make use of the air in front of the capsule, that produces the majority of the drag, to compress it in two phases and inject a proportion of it through small nozzles to make a high-pressure air cushion to levitate the capsule. The tube is partially-evacuated so that the air pressure is optimized for maximum compressor effectiveness, optimum tube size, and minimum vacuum pump power consumption. The total relative mass flow rate of the tube air is divided into two fractions. One is by-passed to flow over the capsule body, ensuring that no chocked flow takes place. The other fraction is sucked by the compressor where it is diffused to decrease the Mach number (around 0.8) to be suitable for the compressor inlet. The air is then compressed and intercooled, then split. One fraction is expanded through a tail nozzle to contribute to generating thrust. The other is compressed again. Bleed from the two compressors is used to maintain a constant air pressure in an air tank. The air tank is used to supply air for levitation. Dividing the total mass flow rate increases the achievable speed (Kantrowitz limit), and compressing it decreases the blockage of the capsule. As a result, the aerodynamic drag on the capsule decreases. As the tube pressure decreases, the drag decreases and the capsule power requirements decrease, however, the vacuum pump consumes more power. That’s why Design optimization techniques are to be used to get the optimum values for all the design variables given specific design inputs. Aerodynamic shape optimization, Capsule and tube sizing, compressor design, diffuser and nozzle expander design and the effect of the air bearing on the aerodynamics of the capsule are to be considered. The variations of the variables are to be studied for the change of the capsule velocity and air pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tube-capsule" title="tube-capsule">tube-capsule</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperloop" title=" hyperloop"> hyperloop</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20design%20optimization" title=" aerodynamic design optimization"> aerodynamic design optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20compressor" title=" air compressor"> air compressor</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20bearing" title=" air bearing"> air bearing</a> </p> <a href="https://publications.waset.org/abstracts/59173/aerodynamic-design-optimization-technique-for-a-tube-capsule-that-uses-an-axial-flow-air-compressor-and-an-aerostatic-bearing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">683</span> Solution for Rider Ring Wear Problem in Boil off Gas Reciprocating Compressor: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hessam%20Mortezaei">Hessam Mortezaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeid%20Joudakian"> Saeid Joudakian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the wear problem on rider rings of boil off gas compressor has been studied. This kind of oil free double acting compressor has free floating piston (FFP) technology and as a result of that it should have the lowest possible wear on its rider rings. But a design problem had caused a complete wear of rider rings after one month of continuous operation. In this case study, the source of this problem was recognized and solved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piston%20rider" title="piston rider">piston rider</a>, <a href="https://publications.waset.org/abstracts/search?q=rings" title=" rings"> rings</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20distribution" title=" gas distribution"> gas distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20wear" title=" pressure wear"> pressure wear</a> </p> <a href="https://publications.waset.org/abstracts/3024/solution-for-rider-ring-wear-problem-in-boil-off-gas-reciprocating-compressor-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">682</span> Stress Corrosion Crack Identification with Direct Assessment Method in Pipeline Downstream from a Compressor Station</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Gholami">H. Gholami</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Jalali%20Azizpour"> M. Jalali Azizpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stress Corrosion Crack (SCC) in pipeline is a type of environmentally assisted cracking (EAC), since its discovery in 1965 as a possible cause of failure in pipeline, SCC has caused, on average, one of two failures per year in the U.S, According to the NACE SCC DA a pipe line segment is considered susceptible to SCC if all of the following factors are met: The operating stress exceeds 60% of specified minimum yield strength (SMYS), the operating temperature exceeds 38°C, the segment is less than 32 km downstream from a compressor station, the age of the pipeline is greater than 10 years and the coating type is other than Fusion Bonded Epoxy(FBE). In this paper as a practical experience in NISOC, Direct Assessment (DA) Method is used for identification SCC defect in unpiggable pipeline located downstream of compressor station. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stress%20corrosion%20crack" title="stress corrosion crack">stress corrosion crack</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20assessment" title=" direct assessment"> direct assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=disbondment" title=" disbondment"> disbondment</a>, <a href="https://publications.waset.org/abstracts/search?q=transgranular%20SCC" title=" transgranular SCC"> transgranular SCC</a>, <a href="https://publications.waset.org/abstracts/search?q=compressor%20station" title=" compressor station"> compressor station</a> </p> <a href="https://publications.waset.org/abstracts/20469/stress-corrosion-crack-identification-with-direct-assessment-method-in-pipeline-downstream-from-a-compressor-station" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">681</span> Ocular Biometry: Common Etiologies of Difference More Than 0.33mm between Axial Lengths of the 2 Eyes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghandehari%20Motlagh">Ghandehari Motlagh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad"> Mohammad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: We tried to find the most common etiologies for anisometropia in pre-op cataract cases: axial or refractive. Methods: In this cross-sectional study ,41 pre-op cataract eyes with more than 0.33 difference between axial lengths of 2 eyes were enrolled.Considered for each 1mm difference between axial lengths in long eyes( AXL more than 25):1.75-2.00 D of anisometropia, for normal eyes(AXL: 22- 25):2.50D and for short eyes (AXL less than 22):3.50-3.75 D as axial anisometropia. If there are more or lesser anisometropia, we recorded as refractive anisometropia. Results: Average of anisometropia :4.24 D, prevalence of PK or LK :1 (2.38%), kc:1(2.38%), glaucoma surgery: 1(2.38%), and pseudophakic status of the opposite eye 8(19.04%). Prevalence of axial anisometropia:21 (52.4%) and refractive anisometropia 20(47.6%).Then on basis of this study we can rely on the patient’s refraction exactly before phaco for evaluation of axial length differences between the 2 eyes, because most of the anisometropias are axial. Conclusion: In most cases, cataract does not induce significant change in refractive error (secondary myopia) and AXL difference between the 2 eyes are correlated with anisometropia.so it can be used for cataract patient’s ocular biometry evaluation. Pre-cataract refraction is a valuable variable should be measured and recorded in routin eye examination. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ocular%20axial%20length" title="ocular axial length">ocular axial length</a>, <a href="https://publications.waset.org/abstracts/search?q=anisometropia" title=" anisometropia"> anisometropia</a>, <a href="https://publications.waset.org/abstracts/search?q=cataract" title=" cataract"> cataract</a>, <a href="https://publications.waset.org/abstracts/search?q=ophthalmology%20and%20optometry" title=" ophthalmology and optometry"> ophthalmology and optometry</a> </p> <a href="https://publications.waset.org/abstracts/23870/ocular-biometry-common-etiologies-of-difference-more-than-033mm-between-axial-lengths-of-the-2-eyes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23870.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">680</span> Improvement of Parallel Compressor Model in Dealing Outlet Unequal Pressure Distribution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kewei%20Xu">Kewei Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jens%20Friedrich"> Jens Friedrich</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevin%20Dwinger"> Kevin Dwinger</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Fan"> Wei Fan</a>, <a href="https://publications.waset.org/abstracts/search?q=Xijin%20Zhang"> Xijin Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Parallel Compressor Model (PCM) is a simplified approach to predict compressor performance with inlet distortions. In PCM calculation, it is assumed that the sub-compressors’ outlet static pressure is uniform and therefore simplifies PCM calculation procedure. However, if the compressor’s outlet duct is not long and straight, such assumption frequently induces error ranging from 10% to 15%. This paper provides a revised calculation method of PCM that can correct the error. The revised method employs energy equation, momentum equation and continuity equation to acquire needed parameters and replace the equal static pressure assumption. Based on the revised method, PCM is applied on two compression system with different blades types. The predictions of their performance in non-uniform inlet conditions are yielded through the revised calculation method and are employed to evaluate the method’s efficiency. Validating the results by experimental data, it is found that although little deviation occurs, calculated result agrees well with experiment data whose error ranges from 0.1% to 3%. Therefore, this proves the revised calculation method of PCM possesses great advantages in predicting the performance of the distorted compressor with limited exhaust duct. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=parallel%20compressor%20model%20%28pcm%29" title="parallel compressor model (pcm)">parallel compressor model (pcm)</a>, <a href="https://publications.waset.org/abstracts/search?q=revised%20calculation%20method" title=" revised calculation method"> revised calculation method</a>, <a href="https://publications.waset.org/abstracts/search?q=inlet%20distortion" title=" inlet distortion"> inlet distortion</a>, <a href="https://publications.waset.org/abstracts/search?q=outlet%20unequal%20pressure%20distribution" title=" outlet unequal pressure distribution"> outlet unequal pressure distribution</a> </p> <a href="https://publications.waset.org/abstracts/39155/improvement-of-parallel-compressor-model-in-dealing-outlet-unequal-pressure-distribution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39155.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">679</span> Lightweight High-Pressure Ratio Centrifugal Compressor for Vehicles-Investigation of Pipe Diffuser Designs by Means of CFD</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eleni%20Ioannou">Eleni Ioannou</a>, <a href="https://publications.waset.org/abstracts/search?q=Pascal%20Nucara"> Pascal Nucara</a>, <a href="https://publications.waset.org/abstracts/search?q=Keith%20Pullen"> Keith Pullen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The subject of this paper is the investigation of the best efficiency design of a compressor diffuser applied in new lightweight, ultra efficient micro-gas turbine engines for vehicles. The Computational Fluid Dynamics (CFD) results are obtained utilizing steady state simulations for a wedge and an &rdquo;oval&rdquo; type pipe diffuser in an effort to identify the beneficial effects of the pipe diffuser design. The basic flow features are presented with particular focus on the optimization of the pipe diffuser leading to higher efficiencies for the compressor stage. The optimised pipe diffuser is designed to exploit the 3D freedom enabled by Selective Laser Melting, hence purposely involves an investigation of geometric characteristics that do not follow the traditional diffuser concept. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=centrifugal%20compressor" title=" centrifugal compressor"> centrifugal compressor</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-gas%20turbine" title=" micro-gas turbine"> micro-gas turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=pipe%20diffuser" title=" pipe diffuser"> pipe diffuser</a>, <a href="https://publications.waset.org/abstracts/search?q=SLM" title=" SLM"> SLM</a>, <a href="https://publications.waset.org/abstracts/search?q=wedge%20diffuser" title=" wedge diffuser"> wedge diffuser</a> </p> <a href="https://publications.waset.org/abstracts/39107/lightweight-high-pressure-ratio-centrifugal-compressor-for-vehicles-investigation-of-pipe-diffuser-designs-by-means-of-cfd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">678</span> Effects of Inlet Filtration Pressure Loss on Single and Two-Spool Gas Turbine </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Enyia%20James%20Diwa">Enyia James Diwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Dodeye%20Ina%20Igbong"> Dodeye Ina Igbong</a>, <a href="https://publications.waset.org/abstracts/search?q=Archibong%20Archibong%20Eso"> Archibong Archibong Eso</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas turbine operators have been faced with the dramatic financial setback resulting from compressor fouling. In a highly deregulated power industry where there is stiffness in the market competition, has made it imperative to improvise means of reducing maintenance cost in other to yield maximum profit. Compressor fouling results from the deposition of contaminants in the presence of oil and moisture on the compressor blade or annulus surfaces, which leads to a loss in flow capacity and compressor efficiency. These combined effects reduce power output, increase heat rate and cause creep life reduction. This paper also contains a model of two gas turbine engines via Cranfield University software known as TURBOMATCH, which is simulation software for detecting engine fouling rate. The model engines are of different configurations and capacities, and are operating in two different modes of constant output power and turbine inlet temperature for a two and three stage filter system. The idea is to investigate the more economically viable filtration systems by gas turbine users based on performance only. It has been demonstrated in the results that the two spool engine is a little more beneficial compared to the single spool. This is as a result of a higher pressure ratio of the two spools as well as the deceleration of the high-pressure compressor and high-pressure turbine speed in a constant TET. Meanwhile, the inlet filtration system was properly designed and balanced with a well-timed and economical compressor washing regime/scheme to control compressor fouling. The different technologies of inlet air filtration and compressor washing are considered and an attempt at optimization with respect to the cost of a combination of both control measures are made. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inlet%20filtration" title="inlet filtration">inlet filtration</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20loss" title=" pressure loss"> pressure loss</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20spool" title=" single spool"> single spool</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20spool" title=" two spool "> two spool </a> </p> <a href="https://publications.waset.org/abstracts/44384/effects-of-inlet-filtration-pressure-loss-on-single-and-two-spool-gas-turbine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">677</span> A Comprehensive Review of Axial Flux Machines and Its Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahbaz%20Amin">Shahbaz Amin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabir%20Hussain%20Shah"> Sabir Hussain Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahib%20Khan"> Sahib Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a thorough review concerning the design types of axial flux permanent magnet machines (AFPM) in terms of different features such as construction, design, materials, and manufacturing. Particular emphasis is given on the design and performance analysis of AFPM machines. A comparison among different permanent magnet machines is also provided. First of all, early and modern axial flux machines are mentioned. Secondly, rotor construction of different axial flux machines is described, then different stator constructions are mentioned depending upon the presence of slots and stator back iron. Then according to the arrangement of the rotor stator structure the machines are classified into single, double and multi-stack arrangements. Advantages, disadvantages and applications of each type of rotor and stator are pointed out. Finally on the basis of the reviewed literature merits, demerits, features and application of different axial flux machines structures are explained and clarified. Thus, this paper provides connection between the machines that are currently being used in industry and the developments of AFPM throughout the years. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axial%20flux%20machines" title="axial flux machines">axial flux machines</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20flux%20applications" title=" axial flux applications"> axial flux applications</a>, <a href="https://publications.waset.org/abstracts/search?q=coreless%20machines" title=" coreless machines"> coreless machines</a>, <a href="https://publications.waset.org/abstracts/search?q=PM%20machines" title=" PM machines"> PM machines</a> </p> <a href="https://publications.waset.org/abstracts/95500/a-comprehensive-review-of-axial-flux-machines-and-its-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95500.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">676</span> Effect of Volute Tongue Shape and Position on Performance of Turbo Machinery Compressor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anuj%20Srivastava">Anuj Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuldeep%20Kumar"> Kuldeep Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a numerical study of volute tongue design, which affects the centrifugal compressor operating range and pressure recovery. Increased efficiency has been the traditional importance of compressor design. However, the increased operating range has become important in an age of ever-increasing productivity and energy costs in the turbomachinery industry. Efficiency and overall operating range are the two most important parameters studied to evaluate the aerodynamic performance of centrifugal compressor. Volute is one of the components that have significant effect on these two parameters. Choice of volute tongue geometry has major role in compressor performance, also affects performance map. The author evaluates the trade-off on using pull-back tongue geometry on centrifugal compressor performance. In present paper, three different tongue positions and shapes are discussed. These designs are compared in terms of pressure recovery coefficient, pressure loss coefficient, and stable operating range. The detailed flow structures for various volute geometries and pull back angle near tongue are studied extensively to explore the fluid behavior. The viscous Navier-Stokes equations are used to simulate the flow inside the volute. The numerical calculations are compared with thermodynamic 1-D calculations. Author concludes that the increment in compression ratio accompanies with more uniform pressure distribution in the modified tongue shape and location, a uniform static pressure around the circumferential which build a more uniform flow in the impeller and diffuser. Also, the blockage at the tongue of the volute was causing circumferentially nonuniformed pressure along the volute. This nonuniformity may lead impeller and diffuser to operate unstably. However, it is not the volute that directly controls the stall. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=centrifugal%20compressor%20volute" title="centrifugal compressor volute">centrifugal compressor volute</a>, <a href="https://publications.waset.org/abstracts/search?q=tongue%20geometry" title=" tongue geometry"> tongue geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=pull-back" title=" pull-back"> pull-back</a>, <a href="https://publications.waset.org/abstracts/search?q=compressor%20performance" title=" compressor performance"> compressor performance</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20instability" title=" flow instability"> flow instability</a> </p> <a href="https://publications.waset.org/abstracts/105516/effect-of-volute-tongue-shape-and-position-on-performance-of-turbo-machinery-compressor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105516.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">675</span> Research on Axial End Flux Leakage and Detent Force of Transverse Flux PM Linear Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20R.%20Li">W. R. Li</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20K.%20Xia"> J. K. Xia</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Q.%20Peng"> R. Q. Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Y.%20Guo"> Z. Y. Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Jiang"> L. Jiang </a> </p> <p class="card-text"><strong>Abstract:</strong></p> According to 3D magnetic circuit of the transverse flux PM linear machine, distribution law is presented, and analytical expression of axial end flux leakage is derived using numerical method. Maxwell stress tensor is used to solve detent force of mover. A 3D finite element model of the transverse flux PM machine is built to analyze the flux distribution and detent force. Experimental results of the prototype verified the validity of axial end flux leakage and detent force theoretical derivation, the research on axial end flux leakage and detent force provides a valuable reference to other types of linear machine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axial%20end%20flux%20leakage" title="axial end flux leakage">axial end flux leakage</a>, <a href="https://publications.waset.org/abstracts/search?q=detent%20force" title=" detent force"> detent force</a>, <a href="https://publications.waset.org/abstracts/search?q=flux%20distribution" title=" flux distribution"> flux distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=transverse%20flux%20PM%20linear%20machine" title=" transverse flux PM linear machine"> transverse flux PM linear machine</a> </p> <a href="https://publications.waset.org/abstracts/46785/research-on-axial-end-flux-leakage-and-detent-force-of-transverse-flux-pm-linear-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">674</span> Calculation Analysis of an Axial Compressor Supersonic Stage Impeller</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Galerkin">Y. Galerkin</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Popova"> E. Popova</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Soldatova"> K. Soldatova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is an evident trend to elevate pressure ratio of a single stage of a turbo compressors - axial compressors in particular. Whilst there was an opinion recently that a pressure ratio 1,9 was a reasonable limit, later appeared information on successful modeling tested of stages with pressure ratio up to 2,8. The Authors recon that lack of information on high pressure stages makes actual a study of rational choice of design parameters before high supersonic flow problems solving. The computer program of an engineering type was developed. Below is presented a sample of its application to study possible parameters of the impeller of the stage with pressure ratio π*=3,0. Influence of two main design parameters on expected efficiency, periphery blade speed and flow structure is demonstrated. The results had lead to choose a variant for further analysis and improvement by CFD methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supersonic%20stage" title="supersonic stage">supersonic stage</a>, <a href="https://publications.waset.org/abstracts/search?q=impeller" title=" impeller"> impeller</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20rate%20coefficient" title=" flow rate coefficient"> flow rate coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=work%20coefficient" title=" work coefficient"> work coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=loss%20coefficient" title=" loss coefficient"> loss coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=oblique%20shock" title=" oblique shock"> oblique shock</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20shock" title=" direct shock"> direct shock</a> </p> <a href="https://publications.waset.org/abstracts/18039/calculation-analysis-of-an-axial-compressor-supersonic-stage-impeller" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">673</span> Application of Relative Regional Total Energy in Rotary Drums with Axial Segregation Characteristics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qiuhua%20Miao">Qiuhua Miao</a>, <a href="https://publications.waset.org/abstracts/search?q=Peng%20Huang"> Peng Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yifei%20Ding"> Yifei Ding</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Particles with different properties tend to be unevenly distributed along an axial direction of the rotating drum, which is usually ignored. Therefore, it is important to study the relationship between axial segregation characteristics and particle crushing efficiency in longer drums. In this paper, a relative area total energy (RRTE) index is proposed, which aims to evaluate the overall crushing energy distribution characteristics. Based on numerical simulation verification, the proposed RRTE index can reflect the overall grinding effect more comprehensively, clearly representing crushing energy distribution in different drum areas. Furthermore, the proposed method is applied to the relation between axial segregation and crushing energy in drums. Compared with the radial section, the collision loss energy of the axial section can better reflect the overall crushing effect in long drums. The axial segregation characteristics directly affect the total energy distribution between medium and abrasive, reducing overall crushing efficiency. Therefore, the axial segregation characteristics should be avoided as much as possible in the crushing of the long rotary drum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=relative%20regional%20total%20energy" title="relative regional total energy">relative regional total energy</a>, <a href="https://publications.waset.org/abstracts/search?q=crushing%20energy" title=" crushing energy"> crushing energy</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20segregation%20characteristics" title=" axial segregation characteristics"> axial segregation characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=rotary%20drum" title=" rotary drum"> rotary drum</a> </p> <a href="https://publications.waset.org/abstracts/151343/application-of-relative-regional-total-energy-in-rotary-drums-with-axial-segregation-characteristics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151343.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">672</span> Eccentric Loading of CFDST Columns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Trevor%20N.%20Haas">Trevor N. Haas</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Koen"> Alexander Koen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Columns have traditionally been constructed of reinforced concrete or structural steel. Much attention was allocated to estimate the axial capacity of the traditional column sections to the detriment of other forms of construction. Other forms of column construction such as Concrete Filled Double Skin Tubes received little research attention, and almost no attention when subjected to eccentric loading. This paper investigates the axial capacity of columns when subjected to eccentric loading. The experimental axial capacities are compared to other established theoretical formulae on concentric loading to determine a possible relationship. The study found a good correlation between the reduction in axial capacity for different column lengths and hollow section ratios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CSDST" title="CSDST">CSDST</a>, <a href="https://publications.waset.org/abstracts/search?q=CFST" title=" CFST"> CFST</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20capacity" title=" axial capacity"> axial capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=hollow%20section%20ratios" title=" hollow section ratios"> hollow section ratios</a> </p> <a href="https://publications.waset.org/abstracts/11764/eccentric-loading-of-cfdst-columns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11764.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">671</span> Coefficient of Performance (COP) Optimization of an R134a Cross Vane Expander Compressor Refrigeration System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20D.%20Lim">Y. D. Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20S.%20Yap"> K. S. Yap</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20T.%20Ooi"> K. T. Ooi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cross Vane Expander Compressor (CVEC) is a newly invented expander-compressor combined unit, where it is introduced to replace the compressor and the expansion valve in traditional refrigeration system. The mathematical model of CVEC has been developed to examine its performance, and it was found that the energy consumption of a conventional refrigeration system was reduced by as much as 18%. It is believed that energy consumption can be further reduced by optimizing the device. In this study, the coefficient of performance (COP) of CVEC has been optimized under predetermined operational parameters and constrained main design parameters. Several main design parameters of CVEC were selected to be the variables, and the optimization was done with theoretical model in a simulation program. The theoretical model consists of geometrical model, dynamic model, heat transfer model and valve dynamics model. Complex optimization method, which is a constrained, direct search and multi-variables method was used in the study. As a result, the optimization study suggested that with an appropriate combination of design parameters, a 58% COP improvement in CVEC R134a refrigeration system is possible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COP" title="COP">COP</a>, <a href="https://publications.waset.org/abstracts/search?q=cross%20vane%20expander-compressor" title=" cross vane expander-compressor"> cross vane expander-compressor</a>, <a href="https://publications.waset.org/abstracts/search?q=CVEC" title=" CVEC"> CVEC</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=refrigeration%20system" title=" refrigeration system"> refrigeration system</a>, <a href="https://publications.waset.org/abstracts/search?q=air-conditioning" title=" air-conditioning"> air-conditioning</a>, <a href="https://publications.waset.org/abstracts/search?q=R134a" title=" R134a"> R134a</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%20variables" title=" multi variables"> multi variables</a> </p> <a href="https://publications.waset.org/abstracts/50785/coefficient-of-performance-cop-optimization-of-an-r134a-cross-vane-expander-compressor-refrigeration-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">670</span> Internal Power Recovery in Cryogenic Cooling Plants, Part II: Compressor Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ambra%20Giovannelli">Ambra Giovannelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Erika%20Maria%20Archilei"> Erika Maria Archilei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The electrical power consumption related to refrigeration systems is evaluated to be in the order of 15% of the total electricity consumption worldwide. For this reason, in the last years several energy saving techniques have been suggested to reduce the power demand of refrigeration and air conditioning plants. The research work deals with the development of an innovative internal power recovery system for industrial cryogenic cooling plants. Such system is based on a Compressor-Expander Group (CEG). Both the expander and the compressor have been designed starting from automotive turbocharging components, strongly modified to take refrigerant fluid properties and specific system requirements into consideration. A preliminary choice of the machines (radial compressors and expanders) among existing components available on the market was realised according to the rules of the similarity theory. Once the expander was selected, it was strongly modified and performance verified by means of steady-state 3D CFD simulations. This paper focuses the attention on the development of the second CEG main component: the compressor. Once the preliminary selection has been done, the compressor geometry has been modified to take the new boundary conditions into account. In particular, the impeller has been machined to address the required total enthalpy increase. Such evaluation has been carried out by means of a simplified 1D model. Moreover, a vaneless diffuser has been added, modifying the shape of casing rear and front disks. To verify the performance of the modified compressor geometry and suggest improvements, a numerical fluid dynamic model has been set up and the commercial Ansys-CFX software has been used to perform steady-state 3D simulations. In this work, all the numerical results will be shown, highlighting critical aspects and suggesting further developments to increase compressor performance and flexibility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vapour%20compression%20systems" title="vapour compression systems">vapour compression systems</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20saving" title=" energy saving"> energy saving</a>, <a href="https://publications.waset.org/abstracts/search?q=refrigeration%20plant" title=" refrigeration plant"> refrigeration plant</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20fluids" title=" organic fluids"> organic fluids</a>, <a href="https://publications.waset.org/abstracts/search?q=centrifugal%20compressor" title=" centrifugal compressor"> centrifugal compressor</a> </p> <a href="https://publications.waset.org/abstracts/46476/internal-power-recovery-in-cryogenic-cooling-plants-part-ii-compressor-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">669</span> Investigation of Fire Damaged Reinforced Concrete Walls with Axial Force</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Ah%20Yoon">Hyun Ah Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji%20Yeon%20Kang"> Ji Yeon Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hee%20Sun%20Kim"> Hee Sun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Yeong%20Soo%20Shin"> Yeong Soo Shin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reinforced concrete (RC) shear wall system of residential buildings is popular in South Korea. RC walls are subjected to axial forces in common and the effect of axial forces on the strength loss of the fire damaged walls has not been investigated. This paper aims at investigating temperature distribution on fire damaged concrete walls having different axial loads. In the experiments, a variable of specimens is axial force ratio. RC walls are fabricated with 150mm of wall thicknesses, 750mm of lengths and 1,300mm of heights having concrete strength of 24MPa. After curing, specimens are heated on one surface with ISO-834 standard time-temperature curve for 2 hours and temperature distributions during the test are measured using thermocouples inside the walls. The experimental results show that the temperature of the RC walls exposed to fire increases as axial force ratio increases. To verify the experiments, finite element (FE) models are generated for coupled temperature-structure analyses. The analytical results of thermal behaviors are in good agreement with the experimental results. The predicted displacement of the walls decreases when the axial force increases.  <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axial%20force%20ratio" title="axial force ratio">axial force ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=fire" title=" fire"> fire</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20wall" title=" reinforced concrete wall"> reinforced concrete wall</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20strength" title=" residual strength"> residual strength</a> </p> <a href="https://publications.waset.org/abstracts/36359/investigation-of-fire-damaged-reinforced-concrete-walls-with-axial-force" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">668</span> Instrumentation for Engine Start Cycle Characterization at Cold Weather High Altitude Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amit%20Kumar%20Gupta">Amit Kumar Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Rohit%20Vashistha"> Rohit Vashistha</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20P.%20Ravishankar"> G. P. Ravishankar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahesh%20P.%20Padwale"> Mahesh P. Padwale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A cold soaked gas turbine engine have known starting problems in high altitude and low temperature conditions. The high altitude results in lower ambient temperature, pressure, and density. Soaking at low temperature leads to higher oil viscosity, increasing the engine starter system torque requirement. Also, low temperature soaks results in a cold compressor rotor and casing. Since the thermal mass of rotor is higher than casing, casing expands faster, thereby, increasing the blade-casing tip clearance. The low pressure flow over the compressor blade coupled with the secondary flow through the compressor tip clearance during start result in stall inception. The present study discusses engine instrumentation required for capturing the stall inception event. The engine fan exit and combustion chamber were instrumented with dynamic pressure probes to capture the pressure characteristic and clamp-on current meter on primary igniter cable to capture ignition event during start cycle. The experiment was carried out at 10500 Ft. pressure altitude and -15°C ambient temperature. The high pressure compressor stall events were recorded during the starts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressor%20inlet" title="compressor inlet">compressor inlet</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20pressure%20probe" title=" dynamic pressure probe"> dynamic pressure probe</a>, <a href="https://publications.waset.org/abstracts/search?q=engine%20start%20cycle" title=" engine start cycle"> engine start cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=flight%20test%20instrumentation" title=" flight test instrumentation"> flight test instrumentation</a> </p> <a href="https://publications.waset.org/abstracts/46682/instrumentation-for-engine-start-cycle-characterization-at-cold-weather-high-altitude-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46682.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">667</span> Effect of Surface Quality of 3D Printed Impeller on the Performance of a Centrifugal Compressor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nader%20Zirak">Nader Zirak</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammadali%20Shirinbayan"> Mohammadali Shirinbayan</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Tcharkhtchi"> Abbas Tcharkhtchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Additive manufacturing is referred to as a method for fabrication of parts with a mechanism of layer by layer. Suitable economic efficiency and the ability to fabrication complex parts have made this method the focus of studies and industry. In recent years many studies focused on the fabrication of impellers, which is referred to as a key component of turbomachinery, through this technique. This study considers the important effect of the final surface quality of the impeller on the performance of the system, investigates the fabricated printed rotors through the fused deposition modeling with different process parameters. In this regard, the surface of each impeller was analyzed through the 3D scanner. The results show the vital role of surface quality on the final performance of the centrifugal compressor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=impeller" title=" impeller"> impeller</a>, <a href="https://publications.waset.org/abstracts/search?q=centrifugal%20compressor" title=" centrifugal compressor"> centrifugal compressor</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a> </p> <a href="https://publications.waset.org/abstracts/145589/effect-of-surface-quality-of-3d-printed-impeller-on-the-performance-of-a-centrifugal-compressor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">666</span> Determination of the Axial-Vector from an Extended Linear Sigma Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tarek%20Sayed%20Taha%20Ali">Tarek Sayed Taha Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dependence of the axial-vector coupling constant gA on the quark masses has been investigated in the frame work of the extended linear sigma model. The field equations have been solved in the mean-field approximation. Our study shows a better fitting to the experimental data compared with the existing models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extended%20linear%20sigma%20model" title="extended linear sigma model">extended linear sigma model</a>, <a href="https://publications.waset.org/abstracts/search?q=nucleon%20properties" title=" nucleon properties"> nucleon properties</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20coupling%20constant" title=" axial coupling constant"> axial coupling constant</a>, <a href="https://publications.waset.org/abstracts/search?q=physic" title=" physic"> physic</a> </p> <a href="https://publications.waset.org/abstracts/2310/determination-of-the-axial-vector-from-an-extended-linear-sigma-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">665</span> Authoring of Augmented Reality Manuals for Not Physically Available Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vito%20M.%20Manghisi">Vito M. Manghisi</a>, <a href="https://publications.waset.org/abstracts/search?q=Michele%20Gattullo"> Michele Gattullo</a>, <a href="https://publications.waset.org/abstracts/search?q=Alessandro%20Evangelista"> Alessandro Evangelista</a>, <a href="https://publications.waset.org/abstracts/search?q=Enricoandrea%20Laviola"> Enricoandrea Laviola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we compared two solutions for displaying a demo version of an Augmented Reality (AR) manual when the real product is not available, opting to replace it with its computer-aided design (CAD) model. AR has been proved to be effective in maintenance and assembly operations by many studies in the literature. However, most of them present solutions for existing products, usually converting old, printed manuals into AR manuals. In this case, authoring consists of defining how to convey existing instructions through AR. It is not a simple choice, and demo versions are created to test the design goodness. However, this becomes impossible when the product is not physically available, as for new products. A solution could be creating an entirely virtual environment with the product and the instructions. However, in this way, user interaction is completely different from that in the real application, then it would be hard testing the usability of the AR manual. This work aims to propose and compare two different solutions for the displaying of a demo version of an AR manual to support authoring in case of a product that is not physically available. We used as a case study that of an innovative semi-hermetic compressor that has not yet been produced. The applications were developed for a handheld device, using Unity 3D. The main issue was how to show the compressor and attach instructions on it. In one approach, we used Vuforia natural feature tracking to attach a CAD model of the compressor to a 2D image that is a drawing in scale 1:1 of the top-view of the CAD model. In this way, during the AR manual demonstration, the 3D model of the compressor is displayed on the user's device in place of the real compressor, and all the virtual instructions are attached to it. In the other approach, we first created a support application that shows the CAD model of the compressor on a marker. Then, we registered a video of this application, moving around the marker, obtaining a video that shows the CAD model from every point of view. For the AR manual, we used the Vuforia model target (360° option) to track the CAD model of the compressor, as it was the real compressor. Then, during the demonstration, the video is shown on a fixed large screen, and instructions are displayed attached to it in the AR manual. The first solution presents the main drawback to keeping the printed image with everyone working on the authoring of the AR manual, but allows to show the product in a real scale and interaction during the demonstration is very simple. The second one does not need a printed marker during the demonstration but a screen. Still, the compressor model is resized, and interaction is awkward since the user has to play the video on the screen to rotate the compressor. The two solutions were evaluated together with the company, and the preferred was the first one due to a more natural interaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=augmented%20reality" title="augmented reality">augmented reality</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20computer%20interaction" title=" human computer interaction"> human computer interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=operating%20instructions" title=" operating instructions"> operating instructions</a>, <a href="https://publications.waset.org/abstracts/search?q=maintenance" title=" maintenance"> maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=assembly" title=" assembly"> assembly</a> </p> <a href="https://publications.waset.org/abstracts/128622/authoring-of-augmented-reality-manuals-for-not-physically-available-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">664</span> The Effects of Time and Cyclic Loading to the Axial Capacity for Offshore Pile in Shallow Gas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christian%20H.%20Girsang">Christian H. Girsang</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Razi%20B.%20Mansoor"> M. Razi B. Mansoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Noorizal%20N.%20Huang"> Noorizal N. Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An offshore platform was installed in 1977 at about 260km offshore West Malaysia at the water depth of 73.6m. Twelve (12) piles were installed with four (4) are skirt piles. The piles have 1.219m outside diameter and wall thickness of 31mm and were driven to 109m below seabed. Deterministic analyses of the pile capacity under axial loading were conducted using the current API (American Petroleum Institute) method and the four (4) CPT-based methods: the ICP (Imperial College Pile)-method, the NGI (Norwegian Geotechnical Institute)-Method, the UWA (University of Western Australia)-method and the Fugro-method. A statistical analysis of the model uncertainty associated with each pile capacity method was performed. There were two (2) piles analysed: Pile 1 and piles other than Pile 1, where Pile 1 is the pile that was most affected by shallow gas problems. Using the mean estimate of soil properties, the five (5) methods used for deterministic estimation of axial pile capacity in compression predict an axial capacity from 28 to 42MN for Pile 1 and 32 to 49MN for piles other than Pile 1. These values refer to the static capacity shortly after pile installation. They do not include the effects of cyclic loading during the design storm or time after installation on the axial pile capacity. On average, the axial pile capacity is expected to have increased by about 40% because of ageing since the installation of the platform in 1977. On the other hand, the cyclic loading effects during the design storm may reduce the axial capacity of the piles by around 25%. The study concluded that all piles have sufficient safety factor when the pile aging and cyclic loading effect are considered, as all safety factors are above 2.0 for maximum operating and storm loads. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axial%20capacity" title="axial capacity">axial capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20loading" title=" cyclic loading"> cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=pile%20ageing" title=" pile ageing"> pile ageing</a>, <a href="https://publications.waset.org/abstracts/search?q=shallow%20gas" title=" shallow gas"> shallow gas</a> </p> <a href="https://publications.waset.org/abstracts/76988/the-effects-of-time-and-cyclic-loading-to-the-axial-capacity-for-offshore-pile-in-shallow-gas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76988.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=axial%20compressor&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=axial%20compressor&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=axial%20compressor&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=axial%20compressor&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=axial%20compressor&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=axial%20compressor&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=axial%20compressor&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=axial%20compressor&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=axial%20compressor&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=axial%20compressor&amp;page=23">23</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=axial%20compressor&amp;page=24">24</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=axial%20compressor&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10