CINXE.COM
Search results for: Oldroyd-b liquid
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Oldroyd-b liquid</title> <meta name="description" content="Search results for: Oldroyd-b liquid"> <meta name="keywords" content="Oldroyd-b liquid"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Oldroyd-b liquid" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Oldroyd-b liquid"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1925</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Oldroyd-b liquid</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1835</span> Stability Enhancement of Supported Ionic Liquid Membranes Using Ion Gels for Gas Separation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20H.%20Hwang">Y. H. Hwang</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Won"> J. Won</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20S.%20Kang"> Y. S. Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Supported ionic liquid membranes (SILMs) have attracted due to the negligible vapor pressure of ionic liquids (ILs) as well as the high gas selectivity for specific gases such as CO2 or olefin. 1-ethyl-3-methylimidazolium tricyanomethanide ([EMIM][TCM]), 1-butyl-3-methylimidazolium tricyanomethanide ([BMIM][TCM]), show high CO2 solubility, CO2 absorption, rapid CO2 absorption rate and negligible vapor pressure, SILMs using these ILs have been good candidates as CO2 separation membranes. However, SILM has to be operated at a low differential pressure to prevent the solvent from being expelled from the pores of supported membranes. In this paper, we improve the mechanical strength by forming ion gels which provide the stability while it retains the diffusion properties of the liquid stage which affects the gas separation properties. The ion gel was created by the addition of tri-block copolymer, poly(styrene-ethylene oxide-b-styrene) in RTIL. SILM using five different RTILs, are investigated with and without ion gels. The gas permeance were measured and the gas performance with and without the SEOS were investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ion%20gel" title="ion gel">ion gel</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquid" title=" ionic liquid"> ionic liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructure" title=" nanostructure"> nanostructure</a> </p> <a href="https://publications.waset.org/abstracts/15496/stability-enhancement-of-supported-ionic-liquid-membranes-using-ion-gels-for-gas-separation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1834</span> Vitrification-Based Cryopreservation of Phalaenopsis cornu-Cervi (Breda) Blume & Rchb. f. Protocorms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suphat%20Rittirat">Suphat Rittirat</a>, <a href="https://publications.waset.org/abstracts/search?q=Sutha%20Klaocheed"> Sutha Klaocheed</a>, <a href="https://publications.waset.org/abstracts/search?q=Somporn%20Prasertsongskun"> Somporn Prasertsongskun</a>, <a href="https://publications.waset.org/abstracts/search?q=Kanchit%20Thammasiri"> Kanchit Thammasiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Protocorms of Phalaenopsis cornu-cervi (Breda) Blume & Rchb. f. were successfully cryopreserved using a vitrification method. Two-month old protocorms at GI 4 stage were precultured in liquid MS medium supplemented with different concentrations of sucrose (0.3, 0.5, 0.7, 0.9 and 1.2 M) at 25±1°C for 2 days on an orbital shaker at 110 rpm. The protocorms were treated with loading solution (2 M glycerol plus 0.4 M sucrose) for 20 minutes at 25±1°C. Then, the protocorms were sufficiently dehydrated with vitrification solution (plant vitrification solution 2, PVS2) for various times (0, 30, 60, 90 and 120 minutes) at 25±1°C and stored in liquid nitrogen for 1 day. After rapid thawing in water bath at 40°C for 2 minutes, the explants were washed by MS liquid medium containing 0.5 ml of 1.2 M sucrose for 20 minutes. The results shown that the protocorms were precultured in liquid MS medium containing 0.5 M sucrose and dehydrated with vitrification solution for 60 minutes had the highest survival percentage of protocorm at 31±1.0 % as measured by Evan’s blue. No survival rate of protocorms was found without vitrification treatments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=protocorms" title="protocorms">protocorms</a>, <a href="https://publications.waset.org/abstracts/search?q=cryopreservation" title=" cryopreservation"> cryopreservation</a>, <a href="https://publications.waset.org/abstracts/search?q=Phalaenopsis%20cornu-cervi" title=" Phalaenopsis cornu-cervi"> Phalaenopsis cornu-cervi</a>, <a href="https://publications.waset.org/abstracts/search?q=vitrification" title=" vitrification"> vitrification</a> </p> <a href="https://publications.waset.org/abstracts/9351/vitrification-based-cryopreservation-of-phalaenopsis-cornu-cervi-breda-blume-rchb-f-protocorms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9351.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1833</span> Systems of Liquid Organic Fertilizer Application with Respect to Environmental Impact</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hidayatul%20Fitri">Hidayatul Fitri</a>, <a href="https://publications.waset.org/abstracts/search?q=Petr%20%C5%A0a%C5%99ec"> Petr Šařec</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of organic fertilizer is increasing nowadays, and the application must be conducted accurately to provide the right benefits for plants and maintain soil health. Improper application of fertilizers can cause problems for both plants and the environment. This study investigated the liquid organic fertilizer application, particularly digestate, varied into different application doses concerning mitigation of adverse environmental impacts, improving water infiltration ability, and crop yields. The experiment was established into eight variants with different digestate doses, conducted on emission monitoring and soil physical properties. As a result, the digestate application with shallow injection (5 cm in depth) was confirmed as an appropriate technique for applying liquid fertilizer into the soil. Gas emissions resulted in low concentration and declined gradually over time, obviously proved from the experiment conducted under two measurements immediately after application and the next day. Applied various doses of liquid digestate fertilizer affected the emission concentrations of NH3 volatilization, differing significantly and decreasing about 40% from the first to second measurement. In this study, winter wheat crop production significantly increases under digestate application with additional N fertilizer. This study suggested the long-term application of digestate to obtain more alteration of soil properties such as bulk density, penetration resistance, and hydraulic conductivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquid%20organic%20fertilizer" title="liquid organic fertilizer">liquid organic fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=digestate" title=" digestate"> digestate</a>, <a href="https://publications.waset.org/abstracts/search?q=application" title=" application"> application</a>, <a href="https://publications.waset.org/abstracts/search?q=ammonia" title=" ammonia"> ammonia</a>, <a href="https://publications.waset.org/abstracts/search?q=emission" title=" emission"> emission</a> </p> <a href="https://publications.waset.org/abstracts/157208/systems-of-liquid-organic-fertilizer-application-with-respect-to-environmental-impact" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1832</span> One-Dimensional Numerical Simulation of the Nonlinear Instability Behavior of an Electrified Viscoelastic Liquid Jet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fang%20Li">Fang Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Xie-Yuan%20Yin"> Xie-Yuan Yin</a>, <a href="https://publications.waset.org/abstracts/search?q=Xie-Zhen%20Yin"> Xie-Zhen Yin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Instability and breakup of electrified viscoelastic liquid jets are involved in various applications such as inkjet printing, fuel atomization, the pharmaceutical industry, electrospraying, and electrospinning. Studying on the instability of electrified viscoelastic liquid jets is of theoretical and practical significance. We built a one-dimensional electrified viscoelastic model to study the nonlinear instability behavior of a perfecting conducting, slightly viscoelastic liquid jet under a radial electric field. The model is solved numerically by using an implicit finite difference scheme together with a boundary element method. It is found that under a radial electric field a viscoelastic liquid jet still evolves into a beads-on-string structure with a thin filament connecting two adjacent droplets as in the absence of an electric field. A radial electric field exhibits limited influence on the decay of the filament thickness in the nonlinear evolution process of a viscoelastic jet, in contrast to its great enhancing effect on the linear instability of the jet. On the other hand, a radial electric field can induce axial non-uniformity of the first normal stress difference within the filament. Particularly, the magnitude of the first normal stress difference near the midpoint of the filament can be greatly decreased by a radial electric field. Decreasing the extensional stress by a radial electric field may found applications in spraying, spinning, liquid bridges and others. In addition, the effect of a radial electric field on the formation of satellite droplets is investigated on the parametric plane of the dimensionless wave number and the electrical Bond number. It is found that satellite droplets may be formed for a larger axial wave number at a larger radial electric field. The present study helps us gain insight into the nonlinear instability characteristics of electrified viscoelastic liquid jets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non%20linear%20instability" title="non linear instability">non linear instability</a>, <a href="https://publications.waset.org/abstracts/search?q=one-dimensional%20models" title=" one-dimensional models"> one-dimensional models</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20electric%20fields" title=" radial electric fields"> radial electric fields</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelastic%20liquid%20jets" title=" viscoelastic liquid jets "> viscoelastic liquid jets </a> </p> <a href="https://publications.waset.org/abstracts/51607/one-dimensional-numerical-simulation-of-the-nonlinear-instability-behavior-of-an-electrified-viscoelastic-liquid-jet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1831</span> Affectivity of Smoked Edible Sachet in Preventing Oxidation of Natural Condiment Stored in Ambient Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feny%20Mentang">Feny Mentang</a>, <a href="https://publications.waset.org/abstracts/search?q=Roike%20Iwan%20Montolalu"> Roike Iwan Montolalu</a>, <a href="https://publications.waset.org/abstracts/search?q=Henny%20Adeleida%20Dien"> Henny Adeleida Dien</a>, <a href="https://publications.waset.org/abstracts/search?q=Kristhina%20P.%20Rahael"> Kristhina P. Rahael</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomy%20Moga"> Tomy Moga</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayub%20Meko"> Ayub Meko</a>, <a href="https://publications.waset.org/abstracts/search?q=Siegfried%20Berhimpon"> Siegfried Berhimpon </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Smoked fish is one of the famous fish products in North Sulawesi, Indonesia. Research in producing smoked fish using smoke liquid, and the use of that product as main taste for a new “natural condiment” have been done, including a series of researches to find materials for sachet. Research aims are to determine the effectiveness of smoked edible sachets, in preventing oxidation of natural condiment, stored in ambient temperature. Two kinds of natural condiment flavors were used, i.e. smoked Skipjack flavor, and Sea Food flavor. Three variables of edible sachets were used for the natural condiments, i.e. non-sachet, edible sachet without smoke liquid, and edible sachet with smoke liquid. The natural condiments were then stored in ambient temperature, for 0, 10, 20, and 30 days. To determine the effectiveness of edible sachets in preventing oxidation, analysis of TBA, water content, and pH were conducted. The results shown that natural condiment with smoked seafood taste had TBA values higher than that of smoked Skipjack. Edible sachet gave a highly significant effect (P > 0.01) on TBA. Natural condiment in smoked edible sachet has a lower TBA than natural condiment non-sachet, and with sachet without smoke liquid. The longer storing time, the higher TBA, especially for non-sachet and with sachet without smoke liquid. There were no significant effect (P > 0.05) of edible sachet on water content and pH. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=edible%20sachet" title="edible sachet">edible sachet</a>, <a href="https://publications.waset.org/abstracts/search?q=smoke%20liquid" title=" smoke liquid"> smoke liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20condiment" title=" natural condiment"> natural condiment</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a> </p> <a href="https://publications.waset.org/abstracts/33013/affectivity-of-smoked-edible-sachet-in-preventing-oxidation-of-natural-condiment-stored-in-ambient-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33013.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1830</span> Liquid Unloading of Wells with Scaled Perforation via Batch Foamers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Erwin%20Chan">Erwin Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=Aravind%20Subramaniyan"> Aravind Subramaniyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Abdullah%20Fatehah"> Siti Abdullah Fatehah</a>, <a href="https://publications.waset.org/abstracts/search?q=Steve%20Lian%20Kuling"> Steve Lian Kuling</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Foam assisted lift technology is proven across the industry to provide efficient deliquification in gas wells. Such deliquification is typically achieved by delivering the foamer chemical downhole via capillary strings. In highly liquid loaded wells where capillary strings are not readily available, foamer can be delivered via batch injection or bull-heading. The latter techniques differ from the former in that cap strings allow for liquid to be unloaded continuously, whereas foamer batches require that periodic batching be conducted for the liquid to be unloaded. Although batch injection allows for liquid to be unloaded in wells with suitable water to gas (WGR) ratio and condensate to gas (CGR) ratio without well intervention for capillary string installation, this technique comes with its own set of challenges - for foamer to de-liquify liquids, the chemical needs to reach perforation locations where gas bubbling is observed. In highly scaled perforation zones in certain wells, foamer delivered in batches is unable to reach the gas bubbling zone, thus achieving poor lift efficiency. This paper aims to discuss the techniques and challenges for unloading liquid via batch injection in scaled perforation wells X and Y, whose WGR is 6bbl/MMscf, whose scale build-up is observed at the bottom of perforation interval, whose water column is 400 feet, and whose ‘bubbling zone’ is less than 100 feet. Variables such as foamer Z dosage, batching technique, and well flow control valve opening times are manipulated during the duration of the trial to achieve maximum liquid unloading and gas rates. During the field trial, the team has found optimal values between the three aforementioned parameters for best unloading results, in which each cycle’s gas and liquid rates are compared with baselines with similar flowing tubing head pressures (FTHP). It is discovered that amongst other factors, a good agitation technique is a primary determinant for efficient liquid unloading. An average increment of 2MMscf/d against an average production of 4MMscf/d at stable FTHP is recorded during the trial. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=foam" title="foam">foam</a>, <a href="https://publications.waset.org/abstracts/search?q=foamer" title=" foamer"> foamer</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20lift" title=" gas lift"> gas lift</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20unloading" title=" liquid unloading"> liquid unloading</a>, <a href="https://publications.waset.org/abstracts/search?q=scale" title=" scale"> scale</a>, <a href="https://publications.waset.org/abstracts/search?q=batch%20injection" title=" batch injection"> batch injection</a> </p> <a href="https://publications.waset.org/abstracts/137524/liquid-unloading-of-wells-with-scaled-perforation-via-batch-foamers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1829</span> Intensifying Approach for Separation of Bio-Butanol Using Ionic Liquid as Green Solvent: Moving Towards Sustainable Biorefinery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kailas%20L.%20Wasewar">Kailas L. Wasewar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biobutanol has been considered as a potential and alternative biofuel relative to the most popular biodiesel and bioethanol. End product toxicity is the major problems in commercialization of fermentation based process which can be reduce to some possible extent by removing biobutanol simultaneously. Several techniques have been investigated for removing butanol from fermentation broth such as stripping, adsorption, liquid–liquid extraction, pervaporation, and membrane solvent extraction. Liquid–liquid extraction can be performed with high selectivity and is possible to carry out inside the fermenter. Conventional solvents have few drawbacks including toxicity, loss of solvent, high cost etc. Hence alternative solvents must be explored for the same. Room temperature ionic liquids (RTILs) composed entirely of ions are liquid at room temperature having negligible vapor pressure, non-flammability, and tunable physiochemical properties for a particular application which term them as “designer solvents”. Ionic liquids (ILs) have recently gained much attention as alternatives for organic solvents in many processes. In particular, ILs have been used as alternative solvents for liquid–liquid extraction. Their negligible vapor pressure allows the extracted products to be separated from ILs by conventional low pressure distillation with the potential for saving energy. Morpholinium, imidazolium, ammonium, phosphonium etc. based ionic liquids have been employed for the separation biobutanol. In present chapter, basic concepts of ionic liquids and application in separation have been presented. Further, type of ionic liquids including, conventional, functionalized, polymeric, supported membrane, and other ionic liquids have been explored. Also the effect of various performance parameters on separation of biobutanol by ionic liquids have been discussed and compared for different cation and anion based ionic liquids. The typical methodology for investigation have been adopted such as contacting the equal amount of biobutanol and ionic liquids for a specific time say, 30 minutes to confirm the equilibrium. Further, biobutanol phase were analyzed using GC to know the concentration of biobutanol and material balance were used to find the concentration in ionic liquid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biobutanol" title="biobutanol">biobutanol</a>, <a href="https://publications.waset.org/abstracts/search?q=separation" title=" separation"> separation</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquids" title=" ionic liquids"> ionic liquids</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=biorefinery" title=" biorefinery"> biorefinery</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20biomass" title=" waste biomass"> waste biomass</a> </p> <a href="https://publications.waset.org/abstracts/178799/intensifying-approach-for-separation-of-bio-butanol-using-ionic-liquid-as-green-solvent-moving-towards-sustainable-biorefinery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178799.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1828</span> Design to Cryogenic System for Dilution Refrigerator with Cavity and Superconducting Magnet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ki%20Woong%20Lee">Ki Woong Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Center for Axion and Precision Physics Research is studying the search for dark matter using 12 tesla superconducting magnets. A dilution refrigerator is being used for search experiments, and superconducting magnets, superconducting cavities. The dilution refrigerator requires a stable cryogenic environment using liquid helium. Accordingly, a cryogenic system for a stable supply of liquid helium is to be established. This cryogenic system includes the liquefying, supply, storage, and purification of liquid helium. This article presents the basic design, construction, and operation plans for building cryogenic systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cryogenic%20system" title="cryogenic system">cryogenic system</a>, <a href="https://publications.waset.org/abstracts/search?q=dilution%20refrigerator" title=" dilution refrigerator"> dilution refrigerator</a>, <a href="https://publications.waset.org/abstracts/search?q=superconducting%20magnet" title=" superconducting magnet"> superconducting magnet</a>, <a href="https://publications.waset.org/abstracts/search?q=helium%20recovery%20system" title=" helium recovery system"> helium recovery system</a> </p> <a href="https://publications.waset.org/abstracts/154130/design-to-cryogenic-system-for-dilution-refrigerator-with-cavity-and-superconducting-magnet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1827</span> Prediction of Vapor Liquid Equilibrium for Dilute Solutions of Components in Ionic Liquid by Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Mousavian">S. Mousavian</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Abedianpour"> A. Abedianpour</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Khanmohammadi"> A. Khanmohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Hematian"> S. Hematian</a>, <a href="https://publications.waset.org/abstracts/search?q=Gh.%20Eidi%20Veisi"> Gh. Eidi Veisi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ionic liquids are finding a wide range of applications from reaction media to separations and materials processing. In these applications, Vapor–Liquid equilibrium (VLE) is the most important one. VLE for six systems at 353 K and activity coefficients at infinite dilution 〖(γ〗_i^∞) for various solutes (alkanes, alkenes, cycloalkanes, cycloalkenes, aromatics, alcohols, ketones, esters, ethers, and water) in the ionic liquids (1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide [EMIM][BTI], 1-hexyl-3-methyl imidazolium bis (trifluoromethylsulfonyl) imide [HMIM][BTI], 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [OMIM][BTI], and 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl) imide [BMPYR][BTI]) have been used to train neural networks in the temperature range from (303 to 333) K. Densities of the ionic liquids, Hildebrant constant of substances, and temperature were selected as input of neural networks. The networks with different hidden layers were examined. Networks with seven neurons in one hidden layer have minimum error and good agreement with experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquid" title="ionic liquid">ionic liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=VLE" title=" VLE"> VLE</a>, <a href="https://publications.waset.org/abstracts/search?q=dilute%20solution" title=" dilute solution"> dilute solution</a> </p> <a href="https://publications.waset.org/abstracts/42919/prediction-of-vapor-liquid-equilibrium-for-dilute-solutions-of-components-in-ionic-liquid-by-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1826</span> Numerical Analysis of Liquid Metal Magnetohydrodynamic Flows in a Manifold with Three Sub-Channels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meimei%20Wen">Meimei Wen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang%20Nyung%20Kim"> Chang Nyung Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current study, three-dimensional liquid metal (LM) magneto-hydrodynamic (MHD) flows in a manifold with three sub-channels under a uniform magnetic field are numerically investigated. In the manifold, the electrical current can cross channel walls, thus having influence on the flow distribution in each sub-channel. A case with various arrangements of electric conductivity for different parts of channel walls is considered, yielding different current distributions as well as flow distributions in each sub-channel. Here, the imbalance of mass flow rates in the three sub-channels is addressed. Meanwhile, predicted are detailed behaviors of the flow velocity, pressure, current and electric potential of LM MHD flows with three sub-channels. Commercial software CFX is used for the numerical simulation of LM MHD flows. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFX" title="CFX">CFX</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20metal" title=" liquid metal"> liquid metal</a>, <a href="https://publications.waset.org/abstracts/search?q=manifold" title=" manifold"> manifold</a>, <a href="https://publications.waset.org/abstracts/search?q=MHD%20flow" title=" MHD flow"> MHD flow</a> </p> <a href="https://publications.waset.org/abstracts/25429/numerical-analysis-of-liquid-metal-magnetohydrodynamic-flows-in-a-manifold-with-three-sub-channels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1825</span> Magnetic Properties of Bis-Lanthanoates: Probing Dimer Formation in Crystalline, Liquid and Glassy Compounds Using SQUID Magnetometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kane%20Esien">Kane Esien</a>, <a href="https://publications.waset.org/abstracts/search?q=Eadaoin%20McCourt"> Eadaoin McCourt</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Nockemann"> Peter Nockemann</a>, <a href="https://publications.waset.org/abstracts/search?q=Soveig%20Felton"> Soveig Felton</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetic ionic liquids (MILs) are a class of ionic liquid incorporating one or more magnetic atoms into the anion or cation of the ionic liquid, endowing the ionic liquid with magnetic properties alongside the existing properties of ionic liquids. MILs have applications in e.g. fluid-fluid separations, electrochemistry, and polymer chemistry. In this study three different types of Bis-Lanthanoates, that exist in different phases, have been synthesised and characterised (Ln = lanthanide): 1) imidazolium lanthanide acetate – [C4Mim]2[Ln2(OAc)8] – forms a crystalline solid at room temperature, 2) phosphonium lanthanide acetate – [P666 14]2[Ln2(OAc)8] – is in a solid glassy state, and 3) phosphonium lanthanide octanoate – [P666 14]2[Ln2(Oct)8] – is an ionic liquid. X-ray diffraction of the crystalline solid imidazolium lanthanide acetate – [C4Mim]2[Ln2(OAc)8] confirm that the Ln(III) ions form dimers, bridged by carboxyl groups, but cannot yield information about samples phosphonium lanthanide acetate – [P666 14]2[Ln2(OAc)8] (glass) and phosphonium lanthanide octanoate – [P666 14]2[Ln2(Oct)8] (ionic liquid) since these lack long-range order. SQUID magnetometry studies show that all three samples have effective magnetic moments consistent with non-interacting Ln(III) ions at room temperature but deviate from this behavior in the same way below 50 K. Through modeling the magnetic response, we are able to show that we have formed magnetic dimers, in all compounds, that are weakly antiferromagnetically interacting <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dimeric%20ionic%20liquids" title="dimeric ionic liquids">dimeric ionic liquids</a>, <a href="https://publications.waset.org/abstracts/search?q=interactions" title=" interactions"> interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=SQUID" title=" SQUID"> SQUID</a>, <a href="https://publications.waset.org/abstracts/search?q=structure" title=" structure"> structure</a> </p> <a href="https://publications.waset.org/abstracts/94176/magnetic-properties-of-bis-lanthanoates-probing-dimer-formation-in-crystalline-liquid-and-glassy-compounds-using-squid-magnetometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94176.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1824</span> Magnetohydrodynamic Flows in a Conduit with Multiple Channels under a Magnetic Field Applied Perpendicular to the Plane of Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yang%20Luo">Yang Luo</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang%20Nyung%20Kim"> Chang Nyung Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study numerically analyzes a steady-state, three-dimensional liquid-metal magnetohydrodynamic flows in a conduit with multiple channels under a uniform magnetic field. The geometry of the conduit is of a four-parallel-channels system including one inflow channel and three outflow channels. The liquid-metal flows in the inflow channel, then turns 1800 in the transition segment, finally flows into three different outflow channels simultaneously. This kind of channel system can induce counter flow and co-flow, which is rarely investigated before. The axial velocity in the side layer near the first partitioning wall, which is located between the inflow channel and the first outflow channel, is the highest. ‘M-shaped’ velocity profiles are obtained in the side layers of the inflow and outflow channels. The interdependency of the current, fluid velocity, pressure, electric potential is examined in order to describe the electromagnetic characteristics of the liquid-metal flows. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquid-metal" title="liquid-metal">liquid-metal</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20channels" title=" multiple channels"> multiple channels</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetohydrodynamic" title=" magnetohydrodynamic"> magnetohydrodynamic</a> </p> <a href="https://publications.waset.org/abstracts/25440/magnetohydrodynamic-flows-in-a-conduit-with-multiple-channels-under-a-magnetic-field-applied-perpendicular-to-the-plane-of-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25440.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1823</span> Effect of Testing Device Calibration on Liquid Limit Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20O.%20Bayram">M. O. Bayram</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20B.%20Gencdal"> H. B. Gencdal</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20O.%20Fercan"> N. O. Fercan</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Basbug"> B. Basbug</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Liquid limit, which is used as a measure of soil strength, can be detected by Casagrande and fall-cone testing methods. The two methods majorly diverge from each other in terms of operator dependency. The Casagrande method that is applied according to ASTM D4318-17 standards may give misleading results, especially if the calibration process is not performed well. To reveal the effect of calibration for drop height and amount of soil paste placement in the Casagrande cup, a series of tests were carried out by multipoint method as it is specified in the ASTM standards. The tests include the combination of 6 mm, 8 mm, 10 mm, and 12 mm drop heights and under-filled, half-filled, and full-filled Casagrande cups by kaolinite samples. It was observed that during successive tests, the drop height of the cup deteriorated; hence the device was recalibrated before and after each test to provide the accuracy of the results. Besides, the tests by under-filled and full-filled samples for higher drop heights revealed lower liquid limit values than the lower drop heights revealed. For the half-filled samples, it was clearly seen that the liquid limit values didn’t change at all as the drop height increased, and this explains the function of standard specifications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calibration" title="calibration">calibration</a>, <a href="https://publications.waset.org/abstracts/search?q=casagrande%20cup%20method" title=" casagrande cup method"> casagrande cup method</a>, <a href="https://publications.waset.org/abstracts/search?q=drop%20height" title=" drop height"> drop height</a>, <a href="https://publications.waset.org/abstracts/search?q=kaolinite" title=" kaolinite"> kaolinite</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20limit" title=" liquid limit"> liquid limit</a>, <a href="https://publications.waset.org/abstracts/search?q=placing%20form" title=" placing form"> placing form</a> </p> <a href="https://publications.waset.org/abstracts/151571/effect-of-testing-device-calibration-on-liquid-limit-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151571.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1822</span> Foundation Retrofitting of Storage Tank under Seismic Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Abolhasan%20Naeini">Seyed Abolhasan Naeini</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hossein%20Zade"> Mohammad Hossein Zade</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Izadi"> E. Izadi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hossein%20Zade"> M. Hossein Zade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The different seismic behavior of liquid storage tanks rather than conventional structures makes their responses more complicated. Uplifting and excessive settlement due to liquid sloshing are the most frequent damages in cylindrical liquid tanks after shell bucking failure modes. As a matter of fact, uses of liquid storage tanks because of the simple construction on compact layer of soil as a foundation are very conventional, but in some cases need to retrofit are essential. The tank seismic behavior can be improved by modifying dynamic characteristic of tank with verifying seismic loads as well as retrofitting and improving base ground. This paper focuses on a typical steel tank on loose, medium and stiff sandy soil and describes an evaluation of displacement of the tank before and after retrofitting. The Abaqus program was selected for its ability to include shell and structural steel elements, soil-structure interaction, and geometrical nonlinearities and contact type elements. The result shows considerable decreasing in settlement and uplifting in the case of retrofitted tank. Also, by increasing shear strength parameter of soil, the performance of the liquid storage tank under the case of seismic load increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steel%20tank" title="steel tank">steel tank</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-structure" title=" soil-structure"> soil-structure</a>, <a href="https://publications.waset.org/abstracts/search?q=sandy%20soil" title=" sandy soil"> sandy soil</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20load" title=" seismic load"> seismic load</a> </p> <a href="https://publications.waset.org/abstracts/48342/foundation-retrofitting-of-storage-tank-under-seismic-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48342.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1821</span> Prediction of Ionic Liquid Densities Using a Corresponding State Correlation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khashayar%20Nasrifar">Khashayar Nasrifar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ionic liquids (ILs) exhibit particular properties exemplified by extremely low vapor pressure and high thermal stability. The properties of ILs can be tailored by proper selection of cations and anions. As such, ILs are appealing as potential solvents to substitute traditional solvents with high vapor pressure. One of the IL properties required in chemical and process design is density. In developing corresponding state liquid density correlations, scaling hypothesis is often used. The hypothesis expresses the temperature dependence of saturated liquid densities near the vapor-liquid critical point as a function of reduced temperature. Extending the temperature dependence, several successful correlations were developed to accurately correlate the densities of normal liquids from the triple point to a critical point. Applying mixing rules, the liquid density correlations are extended to liquid mixtures as well. ILs are not molecular liquids, and they are not classified among normal liquids either. Also, ILs are often used where the condition is far from equilibrium. Nevertheless, in calculating the properties of ILs, the use of corresponding state correlations would be useful if no experimental data were available. With well-known generalized saturated liquid density correlations, the accuracy in predicting the density of ILs is not that good. An average error of 4-5% should be expected. In this work, a data bank was compiled. A simplified and concise corresponding state saturated liquid density correlation is proposed by phenomena-logically modifying reduced temperature using the temperature-dependence for an interacting parameter of the Soave-Redlich-Kwong equation of state. This modification improves the temperature dependence of the developed correlation. Parametrization was next performed to optimize the three global parameters of the correlation. The correlation was then applied to the ILs in our data bank with satisfactory predictions. The correlation of IL density applied at 0.1 MPa and was tested with an average uncertainty of around 2%. No adjustable parameter was used. The critical temperature, critical volume, and acentric factor were all required. Methods to extend the predictions to higher pressures (200 MPa) were also devised. Compared to other methods, this correlation was found more accurate. This work also presents the chronological order of developing such correlations dealing with ILs. The pros and cons are also expressed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correlation" title="correlation">correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=corresponding%20state%20principle" title=" corresponding state principle"> corresponding state principle</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquid" title=" ionic liquid"> ionic liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=density" title=" density"> density</a> </p> <a href="https://publications.waset.org/abstracts/109689/prediction-of-ionic-liquid-densities-using-a-corresponding-state-correlation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109689.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1820</span> Preliminary Performance of a Liquid Oxygen-Liquid Methane Pintle Injector for Thrust Variations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brunno%20Vasques">Brunno Vasques</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the non-toxic nature and high performance in terms of vacuum specific impulse and density specific impulse, the combination of liquid oxygen and liquid methane have been identified as a promising option for future space vehicle systems. Applications requiring throttling capability include specific missions such as rendezvous, planetary landing and de-orbit as well as weapon systems. One key challenge in throttling liquid rocket engines is maintaining an adequate pressure drop across the injection elements, which is necessary to provide good propellant atomization and mixing as well as system stability. The potential scalability of pintle injectors, their great suitability to throttling and inherent combustion stability characteristics led to investigations using a variety of propellant combinations, including liquid oxygen and hydrogen and fluorine-oxygen and methane. Presented here are the preliminary performance and heat transfer information obtained during hot-fire testing of a pintle injector running on liquid oxygen and liquid methane propellants. The specific injector design selected for this purpose is a multi-configuration building block version with replaceable injection elements, providing flexibility to accommodate hardware modifications with minimum difficulty. On the basis of single point runs and the use of a copper/nickel segmented calorimetric combustion chamber and associated transient temperature measurement, the characteristic velocity efficiency, injector footprint and heat fluxes could be established for the first proposed pintle configuration as a function of injection velocity- and momentum-ratios. A description of the test-bench is presented as well as a discussion of irregularities encountered during testing, such as excessive heat flux into the pintle tip resulting from certain operating conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20propellants" title="green propellants">green propellants</a>, <a href="https://publications.waset.org/abstracts/search?q=hot-fire%20performance" title=" hot-fire performance"> hot-fire performance</a>, <a href="https://publications.waset.org/abstracts/search?q=rocket%20engine%20throttling" title=" rocket engine throttling"> rocket engine throttling</a>, <a href="https://publications.waset.org/abstracts/search?q=pintle%20injector" title=" pintle injector"> pintle injector</a> </p> <a href="https://publications.waset.org/abstracts/55368/preliminary-performance-of-a-liquid-oxygen-liquid-methane-pintle-injector-for-thrust-variations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1819</span> Study on Liquid Nitrogen Gravity Circulation Loop for Cryopumps in Large Space Simulator </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Weiwei%20Shan">Weiwei Shan</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenjing%20Ding"> Wenjing Ding</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20Ning"> Juan Ning</a>, <a href="https://publications.waset.org/abstracts/search?q=Chao%20He"> Chao He</a>, <a href="https://publications.waset.org/abstracts/search?q=Zijuan%20Wang"> Zijuan Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gravity circulation loop for the cryopumps of the space simulator is introduced, and two phase mathematic model of flow heat transfer is analyzed as well. Based on this model, the liquid nitrogen (LN<sub>2</sub>) gravity circulation loop including its equipment and layout is designed and has served as LN<sub>2</sub> feeding system for cryopumps in one large space simulator. With the help of control software and human machine interface, this system can be operated flexibly, simply, and automatically under four conditions. When running this system, the results show that the cryopumps can be cooled down and maintained under the required temperature, 120 K. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cryopumps" title="cryopumps">cryopumps</a>, <a href="https://publications.waset.org/abstracts/search?q=gravity%20circulation%20loop" title=" gravity circulation loop"> gravity circulation loop</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20nitrogen" title=" liquid nitrogen"> liquid nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=two-phase" title=" two-phase"> two-phase</a> </p> <a href="https://publications.waset.org/abstracts/71782/study-on-liquid-nitrogen-gravity-circulation-loop-for-cryopumps-in-large-space-simulator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71782.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1818</span> Optimizing Foaming Agents by Air Compression to Unload a Liquid Loaded Gas Well</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mhenga%20Agneta">Mhenga Agneta</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Zhaomin"> Li Zhaomin</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Chao"> Zhang Chao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When velocity is high enough, gas can entrain fluid and carry to the surface, but as time passes by, velocity drops to a critical point where fluids will start to hold up in the tubing and cause liquid loading which prevents gas production and may lead to the death of the well. Foam injection is widely used as one of the methods to unload liquid. Since wells have different characteristics, it is not guaranteed that foam can be applied in all of them and bring successful results. This research presents a technology to optimize the efficiency of foam to unload liquid by air compression. Two methods are used to explain optimization; (i) mathematical formulas are used to solve and explain the myth of how density and critical velocity could be minimized when air is compressed into foaming agents, then the relationship between flow rates and pressure increase which would boost up the bottom hole pressure and increase the velocity to lift liquid to the surface. (ii) Experiments to test foam carryover capacity and stability as a function of time and surfactant concentration whereby three surfactants anionic sodium dodecyl sulfate (SDS), nonionic Triton 100 and cationic hexadecyltrimethylammonium bromide (HDTAB) were probed. The best foaming agents were injected to lift liquid loaded in a created vertical well model of 2.5 cm diameter and 390 cm high steel tubing covered by a transparent glass casing of 5 cm diameter and 450 cm high. The results show that, after injecting foaming agents, liquid unloading was successful by 75%; however, the efficiency of foaming agents to unload liquid increased by 10% with an addition of compressed air at a ratio of 1:1. Measured values and calculated values were compared and brought about ± 3% difference which is a good number. The successful application of the technology indicates that engineers and stakeholders could bring water flooded gas wells back to production with optimized results by firstly paying attention to the type of surfactants (foaming agents) used, concentration of surfactants, flow rates of the injected surfactants then compressing air to the foaming agents at a proper ratio. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20compression" title="air compression">air compression</a>, <a href="https://publications.waset.org/abstracts/search?q=foaming%20agents" title=" foaming agents"> foaming agents</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20well" title=" gas well"> gas well</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20loading" title=" liquid loading"> liquid loading</a> </p> <a href="https://publications.waset.org/abstracts/102093/optimizing-foaming-agents-by-air-compression-to-unload-a-liquid-loaded-gas-well" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102093.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1817</span> 1D/3D Modeling of a Liquid-Liquid Two-Phase Flow in a Milli-Structured Heat Exchanger/Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Antoinette%20Maarawi">Antoinette Maarawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zoe%20Anxionnaz-Minvielle"> Zoe Anxionnaz-Minvielle</a>, <a href="https://publications.waset.org/abstracts/search?q=Pierre%20Coste"> Pierre Coste</a>, <a href="https://publications.waset.org/abstracts/search?q=Nathalie%20Di%20Miceli%20Raimondi"> Nathalie Di Miceli Raimondi</a>, <a href="https://publications.waset.org/abstracts/search?q=Michel%20Cabassud"> Michel Cabassud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Milli-structured heat exchanger/reactors have been recently widely used, especially in the chemical industry, due to their enhanced performances in heat and mass transfer compared to conventional apparatuses. In our work, the ‘DeanHex’ heat exchanger/reactor with a 2D-meandering channel is investigated both experimentally and numerically. The square cross-sectioned channel has a hydraulic diameter of 2mm. The aim of our study is to model local physico-chemical phenomena (heat and mass transfer, axial dispersion, etc.) for a liquid-liquid two-phase flow in our lab-scale meandering channel, which represents the central part of the heat exchanger/reactor design. The numerical approach of the reactor is based on a 1D model for the flow channel encapsulated in a 3D model for the surrounding solid, using COMSOL Multiphysics V5.5. The use of the 1D approach to model the milli-channel reduces significantly the calculation time compared to 3D approaches, which are generally focused on local effects. Our 1D/3D approach intends to bridge the gap between the simulation at a small scale and the simulation at the reactor scale at a reasonable CPU cost. The heat transfer process between the 1D milli-channel and its 3D surrounding is modeled. The feasibility of this 1D/3D coupling was verified by comparing simulation results to experimental ones originated from two previous works. Temperature profiles along the channel axis obtained by simulation fit the experimental profiles for both cases. The next step is to integrate the liquid-liquid mass transfer model and to validate it with our experimental results. The hydrodynamics of the liquid-liquid two-phase system is modeled using the ‘mixture model approach’. The mass transfer behavior is represented by an overall volumetric mass transfer coefficient ‘kLa’ correlation obtained from our experimental results in the millimetric size meandering channel. The present work is a first step towards the scale-up of our ‘DeanHex’ expecting future industrialization of such equipment. Therefore, a generalized scaled-up model of the reactor comprising all the transfer processes will be built in order to predict the performance of the reactor in terms of conversion rate and energy efficiency at an industrial scale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquid-liquid%20mass%20transfer" title="liquid-liquid mass transfer">liquid-liquid mass transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=milli-structured%20reactor" title=" milli-structured reactor"> milli-structured reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=1D%2F3D%20model" title=" 1D/3D model"> 1D/3D model</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20intensification" title=" process intensification"> process intensification</a> </p> <a href="https://publications.waset.org/abstracts/128595/1d3d-modeling-of-a-liquid-liquid-two-phase-flow-in-a-milli-structured-heat-exchangerreactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128595.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1816</span> Numerical Modeling of Film Cooling of the Surface at Non-Uniform Heat Flux Distributions on the Wall</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20V.%20Bartashevich">M. V. Bartashevich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of heat transfer at thin laminar liquid film is solved numerically. A thin film of liquid flows down an inclined surface under conditions of variable heat flux on the wall. The use of thin films of liquid allows to create the effective technologies for cooling surfaces. However, it is important to investigate the most suitable cooling regimes from a safety point of view, in order, for example, to avoid overheating caused by the ruptures of the liquid film, and also to study the most effective cooling regimes depending on the character of the distribution of the heat flux on the wall, as well as the character of the blowing of the film surface, i.e., the external shear stress on its surface. In the statement of the problem on the film surface, the heat transfer coefficient between the liquid and gas is set, as well as a variable external shear stress - the intensity of blowing. It is shown that the combination of these factors - the degree of uniformity of the distribution of heat flux on the wall and the intensity of blowing, affects the efficiency of heat transfer. In this case, with an increase in the intensity of blowing, the cooling efficiency increases, reaching a maximum, and then decreases. It is also shown that the more uniform the heating of the wall, the more efficient the heat sink. A separate study was made for the flow regime along the horizontal surface when the liquid film moves solely due to external stress influence. For this mode, the analytical solution is used for the temperature at the entrance region for further numerical calculations downstream. Also the influence of the degree of uniformity of the heat flux distribution on the wall and the intensity of blowing of the film surface on the heat transfer efficiency was also studied. This work was carried out at the Kutateladze Institute of Thermophysics SB RAS (Russia) and supported by FASO Russia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Heat%20Flux" title="Heat Flux">Heat Flux</a>, <a href="https://publications.waset.org/abstracts/search?q=Heat%20Transfer%20Enhancement" title=" Heat Transfer Enhancement"> Heat Transfer Enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=External%20Blowing" title=" External Blowing"> External Blowing</a>, <a href="https://publications.waset.org/abstracts/search?q=Thin%20Liquid%20Film" title=" Thin Liquid Film"> Thin Liquid Film</a> </p> <a href="https://publications.waset.org/abstracts/121069/numerical-modeling-of-film-cooling-of-the-surface-at-non-uniform-heat-flux-distributions-on-the-wall" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1815</span> Experimental Study of Tunable Layout Printed Fresnel Lens Structure Based on Dye Doped Liquid Crystal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Javadzadeh">M. Javadzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Khoshsima"> H. Khoshsima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, we present a layout printing way for producing Fresnel zone on 1294-1b doped liquid crystal with Methyl-Red azo dye. We made a Fresnel zone mask with 25 zones and radius of 5 mm using lithography technique. With layout printing way, we recorded mask’s pattern on cell with λ=532 nm solid-state diode pump laser. By recording Fresnel zone pattern on cell and making Fresnel pattern on the surface of cell, odd and even zones, will form. The printed pattern, because of Azo dye’s photoisomerization, was permanent. Experimentally, we saw focal length tunability from 32 cm to 43 cm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquid%20crystal" title="liquid crystal">liquid crystal</a>, <a href="https://publications.waset.org/abstracts/search?q=lens" title=" lens"> lens</a>, <a href="https://publications.waset.org/abstracts/search?q=Fresnel%20zone" title=" Fresnel zone"> Fresnel zone</a>, <a href="https://publications.waset.org/abstracts/search?q=diffraction" title=" diffraction"> diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=Fresnel%20lens" title=" Fresnel lens"> Fresnel lens</a> </p> <a href="https://publications.waset.org/abstracts/78419/experimental-study-of-tunable-layout-printed-fresnel-lens-structure-based-on-dye-doped-liquid-crystal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1814</span> Multiclass Analysis of Pharmaceuticals in Fish and Shrimp Tissues by High-Performance Liquid Chromatography-Tandem Mass Spectrometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Pashaei">Reza Pashaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Reda%20Dzingelevi%C4%8Dien%C4%97"> Reda Dzingelevičienė</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An efficient, reliable, and sensitive multiclass analytical method has been expanded to simultaneously determine 15 human pharmaceutical residues in fish and shrimp tissue samples by ultra-high-performance liquid chromatography-tandem mass spectrometry. The investigated compounds comprise ten classes, namely analgesic, antibacterial, anticonvulsant, cardiovascular, fluoroquinolones, macrolides, nonsteroidal anti-inflammatory, penicillins, stimulant, and sulfonamide. A simple liquid extraction procedure based on 0.1% formic acid in methanol was developed. Chromatographic conditions were optimized, and mobile phase namely 0.1 % ammonium acetate (A), and acetonitrile (B): 0 – 2 min, 15% B; 2 – 5 min, linear to 95% B; 5 – 10 min, 95% B; and 10 – 12 min was obtained. Limits of detection and quantification ranged from 0.017 to 1.371 μg/kg and 0.051 to 4.113 μg/kg, respectively. Finally, amoxicillin, azithromycin, caffeine, carbamazepine, ciprofloxacin, clarithromycin, diclofenac, erythromycin, furosemide, ibuprofen, ketoprofen, naproxen, sulfamethoxazole, tetracycline, and triclosan were quantifiable in fish and shrimp samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fish" title="fish">fish</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20chromatography" title=" liquid chromatography"> liquid chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20spectrometry" title=" mass spectrometry"> mass spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmaceuticals" title=" pharmaceuticals"> pharmaceuticals</a>, <a href="https://publications.waset.org/abstracts/search?q=shrimp" title=" shrimp"> shrimp</a>, <a href="https://publications.waset.org/abstracts/search?q=solid-phase%20extraction" title=" solid-phase extraction"> solid-phase extraction</a> </p> <a href="https://publications.waset.org/abstracts/143257/multiclass-analysis-of-pharmaceuticals-in-fish-and-shrimp-tissues-by-high-performance-liquid-chromatography-tandem-mass-spectrometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1813</span> Spatially Referenced Checklist Model Dedicated to Professional Actors for a Good Evaluation and Management of Networks </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdessalam%20Hijab">Abdessalam Hijab</a>, <a href="https://publications.waset.org/abstracts/search?q=Hafida%20Boulekbache"> Hafida Boulekbache</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20Henry"> Eric Henry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this article is to explain the use of geographic information system (GIS) and information and communication technologies (ICTs) in the real-time processing and analysis of data on the status of an urban sanitation network by integrating professional actors in sanitation for sustainable management in urban areas. Indeed, it is a smart geo-collaboration based on the complementarity of ICTs and GIS. This multi-actor reflection was built with the objective of contributing to the development of complementary solutions to the existing technologies to better protect the urban environment, with the help of a checklist with the spatial reference "E-Géo-LD" dedicated to the "professional/professional" actors in sanitation, for intelligent monitoring of liquid sanitation networks in urban areas. In addition, this research provides a good understanding and assimilation of liquid sanitation schemes in the "Lamkansa" sampling area of the city of Casablanca, and spatially evaluates these schemes. Downstream, it represents a guide to assess the environmental impacts of the liquid sanitation scheme. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ICT" title="ICT">ICT</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20checklist" title=" spatial checklist"> spatial checklist</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20sanitation" title=" liquid sanitation"> liquid sanitation</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a> </p> <a href="https://publications.waset.org/abstracts/128808/spatially-referenced-checklist-model-dedicated-to-professional-actors-for-a-good-evaluation-and-management-of-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1812</span> Ligandless Extraction and Determination of Trace Amounts of Lead in Pomegranate, Zucchini and Lettuce Samples after Dispersive Liquid-Liquid Microextraction with Ultrasonic Bath and Optimization of Extraction Condition with RSM Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fariba%20Tadayon">Fariba Tadayon</a>, <a href="https://publications.waset.org/abstracts/search?q=Elmira%20Hassanlou"> Elmira Hassanlou</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Bagheri"> Hasan Bagheri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Jafarian"> Mostafa Jafarian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy metals are released into water, plants, soil, and food by natural and human activities. Lead has toxic roles in the human body and may cause serious problems even in low concentrations, since it may have several adverse effects on human. Therefore, determination of lead in different samples is an important procedure in the studies of environmental pollution. In this work, an ultrasonic assisted-ionic liquid based-liquid-liquid microextraction (UA-IL-DLLME) procedure for the determination of lead in zucchini, pomegranate, and lettuce has been established and developed by using flame atomic absorption spectrometer (FAAS). For UA-IL-DLLME procedure, 10 mL of the sample solution containing Pb2+ was adjusted to pH=5 in a glass test tube with a conical bottom; then, 120 μL of 1-Hexyl-3-methylimidazolium hexafluoro phosphate (CMIM)(PF6) was rapidly injected into the sample solution with a microsyringe. After that, the resulting cloudy mixture was treated by ultrasonic for 5 min, then the separation of two phases was obtained by centrifugation for 5 min at 3000 rpm and IL-phase diluted with 1 cc ethanol, and the analytes were determined by FAAS. The effect of different experimental parameters in the extraction step including: ionic liquid volume, sonication time and pH was studied and optimized simultaneously by using Response Surface Methodology (RSM) employing a central composite design (CCD). The optimal conditions were determined to be an ionic liquid volume of 120 μL, sonication time of 5 min, and pH=5. The linear ranges of the calibration curve for the determination by FAAS of lead were 0.1-4 ppm with R2=0.992. Under optimized conditions, the limit of detection (LOD) for lead was 0.062 μg.mL-1, the enrichment factor (EF) was 93, and the relative standard deviation (RSD) for lead was calculated as 2.29%. The levels of lead for pomegranate, zucchini, and lettuce were calculated as 2.88 μg.g-1, 1.54 μg.g-1, 2.18 μg.g-1, respectively. Therefore, this method has been successfully applied for the analysis of the content of lead in different food samples by FAAS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dispersive%20liquid-liquid%20microextraction" title="Dispersive liquid-liquid microextraction">Dispersive liquid-liquid microextraction</a>, <a href="https://publications.waset.org/abstracts/search?q=Central%20composite%20design" title=" Central composite design"> Central composite design</a>, <a href="https://publications.waset.org/abstracts/search?q=Food%20samples" title=" Food samples"> Food samples</a>, <a href="https://publications.waset.org/abstracts/search?q=Flame%20atomic%20absorption%20spectrometry." title=" Flame atomic absorption spectrometry."> Flame atomic absorption spectrometry.</a> </p> <a href="https://publications.waset.org/abstracts/43911/ligandless-extraction-and-determination-of-trace-amounts-of-lead-in-pomegranate-zucchini-and-lettuce-samples-after-dispersive-liquid-liquid-microextraction-with-ultrasonic-bath-and-optimization-of-extraction-condition-with-rsm-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1811</span> Preparation and Electro-Optic Characteristics of Polymer Network Liquid Crystals Based On Polymethylvinilpirydine and Polyethylene Glycol </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20D.%20Ibragimov">T. D. Ibragimov</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Imamaliyev"> A. R. Imamaliyev</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20M.%20Bayramov"> G. M. Bayramov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The polymer network liquid crystals based on the liquid crystals Н37 and 5CB with polymethylvinilpirydine (PMVP) and polyethylene glycol (PEG) have been developed. Mesogene substance 4-n-heptyoxibenzoic acid (HOBA) is served for stabilization of obtaining composites. Kinetics of network formation is investigated by methods of polarization microscopy and integrated small-angle scattering. It is shown that gel-like states of the composite H-37 + PMVP + HOBA and 5CB+PEG+HOBA are formed at polymer concentration above 7 % and 9 %, correspondingly. At slow cooling, the system separates into a liquid crystal –rich phase and a liquid crystal-poor phase. At this case, transition of these phases in the H-37 + PMVP + HOBA (87 % + 12 % + 1 %) composite to an anisotropic state occurs at 49 оС and и 41 оС, accordingly, while the composite 5CB+PEG+HOBA (85% +13 % +2%) passes to anisotropic state at 36 оС corresponding to the isotropic-nematic transition of pure 5CB. The basic electro-optic parameters of the obtained composites are determined at room temperature. It is shown that the threshold voltage of the composite H-37 + PMVP + HOBA increase in comparison with pure H-37 and, accordingly, there is a shift of voltage dependence of rise times to the high voltage region. The contrast ratio worsens while decay time improves in comparison with the pure liquid crystal at all applied voltage. The switching times of the composite 5CB + PEG + HOBA (85% +13 % +2%) show anomalous behavior connected with incompleteness of the transition to an anisotropic state. Experimental results are explained by phase separation of the system, diminution of a working area of electro-optical effects and influence of areas with the high polymer concentration on areas with their low concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquid%20crystals" title="liquid crystals">liquid crystals</a>, <a href="https://publications.waset.org/abstracts/search?q=polymers" title=" polymers"> polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=small-angle%20scattering" title=" small-angle scattering"> small-angle scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a> </p> <a href="https://publications.waset.org/abstracts/23064/preparation-and-electro-optic-characteristics-of-polymer-network-liquid-crystals-based-on-polymethylvinilpirydine-and-polyethylene-glycol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">617</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1810</span> Separation of Water/Organic Mixtures Using Micro- and Nanostructured Membranes of Special Type of Wettability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20R.%20Sultanov%20Ch.%20Daulbayev">F. R. Sultanov Ch. Daulbayev</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Bakbolat"> B. Bakbolat</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20A.%20Mansurov"> Z. A. Mansurov</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Zhurintaeva"> A. A. Zhurintaeva</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20I.%20Gadilshina"> R. I. Gadilshina</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Dugali"> A. B. Dugali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Both hydrophilic-oleophobic and hydrophobic-oleophilic membranes were obtained by coating of the substrate of membranes, presented by stainless steel meshes with various dimensions of their openings, with a composition that forms the special type of their surface wettability via spray-coating method. The surface morphology of resulting membranes was studied using SEM, the type of their wettability was identified by measuring the contact angle between the surface of membrane and a drop of studied liquid (water or organic liquid) and efficiency of continuous separation of water and organic liquid was studied on self-assembled setup. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=membrane" title="membrane">membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel%20mesh" title=" stainless steel mesh"> stainless steel mesh</a>, <a href="https://publications.waset.org/abstracts/search?q=oleophobicity" title=" oleophobicity"> oleophobicity</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobicity" title=" hydrophobicity"> hydrophobicity</a>, <a href="https://publications.waset.org/abstracts/search?q=separation" title=" separation"> separation</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20liquids" title=" organic liquids "> organic liquids </a> </p> <a href="https://publications.waset.org/abstracts/115038/separation-of-waterorganic-mixtures-using-micro-and-nanostructured-membranes-of-special-type-of-wettability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1809</span> The Locus of Action - Tinted Windows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Devleminck%20Steven">Devleminck Steven</a>, <a href="https://publications.waset.org/abstracts/search?q=Debackere%20Boris"> Debackere Boris</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research is about the ways artists and scientists deal with (and endure) new meaning and comprehend and construct the world. The project reflects on the intense connection between comprehension and construction and their place of creation – the ‘locus of action’. It seeks to define a liquid form of understanding and analysis capable of approaching our complex liquid world as discussed by Zygmunt Bauman. The aim is to establish a multi-viewpoint theoretical approach based on the dynamic concept of the Flâneur as introduced by Baudelaire, replacing single viewpoint categorization. This is coupled with the concept of thickening as proposed by Clifford Geertz with its implication of interaction between multi-layers of meaning. Here walking and looking is introduced as a method or strategy, a model or map, providing a framework of understanding in conditions of hybridity and change. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=action" title="action">action</a>, <a href="https://publications.waset.org/abstracts/search?q=art" title=" art"> art</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid" title=" liquid"> liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=locus" title=" locus"> locus</a>, <a href="https://publications.waset.org/abstracts/search?q=negotiation" title=" negotiation"> negotiation</a>, <a href="https://publications.waset.org/abstracts/search?q=place" title=" place"> place</a>, <a href="https://publications.waset.org/abstracts/search?q=science" title=" science"> science</a> </p> <a href="https://publications.waset.org/abstracts/24971/the-locus-of-action-tinted-windows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24971.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1808</span> Transient Current Investigations in Liquid Crystalline Polyurethane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jitendra%20Kumar%20Quamara">Jitendra Kumar Quamara</a>, <a href="https://publications.waset.org/abstracts/search?q=Sohan%20Lal"> Sohan Lal</a>, <a href="https://publications.waset.org/abstracts/search?q=Pushkar%20Raj"> Pushkar Raj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrical conduction behavior of liquid crystalline polyurethane (LCPU) has been investigated under transient conditions in the operating temperature range 50-220°C at various electric fields of 4.35-43.45 kV/cm. The transient currents show the hyperbolic decay character and the decay exponent ∆t (one tenth decay time) dependent on field as well as on temperature. The increase in I0/Is values (where I0 represents the current observed immediately after applying the voltage and Is represents the steady state current) and the variation of mobility at high operating temperatures shows the appearance of mesophase. The origin of transient currents has been attributed to the dipolar nature of carbonyl (C=O) groups in the main chain of LCPU and the trapping charge carriers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20conduction" title="electrical conduction">electrical conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20current" title=" transient current"> transient current</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20crystalline%20polymers" title=" liquid crystalline polymers"> liquid crystalline polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=mesophase" title=" mesophase "> mesophase </a> </p> <a href="https://publications.waset.org/abstracts/9788/transient-current-investigations-in-liquid-crystalline-polyurethane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1807</span> CFD-DEM Modelling of Liquid Fluidizations of Ellipsoidal Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esmaeil%20Abbaszadeh%20Molaei">Esmaeil Abbaszadeh Molaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Zongyan%20Zhou"> Zongyan Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Aibing%20Yu"> Aibing Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The applications of liquid fluidizations have been increased in many parts of industries such as particle classification, backwashing of granular filters, crystal growth, leaching and washing, and bioreactors due to high-efficient liquid–solid contact, favorable mass and heat transfer, high operation flexibilities, and reduced back mixing of phases. In most of these multiphase operations the particles properties, i.e. size, density, and shape, may change during the process because of attrition, coalescence or chemical reactions. Previous studies, either experimentally or numerically, mainly have focused on studies of liquid-solid fluidized beds containing spherical particles; however, the role of particle shape on the hydrodynamics of liquid fluidized beds is still not well-known. A three-dimensional Discrete Element Model (DEM) and Computational Fluid Dynamics (CFD) are coupled to study the influence of particles shape on particles and liquid flow patterns in liquid-solid fluidized beds. In the simulations, ellipsoid particles are used to study the shape factor since they can represent a wide range of particles shape from oblate and sphere to prolate shape particles. Different particle shapes from oblate (disk shape) to elongated particles (rod shape) are selected to investigate the effect of aspect ratio on different flow characteristics such as general particles and liquid flow pattern, pressure drop, and particles orientation. First, the model is verified based on experimental observations, then further detail analyses are made. It was found that spherical particles showed a uniform particle distribution in the bed, which resulted in uniform pressure drop along the bed height. However for particles with aspect ratios less than one (disk-shape), some particles were carried into the freeboard region, and the interface between the bed and freeboard was not easy to be determined. A few particle also intended to leave the bed. On the other hand, prolate particles showed different behaviour in the bed. They caused unstable interface and some flow channeling was observed for low liquid velocities. Because of the non-uniform particles flow pattern for particles with aspect ratios lower (oblate) and more (prolate) than one, the pressure drop distribution in the bed was not observed as uniform as what was found for spherical particles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=DEM" title=" DEM"> DEM</a>, <a href="https://publications.waset.org/abstracts/search?q=ellipsoid" title=" ellipsoid"> ellipsoid</a>, <a href="https://publications.waset.org/abstracts/search?q=fluidization" title=" fluidization"> fluidization</a>, <a href="https://publications.waset.org/abstracts/search?q=multiphase%20flow" title=" multiphase flow"> multiphase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=non-spherical" title=" non-spherical"> non-spherical</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/58426/cfd-dem-modelling-of-liquid-fluidizations-of-ellipsoidal-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58426.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1806</span> Study of the Influence of Nozzle Length and Jet Angles on the Air Entrainment by Plunging Water Jets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Luis%20Mu%C3%B1oz-Cobo%20Gonz%C3%A1lez">José Luis Muñoz-Cobo González</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergio%20Chiva%20Vicent"> Sergio Chiva Vicent</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Harby%20Mohamed"> Khaled Harby Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When a vertical liquid jet plunges into a liquid surface, after passing through a surrounding gas phase, it entrains a large amount of gas bubbles into the receiving pool, and it forms a large submerged two-phase region with a considerable interfacial area. At the intersection of the plunging jet and the liquid surface, free-surface instabilities are developed, and gas entrainment may be observed. If the jet impact velocity exceeds an inception velocity that is a function of the plunging flow conditions, the gas entrainment takes place. The general goal of this work is to study the effect of nozzle parameters (length-to-diameter ratio (lN/dN), jet angle (α) with the free water surface) and the jet operating conditions (initial jet diameters dN, initial jet velocity VN, and jet length x1) on the flow characteristics such as: inception velocity of the gas entrainment Ve, bubble penetration depth Hp, gas entrainment rate, Qa, centerline jet velocity Vc, and the axial jet velocity distribution Vx below the free water surface in a plunging liquid jet system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inclined%20plunging%20water%20jets" title="inclined plunging water jets">inclined plunging water jets</a>, <a href="https://publications.waset.org/abstracts/search?q=entrainment" title=" entrainment"> entrainment</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20phase%20flow" title=" two phase flow"> two phase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=nozzle%20length" title=" nozzle length"> nozzle length</a> </p> <a href="https://publications.waset.org/abstracts/15058/study-of-the-influence-of-nozzle-length-and-jet-angles-on-the-air-entrainment-by-plunging-water-jets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Oldroyd-b%20liquid&page=3" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Oldroyd-b%20liquid&page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Oldroyd-b%20liquid&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Oldroyd-b%20liquid&page=3">3</a></li> <li class="page-item active"><span class="page-link">4</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Oldroyd-b%20liquid&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Oldroyd-b%20liquid&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Oldroyd-b%20liquid&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Oldroyd-b%20liquid&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Oldroyd-b%20liquid&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Oldroyd-b%20liquid&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Oldroyd-b%20liquid&page=64">64</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Oldroyd-b%20liquid&page=65">65</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Oldroyd-b%20liquid&page=5" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>