CINXE.COM
Fluorescent Quantum Dots and Its Composites for Highly Sensitive Detection of Heavy Metal Ions and Pesticide Residues: A Review
<!DOCTYPE html> <html lang="en" xmlns:og="http://ogp.me/ns#" xmlns:fb="https://www.facebook.com/2008/fbml"> <head> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> <meta content="mdpi" name="sso-service" /> <meta content="width=device-width, initial-scale=1.0" name="viewport" /> <title>Fluorescent Quantum Dots and Its Composites for Highly Sensitive Detection of Heavy Metal Ions and Pesticide Residues: A Review</title><link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/font-awesome.min.css?eb190a3a77e5e1ee?1732615622"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/jquery.multiselect.css?f56c135cbf4d1483?1732615622"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/chosen.min.css?d7ca5ca9441ef9e1?1732615622"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/main2.css?69b39374e6b554b7?1732615622"> <link rel="mask-icon" href="https://pub.mdpi-res.com/img/mask-icon-128.svg?c1c7eca266cd7013?1732615622" color="#4f5671"> <link rel="apple-touch-icon" sizes="180x180" href="https://pub.mdpi-res.com/icon/apple-touch-icon-180x180.png?1732615622"> <link rel="apple-touch-icon" sizes="152x152" href="https://pub.mdpi-res.com/icon/apple-touch-icon-152x152.png?1732615622"> <link rel="apple-touch-icon" sizes="144x144" href="https://pub.mdpi-res.com/icon/apple-touch-icon-144x144.png?1732615622"> <link rel="apple-touch-icon" sizes="120x120" href="https://pub.mdpi-res.com/icon/apple-touch-icon-120x120.png?1732615622"> <link rel="apple-touch-icon" sizes="114x114" href="https://pub.mdpi-res.com/icon/apple-touch-icon-114x114.png?1732615622"> <link rel="apple-touch-icon" sizes="76x76" href="https://pub.mdpi-res.com/icon/apple-touch-icon-76x76.png?1732615622"> <link rel="apple-touch-icon" sizes="72x72" href="https://pub.mdpi-res.com/icon/apple-touch-icon-72x72.png?1732615622"> <link rel="apple-touch-icon" sizes="57x57" href="https://pub.mdpi-res.com/icon/apple-touch-icon-57x57.png?1732615622"> <link rel="apple-touch-icon" href="https://pub.mdpi-res.com/icon/apple-touch-icon-57x57.png?1732615622"> <link rel="apple-touch-icon-precomposed" href="https://pub.mdpi-res.com/icon/apple-touch-icon-57x57.png?1732615622"> <link rel="manifest" href="/manifest.json"> <meta name="theme-color" content="#ffffff"> <meta name="application-name" content=" "/> <link rel="apple-touch-startup-image" href="https://pub.mdpi-res.com/img/journals/chemosensors-logo-sq.png?8600e93ff98dbf14"> <link rel="apple-touch-icon" href="https://pub.mdpi-res.com/img/journals/chemosensors-logo-sq.png?8600e93ff98dbf14"> <meta name="msapplication-TileImage" content="https://pub.mdpi-res.com/img/journals/chemosensors-logo-sq.png?8600e93ff98dbf14"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/jquery-ui-1.10.4.custom.min.css?80647d88647bf347?1732615622"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/magnific-popup.min.css?04d343e036f8eecd?1732615622"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/xml2html/article-html.css?230b005b39af4260?1732615622"> <style> h2, #abstract .related_suggestion_title { } .batch_articles a { color: #000; } a, .batch_articles .authors a, a:focus, a:hover, a:active, .batch_articles a:focus, .batch_articles a:hover, li.side-menu-li a { } span.label a { color: #fff; } #main-content a.title-link:hover, #main-content a.title-link:focus, #main-content div.generic-item a.title-link:hover, #main-content div.generic-item a.title-link:focus { } #main-content #middle-column .generic-item.article-item a.title-link:hover, #main-content #middle-column .generic-item.article-item a.title-link:focus { } .art-authors a.toEncode { color: #333; font-weight: 700; } #main-content #middle-column ul li::before { } .accordion-navigation.active a.accordion__title, .accordion-navigation.active a.accordion__title::after { } .accordion-navigation li:hover::before, .accordion-navigation li:hover a, .accordion-navigation li:focus a { } .relative-size-container .relative-size-image .relative-size { } .middle-column__help__fixed a:hover i, } input[type="checkbox"]:checked:after { } input[type="checkbox"]:not(:disabled):hover:before { } #main-content .bolded-text { } #main-content .hypothesis-count-container { } #main-content .hypothesis-count-container:before { } .full-size-menu ul li.menu-item .dropdown-wrapper { } .full-size-menu ul li.menu-item > a.open::after { } #title-story .title-story-orbit .orbit-caption { #background: url('/img/design/000000_background.png') !important; background: url('/img/design/ffffff_background.png') !important; color: rgb(51, 51, 51) !important; } #main-content .content__container__orbit { background-color: #000 !important; } #main-content .content__container__journal { color: #fff; } .html-article-menu .row span { } .html-article-menu .row span.active { } .accordion-navigation__journal .side-menu-li.active::before, .accordion-navigation__journal .side-menu-li.active a { color: rgba(0,127,127,0.75) !important; font-weight: 700; } .accordion-navigation__journal .side-menu-li:hover::before , .accordion-navigation__journal .side-menu-li:hover a { color: rgba(0,127,127,0.75) !important; } .side-menu-ul li.active a, .side-menu-ul li.active, .side-menu-ul li.active::before { color: rgba(0,127,127,0.75) !important; } .side-menu-ul li.active a { } .result-selected, .active-result.highlighted, .active-result:hover, .result-selected, .active-result.highlighted, .active-result:focus { } .search-container.search-container__default-scheme { } nav.tab-bar .open-small-search.active:after { } .search-container.search-container__default-scheme .custom-accordion-for-small-screen-link::after { color: #fff; } @media only screen and (max-width: 50em) { #main-content .content__container.journal-info { color: #fff; } #main-content .content__container.journal-info a { color: #fff; } } .button.button--color { } .button.button--color:hover, .button.button--color:focus { } .button.button--color-journal { position: relative; background-color: rgba(0,127,127,0.75); border-color: #fff; color: #fff !important; } .button.button--color-journal:hover::before { content: ''; position: absolute; top: 0; left: 0; height: 100%; width: 100%; background-color: #ffffff; opacity: 0.2; } .button.button--color-journal:visited, .button.button--color-journal:hover, .button.button--color-journal:focus { background-color: rgba(0,127,127,0.75); border-color: #fff; color: #fff !important; } .button.button--color path { } .button.button--color:hover path { fill: #fff; } #main-content #search-refinements .ui-slider-horizontal .ui-slider-range { } .breadcrumb__element:last-of-type a { } #main-header { } #full-size-menu .top-bar, #full-size-menu li.menu-item span.user-email { } .top-bar-section li:not(.has-form) a:not(.button) { } #full-size-menu li.menu-item .dropdown-wrapper li a:hover { } #full-size-menu li.menu-item a:hover, #full-size-menu li.menu.item a:focus, nav.tab-bar a:hover { } #full-size-menu li.menu.item a:active, #full-size-menu li.menu.item a.active { } #full-size-menu li.menu-item a.open-mega-menu.active, #full-size-menu li.menu-item div.mega-menu, a.open-mega-menu.active { } #full-size-menu li.menu-item div.mega-menu li, #full-size-menu li.menu-item div.mega-menu a { border-color: #9a9a9a; } div.type-section h2 { font-size: 20px; line-height: 26px; font-weight: 300; } div.type-section h3 { margin-left: 15px; margin-bottom: 0px; font-weight: 300; } .journal-tabs .tab-title.active a { } </style> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/slick.css?f38b2db10e01b157?1732615622"> <meta name="title" content="Fluorescent Quantum Dots and Its Composites for Highly Sensitive Detection of Heavy Metal Ions and Pesticide Residues: A Review"> <meta name="description" content="Quantum dots nanomaterials have attracted extensive interest for fluorescence chemical sensors due their attributes, such as excellent optical characteristics, quantum size effects, interface effects, etc. Moreover, the fluorescence properties of quantum dots can be adjusted by changing their structure, size, morphology, composition, doping, and surface modification. In recent years, quantum dots nanomaterials have been considered the preferred sensing materials for the detection of heavy metal ions and pesticide residues by the interactions between quantum dots and various analytes, showing excellent sensitivity, selectivity, and interference, as well as reducing the cost of equipment compared with traditional measurement methods. In this review, the applications and sensing mechanisms of semiconductor quantum dots and carbon-based quantum dots are comprehensively discussed. The application of semiconductor quantum dots, carbon quantum dots, graphene quantum dots, and their nanocomposites that are utilized as fluorescence sensors are discussed in detailed, and the properties of various quantum dots for heavy metal ion and pesticide residue determination are also presented. The recent advances in and application perspectives regarding quantum dots and their composites are also summarized." > <link rel="image_src" href="https://pub.mdpi-res.com/img/journals/chemosensors-logo.png?8600e93ff98dbf14" > <meta name="dc.title" content="Fluorescent Quantum Dots and Its Composites for Highly Sensitive Detection of Heavy Metal Ions and Pesticide Residues: A Review"> <meta name="dc.creator" content="Zhezhe Wang"> <meta name="dc.creator" content="Bo Yao"> <meta name="dc.creator" content="Yawei Xiao"> <meta name="dc.creator" content="Xu Tian"> <meta name="dc.creator" content="Yude Wang"> <meta name="dc.type" content="Review"> <meta name="dc.source" content="Chemosensors 2023, Vol. 11, Page 405"> <meta name="dc.date" content="2023-07-19"> <meta name ="dc.identifier" content="10.3390/chemosensors11070405"> <meta name="dc.publisher" content="Multidisciplinary Digital Publishing Institute"> <meta name="dc.rights" content="http://creativecommons.org/licenses/by/3.0/"> <meta name="dc.format" content="application/pdf" > <meta name="dc.language" content="en" > <meta name="dc.description" content="Quantum dots nanomaterials have attracted extensive interest for fluorescence chemical sensors due their attributes, such as excellent optical characteristics, quantum size effects, interface effects, etc. Moreover, the fluorescence properties of quantum dots can be adjusted by changing their structure, size, morphology, composition, doping, and surface modification. In recent years, quantum dots nanomaterials have been considered the preferred sensing materials for the detection of heavy metal ions and pesticide residues by the interactions between quantum dots and various analytes, showing excellent sensitivity, selectivity, and interference, as well as reducing the cost of equipment compared with traditional measurement methods. In this review, the applications and sensing mechanisms of semiconductor quantum dots and carbon-based quantum dots are comprehensively discussed. The application of semiconductor quantum dots, carbon quantum dots, graphene quantum dots, and their nanocomposites that are utilized as fluorescence sensors are discussed in detailed, and the properties of various quantum dots for heavy metal ion and pesticide residue determination are also presented. The recent advances in and application perspectives regarding quantum dots and their composites are also summarized." > <meta name="dc.subject" content="quantum dots" > <meta name="dc.subject" content="fluorescent sensors" > <meta name="dc.subject" content="heavy metal ions" > <meta name="dc.subject" content="toxic pesticides" > <meta name ="prism.issn" content="2227-9040"> <meta name ="prism.publicationName" content="Chemosensors"> <meta name ="prism.publicationDate" content="2023-07-19"> <meta name ="prism.volume" content="11"> <meta name ="prism.number" content="7"> <meta name ="prism.section" content="Review" > <meta name ="prism.startingPage" content="405" > <meta name="citation_issn" content="2227-9040"> <meta name="citation_journal_title" content="Chemosensors"> <meta name="citation_publisher" content="Multidisciplinary Digital Publishing Institute"> <meta name="citation_title" content="Fluorescent Quantum Dots and Its Composites for Highly Sensitive Detection of Heavy Metal Ions and Pesticide Residues: A Review"> <meta name="citation_publication_date" content="2023/7"> <meta name="citation_online_date" content="2023/07/19"> <meta name="citation_volume" content="11"> <meta name="citation_issue" content="7"> <meta name="citation_firstpage" content="405"> <meta name="citation_author" content="Wang, Zhezhe"> <meta name="citation_author" content="Yao, Bo"> <meta name="citation_author" content="Xiao, Yawei"> <meta name="citation_author" content="Tian, Xu"> <meta name="citation_author" content="Wang, Yude"> <meta name="citation_doi" content="10.3390/chemosensors11070405"> <meta name="citation_id" content="mdpi-chemosensors11070405"> <meta name="citation_abstract_html_url" content="https://www.mdpi.com/2227-9040/11/7/405"> <meta name="citation_pdf_url" content="https://www.mdpi.com/2227-9040/11/7/405/pdf?version=1689756433"> <link rel="alternate" type="application/pdf" title="PDF Full-Text" href="https://www.mdpi.com/2227-9040/11/7/405/pdf?version=1689756433"> <meta name="fulltext_pdf" content="https://www.mdpi.com/2227-9040/11/7/405/pdf?version=1689756433"> <meta name="citation_fulltext_html_url" content="https://www.mdpi.com/2227-9040/11/7/405/htm"> <link rel="alternate" type="text/html" title="HTML Full-Text" href="https://www.mdpi.com/2227-9040/11/7/405/htm"> <meta name="fulltext_html" content="https://www.mdpi.com/2227-9040/11/7/405/htm"> <link rel="alternate" type="text/xml" title="XML Full-Text" href="https://www.mdpi.com/2227-9040/11/7/405/xml"> <meta name="fulltext_xml" content="https://www.mdpi.com/2227-9040/11/7/405/xml"> <meta name="citation_xml_url" content="https://www.mdpi.com/2227-9040/11/7/405/xml"> <meta name="twitter:card" content="summary" /> <meta name="twitter:site" content="@MDPIOpenAccess" /> <meta name="twitter:image" content="https://pub.mdpi-res.com/img/journals/chemosensors-logo-social.png?8600e93ff98dbf14" /> <meta property="fb:app_id" content="131189377574"/> <meta property="og:site_name" content="MDPI"/> <meta property="og:type" content="article"/> <meta property="og:url" content="https://www.mdpi.com/2227-9040/11/7/405" /> <meta property="og:title" content="Fluorescent Quantum Dots and Its Composites for Highly Sensitive Detection of Heavy Metal Ions and Pesticide Residues: A Review" /> <meta property="og:description" content="Quantum dots nanomaterials have attracted extensive interest for fluorescence chemical sensors due their attributes, such as excellent optical characteristics, quantum size effects, interface effects, etc. Moreover, the fluorescence properties of quantum dots can be adjusted by changing their structure, size, morphology, composition, doping, and surface modification. In recent years, quantum dots nanomaterials have been considered the preferred sensing materials for the detection of heavy metal ions and pesticide residues by the interactions between quantum dots and various analytes, showing excellent sensitivity, selectivity, and interference, as well as reducing the cost of equipment compared with traditional measurement methods. In this review, the applications and sensing mechanisms of semiconductor quantum dots and carbon-based quantum dots are comprehensively discussed. The application of semiconductor quantum dots, carbon quantum dots, graphene quantum dots, and their nanocomposites that are utilized as fluorescence sensors are discussed in detailed, and the properties of various quantum dots for heavy metal ion and pesticide residue determination are also presented. The recent advances in and application perspectives regarding quantum dots and their composites are also summarized." /> <meta property="og:image" content="https://pub.mdpi-res.com/chemosensors/chemosensors-11-00405/article_deploy/html/images/chemosensors-11-00405-g001-550.jpg?1689756506" /> <link rel="alternate" type="application/rss+xml" title="MDPI Publishing - Latest articles" href="https://www.mdpi.com/rss"> <meta name="google-site-verification" content="PxTlsg7z2S00aHroktQd57fxygEjMiNHydKn3txhvwY"> <meta name="facebook-domain-verification" content="mcoq8dtq6sb2hf7z29j8w515jjoof7" /> <script id="Cookiebot" data-cfasync="false" src="https://consent.cookiebot.com/uc.js" data-cbid="51491ddd-fe7a-4425-ab39-69c78c55829f" type="text/javascript" async></script> <!--[if lt IE 9]> <script>var browserIe8 = true;</script> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/ie8foundationfix.css?50273beac949cbf0?1732615622"> <script src="//html5shiv.googlecode.com/svn/trunk/html5.js"></script> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.6.2/html5shiv.js"></script> <script src="//s3.amazonaws.com/nwapi/nwmatcher/nwmatcher-1.2.5-min.js"></script> <script src="//html5base.googlecode.com/svn-history/r38/trunk/js/selectivizr-1.0.3b.js"></script> <script src="//cdnjs.cloudflare.com/ajax/libs/respond.js/1.1.0/respond.min.js"></script> <script src="https://pub.mdpi-res.com/assets/js/ie8/ie8patch.js?9e1d3c689a0471df?1732615622"></script> <script src="https://pub.mdpi-res.com/assets/js/ie8/rem.min.js?94b62787dcd6d2f2?1732615622"></script> <![endif]--> <script type="text/plain" data-cookieconsent="statistics"> (function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-WPK7SW5'); </script> <script type="text/plain" data-cookieconsent="statistics"> _linkedin_partner_id = "2846186"; window._linkedin_data_partner_ids = window._linkedin_data_partner_ids || []; window._linkedin_data_partner_ids.push(_linkedin_partner_id); </script><script type="text/javascript"> (function(){var s = document.getElementsByTagName("script")[0]; var b = document.createElement("script"); b.type = "text/javascript";b.async = true; b.src = "https://snap.licdn.com/li.lms-analytics/insight.min.js"; s.parentNode.insertBefore(b, s);})(); </script> <script type="text/plain" data-cookieconsent="statistics" data-cfasync="false" src="//script.crazyegg.com/pages/scripts/0116/4951.js" async="async" ></script> </head> <body> <div class="direction direction_right" id="small_right" style="border-right-width: 0px; padding:0;"> <i class="fa fa-caret-right fa-2x"></i> </div> <div class="big_direction direction_right" id="big_right" style="border-right-width: 0px;"> <div style="text-align: right;"> Next Article in Journal<br> <div><a href="/2227-9040/11/7/406">High-Performance Self-Driven SnSe/Si Heterojunction Photovoltaic Photodetector</a></div> </div> </div> <div class="direction" id="small_left" style="border-left-width: 0px"> <i class="fa fa-caret-left fa-2x"></i> </div> <div class="big_direction" id="big_left" style="border-left-width: 0px;"> <div> Previous Article in Journal<br> <div><a href="/2227-9040/11/7/404">Bi<sub>2</sub>WO<sub>6</sub>@g-C<sub>3</sub>N<sub>4</sub> Heterostructure for Cathodic Photoelectrochemical Dopamine Sensor</a></div> Previous Article in Special Issue<br> <div><a href="/2227-9040/11/5/308">Organic Luminescent Sensor for Mercury(II) and Iron(III) Ions in Aqueous Solutions</a></div> </div> </div> <div style="clear: both;"></div> <div id="menuModal" class="reveal-modal reveal-modal-new reveal-modal-menu" aria-hidden="true" data-reveal role="dialog"> <div class="menu-container"> <div class="UI_NavMenu"> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>Journals</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; float: left;"> <a href="/about/journals">Active Journals</a> <a href="/about/journalfinder">Find a Journal</a> <a href="/about/journals/proposal">Journal Proposal</a> <a href="/about/proceedings">Proceedings Series</a> </div> </div> </div> </div> <a href="/topics"> <h2>Topics</h2> </a> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>Information</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; max-width: 200px; float: left;"> <a href="/authors">For Authors</a> <a href="/reviewers">For Reviewers</a> <a href="/editors">For Editors</a> <a href="/librarians">For Librarians</a> <a href="/publishing_services">For Publishers</a> <a href="/societies">For Societies</a> <a href="/conference_organizers">For Conference Organizers</a> </div> <div style="width: 100%; max-width: 250px; float: left;"> <a href="/openaccess">Open Access Policy</a> <a href="/ioap">Institutional Open Access Program</a> <a href="/special_issues_guidelines">Special Issues Guidelines</a> <a href="/editorial_process">Editorial Process</a> <a href="/ethics">Research and Publication Ethics</a> <a href="/apc">Article Processing Charges</a> <a href="/awards">Awards</a> <a href="/testimonials">Testimonials</a> </div> </div> </div> </div> <a href="/authors/english"> <h2>Editing Services</h2> </a> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>Initiatives</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; float: left;"> <a href="https://sciforum.net" target="_blank" rel="noopener noreferrer">Sciforum</a> <a href="https://www.mdpi.com/books" target="_blank" rel="noopener noreferrer">MDPI Books</a> <a href="https://www.preprints.org" target="_blank" rel="noopener noreferrer">Preprints.org</a> <a href="https://www.scilit.net" target="_blank" rel="noopener noreferrer">Scilit</a> <a href="https://sciprofiles.com" target="_blank" rel="noopener noreferrer">SciProfiles</a> <a href="https://encyclopedia.pub" target="_blank" rel="noopener noreferrer">Encyclopedia</a> <a href="https://jams.pub" target="_blank" rel="noopener noreferrer">JAMS</a> <a href="/about/proceedings">Proceedings Series</a> </div> </div> </div> </div> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>About</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; float: left;"> <a href="/about">Overview</a> <a href="/about/contact">Contact</a> <a href="https://careers.mdpi.com" target="_blank" rel="noopener noreferrer">Careers</a> <a href="/about/announcements">News</a> <a href="/about/press">Press</a> <a href="http://blog.mdpi.com/" target="_blank" rel="noopener noreferrer">Blog</a> </div> </div> </div> </div> </div> <div class="menu-container__buttons"> <a class="button UA_SignInUpButton" href="/user/login">Sign In / Sign Up</a> </div> </div> </div> <div id="captchaModal" class="reveal-modal reveal-modal-new reveal-modal-new--small" data-reveal aria-label="Captcha" aria-hidden="true" role="dialog"></div> <div id="actionDisabledModal" class="reveal-modal" data-reveal aria-labelledby="actionDisableModalTitle" aria-hidden="true" role="dialog" style="width: 300px;"> <h2 id="actionDisableModalTitle">Notice</h2> <form action="/email/captcha" method="post" id="emailCaptchaForm"> <div class="row"> <div id="js-action-disabled-modal-text" class="small-12 columns"> </div> <div id="js-action-disabled-modal-submit" class="small-12 columns" style="margin-top: 10px; display: none;"> You can make submissions to other journals <a href="https://susy.mdpi.com/user/manuscripts/upload">here</a>. </div> </div> </form> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div id="rssNotificationModal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="rssNotificationModalTitle" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 id="rssNotificationModalTitle">Notice</h2> <p> You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader. </p> </div> </div> <div class="row"> <div class="small-12 columns"> <a class="button button--color js-rss-notification-confirm">Continue</a> <a class="button button--grey" onclick="$(this).closest('.reveal-modal').find('.close-reveal-modal').click(); return false;">Cancel</a> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div id="drop-article-label-openaccess" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to <a href="https://www.mdpi.com/openaccess">https://www.mdpi.com/openaccess</a>. </p> </div> <div id="drop-article-label-feature" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications. </p> <p> Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers. </p> </div> <div id="drop-article-label-choice" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal. <div style="margin-top: -10px;"> <div id="drop-article-label-choice-journal-link" style="display: none; margin-top: -10px; padding-top: 10px;"> </div> </div> </p> </div> <div id="drop-article-label-resubmission" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> Original Submission Date Received: <span id="drop-article-label-resubmission-date"></span>. </p> </div> <div id="container"> <noscript> <div id="no-javascript"> You seem to have javascript disabled. Please note that many of the page functionalities won't work as expected without javascript enabled. </div> </noscript> <div class="fixed"> <nav class="tab-bar show-for-medium-down"> <div class="row full-width collapse"> <div class="medium-3 small-4 columns"> <a href="/"> <img class="full-size-menu__mdpi-logo" src="https://pub.mdpi-res.com/img/design/mdpi-pub-logo-black-small1.svg?da3a8dcae975a41c?1732615622" style="width: 64px;" title="MDPI Open Access Journals"> </a> </div> <div class="medium-3 small-4 columns right-aligned"> <div class="show-for-medium-down"> <a href="#" style="display: none;"> <i class="material-icons" onclick="$('#menuModal').foundation('reveal', 'close'); return false;">clear</i> </a> <a class="js-toggle-desktop-layout-link" title="Toggle desktop layout" style="display: none;" href="/toggle_desktop_layout_cookie"> <i class="material-icons">zoom_out_map</i> </a> <a href="#" class="js-open-small-search open-small-search"> <i class="material-icons show-for-small only">search</i> </a> <a title="MDPI main page" class="js-open-menu" data-reveal-id="menuModal" href="#"> <i class="material-icons">menu</i> </a> </div> </div> </div> </nav> </div> <section class="main-section"> <header> <div class="full-size-menu show-for-large-up"> <div class="row full-width"> <div class="large-1 columns"> <a href="/"> <img class="full-size-menu__mdpi-logo" src="https://pub.mdpi-res.com/img/design/mdpi-pub-logo-black-small1.svg?da3a8dcae975a41c?1732615622" title="MDPI Open Access Journals"> </a> </div> <div class="large-8 columns text-right UI_NavMenu"> <ul> <li class="menu-item"> <a href="/about/journals" data-dropdown="journals-dropdown" aria-controls="journals-dropdown" aria-expanded="false" data-options="is_hover: true; hover_timeout: 200">Journals</a> <ul id="journals-dropdown" class="f-dropdown dropdown-wrapper dropdown-wrapper__small" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-12 columns"> <ul> <li> <a href="/about/journals"> Active Journals </a> </li> <li> <a href="/about/journalfinder"> Find a Journal </a> </li> <li> <a href="/about/journals/proposal"> Journal Proposal </a> </li> <li> <a href="/about/proceedings"> Proceedings Series </a> </li> </ul> </div> </div> </li> </ul> </li> <li class="menu-item"> <a href="/topics">Topics</a> </li> <li class="menu-item"> <a href="/authors" data-dropdown="information-dropdown" aria-controls="information-dropdown" aria-expanded="false" data-options="is_hover:true; hover_timeout:200">Information</a> <ul id="information-dropdown" class="f-dropdown dropdown-wrapper" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-5 columns right-border"> <ul> <li> <a href="/authors">For Authors</a> </li> <li> <a href="/reviewers">For Reviewers</a> </li> <li> <a href="/editors">For Editors</a> </li> <li> <a href="/librarians">For Librarians</a> </li> <li> <a href="/publishing_services">For Publishers</a> </li> <li> <a href="/societies">For Societies</a> </li> <li> <a href="/conference_organizers">For Conference Organizers</a> </li> </ul> </div> <div class="small-7 columns"> <ul> <li> <a href="/openaccess">Open Access Policy</a> </li> <li> <a href="/ioap">Institutional Open Access Program</a> </li> <li> <a href="/special_issues_guidelines">Special Issues Guidelines</a> </li> <li> <a href="/editorial_process">Editorial Process</a> </li> <li> <a href="/ethics">Research and Publication Ethics</a> </li> <li> <a href="/apc">Article Processing Charges</a> </li> <li> <a href="/awards">Awards</a> </li> <li> <a href="/testimonials">Testimonials</a> </li> </ul> </div> </div> </li> </ul> </li> <li class="menu-item"> <a href="/authors/english">Editing Services</a> </li> <li class="menu-item"> <a href="/about/initiatives" data-dropdown="initiatives-dropdown" aria-controls="initiatives-dropdown" aria-expanded="false" data-options="is_hover: true; hover_timeout: 200">Initiatives</a> <ul id="initiatives-dropdown" class="f-dropdown dropdown-wrapper dropdown-wrapper__small" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-12 columns"> <ul> <li> <a href="https://sciforum.net" target="_blank" rel="noopener noreferrer"> Sciforum </a> </li> <li> <a href="https://www.mdpi.com/books" target="_blank" rel="noopener noreferrer"> MDPI Books </a> </li> <li> <a href="https://www.preprints.org" target="_blank" rel="noopener noreferrer"> Preprints.org </a> </li> <li> <a href="https://www.scilit.net" target="_blank" rel="noopener noreferrer"> Scilit </a> </li> <li> <a href="https://sciprofiles.com" target="_blank" rel="noopener noreferrer"> SciProfiles </a> </li> <li> <a href="https://encyclopedia.pub" target="_blank" rel="noopener noreferrer"> Encyclopedia </a> </li> <li> <a href="https://jams.pub" target="_blank" rel="noopener noreferrer"> JAMS </a> </li> <li> <a href="/about/proceedings"> Proceedings Series </a> </li> </ul> </div> </div> </li> </ul> </li> <li class="menu-item"> <a href="/about" data-dropdown="about-dropdown" aria-controls="about-dropdown" aria-expanded="false" data-options="is_hover: true; hover_timeout: 200">About</a> <ul id="about-dropdown" class="f-dropdown dropdown-wrapper dropdown-wrapper__small" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-12 columns"> <ul> <li> <a href="/about"> Overview </a> </li> <li> <a href="/about/contact"> Contact </a> </li> <li> <a href="https://careers.mdpi.com" target="_blank" rel="noopener noreferrer"> Careers </a> </li> <li> <a href="/about/announcements"> News </a> </li> <li> <a href="/about/press"> Press </a> </li> <li> <a href="http://blog.mdpi.com/" target="_blank" rel="noopener noreferrer"> Blog </a> </li> </ul> </div> </div> </li> </ul> </li> </ul> </div> <div class="large-3 columns text-right full-size-menu__buttons"> <div> <a class="button button--default-inversed UA_SignInUpButton" href="/user/login">Sign In / Sign Up</a> <a class="button button--default js-journal-active-only-link js-journal-active-only-submit-link UC_NavSubmitButton" href=" https://susy.mdpi.com/user/manuscripts/upload?journal=chemosensors " data-disabledmessage="new submissions are not possible.">Submit</a> </div> </div> </div> </div> <div class="header-divider"> </div> <div class="search-container hide-for-small-down row search-container__homepage-scheme"> <form id="basic_search" style="background-color: inherit !important;" class="large-12 medium-12 columns " action="/search" method="get"> <div class="row search-container__main-elements"> <div class="large-2 medium-2 small-12 columns text-right1 small-only-text-left"> <div class="show-for-medium-up"> <div class="search-input-label"> </div> </div> <span class="search-container__title">Search<span class="hide-for-medium"> for Articles</span><span class="hide-for-small">:</span></span> </div> <div class="custom-accordion-for-small-screen-content"> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Title / Keyword</div> </div> <input type="text" placeholder="Title / Keyword" id="q" tabindex="1" name="q" value="" /> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Author / Affiliation / Email</div> </div> <input type="text" id="authors" placeholder="Author / Affiliation / Email" tabindex="2" name="authors" value="" /> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Journal</div> </div> <select id="journal" tabindex="3" name="journal" class="chosen-select"> <option value="">All Journals</option> <option value="acoustics" > Acoustics </option> <option value="amh" > Acta Microbiologica Hellenica (AMH) </option> <option value="actuators" > Actuators </option> <option value="admsci" > Administrative Sciences </option> <option value="adolescents" > Adolescents </option> <option value="arm" > Advances in Respiratory Medicine (ARM) </option> <option value="aerobiology" > Aerobiology </option> <option value="aerospace" > Aerospace </option> <option value="agriculture" > Agriculture </option> <option value="agriengineering" > AgriEngineering </option> <option value="agrochemicals" > Agrochemicals </option> <option value="agronomy" > Agronomy </option> <option value="ai" > AI </option> <option value="air" > Air </option> <option value="algorithms" > Algorithms </option> <option value="allergies" > Allergies </option> <option value="alloys" > Alloys </option> <option value="analytica" > Analytica </option> <option value="analytics" > Analytics </option> <option value="anatomia" > Anatomia </option> <option value="anesthres" > Anesthesia Research </option> <option value="animals" > Animals </option> <option value="antibiotics" > Antibiotics </option> <option value="antibodies" > Antibodies </option> <option value="antioxidants" > Antioxidants </option> <option value="applbiosci" > Applied Biosciences </option> <option value="applmech" > Applied Mechanics </option> <option value="applmicrobiol" > Applied Microbiology </option> <option value="applnano" > Applied Nano </option> <option value="applsci" > Applied Sciences </option> <option value="asi" > Applied System Innovation (ASI) </option> <option value="appliedchem" > AppliedChem </option> <option value="appliedmath" > AppliedMath </option> <option value="aquacj" > Aquaculture Journal </option> <option value="architecture" > Architecture </option> <option value="arthropoda" > Arthropoda </option> <option value="arts" > Arts </option> <option value="astronomy" > Astronomy </option> <option value="atmosphere" > Atmosphere </option> <option value="atoms" > Atoms </option> <option value="audiolres" > Audiology Research </option> <option value="automation" > Automation </option> <option value="axioms" > Axioms </option> <option value="bacteria" > Bacteria </option> <option value="batteries" > Batteries </option> <option value="behavsci" > Behavioral Sciences </option> <option value="beverages" > Beverages </option> <option value="BDCC" > Big Data and Cognitive Computing (BDCC) </option> <option value="biochem" > BioChem </option> <option value="bioengineering" > Bioengineering </option> <option value="biologics" > Biologics </option> <option value="biology" > Biology </option> <option value="blsf" > Biology and Life Sciences Forum </option> <option value="biomass" > Biomass </option> <option value="biomechanics" > Biomechanics </option> <option value="biomed" > BioMed </option> <option value="biomedicines" > Biomedicines </option> <option value="biomedinformatics" > BioMedInformatics </option> <option value="biomimetics" > Biomimetics </option> <option value="biomolecules" > Biomolecules </option> <option value="biophysica" > Biophysica </option> <option value="biosensors" > Biosensors </option> <option value="biotech" > BioTech </option> <option value="birds" > Birds </option> <option value="blockchains" > Blockchains </option> <option value="brainsci" > Brain Sciences </option> <option value="buildings" > Buildings </option> <option value="businesses" > Businesses </option> <option value="carbon" > C </option> <option value="cancers" > Cancers </option> <option value="cardiogenetics" > Cardiogenetics </option> <option value="catalysts" > Catalysts </option> <option value="cells" > Cells </option> <option value="ceramics" > Ceramics </option> <option value="challenges" > Challenges </option> <option value="ChemEngineering" > ChemEngineering </option> <option value="chemistry" > Chemistry </option> <option value="chemproc" > Chemistry Proceedings </option> <option value="chemosensors" selected='selected'> Chemosensors </option> <option value="children" > Children </option> <option value="chips" > Chips </option> <option value="civileng" > CivilEng </option> <option value="cleantechnol" > Clean Technologies (Clean Technol.) </option> <option value="climate" > Climate </option> <option value="ctn" > Clinical and Translational Neuroscience (CTN) </option> <option value="clinbioenerg" > Clinical Bioenergetics </option> <option value="clinpract" > Clinics and Practice </option> <option value="clockssleep" > Clocks & Sleep </option> <option value="coasts" > Coasts </option> <option value="coatings" > Coatings </option> <option value="colloids" > Colloids and Interfaces </option> <option value="colorants" > Colorants </option> <option value="commodities" > Commodities </option> <option value="complications" > Complications </option> <option value="compounds" > Compounds </option> <option value="computation" > Computation </option> <option value="csmf" > Computer Sciences & Mathematics Forum </option> <option value="computers" > Computers </option> <option value="condensedmatter" > Condensed Matter </option> <option value="conservation" > Conservation </option> <option value="constrmater" > Construction Materials </option> <option value="cmd" > Corrosion and Materials Degradation (CMD) </option> <option value="cosmetics" > Cosmetics </option> <option value="covid" > COVID </option> <option value="crops" > Crops </option> <option value="cryo" > Cryo </option> <option value="cryptography" > Cryptography </option> <option value="crystals" > Crystals </option> <option value="cimb" > Current Issues in Molecular Biology (CIMB) </option> <option value="curroncol" > Current Oncology </option> <option value="dairy" > Dairy </option> <option value="data" > Data </option> <option value="dentistry" > Dentistry Journal </option> <option value="dermato" > Dermato </option> <option value="dermatopathology" > Dermatopathology </option> <option value="designs" > Designs </option> <option value="diabetology" > Diabetology </option> <option value="diagnostics" > Diagnostics </option> <option value="dietetics" > Dietetics </option> <option value="digital" > Digital </option> <option value="disabilities" > Disabilities </option> <option value="diseases" > Diseases </option> <option value="diversity" > Diversity </option> <option value="dna" > DNA </option> <option value="drones" > Drones </option> <option value="ddc" > Drugs and Drug Candidates (DDC) </option> <option value="dynamics" > Dynamics </option> <option value="earth" > Earth </option> <option value="ecologies" > Ecologies </option> <option value="econometrics" > Econometrics </option> <option value="economies" > Economies </option> <option value="education" > Education Sciences </option> <option value="electricity" > Electricity </option> <option value="electrochem" > Electrochem </option> <option value="electronicmat" > Electronic Materials </option> <option value="electronics" > Electronics </option> <option value="ecm" > Emergency Care and Medicine </option> <option value="encyclopedia" > Encyclopedia </option> <option value="endocrines" > Endocrines </option> <option value="energies" > Energies </option> <option value="esa" > Energy Storage and Applications (ESA) </option> <option value="eng" > Eng </option> <option value="engproc" > Engineering Proceedings </option> <option value="entropy" > Entropy </option> <option value="environsciproc" > Environmental Sciences Proceedings </option> <option value="environments" > Environments </option> <option value="epidemiologia" > Epidemiologia </option> <option value="epigenomes" > Epigenomes </option> <option value="ebj" > European Burn Journal (EBJ) </option> <option value="ejihpe" > European Journal of Investigation in Health, Psychology and Education (EJIHPE) </option> <option value="fermentation" > Fermentation </option> <option value="fibers" > Fibers </option> <option value="fintech" > FinTech </option> <option value="fire" > Fire </option> <option value="fishes" > Fishes </option> <option value="fluids" > Fluids </option> <option value="foods" > Foods </option> <option value="forecasting" > Forecasting </option> <option value="forensicsci" > Forensic Sciences </option> <option value="forests" > Forests </option> <option value="fossstud" > Fossil Studies </option> <option value="foundations" > Foundations </option> <option value="fractalfract" > Fractal and Fractional (Fractal Fract) </option> <option value="fuels" > Fuels </option> <option value="future" > Future </option> <option value="futureinternet" > Future Internet </option> <option value="futurepharmacol" > Future Pharmacology </option> <option value="futuretransp" > Future Transportation </option> <option value="galaxies" > Galaxies </option> <option value="games" > Games </option> <option value="gases" > Gases </option> <option value="gastroent" > Gastroenterology Insights </option> <option value="gastrointestdisord" > Gastrointestinal Disorders </option> <option value="gastronomy" > Gastronomy </option> <option value="gels" > Gels </option> <option value="genealogy" > Genealogy </option> <option value="genes" > Genes </option> <option value="geographies" > Geographies </option> <option value="geohazards" > GeoHazards </option> <option value="geomatics" > Geomatics </option> <option value="geometry" > Geometry </option> <option value="geosciences" > Geosciences </option> <option value="geotechnics" > Geotechnics </option> <option value="geriatrics" > Geriatrics </option> <option value="glacies" > Glacies </option> <option value="gucdd" > Gout, Urate, and Crystal Deposition Disease (GUCDD) </option> <option value="grasses" > Grasses </option> <option value="hardware" > Hardware </option> <option value="healthcare" > Healthcare </option> <option value="hearts" > Hearts </option> <option value="hemato" > Hemato </option> <option value="hematolrep" > Hematology Reports </option> <option value="heritage" > Heritage </option> <option value="histories" > Histories </option> <option value="horticulturae" > Horticulturae </option> <option value="hospitals" > Hospitals </option> <option value="humanities" > Humanities </option> <option value="humans" > Humans </option> <option value="hydrobiology" > Hydrobiology </option> <option value="hydrogen" > Hydrogen </option> <option value="hydrology" > Hydrology </option> <option value="hygiene" > Hygiene </option> <option value="immuno" > Immuno </option> <option value="idr" > Infectious Disease Reports </option> <option value="informatics" > Informatics </option> <option value="information" > Information </option> <option value="infrastructures" > Infrastructures </option> <option value="inorganics" > Inorganics </option> <option value="insects" > Insects </option> <option value="instruments" > Instruments </option> <option value="iic" > Intelligent Infrastructure and Construction </option> <option value="ijerph" > International Journal of Environmental Research and Public Health (IJERPH) </option> <option value="ijfs" > International Journal of Financial Studies (IJFS) </option> <option value="ijms" > International Journal of Molecular Sciences (IJMS) </option> <option value="IJNS" > International Journal of Neonatal Screening (IJNS) </option> <option value="ijpb" > International Journal of Plant Biology (IJPB) </option> <option value="ijt" > International Journal of Topology </option> <option value="ijtm" > International Journal of Translational Medicine (IJTM) </option> <option value="ijtpp" > International Journal of Turbomachinery, Propulsion and Power (IJTPP) </option> <option value="ime" > International Medical Education (IME) </option> <option value="inventions" > Inventions </option> <option value="IoT" > IoT </option> <option value="ijgi" > ISPRS International Journal of Geo-Information (IJGI) </option> <option value="J" > J </option> <option value="jal" > Journal of Ageing and Longevity (JAL) </option> <option value="jcdd" > Journal of Cardiovascular Development and Disease (JCDD) </option> <option value="jcto" > Journal of Clinical & Translational Ophthalmology (JCTO) </option> <option value="jcm" > Journal of Clinical Medicine (JCM) </option> <option value="jcs" > Journal of Composites Science (J. Compos. Sci.) </option> <option value="jcp" > Journal of Cybersecurity and Privacy (JCP) </option> <option value="jdad" > Journal of Dementia and Alzheimer's Disease (JDAD) </option> <option value="jdb" > Journal of Developmental Biology (JDB) </option> <option value="jeta" > Journal of Experimental and Theoretical Analyses (JETA) </option> <option value="jfb" > Journal of Functional Biomaterials (JFB) </option> <option value="jfmk" > Journal of Functional Morphology and Kinesiology (JFMK) </option> <option value="jof" > Journal of Fungi (JoF) </option> <option value="jimaging" > Journal of Imaging (J. Imaging) </option> <option value="jintelligence" > Journal of Intelligence (J. Intell.) </option> <option value="jlpea" > Journal of Low Power Electronics and Applications (JLPEA) </option> <option value="jmmp" > Journal of Manufacturing and Materials Processing (JMMP) </option> <option value="jmse" > Journal of Marine Science and Engineering (JMSE) </option> <option value="jmahp" > Journal of Market Access & Health Policy (JMAHP) </option> <option value="jmp" > Journal of Molecular Pathology (JMP) </option> <option value="jnt" > Journal of Nanotheranostics (JNT) </option> <option value="jne" > Journal of Nuclear Engineering (JNE) </option> <option value="ohbm" > Journal of Otorhinolaryngology, Hearing and Balance Medicine (JOHBM) </option> <option value="jop" > Journal of Parks </option> <option value="jpm" > Journal of Personalized Medicine (JPM) </option> <option value="jpbi" > Journal of Pharmaceutical and BioTech Industry (JPBI) </option> <option value="jor" > Journal of Respiration (JoR) </option> <option value="jrfm" > Journal of Risk and Financial Management (JRFM) </option> <option value="jsan" > Journal of Sensor and Actuator Networks (JSAN) </option> <option value="joma" > Journal of the Oman Medical Association (JOMA) </option> <option value="jtaer" > Journal of Theoretical and Applied Electronic Commerce Research (JTAER) </option> <option value="jvd" > Journal of Vascular Diseases (JVD) </option> <option value="jox" > Journal of Xenobiotics (JoX) </option> <option value="jzbg" > Journal of Zoological and Botanical Gardens (JZBG) </option> <option value="journalmedia" > Journalism and Media </option> <option value="kidneydial" > Kidney and Dialysis </option> <option value="kinasesphosphatases" > Kinases and Phosphatases </option> <option value="knowledge" > Knowledge </option> <option value="labmed" > LabMed </option> <option value="laboratories" > Laboratories </option> <option value="land" > Land </option> <option value="languages" > Languages </option> <option value="laws" > Laws </option> <option value="life" > Life </option> <option value="limnolrev" > Limnological Review </option> <option value="lipidology" > Lipidology </option> <option value="liquids" > Liquids </option> <option value="literature" > Literature </option> <option value="livers" > Livers </option> <option value="logics" > Logics </option> <option value="logistics" > Logistics </option> <option value="lubricants" > Lubricants </option> <option value="lymphatics" > Lymphatics </option> <option value="make" > Machine Learning and Knowledge Extraction (MAKE) </option> <option value="machines" > Machines </option> <option value="macromol" > Macromol </option> <option value="magnetism" > Magnetism </option> <option value="magnetochemistry" > Magnetochemistry </option> <option value="marinedrugs" > Marine Drugs </option> <option value="materials" > Materials </option> <option value="materproc" > Materials Proceedings </option> <option value="mca" > Mathematical and Computational Applications (MCA) </option> <option value="mathematics" > Mathematics </option> <option value="medsci" > Medical Sciences </option> <option value="msf" > Medical Sciences Forum </option> <option value="medicina" > Medicina </option> <option value="medicines" > Medicines </option> <option value="membranes" > Membranes </option> <option value="merits" > Merits </option> <option value="metabolites" > Metabolites </option> <option value="metals" > Metals </option> <option value="meteorology" > Meteorology </option> <option value="methane" > Methane </option> <option value="mps" > Methods and Protocols (MPs) </option> <option value="metrics" > Metrics </option> <option value="metrology" > Metrology </option> <option value="micro" > Micro </option> <option value="microbiolres" > Microbiology Research </option> <option value="micromachines" > Micromachines </option> <option value="microorganisms" > Microorganisms </option> <option value="microplastics" > Microplastics </option> <option value="minerals" > Minerals </option> <option value="mining" > Mining </option> <option value="modelling" > Modelling </option> <option value="mmphys" > Modern Mathematical Physics </option> <option value="molbank" > Molbank </option> <option value="molecules" > Molecules </option> <option value="mti" > Multimodal Technologies and Interaction (MTI) </option> <option value="muscles" > Muscles </option> <option value="nanoenergyadv" > Nanoenergy Advances </option> <option value="nanomanufacturing" > Nanomanufacturing </option> <option value="nanomaterials" > Nanomaterials </option> <option value="ndt" > NDT </option> <option value="network" > Network </option> <option value="neuroglia" > Neuroglia </option> <option value="neurolint" > Neurology International </option> <option value="neurosci" > NeuroSci </option> <option value="nitrogen" > Nitrogen </option> <option value="ncrna" > Non-Coding RNA (ncRNA) </option> <option value="nursrep" > Nursing Reports </option> <option value="nutraceuticals" > Nutraceuticals </option> <option value="nutrients" > Nutrients </option> <option value="obesities" > Obesities </option> <option value="oceans" > Oceans </option> <option value="onco" > Onco </option> <option value="optics" > Optics </option> <option value="oral" > Oral </option> <option value="organics" > Organics </option> <option value="organoids" > Organoids </option> <option value="osteology" > Osteology </option> <option value="oxygen" > Oxygen </option> <option value="parasitologia" > Parasitologia </option> <option value="particles" > Particles </option> <option value="pathogens" > Pathogens </option> <option value="pathophysiology" > Pathophysiology </option> <option value="pediatrrep" > Pediatric Reports </option> <option value="pets" > Pets </option> <option value="pharmaceuticals" > Pharmaceuticals </option> <option value="pharmaceutics" > Pharmaceutics </option> <option value="pharmacoepidemiology" > Pharmacoepidemiology </option> <option value="pharmacy" > Pharmacy </option> <option value="philosophies" > Philosophies </option> <option value="photochem" > Photochem </option> <option value="photonics" > Photonics </option> <option value="phycology" > Phycology </option> <option value="physchem" > Physchem </option> <option value="psf" > Physical Sciences Forum </option> <option value="physics" > Physics </option> <option value="physiologia" > Physiologia </option> <option value="plants" > Plants </option> <option value="plasma" > Plasma </option> <option value="platforms" > Platforms </option> <option value="pollutants" > Pollutants </option> <option value="polymers" > Polymers </option> <option value="polysaccharides" > Polysaccharides </option> <option value="populations" > Populations </option> <option value="poultry" > Poultry </option> <option value="powders" > Powders </option> <option value="proceedings" > Proceedings </option> <option value="processes" > Processes </option> <option value="prosthesis" > Prosthesis </option> <option value="proteomes" > Proteomes </option> <option value="psychiatryint" > Psychiatry International </option> <option value="psychoactives" > Psychoactives </option> <option value="psycholint" > Psychology International </option> <option value="publications" > Publications </option> <option value="qubs" > Quantum Beam Science (QuBS) </option> <option value="quantumrep" > Quantum Reports </option> <option value="quaternary" > Quaternary </option> <option value="radiation" > Radiation </option> <option value="reactions" > Reactions </option> <option value="realestate" > Real Estate </option> <option value="receptors" > Receptors </option> <option value="recycling" > Recycling </option> <option value="rsee" > Regional Science and Environmental Economics (RSEE) </option> <option value="religions" > Religions </option> <option value="remotesensing" > Remote Sensing </option> <option value="reports" > Reports </option> <option value="reprodmed" > Reproductive Medicine (Reprod. Med.) </option> <option value="resources" > Resources </option> <option value="rheumato" > Rheumato </option> <option value="risks" > Risks </option> <option value="robotics" > Robotics </option> <option value="ruminants" > Ruminants </option> <option value="safety" > Safety </option> <option value="sci" > Sci </option> <option value="scipharm" > Scientia Pharmaceutica (Sci. Pharm.) </option> <option value="sclerosis" > Sclerosis </option> <option value="seeds" > Seeds </option> <option value="sensors" > Sensors </option> <option value="separations" > Separations </option> <option value="sexes" > Sexes </option> <option value="signals" > Signals </option> <option value="sinusitis" > Sinusitis </option> <option value="smartcities" > Smart Cities </option> <option value="socsci" > Social Sciences </option> <option value="siuj" > Société Internationale d’Urologie Journal (SIUJ) </option> <option value="societies" > Societies </option> <option value="software" > Software </option> <option value="soilsystems" > Soil Systems </option> <option value="solar" > Solar </option> <option value="solids" > Solids </option> <option value="spectroscj" > Spectroscopy Journal </option> <option value="sports" > Sports </option> <option value="standards" > Standards </option> <option value="stats" > Stats </option> <option value="stresses" > Stresses </option> <option value="surfaces" > Surfaces </option> <option value="surgeries" > Surgeries </option> <option value="std" > Surgical Techniques Development </option> <option value="sustainability" > Sustainability </option> <option value="suschem" > Sustainable Chemistry </option> <option value="symmetry" > Symmetry </option> <option value="synbio" > SynBio </option> <option value="systems" > Systems </option> <option value="targets" > Targets </option> <option value="taxonomy" > Taxonomy </option> <option value="technologies" > Technologies </option> <option value="telecom" > Telecom </option> <option value="textiles" > Textiles </option> <option value="thalassrep" > Thalassemia Reports </option> <option value="therapeutics" > Therapeutics </option> <option value="thermo" > Thermo </option> <option value="timespace" > Time and Space </option> <option value="tomography" > Tomography </option> <option value="tourismhosp" > Tourism and Hospitality </option> <option value="toxics" > Toxics </option> <option value="toxins" > Toxins </option> <option value="transplantology" > Transplantology </option> <option value="traumacare" > Trauma Care </option> <option value="higheredu" > Trends in Higher Education </option> <option value="tropicalmed" > Tropical Medicine and Infectious Disease (TropicalMed) </option> <option value="universe" > Universe </option> <option value="urbansci" > Urban Science </option> <option value="uro" > Uro </option> <option value="vaccines" > Vaccines </option> <option value="vehicles" > Vehicles </option> <option value="venereology" > Venereology </option> <option value="vetsci" > Veterinary Sciences </option> <option value="vibration" > Vibration </option> <option value="virtualworlds" > Virtual Worlds </option> <option value="viruses" > Viruses </option> <option value="vision" > Vision </option> <option value="waste" > Waste </option> <option value="water" > Water </option> <option value="wild" > Wild </option> <option value="wind" > Wind </option> <option value="women" > Women </option> <option value="world" > World </option> <option value="wevj" > World Electric Vehicle Journal (WEVJ) </option> <option value="youth" > Youth </option> <option value="zoonoticdis" > Zoonotic Diseases </option> </select> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Article Type</div> </div> <select id="article_type" tabindex="4" name="article_type" class="chosen-select"> <option value="">All Article Types</option> <option value="research-article">Article</option> <option value="review-article">Review</option> <option value="rapid-communication">Communication</option> <option value="editorial">Editorial</option> <option value="abstract">Abstract</option> <option value="book-review">Book Review</option> <option value="brief-communication">Brief Communication</option> <option value="brief-report">Brief Report</option> <option value="case-report">Case Report</option> <option value="clinicopathological-challenge">Clinicopathological Challenge</option> <option value="article-commentary">Comment</option> <option value="commentary">Commentary</option> <option value="concept-paper">Concept Paper</option> <option value="conference-report">Conference Report</option> <option value="correction">Correction</option> <option value="creative">Creative</option> <option value="data-descriptor">Data Descriptor</option> <option value="discussion">Discussion</option> <option value="Entry">Entry</option> <option value="essay">Essay</option> <option value="expression-of-concern">Expression of Concern</option> <option value="extended-abstract">Extended Abstract</option> <option value="field-guide">Field Guide</option> <option value="guidelines">Guidelines</option> <option value="hypothesis">Hypothesis</option> <option value="interesting-image">Interesting Images</option> <option value="letter">Letter</option> <option value="books-received">New Book Received</option> <option value="obituary">Obituary</option> <option value="opinion">Opinion</option> <option value="perspective">Perspective</option> <option value="proceedings">Proceeding Paper</option> <option value="project-report">Project Report</option> <option value="protocol">Protocol</option> <option value="registered-report">Registered Report</option> <option value="reply">Reply</option> <option value="retraction">Retraction</option> <option value="note">Short Note</option> <option value="study-protocol">Study Protocol</option> <option value="systematic_review">Systematic Review</option> <option value="technical-note">Technical Note</option> <option value="tutorial">Tutorial</option> <option value="viewpoint">Viewpoint</option> </select> </div> <div class="large-1 medium-1 small-6 end columns small-push-6 medium-reset-order large-reset-order js-search-collapsed-button-container"> <div class="search-input-label"> </div> <input type="submit" id="search" value="Search" class="button button--dark button--full-width searchButton1 US_SearchButton" tabindex="12"> </div> <div class="large-1 medium-1 small-6 end columns large-text-left small-only-text-center small-pull-6 medium-reset-order large-reset-order js-search-collapsed-link-container"> <div class="search-input-label"> </div> <a class="main-search-clear search-container__link" href="#" onclick="openAdvanced(''); return false;">Advanced<span class="show-for-small-only"> Search</span></a> </div> </div> </div> <div class="search-container__advanced" style="margin-top: 0; padding-top: 0px; background-color: inherit; color: inherit;"> <div class="row"> <div class="large-2 medium-2 columns show-for-medium-up"> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Section</div> </div> <select id="section" tabindex="5" name="section" class="chosen-select"> <option value=""></option> </select> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Special Issue</div> </div> <select id="special_issue" tabindex="6" name="special_issue" class="chosen-select"> <option value=""></option> </select> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Volume</div> <input type="text" id="volume" tabindex="7" name="volume" placeholder="..." value="11" /> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Issue</div> <input type="text" id="issue" tabindex="8" name="issue" placeholder="..." value="7" /> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Number</div> <input type="text" id="number" tabindex="9" name="number" placeholder="..." value="" /> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Page</div> <input type="text" id="page" tabindex="10" name="page" placeholder="..." value="" /> </div> <div class="large-1 medium-1 small-6 columns small-push-6 medium-reset order large-reset-order medium-reset-order js-search-expanded-button-container"></div> <div class="large-1 medium-1 small-6 columns large-text-left small-only-text-center small-pull-6 medium-reset-order large-reset-order js-search-expanded-link-container"></div> </div> </div> </form> <form id="advanced-search" class="large-12 medium-12 columns"> <div class="search-container__advanced"> <div id="advanced-search-template" class="row advanced-search-row"> <div class="large-2 medium-2 small-12 columns show-for-medium-up"> </div> <div class="large-2 medium-2 small-3 columns connector-div"> <div class="search-input-label"><span class="show-for-medium-up">Logical Operator</span><span class="show-for-small">Operator</span></div> <select class="connector"> <option value="and">AND</option> <option value="or">OR</option> </select> </div> <div class="large-3 medium-3 small-6 columns search-text-div"> <div class="search-input-label">Search Text</div> <input type="text" class="search-text" placeholder="Search text"> </div> <div class="large-2 medium-2 small-6 large-offset-0 medium-offset-0 small-offset-3 columns search-field-div"> <div class="search-input-label">Search Type</div> <select class="search-field"> <option value="all">All fields</option> <option value="title">Title</option> <option value="abstract">Abstract</option> <option value="keywords">Keywords</option> <option value="authors">Authors</option> <option value="affiliations">Affiliations</option> <option value="doi">Doi</option> <option value="full_text">Full Text</option> <option value="references">References</option> </select> </div> <div class="large-1 medium-1 small-3 columns"> <div class="search-input-label"> </div> <div class="search-action-div"> <div class="search-plus"> <i class="material-icons">add_circle_outline</i> </div> </div> <div class="search-action-div"> <div class="search-minus"> <i class="material-icons">remove_circle_outline</i> </div> </div> </div> <div class="large-1 medium-1 small-6 large-offset-0 medium-offset-0 small-offset-3 end columns"> <div class="search-input-label"> </div> <input class="advanced-search-button button button--dark search-submit" type="submit" value="Search"> </div> <div class="large-1 medium-1 small-6 end columns show-for-medium-up"></div> </div> </div> </form> </div> <div class="header-divider"> </div> <div class="breadcrumb row full-row"> <div class="breadcrumb__element"> <a href="/about/journals">Journals</a> </div> <div class="breadcrumb__element"> <a href="/journal/chemosensors">Chemosensors</a> </div> <div class="breadcrumb__element"> <a href="/2227-9040/11">Volume 11</a> </div> <div class="breadcrumb__element"> <a href="/2227-9040/11/7">Issue 7</a> </div> <div class="breadcrumb__element"> <a href="#">10.3390/chemosensors11070405</a> </div> </div> </header> <div id="main-content" class=""> <div class="row full-width row-fixed-left-column"> <div id="left-column" class="content__column large-3 medium-3 small-12 columns"> <div class="content__container"> <a href="/journal/chemosensors"> <img src="https://pub.mdpi-res.com/img/journals/chemosensors-logo.png?8600e93ff98dbf14" alt="chemosensors-logo" title="Chemosensors" style="max-height: 60px; margin: 0 0 0 0;"> </a> <div class="generic-item no-border"> <a class="button button--color button--full-width js-journal-active-only-link js-journal-active-only-submit-link UC_ArticleSubmitButton" href="https://susy.mdpi.com/user/manuscripts/upload?form%5Bjournal_id%5D%3D161" data-disabledmessage="creating new submissions is not possible."> Submit to this Journal </a> <a class="button button--color button--full-width js-journal-active-only-link UC_ArticleReviewButton" href="https://susy.mdpi.com/volunteer/journals/review" data-disabledmessage="volunteering as journal reviewer is not possible."> Review for this Journal </a> <a class="button button--color-inversed button--color-journal button--full-width js-journal-active-only-link UC_ArticleEditIssueButton" href="/journalproposal/sendproposalspecialissue/chemosensors" data-path="/2227-9040/11/7/405" data-disabledmessage="proposing new special issue is not possible."> Propose a Special Issue </a> </div> <div class="generic-item link-article-menu show-for-small"> <a href="#" class="link-article-menu show-for-small"> <span class="closed">►</span> <span class="open" style="display: none;">▼</span> Article Menu </a> </div> <div class="hide-small-down-initially UI_ArticleMenu"> <div class="generic-item"> <h2>Article Menu</h2> </div> <ul class="accordion accordion__menu" data-accordion data-options="multi_expand:true;toggleable: true"> <li class="accordion-navigation"> <a href="#academic_editors" class="accordion__title">Academic Editor</a> <div id="academic_editors" class="content active"> <div class="academic-editor-container " title="Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates"> <div class="sciprofiles-link" style="display: inline-block"><a class="sciprofiles-link__link" href="https://sciprofiles.com/profile/1173984?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" target="_blank" rel="noopener noreferrer"><img class="sciprofiles-link__image" src="/profiles/1173984/thumb/Sofian_Kanan.jpg" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Sofian Kanan</span></a></div> </div> </div> </li> <li class="accordion-direct-link"> <a href="/2227-9040/11/7/405/scifeed_display" data-reveal-id="scifeed-modal" data-reveal-ajax="true">Subscribe SciFeed</a> </li> <li class="accordion-direct-link js-article-similarity-container" style="display: none"> <a href="#" class="js-similarity-related-articles">Recommended Articles</a> </li> <li class="accordion-navigation"> <a href="#related" class="accordion__title">Related Info Link</a> <div id="related" class="content UI_ArticleMenu_RelatedLinks"> <ul> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Fluorescent%20Quantum%20Dots%20and%20Its%20Composites%20for%20Highly%20Sensitive%20Detection%20of%20Heavy%20Metal%20Ions%20and%20Pesticide%20Residues%3A%20A%20Review" target="_blank" rel="noopener noreferrer">Google Scholar</a> </li> </ul> </div> </li> <li class="accordion-navigation"> <a href="#authors" class="accordion__title">More by Authors Links</a> <div id="authors" class="content UI_ArticleMenu_AuthorsLinks"> <ul class="side-menu-ul"> <li> <a class="expand" onclick='$(this).closest("li").next("div").toggle(); return false;'>on DOAJ</a> </li> <div id="AuthorDOAJExpand" style="display:none;"> <ul class="submenu"> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Zhezhe%20Wang%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">Wang, Z.</a> <li> </li> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Bo%20Yao%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">Yao, B.</a> <li> </li> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Yawei%20Xiao%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">Xiao, Y.</a> <li> </li> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Xu%20Tian%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">Tian, X.</a> <li> </li> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Yude%20Wang%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">Wang, Y.</a> <li> </li> </ul> </div> <li> <a class="expand" onclick='$(this).closest("li").next("div").toggle(); return false;'>on Google Scholar</a> </li> <div id="AuthorGoogleExpand" style="display:none;"> <ul class="submenu"> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Zhezhe%20Wang" target="_blank" rel="noopener noreferrer">Wang, Z.</a> <li> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Bo%20Yao" target="_blank" rel="noopener noreferrer">Yao, B.</a> <li> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Yawei%20Xiao" target="_blank" rel="noopener noreferrer">Xiao, Y.</a> <li> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Xu%20Tian" target="_blank" rel="noopener noreferrer">Tian, X.</a> <li> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Yude%20Wang" target="_blank" rel="noopener noreferrer">Wang, Y.</a> <li> </li> </ul> </div> <li> <a class="expand" onclick='$(this).closest("li").next("div").toggle(); return false;'>on PubMed</a> </li> <div id="AuthorPubMedExpand" style="display:none;"> <ul class="submenu"> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=Zhezhe%20Wang" target="_blank" rel="noopener noreferrer">Wang, Z.</a> <li> </li> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=Bo%20Yao" target="_blank" rel="noopener noreferrer">Yao, B.</a> <li> </li> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=Yawei%20Xiao" target="_blank" rel="noopener noreferrer">Xiao, Y.</a> <li> </li> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=Xu%20Tian" target="_blank" rel="noopener noreferrer">Tian, X.</a> <li> </li> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=Yude%20Wang" target="_blank" rel="noopener noreferrer">Wang, Y.</a> <li> </li> </ul> </div> </ul> </div> </li> </ul> <span style="display:none" id="scifeed_hidden_flag"></span> <span style="display:none" id="scifeed_subscribe_url">/ajax/scifeed/subscribe</span> </div> </div> <div class="content__container responsive-moving-container large medium active hidden" data-id="article-counters"> <div id="counts-wrapper" class="row generic-item no-border" data-equalizer> <div id="js-counts-wrapper__views" class="small-12 hide columns count-div-container"> <a href="#metrics" > <div class="count-div" data-equalizer-watch> <span class="name">Article Views</span> <span class="count view-number"></span> </div> </a> </div> <div id="js-counts-wrapper__citations" class="small-12 columns hide count-div-container"> <a href="#metrics" > <div class="count-div" data-equalizer-watch> <span class="name">Citations</span> <span class="count citations-number Var_ArticleMaxCitations">-</span> </div> </a> </div> </div> </div> <div class="content__container"> <div class="hide-small-down-initially"> <ul class="accordion accordion__menu" data-accordion data-options="multi_expand:true;toggleable: true"> <li class="accordion-navigation"> <a href="#table_of_contents" class="accordion__title">Table of Contents</a> <div id="table_of_contents" class="content active"> <div class="menu-caption" id="html-quick-links-title"></div> </div> </li> </ul> </div> </div> <!-- PubGrade code --> <div id="pbgrd-sky"></div> <script src="https://cdn.pbgrd.com/core-mdpi.js"></script> <style>.content__container { min-width: 300px; }</style> <!-- PubGrade code --> </div> <div id="middle-column" class="content__column large-9 medium-9 small-12 columns end middle-bordered"> <div class="middle-column__help"> <div class="middle-column__help__fixed show-for-medium-up"> <span id="js-altmetrics-donut" href="#" target="_blank" rel="noopener noreferrer" style="display: none;"> <span data-badge-type='donut' class='altmetric-embed' data-doi='10.3390/chemosensors11070405'></span> <span>Altmetric</span> </span> <a href="#" class="UA_ShareButton" data-reveal-id="main-share-modal" title="Share"> <i class="material-icons">share</i> <span>Share</span> </a> <a href="#" data-reveal-id="main-help-modal" title="Help"> <i class="material-icons">announcement</i> <span>Help</span> </a> <a href="javascript:void(0);" data-reveal-id="cite-modal" data-counterslink = "https://www.mdpi.com/2227-9040/11/7/405/cite" > <i class="material-icons">format_quote</i> <span>Cite</span> </a> <a href="https://sciprofiles.com/discussion-groups/public/10.3390/chemosensors11070405?utm_source=mpdi.com&utm_medium=publication&utm_campaign=discuss_in_sciprofiles" target="_blank" rel="noopener noreferrer" title="Discuss in Sciprofiles"> <i class="material-icons">question_answer</i> <span>Discuss in SciProfiles</span> </a> <a href="#" class="" data-hypothesis-trigger-endorses-tab title="Endorse"> <i data-hypothesis-endorse-trigger class="material-icons" >thumb_up</i> <div data-hypothesis-endorsement-count data-hypothesis-trigger-endorses-tab class="hypothesis-count-container"> ... </div> <span>Endorse</span> </a> <a href="#" data-hypothesis-trigger class="js-hypothesis-open UI_ArticleAnnotationsButton" title="Comment"> <i class="material-icons">textsms</i> <div data-hypothesis-annotation-count class="hypothesis-count-container"> ... </div> <span>Comment</span> </a> </div> <div id="main-help-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 style="margin: 0;">Need Help?</h2> </div> <div class="small-6 columns"> <h3>Support</h3> <p> Find support for a specific problem in the support section of our website. </p> <a target="_blank" href="/about/contactform" class="button button--color button--full-width"> Get Support </a> </div> <div class="small-6 columns"> <h3>Feedback</h3> <p> Please let us know what you think of our products and services. </p> <a target="_blank" href="/feedback/send" class="button button--color button--full-width"> Give Feedback </a> </div> <div class="small-6 columns end"> <h3>Information</h3> <p> Visit our dedicated information section to learn more about MDPI. </p> <a target="_blank" href="/authors" class="button button--color button--full-width"> Get Information </a> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> </div> <div class="middle-column__main "> <div class="page-highlight"> <style type="text/css"> img.review-status { width: 30px; } </style> <div id="jmolModal" class="reveal-modal" data-reveal aria-labelledby="Captcha" aria-hidden="true" role="dialog"> <h2>JSmol Viewer</h2> <div class="row"> <div class="small-12 columns text-center"> <iframe style="width: 520px; height: 520px;" frameborder="0" id="jsmol-content"></iframe> <div class="content"></div> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div itemscope itemtype="http://schema.org/ScholarlyArticle" id="abstract" class="abstract_div"> <div class="js-check-update-container"></div> <div class="html-content__container content__container content__container__combined-for-large__first" style="overflow: auto; position: inherit;"> <div class='html-profile-nav'> <div class='top-bar'> <div class='nav-sidebar-btn show-for-large-up' data-status='opened' > <i class='material-icons'>first_page</i> </div> <a id="js-button-download" class="button button--color-inversed" style="display: none;" href="/2227-9040/11/7/405/pdf?version=1689756433" data-name="Fluorescent Quantum Dots and Its Composites for Highly Sensitive Detection of Heavy Metal Ions and Pesticide Residues: A Review" data-journal="chemosensors"> <i class="material-icons custom-download"></i> Download PDF </a> <div class='nav-btn'> <i class='material-icons'>settings</i> </div> <a href="/2227-9040/11/7/405/reprints" id="js-button-reprints" class="button button--color-inversed"> Order Article Reprints </a> </div> <div class='html-article-menu'> <div class='html-first-step row'> <div class='html-font-family large-6 medium-6 small-12 columns'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns'> Font Type: </div> <div class='large-8 medium-8 small-12 columns'> <span class="html-article-menu-option"><i style='font-family:Arial, Arial, Helvetica, sans-serif;' data-fontfamily='Arial, Arial, Helvetica, sans-serif'>Arial</i></span> <span class="html-article-menu-option"><i style='font-family:Georgia1, Georgia, serif;' data-fontfamily='Georgia1, Georgia, serif'>Georgia</i></span> <span class="html-article-menu-option"><i style='font-family:Verdana, Verdana, Geneva, sans-serif;' data-fontfamily='Verdana, Verdana, Geneva, sans-serif' >Verdana</i></span> </div> </div> </div> <div class='html-font-resize large-6 medium-6 small-12 columns'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns'>Font Size:</div> <div class='large-8 medium-8 small-12 columns'> <span class="html-article-menu-option a1" data-percent="100">Aa</span> <span class="html-article-menu-option a2" data-percent="120">Aa</span> <span class="html-article-menu-option a3" data-percent="160">Aa</span> </div> </div> </div> </div> <div class='row'> <div class='html-line-space large-6 medium-6 small-12 columns'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns' >Line Spacing:</div> <div class='large-8 medium-8 small-12 columns'> <span class="html-article-menu-option a1" data-line-height="1.5em"> <i class="fa"></i> </span> <span class="html-article-menu-option a2" data-line-height="1.8em"> <i class="fa"></i> </span> <span class="html-article-menu-option a3" data-line-height="2.1em"> <i class="fa"></i> </span> </div> </div> </div> <div class='html-column-width large-6 medium-6 small-12 columns'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns' >Column Width:</div> <div class='large-8 medium-8 small-12 columns'> <span class="html-article-menu-option a1" data-column-width="20%"> <i class="fa"></i> </span> <span class="html-article-menu-option a2" data-column-width="10%"> <i class="fa"></i> </span> <span class="html-article-menu-option a3" data-column-width="0%"> <i class="fa"></i> </span> </div> </div> </div> </div> <div class='row'> <div class='html-font-bg large-6 medium-6 small-12 columns end'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns'>Background:</div> <div class='large-8 medium-8 small-12 columns'> <div class="html-article-menu-option html-nav-bg html-nav-bright" data-bg="bright"> <i class="fa fa-file-text"></i> </div> <div class="html-article-menu-option html-nav-bg html-nav-dark" data-bg="dark"> <i class="fa fa-file-text-o"></i> </div> <div class="html-article-menu-option html-nav-bg html-nav-creme" data-bg="creme"> <i class="fa fa-file-text"></i> </div> </div> </div> </div> </div> </div> </div> <article ><div class='html-article-content'> <span itemprop="publisher" content="Multidisciplinary Digital Publishing Institute"></span><span itemprop="url" content="https://www.mdpi.com/2227-9040/11/7/405"></span> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Review</span></div> <h1 class="title hypothesis_container" itemprop="name"> Fluorescent Quantum Dots and Its Composites for Highly Sensitive Detection of Heavy Metal Ions and Pesticide Residues: A Review </h1> <div class="art-authors hypothesis_container"> by <span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop11495271' data-options='is_hover:true, hover_timeout:5000'> Zhezhe Wang</div><div id="profile-card-drop11495271" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Zhezhe Wang</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/author/azMxTmRKMDBUeU1uTXRTY1JGd2UvMVA2d3RoTXVNOXVWTWpxczBiYXlYYz0=?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.net/scholars?q=Zhezhe%20Wang" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Zhezhe%20Wang&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Zhezhe%20Wang" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div></div><sup> 1</sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="11495271" href="/cdn-cgi/l/email-protection#b09fd3ded49dd3d7d99fdc9fd5ddd1d9dc9dc0c2dfc4d5d3c4d9dfde938080808087d180d481d2818481d483d1818781d28183818685848083818480d6858481d681d580d6858481898184"><sup><i class="fa fa-envelope-o"></i></sup></a><a href="https://orcid.org/0009-0004-2963-2244" target="_blank" rel="noopener noreferrer"><img src="https://pub.mdpi-res.com/img/design/orcid.png?0465bc3812adeb52?1732615622" title="ORCID" style="position: relative; width: 13px; margin-left: 3px; max-width: 13px !important; height: auto; top: -5px;"></a>, </span><span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop11495272' data-options='is_hover:true, hover_timeout:5000'> Bo Yao</div><div id="profile-card-drop11495272" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Bo Yao</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/author/UGU2cG9jUXhiaXM5TkpUcE5BQ1J1NmVMQ0xiTXQ4ci9PVVI5UFk4aTl4ST0=?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.net/scholars?q=Bo%20Yao" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Bo%20Yao&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Bo%20Yao" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div></div><sup> 1</sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="11495272" href="/cdn-cgi/l/email-protection#cfe0aca1abe2aca8a6e0a3e0aaa2aea6a3e2bfbda0bbaaacbba6a0a1ecfffffef7f8f6fef9feadfef9fcf6fefbfef7fefffefafaf8fffffef8ffacfaf8feacfeabffacfaf8feaefef8"><sup><i class="fa fa-envelope-o"></i></sup></a>, </span><span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop11495273' data-options='is_hover:true, hover_timeout:5000'> Yawei Xiao</div><div id="profile-card-drop11495273" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Yawei Xiao</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/author/ZWcyU2xwL3EwbkgyNUs3UnFZSXpmK2wxcnhPVUV3dHZCOURnOVVUR1plMD0=?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.net/scholars?q=Yawei%20Xiao" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Yawei%20Xiao&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Yawei%20Xiao" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div></div><sup> 1</sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="11495273" href="/cdn-cgi/l/email-protection#a28dc1ccc68fc1c5cb8dce8dc7cfc3cbce8fd2d0cdd6c7c1d6cbcdcc81929292c7959b92939392939a9394919b9396939a9392939797959292939592c1979593c193c692c1979593c39395"><sup><i class="fa fa-envelope-o"></i></sup></a>, </span><span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop11495274' data-options='is_hover:true, hover_timeout:5000'> Xu Tian</div><div id="profile-card-drop11495274" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Xu Tian</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/author/MkYyNE5oSlEvZGxpMGJ5VithekpLdjh4aFFXYnRORkxBZHNQMHZNUGMzWT0=?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.net/scholars?q=Xu%20Tian" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Xu%20Tian&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Xu%20Tian" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div></div><sup> 1</sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="11495274" href="/cdn-cgi/l/email-protection#436c202d276e20242a6c2f6c262e222a2f6e33312c372620372a2c2d6073737327747b73207272727a7275707b7276727a7272727776757372727573277675722772207327767572217275"><sup><i class="fa fa-envelope-o"></i></sup></a> and </span><span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop11495275' data-options='is_hover:true, hover_timeout:5000'> Yude Wang</div><div id="profile-card-drop11495275" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Yude Wang</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/407949?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.net/scholars?q=Yude%20Wang" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Yude%20Wang&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Yude%20Wang" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div></div><sup> 2,*</sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="11495275" href="/cdn-cgi/l/email-protection#79561a171d541a1e105615561c1418101554090b160d1c1a0d1016175a4949481d4e40491c4841484e481c4a404949484e491a4c4e481a481d491a4c4e4818484e"><sup><i class="fa fa-envelope-o"></i></sup></a><a href="https://orcid.org/0000-0001-5152-2667" target="_blank" rel="noopener noreferrer"><img src="https://pub.mdpi-res.com/img/design/orcid.png?0465bc3812adeb52?1732615622" title="ORCID" style="position: relative; width: 13px; margin-left: 3px; max-width: 13px !important; height: auto; top: -5px;"></a></span> </div> <div class="nrm"></div> <span style="display:block; height:6px;"></span> <div></div> <div style="margin: 5px 0 15px 0;" class="hypothesis_container"> <div class="art-affiliations"> <div class="affiliation "> <div class="affiliation-item"><sup>1</sup></div> <div class="affiliation-name ">National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650504, China</div> </div> <div class="affiliation "> <div class="affiliation-item"><sup>2</sup></div> <div class="affiliation-name ">Yunnan Key Laboratory of Carbon Neutrality and Green Low-Carbon Technologies, Yunnan University, Kunming 650504, China</div> </div> <div class="affiliation"> <div class="affiliation-item"><sup>*</sup></div> <div class="affiliation-name ">Author to whom correspondence should be addressed. </div> </div> </div> </div> <div class="bib-identity" style="margin-bottom: 10px;"> <em>Chemosensors</em> <b>2023</b>, <em>11</em>(7), 405; <a href="https://doi.org/10.3390/chemosensors11070405">https://doi.org/10.3390/chemosensors11070405</a> </div> <div class="pubhistory" style="font-weight: bold; padding-bottom: 10px;"> <span style="display: inline-block">Submission received: 26 May 2023</span> / <span style="display: inline-block">Revised: 8 July 2023</span> / <span style="display: inline-block">Accepted: 10 July 2023</span> / <span style="display: inline-block">Published: 19 July 2023</span> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/chemosensors/special_issues/89EC993V3J ">Advances in Nanocomposite Luminescent Sensors</a>)<br/> </div> <div class="highlight-box1"> <div class="download"> <a class="button button--color-inversed button--drop-down" data-dropdown="drop-download-1197362" aria-controls="drop-supplementary-1197362" aria-expanded="false"> Download <i class="material-icons">keyboard_arrow_down</i> </a> <div id="drop-download-1197362" class="f-dropdown label__btn__dropdown label__btn__dropdown--button" data-dropdown-content aria-hidden="true" tabindex="-1"> <a class="UD_ArticlePDF" href="/2227-9040/11/7/405/pdf?version=1689756433" data-name="Fluorescent Quantum Dots and Its Composites for Highly Sensitive Detection of Heavy Metal Ions and Pesticide Residues: A Review" data-journal="chemosensors">Download PDF</a> <br/> <a id="js-pdf-with-cover-access-captcha" href="#" data-target="/2227-9040/11/7/405/pdf-with-cover" class="accessCaptcha">Download PDF with Cover</a> <br/> <a id="js-xml-access-captcha" href="#" data-target="/2227-9040/11/7/405/xml" class="accessCaptcha">Download XML</a> <br/> <a href="/2227-9040/11/7/405/epub" id="epub_link">Download Epub</a> <br/> </div> <div class="js-browse-figures" style="display: inline-block;"> <a href="#" class="button button--color-inversed margin-bottom-10 openpopupgallery UI_BrowseArticleFigures" data-target='article-popup' data-counterslink = "https://www.mdpi.com/2227-9040/11/7/405/browse" >Browse Figures</a> </div> <div id="article-popup" class="popupgallery" style="display: inline; line-height: 200%"> <a href="https://pub.mdpi-res.com/chemosensors/chemosensors-11-00405/article_deploy/html/images/chemosensors-11-00405-g001.png?1689756504" title=" <strong>Figure 1</strong><br/> <p>(<b>a</b>) Fluorescence spectra of NALC-CdS QDs with different concentrations of Cu<sup>2+</sup> in aqueous solution, (<b>b</b>) the relationship between the relative fluorescence intensity (<span class="html-italic">F</span><sub>0</sub>/<span class="html-italic">F</span>) and the concentration of Cu<sup>2+</sup>, and (<b>c</b>) schematic of the quenching mechanism of NALC-CdS QDs by Cu<sup>2+</sup>. Reprinted with permission from ref. [<a href="#B61-chemosensors-11-00405" class="html-bibr">61</a>]; Copyright IOP Publishing. (<b>d</b>) Fluorescence spectra of the NH<sub>2</sub>-ZnO QDs with different concentrations of Cu<sup>2+</sup> in aqueous solution; (<b>e</b>,<b>f</b>) the linear relation curves of <span class="html-italic">F</span><sub>0</sub>/<span class="html-italic">F</span> and the concentration of Cu<sup>2+</sup>: (<b>e</b>) 2–20 nM; (<b>f</b>) 1–100 μM. (<b>g</b>) Schematic of quenching mechanism of NH<sub>2</sub>-ZnO QDs by Cu<sup>2+</sup>. Reprinted with permission from ref. [<a href="#B63-chemosensors-11-00405" class="html-bibr">63</a>]; Copyright 2020 Elsevier.</p> "> </a> <a href="https://pub.mdpi-res.com/chemosensors/chemosensors-11-00405/article_deploy/html/images/chemosensors-11-00405-g002.png?1689756512" title=" <strong>Figure 2</strong><br/> <p>(<b>A</b>) UV-vis spectra (a, b) and FL spectra (excitation spectra, c, d; emission spectra, e, f) of BPEI-CQD solution in the absence (a, c, e) and presence (b, d, f) of 150 μM Cu<sup>2+</sup> ions. The inset shows photos of BPEI-CQD solutions in the absence (left) and presence (right) of Cu<sup>2+</sup> under UV light of 365 nm. (<b>B</b>) FL response of BPEI-CQDs upon addition of various concentrations of copper ions. Inset: Linear relationship between <span class="html-italic">F</span><sub>0</sub>/<span class="html-italic">F</span> of BPEI-CQDs and the concentration of Cu<sup>2+</sup>. (<b>C</b>) Schematic diagram of the fluorescence quenching of the BPEI-CQDs by Cu<sup>2+</sup>. Reprinted with permission from ref. [<a href="#B66-chemosensors-11-00405" class="html-bibr">66</a>]; Copyright IOP Publishing.</p> "> </a> <a href="https://pub.mdpi-res.com/chemosensors/chemosensors-11-00405/article_deploy/html/images/chemosensors-11-00405-g003.png?1689756515" title=" <strong>Figure 3</strong><br/> <p>The top views of density functional theory (DFT) simulation mode for (<b>a</b>) N, S-GQDs and (<b>b</b>) M cations (M = Fe<sup>3+</sup>, Hg<sup>2+</sup>) adsorbed on the surface of N, S-GQDs. (<b>c</b>) Schematic diagram of N, S-GQDs as a fluorescence probe. Reprinted with permission from ref. [<a href="#B90-chemosensors-11-00405" class="html-bibr">90</a>].</p> "> </a> <a href="https://pub.mdpi-res.com/chemosensors/chemosensors-11-00405/article_deploy/html/images/chemosensors-11-00405-g004.png?1689756510" title=" <strong>Figure 4</strong><br/> <p>(<b>a</b>) PL intensity of QDs in the presence of Fe<sup>3+</sup> ions. (<b>b</b>) The linear relationship between the fluorescence intensity and Fe<sup>3+</sup>. (<b>c</b>) Schematic diagram for static and dynamic quenching of f-SnS<sub>2</sub> QDs by Fe<sup>3+</sup> ions. Reprinted with permission from ref. [<a href="#B104-chemosensors-11-00405" class="html-bibr">104</a>]. Copyright 2020 Elsevier.</p> "> </a> <a href="https://pub.mdpi-res.com/chemosensors/chemosensors-11-00405/article_deploy/html/images/chemosensors-11-00405-g005.png?1689756507" title=" <strong>Figure 5</strong><br/> <p>(<b>a</b>) Interference test of QD solution for various metal ions. (<b>b</b>) The fluorescence spectra of QDs upon different concentrations of Pb<sup>2+</sup>. (<b>c</b>) Linear relationship between the concentration of Pb<sup>2+</sup> and FL intensity. (<b>d</b>) Mechanism of florescence quenching. Reprinted with permission from ref. [<a href="#B125-chemosensors-11-00405" class="html-bibr">125</a>]. Copyright 2022 Elsevier.</p> "> </a> </div> <a class="button button--color-inversed" href="/2227-9040/11/7/405/notes">Versions Notes</a> </div> </div> <div class="responsive-moving-container small hidden" data-id="article-counters" style="margin-top: 15px;"></div> <div class="html-dynamic"> <section> <div class="art-abstract art-abstract-new in-tab hypothesis_container"> <p> <div><section class="html-abstract" id="html-abstract"> <h2 id="html-abstract-title">Abstract</h2><b>:</b> <div class="html-p">Quantum dots nanomaterials have attracted extensive interest for fluorescence chemical sensors due their attributes, such as excellent optical characteristics, quantum size effects, interface effects, etc. Moreover, the fluorescence properties of quantum dots can be adjusted by changing their structure, size, morphology, composition, doping, and surface modification. In recent years, quantum dots nanomaterials have been considered the preferred sensing materials for the detection of heavy metal ions and pesticide residues by the interactions between quantum dots and various analytes, showing excellent sensitivity, selectivity, and interference, as well as reducing the cost of equipment compared with traditional measurement methods. In this review, the applications and sensing mechanisms of semiconductor quantum dots and carbon-based quantum dots are comprehensively discussed. The application of semiconductor quantum dots, carbon quantum dots, graphene quantum dots, and their nanocomposites that are utilized as fluorescence sensors are discussed in detailed, and the properties of various quantum dots for heavy metal ion and pesticide residue determination are also presented. The recent advances in and application perspectives regarding quantum dots and their composites are also summarized.</div> </section> <div id="html-keywords"> <div class="html-gwd-group"><div id="html-keywords-title">Keywords: </div><a href="/search?q=quantum+dots">quantum dots</a>; <a href="/search?q=fluorescent+sensors">fluorescent sensors</a>; <a href="/search?q=heavy+metal+ions">heavy metal ions</a>; <a href="/search?q=toxic+pesticides">toxic pesticides</a></div> <div> </div> </div> </div> </p> </div> </section> </div> <div class="hypothesis_container"> <ul class="menu html-nav" data-prev-node="#html-quick-links-title"> </ul> <div class="html-body"> <section id='sec1-chemosensors-11-00405' type='intro'><h2 data-nested='1'> 1. Introduction</h2><div class='html-p'>Environmental pollution and food safety are becoming increasingly prominent issues with rapid economic and industrial development and population growth in recent years [<a href="#B1-chemosensors-11-00405" class="html-bibr">1</a>,<a href="#B2-chemosensors-11-00405" class="html-bibr">2</a>]. Mineral exploitation causes heavy metal pollution, while pesticide abuse leads to excessive pesticide residues. Due to their characteristics of non-degradability and long-term accumulation, heavy metal ions and excessive pesticide residues can cause severe damage to the human body through the food chain, including food poisoning, diarrhea, neurotoxicity, brain damage, renal injury, skeletal disorders, and even health issues for children and fetuses [<a href="#B3-chemosensors-11-00405" class="html-bibr">3</a>,<a href="#B4-chemosensors-11-00405" class="html-bibr">4</a>,<a href="#B5-chemosensors-11-00405" class="html-bibr">5</a>,<a href="#B6-chemosensors-11-00405" class="html-bibr">6</a>,<a href="#B7-chemosensors-11-00405" class="html-bibr">7</a>]. Hence, the detection and monitoring of heavy metal ions and pesticide residues are important measures to ensure safety to human lives and environmental protection. Moreover, the maximum concentration levels for some heavy metal ions and pesticide residues have been specified by many international organizations, such as the World Health Organization (WHO), European Union (EU), Codex Alimentarius Commission (CAC), and the United States Environmental Protection Agency (USEPA) [<a href="#B4-chemosensors-11-00405" class="html-bibr">4</a>,<a href="#B8-chemosensors-11-00405" class="html-bibr">8</a>]. Consequently, there is a growing need for simple, rapid, and accurate detection of heavy metal ions and pesticides in water and food. </div><div class='html-p'>Traditional detection methods, including atomic absorption spectrometry, surface plasmon resonance, atomic emission spectrometry, inductively coupled plasma, mass spectrometer, high performance liquid chromatography, colorimetric method, and surface-enhanced Raman scattering, can obtain relatively stable and accurate detection results, but the equipment and maintenance costs are high, and the sample pretreatment process is complicated, so these methods are still mainly used in the laboratory [<a href="#B9-chemosensors-11-00405" class="html-bibr">9</a>,<a href="#B10-chemosensors-11-00405" class="html-bibr">10</a>,<a href="#B11-chemosensors-11-00405" class="html-bibr">11</a>,<a href="#B12-chemosensors-11-00405" class="html-bibr">12</a>,<a href="#B13-chemosensors-11-00405" class="html-bibr">13</a>,<a href="#B14-chemosensors-11-00405" class="html-bibr">14</a>]. Fluorescence detection technology is an emerging technology from recent decades, which has the characteristics of cost-effectiveness, rapidity, simple operation, facile and easy detection techniques, and low detection limits. Among numerous fluorescent materials, QDs as zero dimensional nanomaterials offer greater potential and have been widely recognized as valuable fluorescent probes due to their unique optical and physicochemical properties, offering distinct superiority over organic fluorophores in chemical or biological applications [<a href="#B15-chemosensors-11-00405" class="html-bibr">15</a>]. </div><div class='html-p'>Quantum dots (QDs) are nanoparticles with a size typically between 1 nm to 10 nm, confined inside three dimensions with quantized energy states because of their smaller size than the Bohr radius [<a href="#B16-chemosensors-11-00405" class="html-bibr">16</a>,<a href="#B17-chemosensors-11-00405" class="html-bibr">17</a>]. Generally, QDs are divided into two classes: one is composed of II-I, III-V, and IV-VI elements (e.g., ZnS, ZnSe, ZnO, CdS, InAs), and the second is based on group IV elements, such as carbon quantum dots (CQDs), graphene quantum dots (GQDs), silicon quantum dots (Si QDs), and germanium quantum dots (Ge QDs) [<a href="#B18-chemosensors-11-00405" class="html-bibr">18</a>,<a href="#B19-chemosensors-11-00405" class="html-bibr">19</a>]. In recent years, perovskite QDs (PQDs), as a new type of QD, have been increasingly recognized, studied, and applied [<a href="#B20-chemosensors-11-00405" class="html-bibr">20</a>,<a href="#B21-chemosensors-11-00405" class="html-bibr">21</a>,<a href="#B22-chemosensors-11-00405" class="html-bibr">22</a>,<a href="#B23-chemosensors-11-00405" class="html-bibr">23</a>,<a href="#B24-chemosensors-11-00405" class="html-bibr">24</a>,<a href="#B25-chemosensors-11-00405" class="html-bibr">25</a>,<a href="#B26-chemosensors-11-00405" class="html-bibr">26</a>]. The fluorescence properties of QDs can be adjusted by changing the size, morphology, composition, doping, and surface engineering. For these reasons, QDs have been applied successively to fluorescence sensors based on their excellent properties, such as good optical stability and easy surface modification and optical adjustment [<a href="#B27-chemosensors-11-00405" class="html-bibr">27</a>,<a href="#B28-chemosensors-11-00405" class="html-bibr">28</a>,<a href="#B29-chemosensors-11-00405" class="html-bibr">29</a>,<a href="#B30-chemosensors-11-00405" class="html-bibr">30</a>,<a href="#B31-chemosensors-11-00405" class="html-bibr">31</a>,<a href="#B32-chemosensors-11-00405" class="html-bibr">32</a>]. Other optical properties of QDs that are not reflected in conventional organic fluorophores include wide absorption spectra, narrow and symmetrical emission bands, large stoke shifts, and high optical stability, which also present powerful attractiveness in fluorescence sensing applications [<a href="#B27-chemosensors-11-00405" class="html-bibr">27</a>,<a href="#B28-chemosensors-11-00405" class="html-bibr">28</a>]. In addition, QDs present 20 times brighter than conventional organic fluorophores due to their higher quantum yield and molar absorption coefficient. QDs are thousands of times more stable against photobleaching than traditional organic dyes. Moreover, QDs can be surface functionalized easily by conjugation electrostatically and covalently, either directly or via a bridge. </div><div class='html-p'>In recent years, the surface modification and functionalization of QDs have attracted extensive attention by improving the stability, biocompatibility, sensitivity, and selectivity of QDs-based sensors in complex practical detection conditions. The fluorescence efficiency of QDs is sensitive to the presence of adsorbent on the surfaces of QDs due to the large number of energy states present in QDs. Compared with pure QDs, QDs functionalized by organic or inorganic ligands would provide significantly better fluorescence performance in terms of fluorescence intensity properties, chemical stability, and stability against photobleaching. QD-based sensors for heavy metal ions and pesticide residues in aqueous solution were prepared by modifying the surfaces of QDs with suitable ligand molecules, such as cysteine, glutathione, mercaptoacetic acid, L-aspartic acid, and thioglycolic acids [<a href="#B19-chemosensors-11-00405" class="html-bibr">19</a>,<a href="#B28-chemosensors-11-00405" class="html-bibr">28</a>,<a href="#B31-chemosensors-11-00405" class="html-bibr">31</a>]. In addition, inorganic materials contribute to the surface passivation of QDs resulting from the formation of the core-shell structures of QDs [<a href="#B19-chemosensors-11-00405" class="html-bibr">19</a>].</div><div class='html-p'>Recently, optical sensors have revealed their significant potential and application in the determination of heavy metal ions [<a href="#B33-chemosensors-11-00405" class="html-bibr">33</a>,<a href="#B34-chemosensors-11-00405" class="html-bibr">34</a>,<a href="#B35-chemosensors-11-00405" class="html-bibr">35</a>] and pesticide residues [<a href="#B36-chemosensors-11-00405" class="html-bibr">36</a>,<a href="#B37-chemosensors-11-00405" class="html-bibr">37</a>,<a href="#B38-chemosensors-11-00405" class="html-bibr">38</a>,<a href="#B39-chemosensors-11-00405" class="html-bibr">39</a>,<a href="#B40-chemosensors-11-00405" class="html-bibr">40</a>,<a href="#B41-chemosensors-11-00405" class="html-bibr">41</a>]. Based on the advantages of QDs and their potential application in developing fluorescence sensors and performing rapid in-situ detection, there is a need to advance the study status and discuss further research trends regarding QDs as fluorescence sensors. Thus, in this review, a detailed introduction is presented to the recent advances in QD-based fluorescence sensors, such as SCQDs, CQDs, GQDs, and their nanocomposites with various inorganic and organic materials, for the determination of multitudinous heavy metal ions and pesticide residues. Furthermore, the current problems and challenges in the application of QD-based fluorescence sensors are discussed.</div></section><section id='sec2-chemosensors-11-00405' type=''><h2 data-nested='1'> 2. QD-Based Fluorescence Sensors</h2><div class='html-p'>Generally, the fluorescence of QDs is attributed to the recombination of excitons (electrons and holes). Changing the surface state or ligand composition of QDs will affect the recombination efficiency of excitons and thus influence the fluorescent efficiency. Currently, various QD-based fluorescent sensors have been studied based on the direct or indirect interaction between QDs and target analytes. The quantitative analysis of target analytes is achieved through the linear correlation between the concentration of the analyte and the fluorescence intensity changes of the QDs. Therefore, functionalized QDs could be obtained by changing the surface ligands of QDs, and then QD-based fluorescence sensors could be developed by utilizing the fluorescence changes resulting from direct physical adsorption or chelation between target analytes and small molecules or functional groups on the surfaces of QDs.</div><div class='html-p'>In 1987, Spanhel et al. [<a href="#B42-chemosensors-11-00405" class="html-bibr">42</a>] first proposed that Cd<sup>2+</sup> could improve the photoluminescence efficiency by up to 50% in alkaline water solution. This effect could be ascribed to the formation of the Cd(OH)<sub>2</sub> shell on the CdS core. Furthermore, the Cd(OH)<sub>2</sub> shell would effectively weaken the non-radiative recombination of carriers. In 2002, Chen and Rosenzweig [<a href="#B43-chemosensors-11-00405" class="html-bibr">43</a>] synthesized CdS QDs coated with mercaptoglycerol and used as fluorescent probe for the detection of Cu<sup>2+</sup> in aqueous solution, and the potential of fluorescence sensors based on QDs was determined. QDs have been widely used in new fluorescent probes for metal ions over the last decade. Usually, different compounds and special functional groups are introduced on the surfaces of QDs to form specific selective fluorescent probes for detecting different metal ions. CdS QDs, CdSe QDs, and CdTe QDs are often used for detecting metal ions, such as Hg<sup>2+</sup> and Cu<sup>2+</sup>. Zhao’s group [<a href="#B44-chemosensors-11-00405" class="html-bibr">44</a>] synthesized CdTe QDs and CdTe QDs modified by bovine serum albumin (BSA). The fluorescence experiments showed that the fluorescence of QDs was significantly enhanced due to linking of BSA on the surfaces of QDs. When Hg<sup>2+</sup> reacts with BSA-coated CdTe QDs, the fluorescence intensity of QDs can be effectively quenched. BSA-coated CdTe QD probes for Hg<sup>2+</sup> showed a linear detection range from 0.001 to 1 μM. Uppa et al. [<a href="#B45-chemosensors-11-00405" class="html-bibr">45</a>] also prepared Hg<sup>2+</sup> fluorescent probes relying on cysteamine capped CdS QDs modulated Ag<sup>+</sup>, and this probe shown excellent detection sensitivity. Han and coworkers [<a href="#B46-chemosensors-11-00405" class="html-bibr">46</a>] synthesized BSA functionalized CdS QDs by a stepwise procedure, and they were used as fluorescence sensors for the determination of Cu<sup>2+</sup>. This sensor exhibited good interference and linear responses in the range of 0–80 µM. Moreover, carbon-based QDs as fluorescence sensors are increasingly becoming the focus of attention due to their simple synthesis technology, high photostability, low cytotoxicity, and better biocompatibility [<a href="#B47-chemosensors-11-00405" class="html-bibr">47</a>,<a href="#B48-chemosensors-11-00405" class="html-bibr">48</a>,<a href="#B49-chemosensors-11-00405" class="html-bibr">49</a>]. </div></section><section id='sec3-chemosensors-11-00405' type=''><h2 data-nested='1'> 3. Mechanisms of Fluorescence Sensors</h2><div class='html-p'>As previously reported, various QD-based fluorescence sensors have achieved the identification and quantification of target analytes. Overall, the change in the fluorescence intensity of QDs is attributed to the alteration of energy transfer pathways. For different types of QDs, several mechanisms have been proposed. </div><div class='html-p'>Fluorescence quenching or enhancement is the change in the fluorescence quantum yield in QDs, which is caused by the interaction between QDs and intended analytes according to fluorescence resonance energy transfer (FRET), photoinduced electron transfer (PET), internal filtration effects (IFEs), aggregate effects (AEs), static quenching effects (SQEs), and dynamic quenching effects (DQEs) [<a href="#B50-chemosensors-11-00405" class="html-bibr">50</a>,<a href="#B51-chemosensors-11-00405" class="html-bibr">51</a>]. FRET, PET, and IFEs are the three main mechanisms that might be included in dynamic quenching. The quenching process requires sufficient contact between QDs and analytes. Diffusive encounters and collision contact can be attributed to the dynamic quenching process, while new complex forms without changes in fluorescence lifetime will be assigned to the static quenching process [<a href="#B52-chemosensors-11-00405" class="html-bibr">52</a>]. However, dynamic quenching (i.e., FRET, PET) can cause changes in the fluorescence lifetime of fluorescence QDs after adding analytes, while these changes cannot be observed in IFEs and SQEs [<a href="#B53-chemosensors-11-00405" class="html-bibr">53</a>]. In addition, the fluorescence enhancement of QDs caused by the interaction of QDs and analytes can be attributed to surface plasmon enhanced fluorescence (SPEF), which is also referred to as metal surface enhanced fluorescence (MEF) and chelate enhanced fluorescence (CHEF). MEF is defined as the fluorescence being enhanced when the distances between fluorophores and metal are within the range of 5 to 90 nm [<a href="#B54-chemosensors-11-00405" class="html-bibr">54</a>], while CHEF can be due to coordination of the surface functional groups with analytes [<a href="#B15-chemosensors-11-00405" class="html-bibr">15</a>]. </div><section id='sec3dot1-chemosensors-11-00405' type=''><h4 class='html-italic' data-nested='2'> 3.1. Fluorescence Resonance Energy Transfer (FRET)</h4><div class='html-p'>Fluorescence resonance energy transfer (FRET) is based upon non-radiative energy transfer between proximal molecules. Generally, the FRET system consists of two fluorophores, which are defined as donor and acceptor molecules. The donor molecule (fluorescence QDs) absorbs a photon of a certain frequency and is excited to a higher electron energy state, and before the electron returns to the ground state, the energy transfer is realized to the neighboring receptor molecule through dipole interaction so that the donor fluorescence intensity is reduced, and the receptor can emit stronger fluorescence than its characteristic fluorescence (fluorescence sensitization) or no fluorescence (fluorescence quenching). This process is also accompanied by a corresponding reduction or extension of the fluorescence lifetime.</div><div class='html-p'>Recently, FRET-based sensors have been widely used in the field of detecting and quantizing analytes of interest, such as heavy metal ions and pesticides. Various fluorescence sensors based on the FRET theory have been designed and constructed, and the mechanism can be classified into the following categories. </div><dl class='html-roman-lower'><dt id=''>(i)</dt><dd><div class='html-p'>Original FRET process destruction</div></dd></dl><div class='html-p'>In a FRET-based sensor, the donor and acceptor molecules are typically fluorescent nanomaterials that are engineered to be in close proximity to each other. In this system, QDs act as donors, the modified molecules or doped ions serve as accepters, and the analyte acts as a quencher. Upon incorporation of analyte, the FRET between the donor and acceptor could be destroyed due to the quenching of the QDs. Wang et al. [<a href="#B55-chemosensors-11-00405" class="html-bibr">55</a>] constructed a FRET system between cysteamine capped CdS QDs (Mea-CdS QDs) and fluorescein and applied it as a sensor for the content determination of Cu<sup>2+</sup>. The presence of Cu<sup>2+</sup> could destroy the FRET process between Mea-CdS QDs and fluorescein, resulting in quenching of the Mea-CdS QDs’ fluorescence. The linear response range was 4–14 μM with an LOD of 0.17 μM. </div><dl class='html-roman-lower'><dt id=''>(ii)</dt><dd><div class='html-p'>New FRET system formation</div></dd></dl><div class='html-p'>Due to the specific interactions between metal ions and functional groups or ligands, donors and acceptors can be connected together through additional analytes, forming a FRET system. Huang et al. [<a href="#B56-chemosensors-11-00405" class="html-bibr">56</a>] reported a strategy for Hg<sup>2+</sup> detection using Mn-doped CdS/ZnS Core/Shell QDs (donor) and gold nanoparticles (Au NPs, acceptor) via DNA hybridization, which was generated when Hg<sup>2+</sup> ions were present in aqueous solution. This sensor exhibited a linear range from 1 nM to 10 nM with a LOD of 0.49 nM. Wang and colleagues [<a href="#B57-chemosensors-11-00405" class="html-bibr">57</a>] reported a FRET system for Hg<sup>2+</sup> detection using two-color CdTe quantum dots assisted by cetyltrimethylammonium bromide. Li et al. [<a href="#B58-chemosensors-11-00405" class="html-bibr">58</a>] used CdS QDs and Au NPs to structure a FRET method to detect thrombin.</div><dl class='html-roman-lower'><dt id=''>(iii)</dt><dd><div class='html-p'>Analyte-based FRET system activation</div></dd></dl><div class='html-p'>This theory supposes the existence of potential FRET in the original system. After incorporation with analytes, FRET emerges between the QDs and the acceptor due to the acceptor being activated. Zhang’s group [<a href="#B59-chemosensors-11-00405" class="html-bibr">59</a>] fabricated, based on rhodamine derivative and Zn coped CdTe QDs (CdTe:Zn QDs), a fluorescent sensor for the detection of Hg<sup>2+</sup>. CdTe:Zn QDs/silica cores acted as donors, which were formed via reverse microemulsion method, and rhodamine derivative acted as the probe for Hg<sup>2+</sup>. The integration between Hg<sup>2+</sup> and rhodamine derivative resulted in the formation of fluorescence of FRET that could be attributed to the activated reaction of the rhodamine moieties. In the case of the presence of Hg<sup>2+</sup>, CdTe:Zn QDs would not be quenched because of the existence of the aminos but rather transfer their excited energy to the complex of the probe/Hg<sup>2+</sup> (acceptor). With the increasing of Hg<sup>2+</sup> concentration, the emission peak at 521 nm gradually decreased, and the rhodamine B derivative emission peaked at 577 nm. Therefore, FRET-based sensing for Hg<sup>2+</sup> was achieved, and the detection limit reached 0.5 µM. Wu and colleagues [<a href="#B60-chemosensors-11-00405" class="html-bibr">60</a>], grounded in the same strategy, constructed CdSe/ZnS QD-based ratiometric fluorescent sensors for Hg<sup>2+</sup>. </div></section><section id='sec3dot2-chemosensors-11-00405' type=''><h4 class='html-italic' data-nested='2'> 3.2. Photo-Induced Electron Transfer (PET)</h4><div class='html-p'>The photo-induced electron transfer mechanism refers to the charge transfer between donor and acceptor molecules. There is a great tendency for heavy metal ions to form complexes with N, O, S-containing ligands, or groups. This property promotes the formation of electron-rich fluorophores based on donor–receptor interactions. Intramolecular charge transfer and charge separation occur in PET, and PET can be divided into reducing PET and oxidizing PET. In reducing PET, electrons are accepted from the electron donor, while in oxidizing PET, electrons are donated to the electron acceptor. Quenching efficiency and electron transfer present a positive correlation relationship. PET has the ability of fluorescence “turn-on” and “turn-off” for the determination of pesticide residues and heavy metal ions. </div></section><section id='sec3dot3-chemosensors-11-00405' type=''><h4 class='html-italic' data-nested='2'> 3.3. Internal Filtration Effects (IFEs)</h4><div class='html-p'>IFEs are caused by a large concentration of quencher in the detection system; part of the excitation or emission light is absorbed by the quencher, which leads to the weakened excited light being accepted by the QDs, resulting in fluorescence quenching. Compared with other quenches, IFEs do not constitute a typical fluorescence quenching process, only involving the absorption of excitation or emission of light by the quencher. There is no energy or charge transfer between the quencher and QDs, so the fluorescence lifetime of the QDs remains unchanged after the addition of quencher. At the same time, no new absorption peaks are generated in the absorption spectrum because no new substances are formed.</div></section><section id='sec3dot4-chemosensors-11-00405' type=''><h4 class='html-italic' data-nested='2'> 3.4. Aggregation Effects (AEs)</h4><div class='html-p'>The strong interaction between adsorbed molecules and the surface molecules of quantum dots usually leads to aggregation effects. The addition of quencher reduces the stability of fluorescent materials and leads to aggregation, resulting in the formation of large particles. Photo-induced electrons are captured by surface defects, forming non-radiative recombination, and agglomeration leads to the increase in the particle size of fluorescent materials and the weakening of quantum effects, resulting in fluorescence quenching, which can be called aggregation-caused quenching (ACQ).</div></section></section><section id='sec4-chemosensors-11-00405' type=''><h2 data-nested='1'> 4. QDs as Fluorescence Sensors</h2><div class='html-p'>Due to their excellent optical properties and unique mechanism, QDs-based fluorescence sensors have achieved rapid development with high sensitivity, high selectivity, high photostability and low LOD. In addition, the sensitivity and selectivity of QD-based fluorescence sensors have been greatly improved on the basis of functionalization or integration with small molecular, nanomaterials and biomaterials. However, these sensors have limitations, such as toxicity, specificity, multiplex detection, and portability. In this section, we summarize the progress in the research on and application of QDs in the detection of metal ions and pesticide residues, and we discuss various sensing strategies.</div><section id='sec4dot1-chemosensors-11-00405' type=''><h4 class='html-italic' data-nested='2'> 4.1. QDs for Detection of Heavy Metal Ions </h4><div class='html-p'>The easy surface functionalization of QDs allows for making them hydrophilic and increasing their biocompatibility. Currently, QDs as fluorescence sensors have been widely used in the detection of different heavy metal ions, including copper, mercury, iron, cobalt, lead, and chromium ions.</div><section id='sec4dot1dot1-chemosensors-11-00405' type=''><h4 class='' data-nested='3'> 4.1.1. Copper(II) Ions </h4><div class='html-p'>Copper, one of the essential elements for animals and humans, is found in many proteins and enzymes, and it also has a wide range of applications in industry and medicine. However, excessive Cu<sup>2+</sup> can cause kidney damage, liver necrosis, brain tissue lesions, and DNA damage and even induce cell death, so it is important to analyze copper ion concentrations sensitively. In this section, the research work of our group based on SCQD sensors is introduced, and we discuss the current studies on non-metal-based QDs. </div><div class='html-p'>Regarding QD-based fluorescence sensor, our group previously used <span class='html-italic'>N</span>-acetyl-L-cysteines acid modified CdS QDs (NALC-CdS QDs) for selective and sensitive detection of Cu<sup>2+</sup> in the aqueous system with a limit of detection (LOD) of 0.48 µM and an excellent linear range from 0 to 25 µM (<a href="#chemosensors-11-00405-f001" class="html-fig">Figure 1</a>a–c) [<a href="#B61-chemosensors-11-00405" class="html-bibr">61</a>]. The fluorescence of NALC-CdS QDs is effectively quenched by the introduction of Cu<sup>2+</sup> due to PET and aggregate effects. Moreover, testing of real water samples confirms its availability and potential in practical application. CdS QDs (CA-CdS QDs) capped with citric acid, a specific Cu<sup>2+</sup> chelator, as fluorescence sensors for Cu<sup>2+</sup> were reported, and a LOD of 9.2 nM was achieved [<a href="#B62-chemosensors-11-00405" class="html-bibr">62</a>]. The fluorescence quenching condition is most often attributed to the adsorbed.</div><div class='html-p'>Cu<sup>2+</sup> appears on the surface and is reduced to Cu<sup>+</sup> by the S<sup>2−</sup> vacancies of QDs, resulting in the formation of non-radiative surface channels, which could be described using the following approach: CdS + Cu<sup>2+</sup> → CdS<sup>+</sup> + Cu<sup>+</sup>. In this study, a linear relationship was obtained within the range of 0.01–50 µM with a LOD of 9.2 nM. The selectivity of the sensor has been evaluated in the presence of various common metal ions. In addition, the sensor has been used for the detection of Cu<sup>2+</sup> in tap water, suggesting that the proposed sensor has potential application for environmental monitoring.</div><div class='html-p'>ZnO QDs functionalized with (3-aminopropyl) triethoxysilane (APTEs) (NH<sub>2</sub>-ZnO QDs) were synthesized via the simple sol-gel method [<a href="#B63-chemosensors-11-00405" class="html-bibr">63</a>]. The photoluminescence of NH<sub>2</sub>-ZnO QDs was selectively quenched by addition of Cu<sup>2+</sup> (<a href="#chemosensors-11-00405-f001" class="html-fig">Figure 1</a>d), and two linear relationships were obtained in the ranges of 2–20 nM and 1–100 µM (<a href="#chemosensors-11-00405-f001" class="html-fig">Figure 1</a>e,f). Moreover, this sensor can provide a low LOD of 1.72 nM. The detection mechanism is shown in <a href="#chemosensors-11-00405-f001" class="html-fig">Figure 1</a>g. In addition, our group also studied fluorescence sensors based on ZnO nanoparticles and realized the quantitative detection of Cu<sup>2+</sup> with a detection range of 10–1000 µM [<a href="#B64-chemosensors-11-00405" class="html-bibr">64</a>]. Interestingly, this sensor can provide a paper sensor, which was constructed for visual observation of Cu<sup>2+</sup> by the naked eye. It appears that the sensing system might provide a fast and convenient platform for other analytes by applying visualization modules.</div><div class='html-p'>Non-metal-based QDs, such as CQDs, GQDs, and their nanocomposites, have also been researched as fluorescence sensors for the detection of various heavy metal ions in recent years. Liu et al. [<a href="#B65-chemosensors-11-00405" class="html-bibr">65</a>] developed quenching-based detection of Cu<sup>2+</sup> using a carbon dot-based sensor. The study provided a new method for improving the sensitivity of fluorescence methods based on reducing surface defects and enhancing fluorescence intensity, and they proposed that the fluorescence quenching of CDs-BSA could be attributed to the multi-site coordination of Cu<sup>2+</sup> with the -COOH and -NH<sub>2</sub> on the surface of CDs-BSA. Dong et al. [<a href="#B66-chemosensors-11-00405" class="html-bibr">66</a>] investigated polyamine-functionalized CQDs (BPEI-CQDs) as sensitive Cu<sup>2+</sup> fluorescent probes. They found that Cu<sup>2+</sup> can be combined onto the surfaces of CQDs through amino groups and form cupric amine, leading to fluorescence quenching of the CQDs resulting from the IFEs, and the prepared sensor presented a linear response range of 10–1100 nM with an LOD of 6 nM (<a href="#chemosensors-11-00405-f002" class="html-fig">Figure 2</a>). In this study, the proposed sensor’s accessibility was evaluated in a Min River water sample and provided a result agreeing with that obtained by the ICPMS method. As a result, the study-proposed sensors have promising applications in the detection of contaminants in environmental water samples. Wang et al. [<a href="#B67-chemosensors-11-00405" class="html-bibr">67</a>] designed CQDs@Cu-IIP as a fluorescence sensor for Cu<sup>2+</sup> by combining fluorescence analysis technology with ion imprinting technology. In this sensing system, CQDs were grafted onto the surface of an SBA-15-NH<sub>2</sub> via an amide reaction. Copper ion imprinted polymer (Cu(II)-IIP) was prepared by surface imprinting technique with SBA-15-NH<sub>2</sub> as the substrate, copper ions as a template, 3-aminopropyl-3-ethoxysilane as a functional monomer, tetraethoxysilane as a crosslinker, ammonia water as an initiator, and water as a solvent throughout the process. In the study, the selectivity of a CQD-based sensor for Cu<sup>2+</sup> was greatly improved due to ion imprinting polymers (IIPs) with specific recognition sites for target ions. Furthermore, the sensor has been applied to tap water and river water with recovery rates of 99.29–105.42%.</div><div class='html-p'>Recently, carbon-based materials have revealed many advantages in the design of fluorescence sensors. Tan’s group [<a href="#B68-chemosensors-11-00405" class="html-bibr">68</a>] designed a fluorescence “on–off–on” assay of Cu<sup>2+</sup> and EDTA based on the structure of af-GQDs-PNA. In this study, the selectivity for Cu<sup>2+</sup> is due to the specific reaction of Cu<sup>2+</sup> with the introduced 1-(2-pyridylazo)-2-naphthol (PAN), rather than from direct interaction with GQDs. Specifically, the fluorescence of af-GQDs can be effectively quenched by PAN based on the FRET between af-GQDs and PAN, and the complex formation of Cu<sup>2+</sup>-PAN could improve the FRET efficiency, while EDTA would weaken the FRET effect and cause the fluorescence recovery of GQDs owing to its strong chelating ability. This proposed sensor exhibited a linear response for Cu<sup>2+</sup> within a concentration range from 0.01–10 μM with an LOD of 0.87 nM, in addition to the selectivity of this sensor for detecting Cu<sup>2+</sup> in the presence of various metal ions, such as Mn<sup>2+</sup>, Ni<sup>2+</sup>, Fe<sup>2+</sup>, Cd<sup>2+</sup>, Pb<sup>2+</sup>, Bi<sup>3+</sup>, Zn<sup>2+</sup>, Cr<sup>3+</sup>, and Fe<sup>3+</sup>. Finally, the proposed fluorescence “on–off–on” sensor was successfully used for the detection of Cu<sup>2+</sup> in water and human serum. As a result, this sensor will provide a feasible strategy for design of sensors with high selectivity for and interference with different analytes. The previously reported QD-based sensors for the detection of Cu<sup>2+</sup> are summarized in <a href="#chemosensors-11-00405-t001" class="html-table">Table 1</a>.</div></section><section id='sec4dot1dot2-chemosensors-11-00405' type=''><h4 class='' data-nested='3'> 4.1.2. Mercury Ions</h4><div class='html-p'>The detection of mercury ions is necessary because they are currently the most toxic heavy metal ions and can accumulate in the body and cause irreversible health damage. Moreover, they can exert harmful effects on all living organisms even at low concentrations. Therefore, it is of inestimable significance to establish a rapid and accurate qualitative and quantitative method to detect mercury ions for human life activities. Currently, many sensors based on functionalized QDs for detection of Hg<sup>2+</sup> have been reported. Generally, for the types of metal chalcogenide QDs, including CdS, ZnS, CdSe, ZnSe, and CdTe, a precipitate of HgX (X = S, Se, Te) occurs when Hg<sup>2+</sup> is added due to the lower solubility product (<span class='html-italic'>K</span><sub>sp</sub>) values with corresponding thioides, which can replace the cations of QDs by cation exchange. As a consequence, the formation of precipitation will lead to the generation of surface defects, in turn resulting in non-radiative recombination and leading to the fluorescence of QDs being quenched. While based on functionalized GQDs or CQDs, the detection mechanisms usually depend on Hg<sup>2+</sup> quenching fluorescence due to the electron transfer occurring between the QDs and Hg<sup>2+</sup> based on the interactions with surface groups, either dynamic or static. Generally, the detection of Hg<sup>2+</sup> is realized according to the linear or nonlinear relationship between the observed attenuation of fluorescence intensity of quantum dots and the concentration of Hg<sup>2+</sup>.</div><div class='html-p'>Choudhary and Nageswaran [<a href="#B85-chemosensors-11-00405" class="html-bibr">85</a>] proposed mercapto acid (3-MIBA) coated CdTe QDs as sensor for the selective detection of Hg<sup>2+</sup>. There are two reasons for the fluorescence quenching of the QDs by Hg<sup>2+</sup>, including the strong affinity of Hg<sup>2+</sup> to S<sup>2-</sup> leading to the deactivation of the capping agents, resulting in the aggregation of the quantum dots, and the excitonic electron transfer from the LUMO of QDs to LUMO of Hg<sup>2+</sup>, preventing the emission. This sensor is based on a linear relationship between the fluorescence intensity and the concentration of Hg<sup>2+</sup> in the range of 1.5–100 nM with an LOD of 1.5 ± 0.5 nM. Based on the same mechanisms, Singhal’s group [<a href="#B86-chemosensors-11-00405" class="html-bibr">86</a>] developed CdS QDs functionalized by glutathione (GSH@CdS QDs) as fluorescence probes for sensing of Hg<sup>2+</sup>. This probe could attain trace determination of Hg<sup>2+</sup> with a low LOD of 0.54 nM in two successive linear ranges of 0–1000 nM and 1–20 µM. The authors found that the interaction between Hg<sup>2+</sup> and the surfaces of QDs varies with different concentrations of Hg<sup>2+</sup>. At the lower concentration of Hg<sup>2+</sup>, the fluorescence quenching may be due to the interaction between Hg<sup>2+</sup> ions and the thiol group of the GSH capping layer, causing the dissociation of the GSH capping layer from the surfaces of QDs and resulting in the aggregation of CdS QDs, while at higher concentrations of Hg<sup>2+</sup>, the quenching would be interpreted as the binding between Hg<sup>2+</sup> and S<sup>2-</sup> and formatting the HgS on the surfaces of CdS QDs, which can induce effective non-radiative electron transfer. You and coworkers [<a href="#B87-chemosensors-11-00405" class="html-bibr">87</a>] synthesized polyethyleneimine passivated Ag<sub>2</sub>S QDs (PEI-Ag<sub>2</sub>S QDs) that were utilized for fluorescence detection of Hg<sup>2+</sup> with a low LOD of 0.5 nM based on the metal-induced aggregation strategy. The interference of the sensor has been examined in the presence of common metal ions and anions, suggesting that other interfering ions were unaffected by the fluorescence of the proposed sensor. Finally, the sensor has been used for the detection of Hg<sup>2+</sup> in tap, river, and lake water. Recently, a similar investigation was proposed by Granados-Oliveros et al. [<a href="#B88-chemosensors-11-00405" class="html-bibr">88</a>]. They obtained two structures of fluorescent probes for Hg<sup>2+</sup> based on functionalized CdSe/ZnS QDs by oleic acid (OA) and L-glutathione. The designed fluorescent probes demonstrated excellent selectivity to Hg<sup>2+</sup> due to the lower <span class='html-italic'>K</span><sub>sp</sub> of HgSe and HgS compared to the other metal ions, and they established good linearity with the LODs of 74.8 nM and 54.8 nM for CdSe/ZnS/OA and CdSe/ZnS/GSH, respectively. </div><div class='html-p'>In recent years, CDs, CQDs, and GQDs has been widely reported for the detection of Hg<sup>2+</sup> owing to their simple preparation, high selectivity and sensitivity, and affordability. Our groups investigated fluorescent probes, especially GQD-based materials, as sensors for Hg<sup>2+</sup>. N-doped GQDs (N-GQDs) [<a href="#B89-chemosensors-11-00405" class="html-bibr">89</a>], N, S-GQDs [<a href="#B90-chemosensors-11-00405" class="html-bibr">90</a>] (<a href="#chemosensors-11-00405-f003" class="html-fig">Figure 3</a>), and rhodamine B assisted GQDs (RhB-GQDs) [<a href="#B91-chemosensors-11-00405" class="html-bibr">91</a>] were successfully synthesized by a simply hydrothermal approach, and they emerged as highly sensitive and selective in response to Hg<sup>2+</sup>. The fluorescence quenching of the N-GQDs occurred upon the incorporation of Hg<sup>2+</sup> owing to efficient non-radiative electron transfer from N-GQDs to the excited state of Hg<sup>2+</sup> and the coordination effect of N-GQDs with Hg<sup>2+</sup>. From this observation, a two-stage linear relationship between the fluorescence intensity of N-GQDs and the concentration of Hg<sup>2+</sup> was discussed in the range of 1–1000 nM. The LODs were obtained as 0.45 nM and 67.3 nM The selectivity of the sensor has been assessed in the presence of various cations, suggesting that the existence of interfering cations does not affect the detection of Hg<sup>2+</sup>.These results clarified that the proposed sensor has high selectivity for Hg<sup>2+</sup> detection in complex mixtures.</div><div class='html-p'>Subsequently, the N, S-GQDs were also studied as a fluorescent probe for Hg<sup>2+</sup>. In this study, a good linear response was achieved according to the fluorescence “turn off” system in the range of 1–30 nM with a low LOD of 0.27 nM. Furthermore, the fluorescence quenching mechanisms were explored by density functional theory (DFT) simulation (<a href="#chemosensors-11-00405-f003" class="html-fig">Figure 3</a>a,b). The present of an S atom breaks the electrical neutrality of the C atom, which benefits the generation of charge favorable sites for the interaction of Hg<sup>2+</sup> and N, S-GQDs. Thereafter, as indicated in <a href="#chemosensors-11-00405-f003" class="html-fig">Figure 3</a>c, the fluorescence quenching for Hg<sup>2+</sup> is mainly attributed to the dynamic quenching effects (DQEs), which can be ascribed to the adsorption of Hg<sup>2+</sup> altering the charge distribution of N, S-GQDs resulting from the interaction of N, S-GQDs and Hg<sup>2+</sup>. However, there is interference from Fe<sup>3+</sup>. Next, RhB-GQDs were investigated for improving the selectivity of Hg<sup>2+</sup>. In this study, rhodamine B could not only act as a nitrogen source during the formation of RhB-GQDs but also form a protective layer on RhB-GQDs through surface adsorption. The excellent selectivity for Hg<sup>2+</sup> is mainly attributed to the establishment of a rhodamine B protective shell on the surfaces of GQDs, further reducing the interference of other metal ions with weak affinity for the N and O functional groups. The strong affinity between Hg<sup>2+</sup> and the -COOH groups of RhB-GQDs promote the transfer of non-radiating electrons and energy, resulting in dynamic fluorescence quenching. The designed sensor displayed a good linear relationship within the ranges of 0–10 nM and 50–1000 nM with the outstanding LODs of 0.16 nM and 0.48 nM, respectively. Moreover, this sensor was applied to the analysis of drinking water. </div><div class='html-p'><a href="#chemosensors-11-00405-t002" class="html-table">Table 2</a> summarizes various QD-based fluorescence sensors for Hg<sup>2+</sup> detection in recent years. Of these studies, the majority focused on the detection of Hg<sup>2+</sup> in water. Only a few have been used in the analysis of cells, food, or beverages.</div></section><section id='sec4dot1dot3-chemosensors-11-00405' type=''><h4 class='' data-nested='3'> 4.1.3. Iron(III) Ions</h4><div class='html-p'>Iron, an indispensable trace element, plays a vital role in basic biological processes, including the synthesis of hemoglobin, myoglobin, and DNA; oxygen transport; and cellular metabolism in living bodies, which is especially important for women [<a href="#B99-chemosensors-11-00405" class="html-bibr">99</a>,<a href="#B100-chemosensors-11-00405" class="html-bibr">100</a>,<a href="#B101-chemosensors-11-00405" class="html-bibr">101</a>]. The insufficiency or excess consumption of Fe<sup>3+</sup> can cause a variety of diseases, such as anemia, hemochromatosis, diabetes, liver damage, arthritis, diabetes, heart failure, Parkinson, and ever cancer. Therefore, a variety of QD-based sensors have been reported for the sensitive detection of Fe<sup>3+</sup>.</div><div class='html-p'>Moreover, Zhou and coworkers [<a href="#B102-chemosensors-11-00405" class="html-bibr">102</a>] developed a ratiometric fluorescence detection method for Fe<sup>3+</sup> based on CdTe QDs capped by thioglycolic acid (TGA) and <span class='html-italic'>N</span>-acetyl-L-cysteine (NAC). The synthesized red emissive NAC capped QDs showed excellent selective quenching response for Fe<sup>3+</sup>, while the green emissive TGA capped QDs exhibited stable fluorescence emission toward all the tested metal ions. The quenching of NAC-CdS QDs might be attributable to ligand desorption, leading to the particle growth and agglomeration of QDs. The two types of CdTe QDs were incorporated into hydrogel optical fibers and achieved the ratiometric detection of Fe<sup>3+</sup> based on the ratio of the fluorescence intensities at the two emission wavelengths of 520 nm and 628 nm. Additionally, the fluorescence probe achieved quantitative detection for Fe<sup>3+</sup> within the limit of 0–3.5 μM with an LOD of 14 nM. According to similar principles, Kuang et al. [<a href="#B103-chemosensors-11-00405" class="html-bibr">103</a>] synthesized SiO<sub>2</sub>-embedded CdTe QDs (CdTe@SiO<sub>2</sub> QDs) functionalized with rhodamine derivative to design the ratiometric fluorescence sensor for Fe<sup>3+</sup> detection and achieved visual detection of Fe<sup>3+</sup>. Moreover, Srivastava’s group [<a href="#B104-chemosensors-11-00405" class="html-bibr">104</a>] fabricated functionalized SnS<sub>2</sub> QDs and applied them in the detection for Fe<sup>3+</sup>. They found fluorescence quenching caused by both static and dynamic quenching effects (<a href="#chemosensors-11-00405-f004" class="html-fig">Figure 4</a>). The static quenching process results from the formation of a non-fluorescent ground state complex (such as iron hydroxide), while the dynamic process is due to coordination between electron-rich NH<sub>2</sub>- and electron-deficient Fe<sup>3+</sup>.</div><div class='html-p'>However, the majority of GQDs that detect Fe<sup>3+</sup> depend on high affinity for nitrogen and O-containing surface groups for quenching the fluorescence of GQDs [<a href="#B90-chemosensors-11-00405" class="html-bibr">90</a>,<a href="#B105-chemosensors-11-00405" class="html-bibr">105</a>,<a href="#B106-chemosensors-11-00405" class="html-bibr">106</a>]. Currently, sensors based on GQD utilize precursors that are rich in O-containing functional groups to form nitrogen and oxygen groups on the surfaces of QDs. The surface groups can increase the number of functional groups on oxygen-containing surfaces and improve the selectivity for Fe<sup>3+</sup> by transferring electrons from excited state to metal ions and resulting in the formation of a ground state complex without fluorescence. Lou and coworkers [<a href="#B107-chemosensors-11-00405" class="html-bibr">107</a>] proposed poly(ethylene glycol) (PEG) passivated GQDs as fluorescence sensors for the detection of Fe<sup>3+</sup> based on fluorescence quenching. In this study, the selection of PEG-GQDs for Fe<sup>3+</sup> have been well improved owing to ethylenediaminetetraacetic acid (EDTA) being used as the masking agent. Compared with GQDs, the -OH on the surface of PEG-GQDs is propitious to forming metal hydroxides, which could contribute to better sensitivity for the detection of Fe<sup>3+</sup>. Similarly, Zhou et al. [<a href="#B108-chemosensors-11-00405" class="html-bibr">108</a>] developed N-doped GQDs (N-GQDs) via hydrothermal methods and used them as a probe for analysis of Fe<sup>3+</sup>. Herein, N-GQDs had higher fluorescence intensity and a smaller size than GQDs. The smaller size could provide more active sites, making them more prone to electronic transition. The presence of Fe<sup>3+</sup>, N-GQDs will bind to Fe<sup>3+</sup>, causing the formation of a non-fluorescent complex, which could suppress the radiative recombination of excited electron–hole pairs in N-GQDs and thus the fluorescence quenching of N-GQDs. The linear range was obtained from 0 to 100 µM with an LOD of 0.74 µM. Notably, the successful application of N-GQDs in in vitro bioimaging indicates the further practicability of N-GQDs. </div><div class='html-p'>Additionally, based on the same theory, Sun’s group [<a href="#B109-chemosensors-11-00405" class="html-bibr">109</a>] synthesized a CQD-based hydrogel (HG) nanocomposite material (CQDsHG) as a probe for the determination of Fe<sup>3+</sup>. The CQDsHG showed a sensitively response toward Fe<sup>3+</sup> within the linear detection range of 0 to 150 µM and achieved an LOD of 0.24 µM. In brief, the CQDs were prepared using a microwave-assisted hydrothermal method and then loaded into HG through the sol-gel method to obtain the functional CQDsHG. The proposed CQDsHG revealed high adsorption (31.94 mg/g) and a selective quenching response for Fe<sup>3+</sup>. The linear response range was established as 0–150 µM with an LOD of 0.24 µM. Furthermore, the application of CQDsHG was demonstrated in tap water and lake water. As a result, the CQDsHG provides a bifunctional platform for removing and qualitatively detecting Cu<sup>2+</sup>.</div><div class='html-p'>Huang and Tong [<a href="#B110-chemosensors-11-00405" class="html-bibr">110</a>] structured a B-CQDs/CdTe-Eu<sup>3+</sup> composite as a dual-emission ratiometric fluorescence sensor for tetracycline (TC) and Fe<sup>3+</sup>. Herein, green-emitting CdTe QDs were modified by Eu<sup>3+</sup>, and blue-emitting B-CQDs were synthesized using a typical hydrothermal method. The fluorescence of CdTe QDs was quenched by Eu<sup>3+</sup> due to aggregation, while the addition of TC could restore the fluorescence of CdTe QDs. On this basis, the study introduced the blue-emitting B-CQDs with specific responses toward Fe<sup>3+</sup> and fabricated B-CQDs/CdTe-Eu<sup>3+</sup> ratiometric fluorescence sensors for TC and Fe<sup>3+</sup>. In this study, CdTe-Eu<sup>3+</sup> only had a response to TC and not to Fe<sup>3+</sup>, while B-CQDs only had a response to Fe<sup>3+</sup> and not to TC. As a result, this proposed sensor provides a visual and semi-quantitative method for the detection of Fe<sup>3+</sup> and TC based on the different emissions. Furthermore, the influence of interfering ions, including various common cations, anions, and organic compounds, has been examined. In conclusion, the proposed sensor provides a highly sensitive platform for Fe<sup>3+</sup> sensing. Finally, the actual application of the platform for selective and capable analysis of Fe<sup>3+</sup> and TC has been demonstrated in river and lake waters.</div><div class='html-p'>For further enhancement of the sensitivity and selectivity of QD-based fluorescence sensors to Fe<sup>3+</sup>, a variety of sensing systems have been proposed in recent years. <a href="#chemosensors-11-00405-t003" class="html-table">Table 3</a> summarizes the QD-based nanomaterials as fluorescence sensors for Fe<sup>3+</sup> detection.</div></section><section id='sec4dot1dot4-chemosensors-11-00405' type=''><h4 class='' data-nested='3'> 4.1.4. Lead(II) Ions</h4><div class='html-p'>Lead, one of the most dangerous hazardous heavy metal elements, has high toxicity and non-degradability, and it can be absorbed by the human body via direct contact or the food chain [<a href="#B117-chemosensors-11-00405" class="html-bibr">117</a>,<a href="#B118-chemosensors-11-00405" class="html-bibr">118</a>]. In drinking water, the nontoxic allowable limit for Pb is 10 µg/L (48 nM), which is stipulated by the WHO [<a href="#B119-chemosensors-11-00405" class="html-bibr">119</a>]. Lead has been studied widely due to its substantial health hazards for humans and animals. Until now, various QD-based fluorescent sensors have been widely explored based on the specific coordination between Pb<sup>2+</sup> and the function groups or ligands on the surfaces of QDs. Generally, the interactions between QDs and Pb<sup>2+</sup> are mostly related to direct fluorescence quenching or an energy transfer processes (i.e., FRET, PET, etc.). </div><div class='html-p'>Wu et al. [<a href="#B120-chemosensors-11-00405" class="html-bibr">120</a>] prepared thiol-capped CdTe QDs for the detection of Pb<sup>2+</sup>. They concluded that the presence of Pb<sup>2+</sup> could change the surface state of CdTe QDs, resulting in fluorescence quenching. The sensor showed a linear range of 2–100 µM with a LOD of 270 nM. Finally, feasibility analysis is conducted, the proposed sensor was successfully applied to the analysis of Pb<sup>2+</sup> in food, and the results revealed that it holds enormous potential for applications in food safe monitoring. Li’s group [<a href="#B121-chemosensors-11-00405" class="html-bibr">121</a>] developed a fluorescence sensor for the detection of Pb<sup>2+</sup> according to the fluorescence quenching of TGA-CdTe QDs, and this sensor was successfully used for the determination of Pb<sup>2+</sup> in food. In this study, smaller-sized QDs exhibited a detection limit of 4.7 nM within the linear range of 1.96–15.9 nM, while larger QDs showed a higher LOD of 0.22 µM in the detection range of 4.98 nM to 0.285 µM. Recently, ZnSeS/Cu:ZnS/ZnS QDs capped by 3-mercaptopropionic acid (3-MPA) with a core/shell/shell structure were developed for the detection of Pb<sup>2+</sup> [<a href="#B122-chemosensors-11-00405" class="html-bibr">122</a>]. Fluorescence quenching could be caused by the collision interaction between QDs and Pb<sup>2+</sup>, resulting in the partial displacement of the 3-MPA ligand on the QD surface, which could change the QD surface properties and generate surface defects. In addition, the energy transduction between QDs and Pb<sup>2+</sup>-3-MPA complexes may also lead to fluorescence quenching. In this study, the sensor displayed a linear response between 0.04 and 6 µM with a low LOD of 21 nM. The selectivity of the sensor revealed strong interference ability in the presence of interfering elements, such as coexisting cations, various amino acids, and relevant molecules. Moreover, this sensor was used in the analysis of real samples and exhibited LODs of 21, 76, and 28 nM in ultrapure water, mineral water, and lake water, respectively.</div><div class='html-p'>Furthermore, fluorescence enhancement is a rare case in the detection of Pb<sup>2+</sup>. Cheng and coworkers [<a href="#B123-chemosensors-11-00405" class="html-bibr">123</a>] showed a fluorescence turn-on mechanism based on 3-MPA/GSH-Ag<sub>2</sub>S QDs for the detection of Pb<sup>2+</sup> due to the signal intensity of Ag<sub>2</sub>S QDs via aggregation-induced enhanced emission (AIEE). In this case system, the probe presented a linear response range from 0.05 to 20 µM and an LOD calculated to be 15.5 nM. Recently, several carbon-based materials (e. g., CDs, CQDs, GQDs, and their nanocomposites) have been explored for the development of Pb<sup>2+</sup> sensors based on changes in fluorescence. Highly fluorescent CDs based on the functionalization of 3-MPA were used as a fluorescent sensor for Pb<sup>2+</sup> relying on a “turn-on” model [<a href="#B124-chemosensors-11-00405" class="html-bibr">124</a>]. The sensor exhibited high sensitivity and selectivity based on fluorescence-enhancing attributes to the chelation action between Pb<sup>2+</sup> and -COOH groups present in 3-MPA, resulting in AIEE. The relationship between the fluorescence intensity of QDs and the concentration of Pb<sup>2+</sup> showed a linear relation, and an LOD of 0.051 nM was obtained by calculation. In this study, a turbidimetric method was developed for the detection of Pb<sup>2+</sup> with an LOD of 13.2 nM with the naked eye owing to the formation of milky white precipitates resulting from Pb<sup>2+</sup>-induced aggregation of QDs. </div><div class='html-p'>Babu et al. [<a href="#B125-chemosensors-11-00405" class="html-bibr">125</a>] synthesized CQDs from <span class='html-italic'>Delonix regia</span> that were also applied in the construction of Pb<sup>2+</sup> sensors. The developed sensors for Pb<sup>2+</sup> detection showed an LOD of 3.3 nM within the linear response range of 10–180 µM (<a href="#chemosensors-11-00405-f005" class="html-fig">Figure 5</a>a–c). The mechanisms of this sensor are shown in <a href="#chemosensors-11-00405-f005" class="html-fig">Figure 5</a>d. With this sensor, the fluorescence quenching of CQDs is largely due to FRET between the CQDs and Pb<sup>2+</sup>. Herein, Pb<sup>2+</sup> acts as a non-fluorescent acceptor, and CQDs act as a donor fluorophore. In addition, Pb<sup>2+</sup> is prone to be adsorbed on the surfaces of CQDs to form a non-fluorescent complex due to electrostatic interactions between CQDs and Pb<sup>2+</sup>. The formation of non-fluorescent complexes also leads to the fluorescence quenching of CQDs. Additionally, the sensor was studied for its applications in tap, river, and lake waters with recovery values of 99–101%. Likewise, the proposed sensor was also used in industrial effluents, yielding recovery rates of 98–100%. As a result, the proposed sensor exhibited great potential in environmental monitoring.</div><div class='html-p'>Along with CQDs, GQDs have also been extensively used for the detection for Pb<sup>2+</sup>. Qi et al. [<a href="#B126-chemosensors-11-00405" class="html-bibr">126</a>] reported functionalized GQDs by 3,9-dithia-6-monoazaundecane (DMA) as a fluorescence probe for Pb<sup>2+</sup>, relying on the GQD–DMA–tryptophan compound system. Interference tests have been evaluated using various common metal ions. It has been revealed that Pb<sup>2+</sup> has a strong effect on the fluorescence quenching of GQDs. This sensor provides a linear response within the range of 10–1000 pM with a low LOD of 9 pM. Significantly, the sensor has been applied in the cerebrospinal fluid (striatum) of rats. The results revealed that the proposed sensor has high sensitivity and selectivity for the detection of Pb<sup>2+</sup> in complex mixtures. As a result, the current study demonstrated the sensors have potential application as a highly selective and sensitive Pb<sup>2+</sup> sensor in the biology and medicine environments.</div><div class='html-p'>Later, Feng’s team [<a href="#B127-chemosensors-11-00405" class="html-bibr">127</a>] developed a fluorescence “turn-on” type for Pb<sup>2+</sup> detection based on a PET process between rGQDs and GO. rGQDs were prepared via the reduction of GQDs, GO was prepared through oxidation by concentration, and aptamer-rGQDs were synthesized through condensation reactions with EDC. In this study, a sensing mechanism was involved, based on the photoinduced electron transfer between rGQDs and GO. The aptamer–rGQDs could bind to the surface of GO due to electrostatic attraction and π–π stacking interactions. As an effect, GO induces significant fluorescence quenching of the rGQDs’ attributes due to photoinduced electron transfer between rGQDs and GO. The formation of assembly aptamer–rGQDs/GO acts as a quencher and effectively “turns off” the fluorescence. Furthermore, Pb<sup>2+</sup> can strongly coordinate with the aptamer on the surfaces of rGQDs, resulting in the forming of the G-quadruplex/Pb<sup>2+</sup> complex, which can break up electrostatic attraction and π–π stacking interactions between aptamer–rGQDs and GO and effectively “turn on” the fluorescence. As a result, the sensor established a broad linear response within the range of 9.9–435 nM and found an LOD of 0.6 nM. Furthermore, the selectivity of the sensor has been investigated for Pb<sup>2+</sup> detection. It has been found that there is no obvious change in fluorescence intensity. Therefore, this proposed sensor has high sensitivity and good reproducibility for sensing Pb<sup>2+</sup>.</div><div class='html-p'>Recently, dithienopyrrole derivative functionalized GQDs (DTPAN-fn-GQDs) were used as fluorescence probes for improving selectivity and sensitivity of Pb<sup>2+</sup> [<a href="#B128-chemosensors-11-00405" class="html-bibr">128</a>]. The fluorescence quenching of GQDs may result from the existence of Pb<sup>2+</sup>, which will destroy the electron transfer that occurs from the HOMO of DTPAN to the LUMO of GQD. Moreover, this sensor was also fabricated as paper strips for rapid visual determination of Pb<sup>2+</sup>. The linearity range for Pb<sup>2+</sup> sensing was obtained from 0.5 to 40 nM (R<sup>2</sup> = 0.98) with a low LOD of 0.25 nM. The selectivity and interference were evaluated by the interference of common metal ions and organic molecules. It was found that there was no significant change in fluorescence intensity upon the addition of the interference analyte. Finally, the applicability of DTPAN-fn-GQD has been verified by applying it in real water samples and developing paper strips.</div><div class='html-p'><a href="#chemosensors-11-00405-t004" class="html-table">Table 4</a> summarizes the various fluorescent sensors for the detection of Pb<sup>2+</sup>, including the sensing mechanism, type of the sensor, sensitivity, and LOD.</div></section><section id='sec4dot1dot5-chemosensors-11-00405' type=''><h4 class='' data-nested='3'> 4.1.5. Other Metal Ions</h4><div class='html-p'>The surface functionalization of QDs ensures their specificity of detection, providing a feasibility strategy for the design of QD-based sensors. Until now, various groups, such as -COOH, -NH<sub>2</sub>, and -OH, have been used to improve the selectivity and sensitivity of QD-based sensors for other metal ions, including Co<sup>2+</sup>, Zn<sup>2+</sup>, Cd<sup>2+</sup>, Cr<sup>6+</sup>, Cr<sup>3+</sup>, Ag<sup>+</sup>, Al<sup>3+</sup>, etc. </div><div class='html-p'>For example, our group synthesized CdS QDs, ZnS QDs, ZnSe QDs, ZnO QDs, and ZnS/ZnO QDs, which have been used in Co<sup>2+</sup>, Cr<sup>3+</sup>, Al<sup>3+</sup>, Cr<sup>6+</sup>, and Ag<sup>+</sup> detection [<a href="#B99-chemosensors-11-00405" class="html-bibr">99</a>,<a href="#B139-chemosensors-11-00405" class="html-bibr">139</a>,<a href="#B140-chemosensors-11-00405" class="html-bibr">140</a>,<a href="#B141-chemosensors-11-00405" class="html-bibr">141</a>,<a href="#B142-chemosensors-11-00405" class="html-bibr">142</a>,<a href="#B143-chemosensors-11-00405" class="html-bibr">143</a>,<a href="#B144-chemosensors-11-00405" class="html-bibr">144</a>]. Wang’s group [<a href="#B144-chemosensors-11-00405" class="html-bibr">144</a>] presented L-aspartic acid capped CdS QDs (L-Asp@CdS QDs) as sensors for the detection of Ag<sup>+</sup>. Among various common metal ions, the fluorescence intensity of QDs could only be increased by incorporating Ag<sup>+</sup>, which can be attributed to the formation of Ag<sub>2</sub>S on the L-Asp@CdS QDs surface, and then reducing the non-radiative electron/hole recombination process. Xia and coworkers [<a href="#B145-chemosensors-11-00405" class="html-bibr">145</a>] observed the fluorescence responses of CdTe QDs toward Ag<sup>+</sup>, which could be related to the particle size of QDs. In this study, for small sizes, the fluorescence enhancement was observed after addition a lower concentrations of Ag<sup>+</sup>, but with the further increase of Ag<sup>+</sup> concentration, it showed significant fluorescence quenching. However, for larger sizes, the quenching was only observed with Ag<sup>+</sup> incorporation. The above phenomena can be attributed to the smaller QDs typically having more surface defects than larger QDs, and the addition of Ag<sup>+</sup> showed surface passivation actions toward QDs. Moreover, for larger QDs, the non-radiative recombination dominated the whole process because they had fewer surface defects. Similarly, Chen et al. [<a href="#B146-chemosensors-11-00405" class="html-bibr">146</a>] developed based-CdTe QDs sensors as a portable device for Ag<sup>+</sup> detection relying on surface passivation and electron transfer, resulting from the interaction between Ag<sup>+</sup> and Te<sup>2−</sup>.</div><div class='html-p'>Furthermore, fluorescence enhancement can also occur with the detection of Cd<sup>2+</sup>, Al<sup>3+</sup>, and Zn<sup>2+</sup>. Liu et al. [<a href="#B147-chemosensors-11-00405" class="html-bibr">147</a>] designed a “turn on” ratiometric fluorescent probe based on AgInZnS QDs and NGQDs and used them in the detection for Cd<sup>2+</sup>. This sensor showed a linear range of 0.5–100 µM with an LOD of 28.6 nM. The fluorescence enhancement of QDs could be due to their adsorption on the surfaces of QDs and the formation of a CdS passivation layer, which can be ascribed to the electrostatic interaction and strong affinity between Cd<sup>2+</sup> and S<sup>2-</sup> on the QD surface. Simultaneously, a sensitive and selective probe, developed by Xu et al. and based on CdTe QDs, was used for the detection of Zn<sup>2+</sup> and Cd<sup>2+</sup>. [<a href="#B148-chemosensors-11-00405" class="html-bibr">148</a>]. ZnS/ZnO QDs were synthesized as fluorescent probes for the detection of Al<sup>3+</sup> based on the “turn-on” fluorescence sensing type [<a href="#B143-chemosensors-11-00405" class="html-bibr">143</a>]. With this sensor, Al<sup>3+</sup> can be adsorbed on the surfaces of QDs owing to the interaction between Al<sup>3+</sup> and the -OH of L-Cys, which regulates the charge transfer between ZnO QDs and L-Cys, thus enhancing the fluorescence of ZnS/ZnO QDs.</div><div class='html-p'>Yan et al. [<a href="#B149-chemosensors-11-00405" class="html-bibr">149</a>] reported a rapid and sensitive “turn-on” fluorescence sensor for detecting Cd<sup>2+</sup> based on N, B-doped CQDs, which may be ascribed to the formation of an N, B-CQDs/Cd<sup>2+</sup> complex, resulting in reduced internal charge transfer (ICT) and improved photo-generated electron transfer. Based on a similar co-doping system introduced for detection of Cr<sup>6+</sup> by Luo’s group [<a href="#B150-chemosensors-11-00405" class="html-bibr">150</a>]. Meaningfully, the prepared QDs showed triple emission of purple, blue, and green fluorescence under the different excitation of 300, 330, and 490 nm, respectively. Yang’s group [<a href="#B151-chemosensors-11-00405" class="html-bibr">151</a>] developed sensitive fluorescent probes relying on synthetic N/Cl co-doped CDs for rapid testing of Cr<sup>6+</sup> based on the combined action of DQE and IFE. Based on a similar co-doping system, Wang et al. [<a href="#B152-chemosensors-11-00405" class="html-bibr">152</a>] synthesized S,N-CQDs as sensors for the detection of Cr<sup>3+</sup>. The quenching caused by Cr<sup>3+</sup> could be due to the strong interaction between Cr<sup>3+</sup> and certain groups, such as -COOH and -OH groups, in the S, N-CQDs’ structures. This sensor obtained a low LOD of 6 µM. Mohamed et al. [<a href="#B153-chemosensors-11-00405" class="html-bibr">153</a>] reported MPA-capped CdS QDs as sensors for sensitive detection and quantification of Co<sup>2+</sup> based on static fluorescence quenching due to the coordination between QDs and Co<sup>2+</sup> via -COOH on the surfaces of QDs caused the resonance energy transfer from QDs to Co<sup>2+</sup>. Zikalala and coworkers [<a href="#B154-chemosensors-11-00405" class="html-bibr">154</a>] synthesized TGA capped ZnInS QDs used in the detection of Co<sup>2+</sup>, and this probe exhibited a linear range from 0.1 to 100 µM with an LOD of 99 nM. In this case, the fluorescence quenching could be caused by aggregation of the QDs resulting from the formation of surface ligand–Co<sup>2+</sup> complex. Song et al. [<a href="#B155-chemosensors-11-00405" class="html-bibr">155</a>] investigated N, S co-doped CQDs as fluorescent sensors for the detection of Fe<sup>2+</sup> and Al<sup>3+</sup>. In this system, the fluorescence intensity of QDs increased with increasing Fe<sup>2+</sup> due chelation, while Al<sup>3+</sup> could contribute to aggregation through combination with the N/S-CDs and lead to an aggregation-induced enhancement of emissions. Interestingly, the sensor revealed a dual-mode detection for Fe<sup>2+</sup> via visual recognition and fluorescence turn-on. </div><div class='html-p'>In recent years, several fluorescent sensors have been applied for the determination of Co<sup>2+</sup>, Zn<sup>2+</sup>, Cd<sup>2+</sup>, Cr<sup>6+</sup>, Cr<sup>3+</sup>, Ag<sup>+</sup>, and Al<sup>3+</sup> based on QDs such as SCQDs, CQDs, and GQDs. A summary of fluorescent sensors for metal ions, including the type of QDs, sensitivity, linearity range, LOD, and detection mechanism, is provided in <a href="#chemosensors-11-00405-t005" class="html-table">Table 5</a>.</div></section></section><section id='sec4dot2-chemosensors-11-00405' type=''><h4 class='html-italic' data-nested='2'> 4.2. QDs as Fluorescence Sensor for Pesticide Residues</h4><div class='html-p'>Pesticides, such as insecticides, herbicides, and fungicides, can effectively control diseases and pests, kill weeds, and improve crop production and quality. However, the excessive use of pesticides can cause serious harm to human health and the ecological environment. Pesticides not only can directly remain on the surfaces of fruits and vegetables, causing various diseases after consumption but also can migrate to water or remain in soil, damaging the ecological environment. Hence, accurate, convenient, and efficient monitoring of pesticide residues in food and the environment is of paramount importance. Recently, the detection of different pesticide residues has been a research hotspot in the development of fluorescent QDs [<a href="#B36-chemosensors-11-00405" class="html-bibr">36</a>,<a href="#B163-chemosensors-11-00405" class="html-bibr">163</a>,<a href="#B164-chemosensors-11-00405" class="html-bibr">164</a>,<a href="#B165-chemosensors-11-00405" class="html-bibr">165</a>]. Based on a mechanism similar to that of heavy metal ion detection, the fluorescence of QDs can be changed by pesticide residues due to the ACE, FRET, SQE, DQE, IFE, and PET processes. In addition, the selectivity and sensitivity of QD-based sensor can be greatly improved by surface modification or design optimization of QDs.</div><div class='html-p'><a href="#chemosensors-11-00405-t006" class="html-table">Table 6</a> displays various QD-based sensors for pesticide residue detection. To date, various pesticides can be accurately analyzed by observing the effects of signal quenching, enhancement, or ratiometric responses via fluorescence. </div><section id='sec4dot2dot1-chemosensors-11-00405' type=''><h4 class='' data-nested='3'> 4.2.1. Single-Irradiation Fluorescence Sensor </h4><div class='html-p'>Generally, the sensing of QDs is based on the physical or chemical reactions between QDs and target analytes, which can result in photoluminescence enhancement or quenching. At present, quantum dots as fluorescent probes are widely used in analytical chemistry for simple, easy, and in-situ pesticides detection, which is significantly superior to traditional analytical methods. </div><div class='html-p'>Cheng et al. [<a href="#B170-chemosensors-11-00405" class="html-bibr">170</a>] proposed CdSe QDs as “turn-off” fluorescence sensor for detection of malathion based on ligand exchange between the surface capping molecules of CdSe QDs and malathion in organic solutions. Malathion could replace the surface ligands of CdSe QDs, resulting in the disruption of previous surface passivation and forming more surface defects. As a result, the fluorescence of QDs was quenched by malathion. The specificity of the sensor was investigated in the presence of several organic solvents and pesticide emulsifier, indicating that these substances do not interfere in the detection of malathion. Malathion has been quantifiable in concentrations ranging from 0.908 to 303 nM, with an LOD of 0.303 nM. Moreover, the applicability of the sensor has been explored for malathion detection in food samples.</div><div class='html-p'>Yang et al. [<a href="#B171-chemosensors-11-00405" class="html-bibr">171</a>] synthesized CdSe/ZnS core-shell QDs for phosphorothiolate detection based on an electron transfer effect. Thiophosphorus hydrolysate can be formed via the alkaline hydrolysis of phosphorothiolates. In this study, the fluorescence of the proposed sensor could be strongly quenched based on the direct coordinative interactions between the alkaline hydrolyzates of organophosphorus pesticides and the surface metal of the QDs. Moreover, the detection limit of the proposed sensor was found to be 0.967 ng/mL, whereas the linearity range was found to be 0.0001 to 160 µg/mL. The interference of the proposed sensor has been investigated using a mixture of ethion, including glucose, glycine, bovine serum albumin, vitamin C, vitamin E, cholesterol, K<sup>+</sup>, and Mg<sup>2+</sup>, demonstrating that these compounds do not significantly interfere in the detecting of phosphorothionates. The sensor has been employed for the detection of ethion residues in fortified tomatoes, suggesting that it has broad application potential in food analysis. </div><div class='html-p'>Nair et al. [<a href="#B172-chemosensors-11-00405" class="html-bibr">172</a>] reported S-doped GQDs as fluorescence probes, utilizing specific recognition and binding characteristics of aptamers for the ultrasensitive determination of omethoate based on the fluorescent turn-on mode. In this sensing strategy, the present of aptamers could include the ACQ effect of S-GQD due to the formation of the S-GQD-aptamer complex, while the incorporation could cause the disaggregation of the S-GQD-aptamer complex, resulting in the fluorescence recovery of S-GQD. Furthermore, based on a turn-off fluorescent detection mode, this research group designed an ultrasensitive sensor for carbamate pesticides in real samples with ppb level sensitivity [<a href="#B173-chemosensors-11-00405" class="html-bibr">173</a>]. Intriguingly, a flexible solid-state fluorescence sensing platform was prepared by incorporating S-GQD into polyvinyl alcohol matrix. </div></section><section id='sec4dot2dot2-chemosensors-11-00405' type=''><h4 class='' data-nested='3'> 4.2.2. Ratiometric Fluorescence Sensors </h4><div class='html-p'>Although single-irradiation fluorescence sensors have been widely reported and used in trace analyte detection, the analytical results are easily affected by the concentration of sensing materials and incident light drift. Compared with the single-irradiation fluorescence sensors based on the change in fluorescence signals, the ratiometric fluorescence probes rely on the ratio of two fluorescence signals, with a stronger self-regulation function. In addition, according to the change in fluorescence intensity and color of the fluorescent substance after adding the detection analytes, the visual detection of pollutants can also be realized.</div><div class='html-p'>Yang et al. [<a href="#B166-chemosensors-11-00405" class="html-bibr">166</a>] first designed the N, P-CQDs and Au NPs sensing system for carbendazim determination based on FRET. For instance, Au NPs could easily quench the fluorescence of N, P-CQDs resulting from FRET, while the fluorescence resumed exhibition after the incorporation of carbendazim as a result of the reduction in the fluorescence quenching of N, P-CQDs caused by the interaction between carbendazim and Au NPs. The sensor showed a linear response range within 0.005–0.16 µM and obtained a low LOD of 2 nM. The selectivity of the proposed sensor was investigated in the presence of various analytes, including common metal ions, thiamethoxam, acetamiprid, fluazinam, thriadimefon, dipterex, dursban, imidacloprid, and dinotefuran, suggesting that the sensor is resistant to interference substances. Furthermore, the proposed sensor has been successfully applied to detect carbendazim in fruit samples, demonstrating latent application for carbendazim monitoring. </div><div class='html-p'>Similarly, Wang’s group [<a href="#B167-chemosensors-11-00405" class="html-bibr">167</a>,<a href="#B168-chemosensors-11-00405" class="html-bibr">168</a>] developed a ratiometric fluorescence sensing system for the sensitive determination of carbendazim and dinotefuran based on CQDs. An N, CQDs/AuNC [<a href="#B167-chemosensors-11-00405" class="html-bibr">167</a>] ratiometric fluorescence probe was constructed for the detection of carbendazim by recording the ratio change between the fluorescence signal of N-CQDs and the second-order Rayleigh scattering (SRS) signal of N-CQDs/AuNCs probes. The selectivity of the proposed sensor was examined in the presence of various interfering cations and pesticides, suggesting that the sensor has higher selectivity than other pesticides because the strong affinities among AuNCs, aromatic configurations, and nitrogen atoms are conductive to the adsorption of carbendazim on the surfaces of AuNCs. Moreover, the practical application of the sensor for detecting carbendazim was evaluated in strawberries and apples, and the accuracy of the sensor was comparable to traditional HPLC analyses, with the extra advantage of being highly sensitive, simple, and rapid. As a result, it has enormous promise for carbendazim determinations in fruit samples. An S-CQD/CuNC [<a href="#B168-chemosensors-11-00405" class="html-bibr">168</a>] ratiometric fluorescence probe was also designed for the detection of dinotefuran, and a linear range was found between 10 µM and 500 µM with an LOD of 7.04 µM. Different from carbendazim sensing systems, this sensor was mainly based on IFEs between S-CQDs and CuNCs. The presence of dinotefuran could induce the aggregation of CuNCs, resulting in the IFEs, leading to the fluorescence recovery of S-CQDs and decayed CuNC fluorescence. Bera and Mohapatra [<a href="#B169-chemosensors-11-00405" class="html-bibr">169</a>] developed the fabrication of a CdTe-CQD integrated probe, which was used in glyphosate detection relying on PET between CdTe and CQDs. Compared with the sensing-based QDs and metal nanoparticles, the sensor is simple with high sensitivity, and it is suitable for real sample detection. Due to the high selectivity of glyphosate, this sensing system could achieve a low LOD of 2 pM within a broad linear response range of 0–1000 nM.</div><div class='html-p'>Recently, Chen and colleagues [<a href="#B174-chemosensors-11-00405" class="html-bibr">174</a>] constructed a ratiometric fluorescent sensing system for the detection of thiram and paraquat, and the LODs obtained were 7.49 nM and 3.03 nM, respectively. The applicability of the proposed sensor has been evaluated in several plant products including semen nelumbinis, coix lacryma-jobi, and ginseng. Furthermore, the distinct visual analysis for thiram and paraquat solutions with higher concentrations has been performed, suggesting that the sensor can be applied in the direct identification of pesticide varieties. In conclusion, the proposed sensor provides effective implementation for on-site monitoring of pesticide residues in food.</div></section></section><section id='sec4dot3-chemosensors-11-00405' type=''><h4 class='html-italic' data-nested='2'> 4.3. Colorimetric Sensor</h4><div class='html-p'>The colorimetric sensor is a simple analytical device that depends on changes in color to measure analytes. The method is cost-effective and visualizes color changes, which allows for rapid visual evaluation without the need for precision instruments. Recently, due to the advantages of simple preparation, portability, fast reading, and convenience, the paper-based test strip was used as a promising sensing platform for easy and simple fluorescence detection.</div><div class='html-p'>Liu et al. [<a href="#B64-chemosensors-11-00405" class="html-bibr">64</a>] developed a ZnO QD-based test strip sensor for the determination of Cu<sup>2+</sup>. The Cu<sup>2+</sup> test strips were prepared through a dipping–drying process. Under ultraviolet irradiation, the test papers emit yellow at different intensities due to the difference concentrations of Cu<sup>2+</sup>. Here, the test paper can qualitatively judge the Cu<sup>2+</sup> concentration within the range of 40–1000 μM by the naked eye. Furthermore, quantitative detection is achieved by analyzing the gray level of transformed RGB images of test strips based on an ordinary camera and computer. Subsequently, the proposed sensor provided linearity ranges from 10 to 1000 µM (R<sup>2</sup> = 0.9763).</div><div class='html-p'>Hao et al. [<a href="#B96-chemosensors-11-00405" class="html-bibr">96</a>] proposed a test strip sensor for Hg<sup>2+</sup> based on CQDs. In this study, the visual LOD of test strip sensors for Hg<sup>2+</sup> can be determined to be 0.1 μM. Moreover, the test strip sensor can be recovered by EDTA and reused at least three times. Similarly, Sebastian et al. [<a href="#B110-chemosensors-11-00405" class="html-bibr">110</a>] developed paper strips for the rapid assessing of Pb<sup>2+</sup> based on DTPAN-fn-GQD. Consequently, the combination of fluorescent materials with paper substrates is expected to be used to develop a portable and convenient platform for the qualitative and quantitative detection of metal ions or other analytes.</div></section></section><section id='sec5-chemosensors-11-00405' type='conclusions'><h2 data-nested='1'> 5. Conclusions and Outlook</h2><div class='html-p'>Recently, various QD-based sensors have been developed for the analysis of heavy metal ions and pesticide residues in water and food samples, and significant progress has been made in the field of nanomaterials. Fluorescent, ratiometric, and colorimetric methods are commonly used. Among these methods, fluorescence sensors have high sensitivity and selectivity, rapid responses, and simplicity. The specific selectivity of QDs for the detection of heavy metal ions and pesticide residues can be designed based on the surface functionalization of QDs. Ratiometric fluorescence sensors can eliminate the interference of environmental elements and improve detection accuracy by self-tuning the two fluorescence signals. The development of ratiometric fluorescence sensors provides feasibility for multiple detection. Colorimetric sensors can realize visual detection. Combining paper test strips with a smartphone platform enables on-site rapid testing. However, compared with fluorescence and ratiometric fluorescence sensors, the accuracy of colorimetric sensors should be improved. With the development of nanomaterials and technology, sensing performance, including the LOD, sensitivity, and selectivity of the sensor, will be effectively improved. We believe that the QD-based sensors have great potential application in environmental monitoring, food safety, agriculture, and biomedicine.</div></section> </div> <div class="html-back"> <section class='html-notes'><h2 >Author Contributions</h2><div class='html-p'>Writing—original draft and investigation: Z.W.; investigation, B.Y.; investigation, Y.X.; investigation, X.T.; supervision, writing—reviewing and editing, Y.W. All authors have read and agreed to the published version of the manuscript.</div></section><section class='html-notes'><h2>Funding</h2><div class='html-p'>This research was funded by the National Natural Science Foundation of China (Nos. 41876055 and 61761047), the Yunnan Provincial Department of Science and Technology through the Key Project for Science and Technology (Grant No. 2017FA025), and the Project of the Department of Education of Yunnan Province (2023Y0263).</div></section><section class='html-notes'><h2 >Institutional Review Board Statement</h2><div class='html-p'>Not applicable.</div></section><section class='html-notes'><h2 >Informed Consent Statement</h2><div class='html-p'>Not applicable.</div></section><section class='html-notes'><h2 >Data Availability Statement</h2><div class='html-p'>Not applicable.</div></section><section id='html-ack' class='html-ack'><h2 >Acknowledgments</h2><div class='html-p'>This work was supported by the National Natural Science Foundation of China (Nos. 41876055 and 61761047), the Yunnan Provincial Department of Science and Technology through the Key Project for Science and Technology (Grant No. 2017FA025), and the Project of the Department of Education of Yunnan Province (2023Y0263).</div></section><section class='html-notes'><h2 >Conflicts of Interest</h2><div class='html-p'>The authors declare no conflict of interest.</div></section><section id='html-references_list'><h2>References</h2><ol class='html-xxx'><li id='B1-chemosensors-11-00405' class='html-x' data-content='1.'>Sonali, J.M.I.; Subhashree, S.; Kumar, P.S.; Gayathri, K.V. New analytical strategies amplified with carbon-based nanomaterial for sensing food pollutants. <span class='html-italic'>Chemosphere</span> <b>2022</b>, <span class='html-italic'>295</span>, 133847. [<a href="https://scholar.google.com/scholar_lookup?title=New+analytical+strategies+amplified+with+carbon-based+nanomaterial+for+sensing+food+pollutants&author=Sonali,+J.M.I.&author=Subhashree,+S.&author=Kumar,+P.S.&author=Gayathri,+K.V.&publication_year=2022&journal=Chemosphere&volume=295&pages=133847" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B2-chemosensors-11-00405' class='html-x' data-content='2.'>Lan, L.Y.; Yao, Y.; Ping, J.F.; Ying, Y.B. Recent progress in nanomaterial-based optical aptamer assay for the detection of food chemical contaminants. <span class='html-italic'>ACS Appl. Mater. Interfaces</span> <b>2017</b>, <span class='html-italic'>9</span>, 23287–23301. [<a href="https://scholar.google.com/scholar_lookup?title=Recent+progress+in+nanomaterial-based+optical+aptamer+assay+for+the+detection+of+food+chemical+contaminants&author=Lan,+L.Y.&author=Yao,+Y.&author=Ping,+J.F.&author=Ying,+Y.B.&publication_year=2017&journal=ACS+Appl.+Mater.+Interfaces&volume=9&pages=23287%E2%80%9323301&doi=10.1021/acsami.7b03937&pmid=28632380" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1021/acsami.7b03937" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/28632380" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B3-chemosensors-11-00405' class='html-x' data-content='3.'>Zhang, K.; Li, H.Y.; Wang, W.J.; Cao, J.X.; Gan, N.; Han, H.Y. Application of multiplexed aptasensors in food contaminants detection. <span class='html-italic'>ACS Sens.</span> <b>2021</b>, <span class='html-italic'>5</span>, 3721–3738. [<a href="https://scholar.google.com/scholar_lookup?title=Application+of+multiplexed+aptasensors+in+food+contaminants+detection&author=Zhang,+K.&author=Li,+H.Y.&author=Wang,+W.J.&author=Cao,+J.X.&author=Gan,+N.&author=Han,+H.Y.&publication_year=2021&journal=ACS+Sens.&volume=5&pages=3721%E2%80%933738&doi=10.1021/acssensors.0c01740&pmid=33284002" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1021/acssensors.0c01740" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/33284002" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B4-chemosensors-11-00405' class='html-x' data-content='4.'>Xu, M.M.; Wang, X.Y.; Liu, X.P. Detection of heavy metal ions by ratiometric photoelectric sensor. <span class='html-italic'>J. Agric. Food Chem.</span> <b>2022</b>, <span class='html-italic'>70</span>, 11468–11480. [<a href="https://scholar.google.com/scholar_lookup?title=Detection+of+heavy+metal+ions+by+ratiometric+photoelectric+sensor&author=Xu,+M.M.&author=Wang,+X.Y.&author=Liu,+X.P.&publication_year=2022&journal=J.+Agric.+Food+Chem.&volume=70&pages=11468%E2%80%9311480&doi=10.1021/acs.jafc.2c03916&pmid=36074997" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1021/acs.jafc.2c03916" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/36074997" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B5-chemosensors-11-00405' class='html-x' data-content='5.'>Huang, Y.F.; Peng, J.H.; Huang, X.J. Allylthiourea functionalized magnetic adsorbent for the extraction of cadmium, copper and lead ions prior to their determination by atomic absorption spectrometry. <span class='html-italic'>Microchim. Acta</span> <b>2019</b>, <span class='html-italic'>186</span>, 5. [<a href="https://scholar.google.com/scholar_lookup?title=Allylthiourea+functionalized+magnetic+adsorbent+for+the+extraction+of+cadmium,+copper+and+lead+ions+prior+to+their+determination+by+atomic+absorption+spectrometry&author=Huang,+Y.F.&author=Peng,+J.H.&author=Huang,+X.J.&publication_year=2019&journal=Microchim.+Acta&volume=186&pages=5&doi=10.1007/s00604-018-3101-2" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s00604-018-3101-2" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B6-chemosensors-11-00405' class='html-x' data-content='6.'>Mir, S.A.; Dar, B.N.; Mir, M.; Sofi, S.A.; Shah, M.A.; Sidiq, T.; Sunooj, K.V.; Hamdani, A.M.; Khaneghah, A.M. Current strategies for the reduction of pesticide residues in food products. <span class='html-italic'>J. Food Compos. Anal.</span> <b>2022</b>, <span class='html-italic'>106</span>, 104274. [<a href="https://scholar.google.com/scholar_lookup?title=Current+strategies+for+the+reduction+of+pesticide+residues+in+food+products&author=Mir,+S.A.&author=Dar,+B.N.&author=Mir,+M.&author=Sofi,+S.A.&author=Shah,+M.A.&author=Sidiq,+T.&author=Sunooj,+K.V.&author=Hamdani,+A.M.&author=Khaneghah,+A.M.&publication_year=2022&journal=J.+Food+Compos.+Anal.&volume=106&pages=104274&doi=10.1016/j.jfca.2021.104274" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.jfca.2021.104274" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B7-chemosensors-11-00405' class='html-x' data-content='7.'>Panda, S.; Jadav, A.; Panda, N.; Mohapatra, S. A novel carbon quantum dot-based fluorescent nanosensor for selective detection of flumioxazin in real samples. <span class='html-italic'>New J. Chem.</span> <b>2018</b>, <span class='html-italic'>42</span>, 2074–2080. [<a href="https://scholar.google.com/scholar_lookup?title=A+novel+carbon+quantum+dot-based+fluorescent+nanosensor+for+selective+detection+of+flumioxazin+in+real+samples&author=Panda,+S.&author=Jadav,+A.&author=Panda,+N.&author=Mohapatra,+S.&publication_year=2018&journal=New+J.+Chem.&volume=42&pages=2074%E2%80%932080&doi=10.1039/C7NJ04358A" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1039/C7NJ04358A" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B8-chemosensors-11-00405' class='html-x' data-content='8.'>Xu, L.Y.; Abd El-Aty, A.M.; Eun, J.B.; Shim, J.H.; Zhao, J.; Lei, X.M.; Gao, S.; She, Y.X.; Jin, F.; Wang, J.; et al. Recent advances in rapid detection techniques for pesticide residue:A review. <span class='html-italic'>J. Agric. Food Chem.</span> <b>2022</b>, <span class='html-italic'>70</span>, 13093–13117. [<a href="https://scholar.google.com/scholar_lookup?title=Recent+advances+in+rapid+detection+techniques+for+pesticide+residue:A+review&author=Xu,+L.Y.&author=Abd+El-Aty,+A.M.&author=Eun,+J.B.&author=Shim,+J.H.&author=Zhao,+J.&author=Lei,+X.M.&author=Gao,+S.&author=She,+Y.X.&author=Jin,+F.&author=Wang,+J.&publication_year=2022&journal=J.+Agric.+Food+Chem.&volume=70&pages=13093%E2%80%9313117&doi=10.1021/acs.jafc.2c05284" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1021/acs.jafc.2c05284" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B9-chemosensors-11-00405' class='html-x' data-content='9.'>May, B.M.; Bambo, M.F.; Hosseini, S.S.; Sidwaba, U.; Nxumalo, E.N.; Mishra, A.K. A review on I-III-VI ternary quantum dots for fluorescence detection of heavy metals ions in water: Optical properties, synthesis and application. <span class='html-italic'>RSC Adv.</span> <b>2022</b>, <span class='html-italic'>12</span>, 11216–11232. [<a href="https://scholar.google.com/scholar_lookup?title=A+review+on+I-III-VI+ternary+quantum+dots+for+fluorescence+detection+of+heavy+metals+ions+in+water:+Optical+properties,+synthesis+and+application&author=May,+B.M.&author=Bambo,+M.F.&author=Hosseini,+S.S.&author=Sidwaba,+U.&author=Nxumalo,+E.N.&author=Mishra,+A.K.&publication_year=2022&journal=RSC+Adv.&volume=12&pages=11216%E2%80%9311232&doi=10.1039/D1RA08660J" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1039/D1RA08660J" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B10-chemosensors-11-00405' class='html-xx' data-content='10.'>Wu, Q.H.; Li, Y.P.; Wang, C.; Liu, Z.M.; Zang, X.H.; Zhou, X.; Wang, Z. Dispersive liquid–liquid microextraction combined with high performance liquid chromatography–fluorescence detection for the determination of carbendazim and thiabendazole in environmental samples. <span class='html-italic'>Anal. Chim. Acta</span> <b>2009</b>, <span class='html-italic'>638</span>, 139–145. [<a href="https://scholar.google.com/scholar_lookup?title=Dispersive+liquid%E2%80%93liquid+microextraction+combined+with+high+performance+liquid+chromatography%E2%80%93fluorescence+detection+for+the+determination+of+carbendazim+and+thiabendazole+in+environmental+samples&author=Wu,+Q.H.&author=Li,+Y.P.&author=Wang,+C.&author=Liu,+Z.M.&author=Zang,+X.H.&author=Zhou,+X.&author=Wang,+Z.&publication_year=2009&journal=Anal.+Chim.+Acta&volume=638&pages=139%E2%80%93145&doi=10.1016/j.aca.2009.02.017" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.aca.2009.02.017" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B11-chemosensors-11-00405' class='html-xx' data-content='11.'>Chen, X.; Lin, M.S.; Sun, L.; Xu, T.T.; Lai, K.Q.; Huang, M.Z.; Lin, H.T. Detection and quantification of carbendazim in Oolong tea by surface-enhanced Raman spectroscopy and gold nanoparticle substrates. <span class='html-italic'>Food Chem.</span> <b>2019</b>, <span class='html-italic'>293</span>, 271–277. [<a href="https://scholar.google.com/scholar_lookup?title=Detection+and+quantification+of+carbendazim+in+Oolong+tea+by+surface-enhanced+Raman+spectroscopy+and+gold+nanoparticle+substrates&author=Chen,+X.&author=Lin,+M.S.&author=Sun,+L.&author=Xu,+T.T.&author=Lai,+K.Q.&author=Huang,+M.Z.&author=Lin,+H.T.&publication_year=2019&journal=Food+Chem.&volume=293&pages=271%E2%80%93277&doi=10.1016/j.foodchem.2019.04.085&pmid=31151611" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.foodchem.2019.04.085" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/31151611" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B12-chemosensors-11-00405' class='html-xx' data-content='12.'>Gao, X.Y.; Gao, Y.; Bian, C.C.; Ma, H.Y.; Liu, H.L. Electroactive nanoporous gold driven electrochemical sensor for the simultaneous detection of carbendazim and methyl parathion. <span class='html-italic'>Electrochim. Acta</span> <b>2019</b>, <span class='html-italic'>310</span>, 78–85. [<a href="https://scholar.google.com/scholar_lookup?title=Electroactive+nanoporous+gold+driven+electrochemical+sensor+for+the+simultaneous+detection+of+carbendazim+and+methyl+parathion&author=Gao,+X.Y.&author=Gao,+Y.&author=Bian,+C.C.&author=Ma,+H.Y.&author=Liu,+H.L.&publication_year=2019&journal=Electrochim.+Acta&volume=310&pages=78%E2%80%9385&doi=10.1016/j.electacta.2019.04.120" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.electacta.2019.04.120" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B13-chemosensors-11-00405' class='html-xx' data-content='13.'>Mahdavi, V.; Ghorbani-Paji, F.; Ramezani, M.K.; Ghassempour, A.; Aboul-Enein, H.Y. Dissipation of carbendazim and its metabolites in cucumber using liquid chromatography tandem mass spectrometry. <span class='html-italic'>Int. J. Environ. Anal. Chem.</span> <b>2019</b>, <span class='html-italic'>99</span>, 968–976. [<a href="https://scholar.google.com/scholar_lookup?title=Dissipation+of+carbendazim+and+its+metabolites+in+cucumber+using+liquid+chromatography+tandem+mass+spectrometry&author=Mahdavi,+V.&author=Ghorbani-Paji,+F.&author=Ramezani,+M.K.&author=Ghassempour,+A.&author=Aboul-Enein,+H.Y.&publication_year=2019&journal=Int.+J.+Environ.+Anal.+Chem.&volume=99&pages=968%E2%80%93976&doi=10.1080/03067319.2019.1617281" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1080/03067319.2019.1617281" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B14-chemosensors-11-00405' class='html-xx' data-content='14.'>Zhao, G.; Wang, X.; Liu, G.; Thuy, N.T.D. A disposable and flexible electrochemical sensor for the sensitive detection of heavy metals based on a one-step laser-induced surface modification: A new strategy for the batch fabrication of sensors. <span class='html-italic'>Sens. Actuator B Chem.</span> <b>2022</b>, <span class='html-italic'>350</span>, 130834. [<a href="https://scholar.google.com/scholar_lookup?title=A+disposable+and+flexible+electrochemical+sensor+for+the+sensitive+detection+of+heavy+metals+based+on+a+one-step+laser-induced+surface+modification:+A+new+strategy+for+the+batch+fabrication+of+sensors&author=Zhao,+G.&author=Wang,+X.&author=Liu,+G.&author=Thuy,+N.T.D.&publication_year=2022&journal=Sens.+Actuator+B+Chem.&volume=350&pages=130834&doi=10.1016/j.snb.2021.130834" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.snb.2021.130834" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B15-chemosensors-11-00405' class='html-xx' data-content='15.'>Wu, P.; Zhao, T.; Wang, S.L.; Hou, X.D. Semicondutor quantum dots-based metal ion probes. <span class='html-italic'>Nanoscale</span> <b>2014</b>, <span class='html-italic'>6</span>, 43–64. [<a href="https://scholar.google.com/scholar_lookup?title=Semicondutor+quantum+dots-based+metal+ion+probes&author=Wu,+P.&author=Zhao,+T.&author=Wang,+S.L.&author=Hou,+X.D.&publication_year=2014&journal=Nanoscale&volume=6&pages=43%E2%80%9364&doi=10.1039/C3NR04628A" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1039/C3NR04628A" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B16-chemosensors-11-00405' class='html-xx' data-content='16.'>Kazemifard, N.; Ensafi, A.A.; Dehkordi, Z.S. A review of the incorporation of QDs and imprinting technology in optical sensors-imprinting methods and sensing responses. <span class='html-italic'>New J. Chem.</span> <b>2021</b>, <span class='html-italic'>45</span>, 10170–10198. [<a href="https://scholar.google.com/scholar_lookup?title=A+review+of+the+incorporation+of+QDs+and+imprinting+technology+in+optical+sensors-imprinting+methods+and+sensing+responses&author=Kazemifard,+N.&author=Ensafi,+A.A.&author=Dehkordi,+Z.S.&publication_year=2021&journal=New+J.+Chem.&volume=45&pages=10170%E2%80%9310198&doi=10.1039/D1NJ01104A" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1039/D1NJ01104A" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B17-chemosensors-11-00405' class='html-xx' data-content='17.'>Sharma, G.; Kumar, A.; Naushad, M.; Kumar, A.; Al-Muhtaseb, A.H.; Dhiman, P.; Ghfar, A.A.; Stadler, F.J.; Khan, M.R. Photoremediation of toxic dye from aqueous environment using monometallic and bimetallic quantum dots-based nanocomposites. <span class='html-italic'>J. Clean. Prod.</span> <b>2018</b>, <span class='html-italic'>172</span>, 2919–2930. [<a href="https://scholar.google.com/scholar_lookup?title=Photoremediation+of+toxic+dye+from+aqueous+environment+using+monometallic+and+bimetallic+quantum+dots-based+nanocomposites&author=Sharma,+G.&author=Kumar,+A.&author=Naushad,+M.&author=Kumar,+A.&author=Al-Muhtaseb,+A.H.&author=Dhiman,+P.&author=Ghfar,+A.A.&author=Stadler,+F.J.&author=Khan,+M.R.&publication_year=2018&journal=J.+Clean.+Prod.&volume=172&pages=2919%E2%80%932930&doi=10.1016/j.jclepro.2017.11.122" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.jclepro.2017.11.122" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B18-chemosensors-11-00405' class='html-xx' data-content='18.'>Iga, A.M.; Robertson, J.H.P.; Winslet, M.C.; Seifalian, A.M. Clinical potential of quantum dots. <span class='html-italic'>J. Biomed. Biotechnol.</span> <b>2007</b>, <span class='html-italic'>1</span>, 76087. [<a href="https://scholar.google.com/scholar_lookup?title=Clinical+potential+of+quantum+dots&author=Iga,+A.M.&author=Robertson,+J.H.P.&author=Winslet,+M.C.&author=Seifalian,+A.M.&publication_year=2007&journal=J.+Biomed.+Biotechnol.&volume=1&pages=76087&doi=10.1155/2007/76087" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1155/2007/76087" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://downloads.hindawi.com/journals/bmri/2007/076087.pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B19-chemosensors-11-00405' class='html-xx' data-content='19.'>Farzin, M.A.; Abdoos, H. A critical review on quantum dots: From synthesis toward applications in electrochemical biosensors for determination of disease-related biomolecules. <span class='html-italic'>Talanta</span> <b>2021</b>, <span class='html-italic'>224</span>, 121828. [<a href="https://scholar.google.com/scholar_lookup?title=A+critical+review+on+quantum+dots:+From+synthesis+toward+applications+in+electrochemical+biosensors+for+determination+of+disease-related+biomolecules&author=Farzin,+M.A.&author=Abdoos,+H.&publication_year=2021&journal=Talanta&volume=224&pages=121828&doi=10.1016/j.talanta.2020.121828" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.talanta.2020.121828" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B20-chemosensors-11-00405' class='html-xx' data-content='20.'>Shellaiah, M.; Sun, K.W. Review on sensing applications of perovskite nanomaterials. <span class='html-italic'>Chemosensors</span> <b>2020</b>, <span class='html-italic'>8</span>, 55. [<a href="https://scholar.google.com/scholar_lookup?title=Review+on+sensing+applications+of+perovskite+nanomaterials&author=Shellaiah,+M.&author=Sun,+K.W.&publication_year=2020&journal=Chemosensors&volume=8&pages=55&doi=10.3390/chemosensors8030055" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/chemosensors8030055" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B21-chemosensors-11-00405' class='html-xx' data-content='21.'>Sanjayan, C.G.; Jyothi, M.S.; Balakrishna, R.G. Stabilization of CsPbBr<sub>3</sub> quantum dots for photocatalysis, imaging and optical sensing in water and biological medium: A review. <span class='html-italic'>J. Mater. Chem. C</span> <b>2022</b>, <span class='html-italic'>10</span>, 6935–6956. [<a href="https://scholar.google.com/scholar_lookup?title=Stabilization+of+CsPbBr3+quantum+dots+for+photocatalysis,+imaging+and+optical+sensing+in+water+and+biological+medium:+A+review&author=Sanjayan,+C.G.&author=Jyothi,+M.S.&author=Balakrishna,+R.G.&publication_year=2022&journal=J.+Mater.+Chem.+C&volume=10&pages=6935%E2%80%936956" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B22-chemosensors-11-00405' class='html-xx' data-content='22.'>Ren, X.X.; Zhang, X.; Xie, H.X.; Cai, J.H.; Wang, C.H.; Chen, E.G.; Xu, S.; Ye, Y.; Sun, J.; Yan, Q.; et al. Perovskite quantumdots for emerging displays: Recent progress and perspectives. <span class='html-italic'>Nanomaterials</span> <b>2022</b>, <span class='html-italic'>12</span>, 2243. [<a href="https://scholar.google.com/scholar_lookup?title=Perovskite+quantumdots+for+emerging+displays:+Recent+progress+and+perspectives&author=Ren,+X.X.&author=Zhang,+X.&author=Xie,+H.X.&author=Cai,+J.H.&author=Wang,+C.H.&author=Chen,+E.G.&author=Xu,+S.&author=Ye,+Y.&author=Sun,+J.&author=Yan,+Q.&publication_year=2022&journal=Nanomaterials&volume=12&pages=2243&doi=10.3390/nano12132243&pmid=35808081" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/nano12132243" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/35808081" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B23-chemosensors-11-00405' class='html-xx' data-content='23.'>Rakshit, S.; Piatkowski, P.; Mora-Sero, I.; Douhal, A. Combining perovskites and quantum dots: Synthesis, characterization, and applications in solar cells, LEDs, and photodetectors. <span class='html-italic'>Adv. Opt. Mater.</span> <b>2022</b>, <span class='html-italic'>10</span>, 2102566. [<a href="https://scholar.google.com/scholar_lookup?title=Combining+perovskites+and+quantum+dots:+Synthesis,+characterization,+and+applications+in+solar+cells,+LEDs,+and+photodetectors&author=Rakshit,+S.&author=Piatkowski,+P.&author=Mora-Sero,+I.&author=Douhal,+A.&publication_year=2022&journal=Adv.+Opt.+Mater.&volume=10&pages=2102566&doi=10.1002/adom.202102566" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/adom.202102566" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B24-chemosensors-11-00405' class='html-xx' data-content='24.'>Shellaiah, M.; Awasthi, K.; Chandran, S.; Aazaad, B.; Sun, K.W.; Ohta, N.; Wu, S.P.; Lin, M.C. Methylammonium tin tribromide quantum dots for heavy metal ion detection and cellular imaging. <span class='html-italic'>ACS Appl. Nano Mater.</span> <b>2022</b>, <span class='html-italic'>5</span>, 2859–2874. [<a href="https://scholar.google.com/scholar_lookup?title=Methylammonium+tin+tribromide+quantum+dots+for+heavy+metal+ion+detection+and+cellular+imaging&author=Shellaiah,+M.&author=Awasthi,+K.&author=Chandran,+S.&author=Aazaad,+B.&author=Sun,+K.W.&author=Ohta,+N.&author=Wu,+S.P.&author=Lin,+M.C.&publication_year=2022&journal=ACS+Appl.+Nano+Mater.&volume=5&pages=2859%E2%80%932874&doi=10.1021/acsanm.2c00028" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1021/acsanm.2c00028" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B25-chemosensors-11-00405' class='html-xx' data-content='25.'>Ai, B.; Fan, Z.W.; Wong, Z.J. Plasmonic-perovskite solar cells, light emitters, and sensors. <span class='html-italic'>Microsyst. Nanoeng.</span> <b>2022</b>, <span class='html-italic'>8</span>, 5. [<a href="https://scholar.google.com/scholar_lookup?title=Plasmonic-perovskite+solar+cells,+light+emitters,+and+sensors&author=Ai,+B.&author=Fan,+Z.W.&author=Wong,+Z.J.&publication_year=2022&journal=Microsyst.+Nanoeng.&volume=8&pages=5&doi=10.1038/s41378-021-00334-2" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/s41378-021-00334-2" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B26-chemosensors-11-00405' class='html-xx' data-content='26.'>Yang, Y.Y.; Han, A.L.; Hao, S.J.; Li, X.; Luo, X.Y.; Fang, G.Z.; Liu, J.F.; Wang, S. Fluorescent methylammonium lead halide perovskite quantum dots as a sensing material for the detection of polar organochlorine pesticide residues. <span class='html-italic'>Analyst</span> <b>2022</b>, <span class='html-italic'>147</span>, 3258. [<a href="https://scholar.google.com/scholar_lookup?title=Fluorescent+methylammonium+lead+halide+perovskite+quantum+dots+as+a+sensing+material+for+the+detection+of+polar+organochlorine+pesticide+residues&author=Yang,+Y.Y.&author=Han,+A.L.&author=Hao,+S.J.&author=Li,+X.&author=Luo,+X.Y.&author=Fang,+G.Z.&author=Liu,+J.F.&author=Wang,+S.&publication_year=2022&journal=Analyst&volume=147&pages=3258&doi=10.1039/D0AN01127D" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1039/D0AN01127D" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B27-chemosensors-11-00405' class='html-xx' data-content='27.'>Kaur, A.; Pandey, K.; Kaur, R.; Vashishat, N.; Kaur, M. Nanocomposites of carbon quantum dots and graphene quantum dots: Environmental applications as sensors. <span class='html-italic'>Chemosensors</span> <b>2022</b>, <span class='html-italic'>10</span>, 367. [<a href="https://scholar.google.com/scholar_lookup?title=Nanocomposites+of+carbon+quantum+dots+and+graphene+quantum+dots:+Environmental+applications+as+sensors&author=Kaur,+A.&author=Pandey,+K.&author=Kaur,+R.&author=Vashishat,+N.&author=Kaur,+M.&publication_year=2022&journal=Chemosensors&volume=10&pages=367&doi=10.3390/chemosensors10090367" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/chemosensors10090367" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B28-chemosensors-11-00405' class='html-xx' data-content='28.'>Reshma, V.G.; Mohanan, P.V. Quantum dots: Applications and safety consequences. <span class='html-italic'>J. Lumin.</span> <b>2018</b>, <span class='html-italic'>205</span>, 287–298. [<a href="https://scholar.google.com/scholar_lookup?title=Quantum+dots:+Applications+and+safety+consequences&author=Reshma,+V.G.&author=Mohanan,+P.V.&publication_year=2018&journal=J.+Lumin.&volume=205&pages=287%E2%80%93298&doi=10.1016/j.jlumin.2018.09.015" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.jlumin.2018.09.015" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B29-chemosensors-11-00405' class='html-xx' data-content='29.'>Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum dots versus organic dyes as fluorescent labels. <span class='html-italic'>Nat. Methods</span> <b>2008</b>, <span class='html-italic'>5</span>, 763–775. [<a href="https://scholar.google.com/scholar_lookup?title=Quantum+dots+versus+organic+dyes+as+fluorescent+labels&author=Resch-Genger,+U.&author=Grabolle,+M.&author=Cavaliere-Jaricot,+S.&author=Nitschke,+R.&author=Nann,+T.&publication_year=2008&journal=Nat.+Methods&volume=5&pages=763%E2%80%93775&doi=10.1038/nmeth.1248" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/nmeth.1248" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B30-chemosensors-11-00405' class='html-xx' data-content='30.'>Wang, J.R.; Yu, J.L.; Wang, X.Y.; Wang, L.Y.; Li, B.W.; Shen, D.Z.; Kang, Q.; Chen, L.X. Functional ZnS:Mn(II) quantum dot modified with L-cysteine and 6-mercaptonicotinic acid as a fluorometric probe for copper (II). <span class='html-italic'>Microchim. Acta</span> <b>2018</b>, <span class='html-italic'>185</span>, 420. [<a href="https://scholar.google.com/scholar_lookup?title=Functional+ZnS:Mn(II)+quantum+dot+modified+with+L-cysteine+and+6-mercaptonicotinic+acid+as+a+fluorometric+probe+for+copper+(II)&author=Wang,+J.R.&author=Yu,+J.L.&author=Wang,+X.Y.&author=Wang,+L.Y.&author=Li,+B.W.&author=Shen,+D.Z.&author=Kang,+Q.&author=Chen,+L.X.&publication_year=2018&journal=Microchim.+Acta&volume=185&pages=420&doi=10.1007/s00604-018-2952-x" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s00604-018-2952-x" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B31-chemosensors-11-00405' class='html-xx' data-content='31.'>Zhang, Y.J.; Liu, B.; Liu, Z.M.; Li, J.K. Research progress in the synthesis and biological application of quantum dots. <span class='html-italic'>New J. Chem.</span> <b>2022</b>, <span class='html-italic'>46</span>, 20515–20539. [<a href="https://scholar.google.com/scholar_lookup?title=Research+progress+in+the+synthesis+and+biological+application+of+quantum+dots&author=Zhang,+Y.J.&author=Liu,+B.&author=Liu,+Z.M.&author=Li,+J.K.&publication_year=2022&journal=New+J.+Chem.&volume=46&pages=20515%E2%80%9320539&doi=10.1039/D2NJ02603A" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1039/D2NJ02603A" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B32-chemosensors-11-00405' class='html-xx' data-content='32.'>Zhu, C.Y.; Chen, Z.; Gao, S.; Goh, B.L.; Bin Samsudin, I.; Lwe, K.W.; Wu, Y.L.; Wu, C.S.; Su, X.D. Recent advances in non-toxic quantum dots and their biomedical applications. <span class='html-italic'>Prog. Nat. Sci. Mater. Int.</span> <b>2020</b>, <span class='html-italic'>29</span>, 628–640. [<a href="https://scholar.google.com/scholar_lookup?title=Recent+advances+in+non-toxic+quantum+dots+and+their+biomedical+applications&author=Zhu,+C.Y.&author=Chen,+Z.&author=Gao,+S.&author=Goh,+B.L.&author=Bin+Samsudin,+I.&author=Lwe,+K.W.&author=Wu,+Y.L.&author=Wu,+C.S.&author=Su,+X.D.&publication_year=2020&journal=Prog.+Nat.+Sci.+Mater.+Int.&volume=29&pages=628%E2%80%93640&doi=10.1016/j.pnsc.2019.11.007" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.pnsc.2019.11.007" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B33-chemosensors-11-00405' class='html-xx' data-content='33.'>Zou, L.; Gu, Z.H.; Sun, M. Review of the application of quantum dots in the heavy-metal detection. <span class='html-italic'>Toxicol. Environ. Chem.</span> <b>2015</b>, <span class='html-italic'>97</span>, 477–490. [<a href="https://scholar.google.com/scholar_lookup?title=Review+of+the+application+of+quantum+dots+in+the+heavy-metal+detection&author=Zou,+L.&author=Gu,+Z.H.&author=Sun,+M.&publication_year=2015&journal=Toxicol.+Environ.+Chem.&volume=97&pages=477%E2%80%93490&doi=10.1080/02772248.2015.1050201" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1080/02772248.2015.1050201" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B34-chemosensors-11-00405' class='html-xx' data-content='34.'>Wang, X.Y.; Kong, L.B.; Zhou, S.Q.; Ma, C.Y.; Lin, W.C.; Sun, X.Y.; Kirsanov, D.; Legin, A.; Wan, H.; Wang, P. Development of QDs-based nanosensors for heavy metal detection: A review on transducer principles and in-situ detection. <span class='html-italic'>Talanta</span> <b>2022</b>, <span class='html-italic'>239</span>, 122903. [<a href="https://scholar.google.com/scholar_lookup?title=Development+of+QDs-based+nanosensors+for+heavy+metal+detection:+A+review+on+transducer+principles+and+in-situ+detection&author=Wang,+X.Y.&author=Kong,+L.B.&author=Zhou,+S.Q.&author=Ma,+C.Y.&author=Lin,+W.C.&author=Sun,+X.Y.&author=Kirsanov,+D.&author=Legin,+A.&author=Wan,+H.&author=Wang,+P.&publication_year=2022&journal=Talanta&volume=239&pages=122903&doi=10.1016/j.talanta.2021.122903&pmid=34857381" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.talanta.2021.122903" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/34857381" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B35-chemosensors-11-00405' class='html-xx' data-content='35.'>Mukherjee, S.; Bhattacharyya, S.; Ghosh, K.; Pal, S.; Halder, A.; Naseri, M.; Mohammadniaei, M.; Sarkar, S.; Ghosh, A.; Sun, Y.; et al. Sensory development for heavy metal detection: A review on translation from conventional analysis to field-portable sensor. <span class='html-italic'>Trends Food Sci. Technol.</span> <b>2021</b>, <span class='html-italic'>109</span>, 674–689. [<a href="https://scholar.google.com/scholar_lookup?title=Sensory+development+for+heavy+metal+detection:+A+review+on+translation+from+conventional+analysis+to+field-portable+sensor&author=Mukherjee,+S.&author=Bhattacharyya,+S.&author=Ghosh,+K.&author=Pal,+S.&author=Halder,+A.&author=Naseri,+M.&author=Mohammadniaei,+M.&author=Sarkar,+S.&author=Ghosh,+A.&author=Sun,+Y.&publication_year=2021&journal=Trends+Food+Sci.+Technol.&volume=109&pages=674%E2%80%93689&doi=10.1016/j.tifs.2021.01.062" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.tifs.2021.01.062" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B36-chemosensors-11-00405' class='html-xx' data-content='36.'>Nsibande, S.A.; Forbes, P.B.C. Fluorescence detection of pesticides using quantum dot materials—A review. <span class='html-italic'>Anal. Chim. Acta</span> <b>2016</b>, <span class='html-italic'>945</span>, 9–22. [<a href="https://scholar.google.com/scholar_lookup?title=Fluorescence+detection+of+pesticides+using+quantum+dot+materials%E2%80%94A+review&author=Nsibande,+S.A.&author=Forbes,+P.B.C.&publication_year=2016&journal=Anal.+Chim.+Acta&volume=945&pages=9%E2%80%9322&doi=10.1016/j.aca.2016.10.002&pmid=27968720" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.aca.2016.10.002" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/27968720" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B37-chemosensors-11-00405' class='html-xx' data-content='37.'>Nazir, F.; Asad, M.; Fatima, L.; Bokhari, A.; Majeed, S.; Fatima, B.; Mohammed, A.A.A.; Karri, R.R. Silica quantum dots; an optical nanosensing approach for trace detection of pesticides in environmental and biological samples. <span class='html-italic'>Environ. Res.</span> <b>2023</b>, <span class='html-italic'>231</span>, 116147. [<a href="https://scholar.google.com/scholar_lookup?title=Silica+quantum+dots;+an+optical+nanosensing+approach+for+trace+detection+of+pesticides+in+environmental+and+biological+samples&author=Nazir,+F.&author=Asad,+M.&author=Fatima,+L.&author=Bokhari,+A.&author=Majeed,+S.&author=Fatima,+B.&author=Mohammed,+A.A.A.&author=Karri,+R.R.&publication_year=2023&journal=Environ.+Res.&volume=231&pages=116147&doi=10.1016/j.envres.2023.116147&pmid=37187307" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.envres.2023.116147" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/37187307" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B38-chemosensors-11-00405' class='html-xx' data-content='38.'>Anand, K.V.; Subala, A.S.; Sumathi, K.S.; Merin, S.A.L. A review on the removal of dye, pesticide and pathogens from waste water using quantum dots. <span class='html-italic'>Eur. J. Adv. Chem. Res.</span> <b>2020</b>, <span class='html-italic'>1</span>, 14. [<a href="https://scholar.google.com/scholar_lookup?title=A+review+on+the+removal+of+dye,+pesticide+and+pathogens+from+waste+water+using+quantum+dots&author=Anand,+K.V.&author=Subala,+A.S.&author=Sumathi,+K.S.&author=Merin,+S.A.L.&publication_year=2020&journal=Eur.+J.+Adv.+Chem.+Res.&volume=1&pages=14&doi=10.24018/ejchem.2020.1.5.14" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.24018/ejchem.2020.1.5.14" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B39-chemosensors-11-00405' class='html-xx' data-content='39.'>He, K.Y.; Wang, L.; Xu, X.H. Chapter 17—Chemical sensing of pesticides in water. In <span class='html-italic'>Advanced Sensor Technology</span>; Elsevier: Amsterdam, The Netherlands, 2023; pp. 647–668. [<a href="https://scholar.google.com/scholar_lookup?title=Chapter+17%E2%80%94Chemical+sensing+of+pesticides+in+water&author=He,+K.Y.&author=Wang,+L.&author=Xu,+X.H.&publication_year=2023&pages=647%E2%80%93668" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B40-chemosensors-11-00405' class='html-xx' data-content='40.'>Caroleo, F.; Magna, G.; Naitana, M.L.; Di Zazzo, L.; Martini, R.; Pizzoli, F.; Muduganti, M.; Lvova, L.; Mandoj, F.; Nardis, S.; et al. Advances in optical sensors for persistent organic pollutant environmental monitoring. <span class='html-italic'>Sensors</span> <b>2022</b>, <span class='html-italic'>22</span>, 2649. [<a href="https://scholar.google.com/scholar_lookup?title=Advances+in+optical+sensors+for+persistent+organic+pollutant+environmental+monitoring&author=Caroleo,+F.&author=Magna,+G.&author=Naitana,+M.L.&author=Di+Zazzo,+L.&author=Martini,+R.&author=Pizzoli,+F.&author=Muduganti,+M.&author=Lvova,+L.&author=Mandoj,+F.&author=Nardis,+S.&publication_year=2022&journal=Sensors&volume=22&pages=2649&doi=10.3390/s22072649&pmid=35408267" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/s22072649" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/35408267" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B41-chemosensors-11-00405' class='html-xx' data-content='41.'>Chen, S.Y.; Yun, S.N.; Liu, Y.J.; Yu, R.J.; Tu, Q.; Wang, J.Y.; Yuan, M.S. A highly selective and sensitive CdS fluorescent quantum dot for the simultaneous detection of multiple pesticides. <span class='html-italic'>Analyst</span> <b>2022</b>, <span class='html-italic'>147</span>, 3258–3265. [<a href="https://scholar.google.com/scholar_lookup?title=A+highly+selective+and+sensitive+CdS+fluorescent+quantum+dot+for+the+simultaneous+detection+of+multiple+pesticides&author=Chen,+S.Y.&author=Yun,+S.N.&author=Liu,+Y.J.&author=Yu,+R.J.&author=Tu,+Q.&author=Wang,+J.Y.&author=Yuan,+M.S.&publication_year=2022&journal=Analyst&volume=147&pages=3258%E2%80%933265&doi=10.1039/D2AN00575A" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1039/D2AN00575A" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B42-chemosensors-11-00405' class='html-xx' data-content='42.'>Spanhel, L.; Haase, M.; Weller, H.; Henglein, A. Photochemistry of colloidal semiconductors surface modification and stability of strong luminescing CdS particles. <span class='html-italic'>J. Am. Chem. Soc.</span> <b>1987</b>, <span class='html-italic'>109</span>, 5649–5655. [<a href="https://scholar.google.com/scholar_lookup?title=Photochemistry+of+colloidal+semiconductors+surface+modification+and+stability+of+strong+luminescing+CdS+particles&author=Spanhel,+L.&author=Haase,+M.&author=Weller,+H.&author=Henglein,+A.&publication_year=1987&journal=J.+Am.+Chem.+Soc.&volume=109&pages=5649%E2%80%935655&doi=10.1021/ja00253a015" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1021/ja00253a015" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B43-chemosensors-11-00405' class='html-xx' data-content='43.'>Chen, Y.F.; Rosenzweig, Z. Luminescent CdS quantum dots as selective ion probes. <span class='html-italic'>Anal. Chem.</span> <b>2002</b>, <span class='html-italic'>74</span>, 5132–5138. [<a href="https://scholar.google.com/scholar_lookup?title=Luminescent+CdS+quantum+dots+as+selective+ion+probes&author=Chen,+Y.F.&author=Rosenzweig,+Z.&publication_year=2002&journal=Anal.+Chem.&volume=74&pages=5132%E2%80%935138&doi=10.1021/ac0258251&pmid=12380840" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1021/ac0258251" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/12380840" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B44-chemosensors-11-00405' class='html-xx' data-content='44.'>Zhu, J.; Zhao, Z.J.; Li, J.J.; Zhao, J.W. CdTe quantum dot-based fluorescent probes for selective detection of Hg (II): The effect of particle size. <span class='html-italic'>Spectrochim. Acta A Mol. Biomol. Spectrosc.</span> <b>2017</b>, <span class='html-italic'>177</span>, 140–146. [<a href="https://scholar.google.com/scholar_lookup?title=CdTe+quantum+dot-based+fluorescent+probes+for+selective+detection+of+Hg+(II):+The+effect+of+particle+size&author=Zhu,+J.&author=Zhao,+Z.J.&author=Li,+J.J.&author=Zhao,+J.W.&publication_year=2017&journal=Spectrochim.+Acta+A+Mol.+Biomol.+Spectrosc.&volume=177&pages=140%E2%80%93146&doi=10.1016/j.saa.2017.01.043&pmid=28153811" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.saa.2017.01.043" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/28153811" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B45-chemosensors-11-00405' class='html-xx' data-content='45.'>Uppa, Y.; Kulchat, S.; Ngamdee, K.; Pradublai, K.; Tuntulani, T.; Ngeontae, W. Silver ion modulated CdS quantum dots for highly selective detection of trace Hg<sup>2+</sup>. <span class='html-italic'>J. Lumin.</span> <b>2016</b>, <span class='html-italic'>178</span>, 437–445. [<a href="https://scholar.google.com/scholar_lookup?title=Silver+ion+modulated+CdS+quantum+dots+for+highly+selective+detection+of+trace+Hg2+&author=Uppa,+Y.&author=Kulchat,+S.&author=Ngamdee,+K.&author=Pradublai,+K.&author=Tuntulani,+T.&author=Ngeontae,+W.&publication_year=2016&journal=J.+Lumin.&volume=178&pages=437%E2%80%93445&doi=10.1016/j.jlumin.2016.06.001" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.jlumin.2016.06.001" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B46-chemosensors-11-00405' class='html-xx' data-content='46.'>Han, S.Q.; Liu, J.L.; Gan, Z.G.; Liang, J.G.; Zhao, S.M. Application of luminescent BSA-capped CdS quantum dots as a fluorescence probe for the detection of Cu<sup>2+</sup>. <span class='html-italic'>J. Chin. Chem. Soc.-Taip.</span> <b>2008</b>, <span class='html-italic'>55</span>, 1069–1073. [<a href="https://scholar.google.com/scholar_lookup?title=Application+of+luminescent+BSA-capped+CdS+quantum+dots+as+a+fluorescence+probe+for+the+detection+of+Cu2+&author=Han,+S.Q.&author=Liu,+J.L.&author=Gan,+Z.G.&author=Liang,+J.G.&author=Zhao,+S.M.&publication_year=2008&journal=J.+Chin.+Chem.+Soc.-Taip.&volume=55&pages=1069%E2%80%931073&doi=10.1002/jccs.200800156" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/jccs.200800156" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B47-chemosensors-11-00405' class='html-xx' data-content='47.'>Shellaiah, M.; Sun, K.W. Review on carbon dot-based fluorescent detection of biothiols. <span class='html-italic'>Biosensors</span> <b>2023</b>, <span class='html-italic'>13</span>, 335. [<a href="https://scholar.google.com/scholar_lookup?title=Review+on+carbon+dot-based+fluorescent+detection+of+biothiols&author=Shellaiah,+M.&author=Sun,+K.W.&publication_year=2023&journal=Biosensors&volume=13&pages=335&doi=10.3390/bios13030335" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/bios13030335" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B48-chemosensors-11-00405' class='html-xx' data-content='48.'>Khan, Z.G.; Patil, P.O. A comprehensive review on carbon dots and graphene quantum dots based fluorescent sensor for biothiols. <span class='html-italic'>Microchem. J.</span> <b>2020</b>, <span class='html-italic'>157</span>, 105011. [<a href="https://scholar.google.com/scholar_lookup?title=A+comprehensive+review+on+carbon+dots+and+graphene+quantum+dots+based+fluorescent+sensor+for+biothiols&author=Khan,+Z.G.&author=Patil,+P.O.&publication_year=2020&journal=Microchem.+J.&volume=157&pages=105011&doi=10.1016/j.microc.2020.105011" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.microc.2020.105011" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B49-chemosensors-11-00405' class='html-xx' data-content='49.'>Gonzalez-Gonzalez, R.B.; Morales-Murillo, M.B.; Martinez-Prado, M.A.; Melchor-Martinez, E.M.; Ahmed, I.; Bilal, M.; Parra-Saldivar, R.; Iqbal, H.M.N. Carbon dots-based nanomaterials for fluorescent sensing of toxic elements in environmental samples: Strategies for enhanced performance. <span class='html-italic'>Chemosphere</span> <b>2022</b>, <span class='html-italic'>300</span>, 134515. [<a href="https://scholar.google.com/scholar_lookup?title=Carbon+dots-based+nanomaterials+for+fluorescent+sensing+of+toxic+elements+in+environmental+samples:+Strategies+for+enhanced+performance&author=Gonzalez-Gonzalez,+R.B.&author=Morales-Murillo,+M.B.&author=Martinez-Prado,+M.A.&author=Melchor-Martinez,+E.M.&author=Ahmed,+I.&author=Bilal,+M.&author=Parra-Saldivar,+R.&author=Iqbal,+H.M.N.&publication_year=2022&journal=Chemosphere&volume=300&pages=134515&doi=10.1016/j.chemosphere.2022.134515" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.chemosphere.2022.134515" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B50-chemosensors-11-00405' class='html-xx' data-content='50.'>Kamat, P.V. Photochemistry on nonreactive and reactive (semiconductor) surfaces. <span class='html-italic'>Chem. Rev.</span> <b>1993</b>, <span class='html-italic'>93</span>, 267–300. [<a href="https://scholar.google.com/scholar_lookup?title=Photochemistry+on+nonreactive+and+reactive+(semiconductor)+surfaces&author=Kamat,+P.V.&publication_year=1993&journal=Chem.+Rev.&volume=93&pages=267%E2%80%93300&doi=10.1021/cr00017a013" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1021/cr00017a013" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B51-chemosensors-11-00405' class='html-xx' data-content='51.'>Mehta, V.N.; Desai, M.L.; Basu, H.; Singhal, R.K.; Kailasa, S.K. Recent developments on fluorescent hybrid nanomaterials for metal ions sensing and bioimaging applications: A review. <span class='html-italic'>J. Mol. Liq.</span> <b>2021</b>, <span class='html-italic'>333</span>, 115950. [<a href="https://scholar.google.com/scholar_lookup?title=Recent+developments+on+fluorescent+hybrid+nanomaterials+for+metal+ions+sensing+and+bioimaging+applications:+A+review&author=Mehta,+V.N.&author=Desai,+M.L.&author=Basu,+H.&author=Singhal,+R.K.&author=Kailasa,+S.K.&publication_year=2021&journal=J.+Mol.+Liq.&volume=333&pages=115950&doi=10.1016/j.molliq.2021.115950" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.molliq.2021.115950" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B52-chemosensors-11-00405' class='html-xx' data-content='52.'>Ghali, M. Static quenching of bovine serum albumin conjugated with small size CdS nanocrystalline quantum dots. <span class='html-italic'>J. Lumin.</span> <b>2010</b>, <span class='html-italic'>130</span>, 1254–1257. [<a href="https://scholar.google.com/scholar_lookup?title=Static+quenching+of+bovine+serum+albumin+conjugated+with+small+size+CdS+nanocrystalline+quantum+dots&author=Ghali,+M.&publication_year=2010&journal=J.+Lumin.&volume=130&pages=1254%E2%80%931257&doi=10.1016/j.jlumin.2010.02.034" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.jlumin.2010.02.034" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B53-chemosensors-11-00405' class='html-xx' data-content='53.'>Xu, Z.Y.; Wang, Y.Z.; Zhang, J.R.; Shi, C.; Yang, X.T. A highly sensitive and selective fluorescent probe using MPA-InP/ZnS QDs for detection of trace amounts of Cu<sup>2+</sup> in water. <span class='html-italic'>Foods</span> <b>2021</b>, <span class='html-italic'>10</span>, 2777. [<a href="https://scholar.google.com/scholar_lookup?title=A+highly+sensitive+and+selective+fluorescent+probe+using+MPA-InP/ZnS+QDs+for+detection+of+trace+amounts+of+Cu2++in+water&author=Xu,+Z.Y.&author=Wang,+Y.Z.&author=Zhang,+J.R.&author=Shi,+C.&author=Yang,+X.T.&publication_year=2021&journal=Foods&volume=10&pages=2777&doi=10.3390/foods10112777&pmid=34829056" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/foods10112777" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/34829056" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B54-chemosensors-11-00405' class='html-xx' data-content='54.'>Lee, S.; Kang, S.H. Wavelength-dependent metal-enhanced fluorescence biosensors via resonance energy transfer modulation. <span class='html-italic'>Biosensors</span> <b>2023</b>, <span class='html-italic'>13</span>, 376. [<a href="https://scholar.google.com/scholar_lookup?title=Wavelength-dependent+metal-enhanced+fluorescence+biosensors+via+resonance+energy+transfer+modulation&author=Lee,+S.&author=Kang,+S.H.&publication_year=2023&journal=Biosensors&volume=13&pages=376&doi=10.3390/bios13030376" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/bios13030376" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B55-chemosensors-11-00405' class='html-xx' data-content='55.'>Wang, K.; Dong, E.F.; Fang, M.; Zhu, W.J.; Li, C. Construction of hybrid fluorescent sensor for Cu<sup>2+</sup> detection using fluorescein- functionalized CdS quantum dots via FRET. <span class='html-italic'>J. Fluoresc.</span> <b>2022</b>, <span class='html-italic'>32</span>, 1099–1107. [<a href="https://scholar.google.com/scholar_lookup?title=Construction+of+hybrid+fluorescent+sensor+for+Cu2++detection+using+fluorescein-+functionalized+CdS+quantum+dots+via+FRET&author=Wang,+K.&author=Dong,+E.F.&author=Fang,+M.&author=Zhu,+W.J.&author=Li,+C.&publication_year=2022&journal=J.+Fluoresc.&volume=32&pages=1099%E2%80%931107&doi=10.1007/s10895-022-02918-1&pmid=35305208" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s10895-022-02918-1" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/35305208" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B56-chemosensors-11-00405' class='html-xx' data-content='56.'>Huang, D.W.; Niu, C.G.; Ruan, M.; Wang, X.Y.; Zeng, G.M.; Deng, C.H. Highly sensitive strategy for Hg<sup>2+</sup> detection in environmental water samples using long lifetime fluorescence quantum dots and gold nanoparticles. <span class='html-italic'>Environ. Sci. Technol.</span> <b>2013</b>, <span class='html-italic'>47</span>, 4392–4398. [<a href="https://scholar.google.com/scholar_lookup?title=Highly+sensitive+strategy+for+Hg2++detection+in+environmental+water+samples+using+long+lifetime+fluorescence+quantum+dots+and+gold+nanoparticles&author=Huang,+D.W.&author=Niu,+C.G.&author=Ruan,+M.&author=Wang,+X.Y.&author=Zeng,+G.M.&author=Deng,+C.H.&publication_year=2013&journal=Environ.+Sci.+Technol.&volume=47&pages=4392%E2%80%934398&doi=10.1021/es302967n" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1021/es302967n" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B57-chemosensors-11-00405' class='html-xx' data-content='57.'>Wang, J.; Song, F.J.; Ai, Y.L.; Hu, S.W.; Huang, Z.Z.; Zhong, W.Y. A simple FRET system using two-color CdTe quantum dots assisted by cetyltrimethylammonium bromide and its application to Hg(II) detection. <span class='html-italic'>Luminescence</span> <b>2019</b>, <span class='html-italic'>34</span>, 205–211. [<a href="https://scholar.google.com/scholar_lookup?title=A+simple+FRET+system+using+two-color+CdTe+quantum+dots+assisted+by+cetyltrimethylammonium+bromide+and+its+application+to+Hg(II)+detection&author=Wang,+J.&author=Song,+F.J.&author=Ai,+Y.L.&author=Hu,+S.W.&author=Huang,+Z.Z.&author=Zhong,+W.Y.&publication_year=2019&journal=Luminescence&volume=34&pages=205%E2%80%93211&doi=10.1002/bio.3597" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/bio.3597" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B58-chemosensors-11-00405' class='html-xx' data-content='58.'>Li, P.; Luo, C.; Chen, X.X.; Huang, C.B. An off–on fluorescence aptasensor for trace thrombin detection based on FRET between CdS QDs and AuNPs. <span class='html-italic'>RSC Adv.</span> <b>2022</b>, <span class='html-italic'>12</span>, 35763–35769. [<a href="https://scholar.google.com/scholar_lookup?title=An+off%E2%80%93on+fluorescence+aptasensor+for+trace+thrombin+detection+based+on+FRET+between+CdS+QDs+and+AuNPs&author=Li,+P.&author=Luo,+C.&author=Chen,+X.X.&author=Huang,+C.B.&publication_year=2022&journal=RSC+Adv.&volume=12&pages=35763%E2%80%9335769&doi=10.1039/D2RA06891E" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1039/D2RA06891E" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B59-chemosensors-11-00405' class='html-xx' data-content='59.'>Zhang, K.; Zhang, J.M. A fluorescent probe for the detection of Hg<sup>2+</sup> based on rhodamine derivative and modified CdTe quantum dots. <span class='html-italic'>Res. Chem. Intermed.</span> <b>2020</b>, <span class='html-italic'>46</span>, 987–997. [<a href="https://scholar.google.com/scholar_lookup?title=A+fluorescent+probe+for+the+detection+of+Hg2++based+on+rhodamine+derivative+and+modified+CdTe+quantum+dots&author=Zhang,+K.&author=Zhang,+J.M.&publication_year=2020&journal=Res.+Chem.+Intermed.&volume=46&pages=987%E2%80%93997&doi=10.1007/s11164-015-2298-5" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s11164-015-2298-5" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B60-chemosensors-11-00405' class='html-xx' data-content='60.'>Liu, B.Y.; Fang, Z.; Wu, G.F.; Wu, S.Z. Nanoparticles as scaffolds for FRET-based ratiometric detection of mercury ions in water with QDs as donors. <span class='html-italic'>Analyst</span> <b>2012</b>, <span class='html-italic'>137</span>, 3717. [<a href="https://scholar.google.com/scholar_lookup?title=Nanoparticles+as+scaffolds+for+FRET-based+ratiometric+detection+of+mercury+ions+in+water+with+QDs+as+donors&author=Liu,+B.Y.&author=Fang,+Z.&author=Wu,+G.F.&author=Wu,+S.Z.&publication_year=2012&journal=Analyst&volume=137&pages=3717&doi=10.1039/c2an35434a" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1039/c2an35434a" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B61-chemosensors-11-00405' class='html-xx' data-content='61.'>Zhao, R.J.; Wang, Z.Z.; Tian, X.; Shu, H.; Yang, Y.; Xiao, X.C.; Wang, Y.D. Excellent fluorescence detection of Cu<sup>2+</sup> in water system using <span class='html-italic'>N</span>-acetyl-L-cysteines modified CdS quantum dots as fluorescence probe. <span class='html-italic'>Nanotechnology</span> <b>2021</b>, <span class='html-italic'>32</span>, 405707. [<a href="https://scholar.google.com/scholar_lookup?title=Excellent+fluorescence+detection+of+Cu2++in+water+system+using+N-acetyl-L-cysteines+modified+CdS+quantum+dots+as+fluorescence+probe&author=Zhao,+R.J.&author=Wang,+Z.Z.&author=Tian,+X.&author=Shu,+H.&author=Yang,+Y.&author=Xiao,+X.C.&author=Wang,+Y.D.&publication_year=2021&journal=Nanotechnology&volume=32&pages=405707&doi=10.1088/1361-6528/ac1016" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1088/1361-6528/ac1016" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B62-chemosensors-11-00405' class='html-xx' data-content='62.'>Wang, Z.Z.; Xiao, X.C.; Zou, T.; Yang, Y.; Xing, X.X.; Zhao, R.Z.; Wang, Z.D.; Wang, Y.D. Citric acid capped CdS quantum dots for fluorescence detection of copper ions (II) in aqueous solution. <span class='html-italic'>Nanomaterials</span> <b>2019</b>, <span class='html-italic'>9</span>, 32. [<a href="https://scholar.google.com/scholar_lookup?title=Citric+acid+capped+CdS+quantum+dots+for+fluorescence+detection+of+copper+ions+(II)+in+aqueous+solution&author=Wang,+Z.Z.&author=Xiao,+X.C.&author=Zou,+T.&author=Yang,+Y.&author=Xing,+X.X.&author=Zhao,+R.Z.&author=Wang,+Z.D.&author=Wang,+Y.D.&publication_year=2019&journal=Nanomaterials&volume=9&pages=32&doi=10.3390/nano9010032&pmid=30591648" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/nano9010032" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/30591648" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>] [<a href="https://www.mdpi.com/2079-4991/9/1/32/pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B63-chemosensors-11-00405' class='html-xx' data-content='63.'>Zou, T.; Xing, X.X.; Yang, Y.; Wang, Z.Z.; Wang, Z.D.; Zhao, R.Z.; Zhang, X.; Wang, Y.D. Water-soluble ZnO quantum dots modified by (3-aminopropyl) triethoxysilane: The promising fluorescent probe for the selective detection of Cu<sup>2+</sup> ion in drinking water. <span class='html-italic'>J. Alloys Compd.</span> <b>2020</b>, <span class='html-italic'>825</span>, 153904. [<a href="https://scholar.google.com/scholar_lookup?title=Water-soluble+ZnO+quantum+dots+modified+by+(3-aminopropyl)+triethoxysilane:+The+promising+fluorescent+probe+for+the+selective+detection+of+Cu2++ion+in+drinking+water&author=Zou,+T.&author=Xing,+X.X.&author=Yang,+Y.&author=Wang,+Z.Z.&author=Wang,+Z.D.&author=Zhao,+R.Z.&author=Zhang,+X.&author=Wang,+Y.D.&publication_year=2020&journal=J.+Alloys+Compd.&volume=825&pages=153904&doi=10.1016/j.jallcom.2020.153904" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.jallcom.2020.153904" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B64-chemosensors-11-00405' class='html-xx' data-content='64.'>Liu, X.; Yang, Y.; Xing, X.X.; Wang, Y.D. Grey level replaces fluorescent intensity: Fluorescent paper sensor based on ZnO nanoparticles for quantitative detection of Cu<sup>2+</sup> without photoluminescence spectrometer. <span class='html-italic'>Sens. Actuators B Chem.</span> <b>2018</b>, <span class='html-italic'>255</span>, 2356–2366. [<a href="https://scholar.google.com/scholar_lookup?title=Grey+level+replaces+fluorescent+intensity:+Fluorescent+paper+sensor+based+on+ZnO+nanoparticles+for+quantitative+detection+of+Cu2++without+photoluminescence+spectrometer&author=Liu,+X.&author=Yang,+Y.&author=Xing,+X.X.&author=Wang,+Y.D.&publication_year=2018&journal=Sens.+Actuators+B+Chem.&volume=255&pages=2356%E2%80%932366&doi=10.1016/j.snb.2017.09.044" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.snb.2017.09.044" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B65-chemosensors-11-00405' class='html-xx' data-content='65.'>Liu, J.M.; Lin, L.P.; Wang, X.X.; Lin, S.Q.; Cai, W.L.; Zhang, L.H.; Zheng, Z.Y. Highly selective and sensitive detection of Cu<sup>2+</sup> with lysine enhancing bovine serum albumin modified-carbon dots fluorescent probe. <span class='html-italic'>Analyst</span> <b>2012</b>, <span class='html-italic'>137</span>, 2637. [<a href="https://scholar.google.com/scholar_lookup?title=Highly+selective+and+sensitive+detection+of+Cu2++with+lysine+enhancing+bovine+serum+albumin+modified-carbon+dots+fluorescent+probe&author=Liu,+J.M.&author=Lin,+L.P.&author=Wang,+X.X.&author=Lin,+S.Q.&author=Cai,+W.L.&author=Zhang,+L.H.&author=Zheng,+Z.Y.&publication_year=2012&journal=Analyst&volume=137&pages=2637&doi=10.1039/c2an35130g" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1039/c2an35130g" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B66-chemosensors-11-00405' class='html-xx' data-content='66.'>Dong, Y.Q.; Wang, R.X.; Li, G.; Chen, C.Q.; Chi, Y.W.; Chen, G.N. Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions. <span class='html-italic'>Anal. Chem.</span> <b>2012</b>, <span class='html-italic'>84</span>, 6220–6224. [<a href="https://scholar.google.com/scholar_lookup?title=Polyamine-functionalized+carbon+quantum+dots+as+fluorescent+probes+for+selective+and+sensitive+detection+of+copper+ions&author=Dong,+Y.Q.&author=Wang,+R.X.&author=Li,+G.&author=Chen,+C.Q.&author=Chi,+Y.W.&author=Chen,+G.N.&publication_year=2012&journal=Anal.+Chem.&volume=84&pages=6220%E2%80%936224&doi=10.1021/ac3012126" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1021/ac3012126" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B67-chemosensors-11-00405' class='html-xx' data-content='67.'>Wang, Z.M.; Zhou, C.; Wu, S.W.; Sun, C.Y. Ion-imprinted polymer modified with carbon quantum dots as a highly sensitive copper (II) ion probe. <span class='html-italic'>Polymers</span> <b>2021</b>, <span class='html-italic'>13</span>, 1376. [<a href="https://scholar.google.com/scholar_lookup?title=Ion-imprinted+polymer+modified+with+carbon+quantum+dots+as+a+highly+sensitive+copper+(II)+ion+probe&author=Wang,+Z.M.&author=Zhou,+C.&author=Wu,+S.W.&author=Sun,+C.Y.&publication_year=2021&journal=Polymers&volume=13&pages=1376&doi=10.3390/polym13091376" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/polym13091376" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B68-chemosensors-11-00405' class='html-xx' data-content='68.'>Jiang, X.M.; Kou, Y.X.; Lu, J.J.; Xue, Y.Y.; Wang, M.J.; Tian, B.W.; Tan, L. Fluorescence “on-off-on” assay of copper ions and EDTA using amino-functionalized graphene quantum dots. <span class='html-italic'>J. Fluoresc.</span> <b>2020</b>, <span class='html-italic'>30</span>, 301–308. [<a href="https://scholar.google.com/scholar_lookup?title=Fluorescence+%E2%80%9Con-off-on%E2%80%9D+assay+of+copper+ions+and+EDTA+using+amino-functionalized+graphene+quantum+dots&author=Jiang,+X.M.&author=Kou,+Y.X.&author=Lu,+J.J.&author=Xue,+Y.Y.&author=Wang,+M.J.&author=Tian,+B.W.&author=Tan,+L.&publication_year=2020&journal=J.+Fluoresc.&volume=30&pages=301%E2%80%93308&doi=10.1007/s10895-020-02497-z" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s10895-020-02497-z" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B69-chemosensors-11-00405' class='html-xx' data-content='69.'>Liu, Y.F.; Zhu, T.; Deng, M.; Tang, X.S.; Han, S.; Liu, A.P.; Bai, Y.Z.; Qu, D.R.; Huang, X.B.; Qiu, F. Selective and sensitive detection of copper (II) based on fluorescent zinc-doped AgInS<sub>2</sub> quantum dots. <span class='html-italic'>J. Lumin.</span> <b>2018</b>, <span class='html-italic'>201</span>, 182–188. [<a href="https://scholar.google.com/scholar_lookup?title=Selective+and+sensitive+detection+of+copper+(II)+based+on+fluorescent+zinc-doped+AgInS2+quantum+dots&author=Liu,+Y.F.&author=Zhu,+T.&author=Deng,+M.&author=Tang,+X.S.&author=Han,+S.&author=Liu,+A.P.&author=Bai,+Y.Z.&author=Qu,+D.R.&author=Huang,+X.B.&author=Qiu,+F.&publication_year=2018&journal=J.+Lumin.&volume=201&pages=182%E2%80%93188&doi=10.1016/j.jlumin.2018.04.046" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.jlumin.2018.04.046" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B70-chemosensors-11-00405' class='html-xx' data-content='70.'>Jiang, P.; Li, S.L.; Ha, M.L.; Liu, Y.; Chen, Z.L. Biocompatible Ag<sub>2</sub>S quantum dots for highly sensitive detection of copper ions. <span class='html-italic'>Analyst</span> <b>2019</b>, <span class='html-italic'>144</span>, 2604–2610. [<a href="https://scholar.google.com/scholar_lookup?title=Biocompatible+Ag2S+quantum+dots+for+highly+sensitive+detection+of+copper+ions&author=Jiang,+P.&author=Li,+S.L.&author=Ha,+M.L.&author=Liu,+Y.&author=Chen,+Z.L.&publication_year=2019&journal=Analyst&volume=144&pages=2604%E2%80%932610&doi=10.1039/C9AN00096H" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1039/C9AN00096H" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B71-chemosensors-11-00405' class='html-xx' data-content='71.'>Zhou, Q.X.; Li, Z.F.; Wang, Q.F.; Peng, L.; Luo, S.H.; Gu, F.L. Polymer-capped CdSe/ZnS quantum dots for the sensitive detection of Cu<sup>2+</sup> and Hg<sup>2+</sup> and the quenching mechanism. <span class='html-italic'>Anal. Methods</span> <b>2021</b>, <span class='html-italic'>13</span>, 2305–2312. [<a href="https://scholar.google.com/scholar_lookup?title=Polymer-capped+CdSe/ZnS+quantum+dots+for+the+sensitive+detection+of+Cu2++and+Hg2++and+the+quenching+mechanism&author=Zhou,+Q.X.&author=Li,+Z.F.&author=Wang,+Q.F.&author=Peng,+L.&author=Luo,+S.H.&author=Gu,+F.L.&publication_year=2021&journal=Anal.+Methods&volume=13&pages=2305%E2%80%932312&doi=10.1039/D1AY00432H" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1039/D1AY00432H" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B72-chemosensors-11-00405' class='html-xx' data-content='72.'>Xie, Y.F.; Jiang, Y.J.; Zou, H.Y.; Wang, J.; Huang, C.Z. Discrimination of copper and silver ions based on the label-free quantum dots. <span class='html-italic'>Talanta</span> <b>2020</b>, <span class='html-italic'>220</span>, 121430. [<a href="https://scholar.google.com/scholar_lookup?title=Discrimination+of+copper+and+silver+ions+based+on+the+label-free+quantum+dots&author=Xie,+Y.F.&author=Jiang,+Y.J.&author=Zou,+H.Y.&author=Wang,+J.&author=Huang,+C.Z.&publication_year=2020&journal=Talanta&volume=220&pages=121430&doi=10.1016/j.talanta.2020.121430&pmid=32928435" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.talanta.2020.121430" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/32928435" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B73-chemosensors-11-00405' class='html-xx' data-content='73.'>Liu, Y.J.; Zhu, Y.; Liu, X.Y.; Dong, L.M.; Zheng, Q.L.; Kang, S.; He, Y.H.; Wang, J.; Abd El-Aty, A.M. CdSe/ZnS QDs embedded polyethersulfone fluorescence composite membrane for sensitive detection of copper ions in various drinks. <span class='html-italic'>J. Environ. Sci. Health Part B</span> <b>2023</b>, <span class='html-italic'>58</span>, 120–123. [<a href="https://scholar.google.com/scholar_lookup?title=CdSe/ZnS+QDs+embedded+polyethersulfone+fluorescence+composite+membrane+for+sensitive+detection+of+copper+ions+in+various+drinks&author=Liu,+Y.J.&author=Zhu,+Y.&author=Liu,+X.Y.&author=Dong,+L.M.&author=Zheng,+Q.L.&author=Kang,+S.&author=He,+Y.H.&author=Wang,+J.&author=Abd+El-Aty,+A.M.&publication_year=2023&journal=J.+Environ.+Sci.+Health+Part+B&volume=58&pages=120%E2%80%93123&doi=10.1080/03601234.2023.2172280&pmid=36734347" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1080/03601234.2023.2172280" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/36734347" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B74-chemosensors-11-00405' class='html-xx' data-content='74.'>Passos, S.G.B.; Kunst, T.H.; Freitas, D.V.; Navarro, M. Paired electrosynthesis of ZnSe/ZnS quantum dots and Cu<sup>2+</sup> detection by fluorescence quenching. <span class='html-italic'>J. Lumin.</span> <b>2020</b>, <span class='html-italic'>228</span>, 117611. [<a href="https://scholar.google.com/scholar_lookup?title=Paired+electrosynthesis+of+ZnSe/ZnS+quantum+dots+and+Cu2++detection+by+fluorescence+quenching&author=Passos,+S.G.B.&author=Kunst,+T.H.&author=Freitas,+D.V.&author=Navarro,+M.&publication_year=2020&journal=J.+Lumin.&volume=228&pages=117611&doi=10.1016/j.jlumin.2020.117611" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.jlumin.2020.117611" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B75-chemosensors-11-00405' class='html-xx' data-content='75.'>Omer, K.M. Highly passivated phosphorous and nitrogen co-doped carbon quantum dots and fluorometric assay for detection of copper ions. <span class='html-italic'>Anal. Bioanal. Chem.</span> <b>2018</b>, <span class='html-italic'>410</span>, 6331–6336. [<a href="https://scholar.google.com/scholar_lookup?title=Highly+passivated+phosphorous+and+nitrogen+co-doped+carbon+quantum+dots+and+fluorometric+assay+for+detection+of+copper+ions&author=Omer,+K.M.&publication_year=2018&journal=Anal.+Bioanal.+Chem.&volume=410&pages=6331%E2%80%936336&doi=10.1007/s00216-018-1242-0&pmid=30006723" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s00216-018-1242-0" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/30006723" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B76-chemosensors-11-00405' class='html-xx' data-content='76.'>Liao, S.; Huang, X.Q.; Yang, H.; Chen, X.Q. Nitrogen-doped carbon quantum dots as a fluorescent probe to detect copper ions, glutathione, and intracellular pH. <span class='html-italic'>Anal. Bioanal. Chem.</span> <b>2018</b>, <span class='html-italic'>410</span>, 7701–7710. [<a href="https://scholar.google.com/scholar_lookup?title=Nitrogen-doped+carbon+quantum+dots+as+a+fluorescent+probe+to+detect+copper+ions,+glutathione,+and+intracellular+pH&author=Liao,+S.&author=Huang,+X.Q.&author=Yang,+H.&author=Chen,+X.Q.&publication_year=2018&journal=Anal.+Bioanal.+Chem.&volume=410&pages=7701%E2%80%937710&doi=10.1007/s00216-018-1387-x" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s00216-018-1387-x" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B77-chemosensors-11-00405' class='html-xx' data-content='77.'>El-Malla, S.F.; Elshenawy, E.A.; Hammad, S.F.; Mansour, F.R. Rapid microwave synthesis of N, S-doped carbon quantum dots as a novel turn off-on sensor for label-free determination of copper and etidronate disodium. <span class='html-italic'>Anal. Chim. Acta</span> <b>2022</b>, <span class='html-italic'>1197</span>, 339491. [<a href="https://scholar.google.com/scholar_lookup?title=Rapid+microwave+synthesis+of+N,+S-doped+carbon+quantum+dots+as+a+novel+turn+off-on+sensor+for+label-free+determination+of+copper+and+etidronate+disodium&author=El-Malla,+S.F.&author=Elshenawy,+E.A.&author=Hammad,+S.F.&author=Mansour,+F.R.&publication_year=2022&journal=Anal.+Chim.+Acta&volume=1197&pages=339491&doi=10.1016/j.aca.2022.339491" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.aca.2022.339491" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B78-chemosensors-11-00405' class='html-xx' data-content='78.'>Preethi, M.; Viswanathan, C.; Ponpandian, N. Fluorescence quenching mechanism of P-doped carbon quantum dots as fluorescent sensor for Cu<sup>2+</sup> ions. <span class='html-italic'>Colloids Surf. A Physicochem. Eng. Asp.</span> <b>2022</b>, <span class='html-italic'>653</span>, 129942. [<a href="https://scholar.google.com/scholar_lookup?title=Fluorescence+quenching+mechanism+of+P-doped+carbon+quantum+dots+as+fluorescent+sensor+for+Cu2++ions&author=Preethi,+M.&author=Viswanathan,+C.&author=Ponpandian,+N.&publication_year=2022&journal=Colloids+Surf.+A+Physicochem.+Eng.+Asp.&volume=653&pages=129942&doi=10.1016/j.colsurfa.2022.129942" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.colsurfa.2022.129942" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B79-chemosensors-11-00405' class='html-xx' data-content='79.'>Gao, B.; Chen, D.; Gu, B.L.; Wang, T.; Wang, Z.H.; Xie, F.; Yang, Y.S.; Guo, Q.L.; Wang, G. Facile and highly effective synthesis of nitrogen-doped graphene quantum dots as a fluorescent sensing probe for Cu<sup>2+</sup> detection. <span class='html-italic'>Curr. Appl. Phys.</span> <b>2020</b>, <span class='html-italic'>20</span>, 538–544. [<a href="https://scholar.google.com/scholar_lookup?title=Facile+and+highly+effective+synthesis+of+nitrogen-doped+graphene+quantum+dots+as+a+fluorescent+sensing+probe+for+Cu2++detection&author=Gao,+B.&author=Chen,+D.&author=Gu,+B.L.&author=Wang,+T.&author=Wang,+Z.H.&author=Xie,+F.&author=Yang,+Y.S.&author=Guo,+Q.L.&author=Wang,+G.&publication_year=2020&journal=Curr.+Appl.+Phys.&volume=20&pages=538%E2%80%93544&doi=10.1016/j.cap.2020.01.018" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.cap.2020.01.018" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B80-chemosensors-11-00405' class='html-xx' data-content='80.'>Wang, F.X.; Gu, Z.Y.; Lei, W.; Wang, W.J.; Xia, X.F.; Hao, Q.L. Graphene quantum dots as a fluorescent sensing platform for highly efficient detection of copper(II) ions. <span class='html-italic'>Sens. Actuators B Chem.</span> <b>2014</b>, <span class='html-italic'>190</span>, 516–522. [<a href="https://scholar.google.com/scholar_lookup?title=Graphene+quantum+dots+as+a+fluorescent+sensing+platform+for+highly+efficient+detection+of+copper(II)+ions&author=Wang,+F.X.&author=Gu,+Z.Y.&author=Lei,+W.&author=Wang,+W.J.&author=Xia,+X.F.&author=Hao,+Q.L.&publication_year=2014&journal=Sens.+Actuators+B+Chem.&volume=190&pages=516%E2%80%93522&doi=10.1016/j.snb.2013.09.009" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.snb.2013.09.009" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B81-chemosensors-11-00405' class='html-xx' data-content='81.'>Liu, X.; Han, J.; Hou, X.D.; Altincicek, F.; Oncel, N.; Pierce, D.; Wu, X.; Zhao, J.X. One-pot synthesis of graphene quantum dots using humic acid and its application for copper (II) ion detection. <span class='html-italic'>J. Mater. Sci.</span> <b>2021</b>, <span class='html-italic'>56</span>, 4991–5005. [<a href="https://scholar.google.com/scholar_lookup?title=One-pot+synthesis+of+graphene+quantum+dots+using+humic+acid+and+its+application+for+copper+(II)+ion+detection&author=Liu,+X.&author=Han,+J.&author=Hou,+X.D.&author=Altincicek,+F.&author=Oncel,+N.&author=Pierce,+D.&author=Wu,+X.&author=Zhao,+J.X.&publication_year=2021&journal=J.+Mater.+Sci.&volume=56&pages=4991%E2%80%935005&doi=10.1007/s10853-020-05583-6" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s10853-020-05583-6" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B82-chemosensors-11-00405' class='html-xx' data-content='82.'>Yao, J.; Wang, L. Graphene quantum dots as nanosensor for rapid and label-free dual detection of Cu<sup>2+</sup> and tiopronin by means of fluorescence “on-off-on” switching: Mechanism and molecular logic gate. <span class='html-italic'>New J. Chem.</span> <b>2021</b>, <span class='html-italic'>45</span>, 20649–20659. [<a href="https://scholar.google.com/scholar_lookup?title=Graphene+quantum+dots+as+nanosensor+for+rapid+and+label-free+dual+detection+of+Cu2++and+tiopronin+by+means+of+fluorescence+%E2%80%9Con-off-on%E2%80%9D+switching:+Mechanism+and+molecular+logic+gate&author=Yao,+J.&author=Wang,+L.&publication_year=2021&journal=New+J.+Chem.&volume=45&pages=20649%E2%80%9320659&doi=10.1039/D1NJ01908B" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1039/D1NJ01908B" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B83-chemosensors-11-00405' class='html-xx' data-content='83.'>Li, W.T.; Jiang, N.J.; Zhang, L.M.; Chen, Y.Q.; Gao, J.; Zhang, J.H.; Yang, B.S.; He, J.X. Facile synthesis of aminated graphene quantum dots for promising and selective detection of cobalt and copper ions in aqueous media. <span class='html-italic'>Molecules</span> <b>2022</b>, <span class='html-italic'>27</span>, 7844. [<a href="https://scholar.google.com/scholar_lookup?title=Facile+synthesis+of+aminated+graphene+quantum+dots+for+promising+and+selective+detection+of+cobalt+and+copper+ions+in+aqueous+media&author=Li,+W.T.&author=Jiang,+N.J.&author=Zhang,+L.M.&author=Chen,+Y.Q.&author=Gao,+J.&author=Zhang,+J.H.&author=Yang,+B.S.&author=He,+J.X.&publication_year=2022&journal=Molecules&volume=27&pages=7844&doi=10.3390/molecules27227844&pmid=36431943" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/molecules27227844" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/36431943" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B84-chemosensors-11-00405' class='html-xx' data-content='84.'>Tam, T.V.; Choi, W.M. One-pot synthesis of highly fluorescent amino-functionalized graphene quantum dots for effective detection of copper ions. <span class='html-italic'>Curr. Appl. Phys.</span> <b>2018</b>, <span class='html-italic'>18</span>, 1255–1260. [<a href="https://scholar.google.com/scholar_lookup?title=One-pot+synthesis+of+highly+fluorescent+amino-functionalized+graphene+quantum+dots+for+effective+detection+of+copper+ions&author=Tam,+T.V.&author=Choi,+W.M.&publication_year=2018&journal=Curr.+Appl.+Phys.&volume=18&pages=1255%E2%80%931260&doi=10.1016/j.cap.2018.07.002" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.cap.2018.07.002" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B85-chemosensors-11-00405' class='html-xx' data-content='85.'>Choudhary, Y.S.; Nageswaran, G. Branched mercapto acid capped CdTe quantum dots as fluorescence probes for Hg<sup>2+</sup> detection. <span class='html-italic'>Sens. Bio-Sens. Res.</span> <b>2019</b>, <span class='html-italic'>23</span>, 100278. [<a href="https://scholar.google.com/scholar_lookup?title=Branched+mercapto+acid+capped+CdTe+quantum+dots+as+fluorescence+probes+for+Hg2++detection&author=Choudhary,+Y.S.&author=Nageswaran,+G.&publication_year=2019&journal=Sens.+Bio-Sens.+Res.&volume=23&pages=100278&doi=10.1016/j.sbsr.2019.100278" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.sbsr.2019.100278" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B86-chemosensors-11-00405' class='html-xx' data-content='86.'>Kaur, J.; Komal; Renu; Kumar, V.; Tikoo, K.B.; Bansal, S.; Kaushik, A.; Singhal, S. Glutathione modified fluorescent CdS QDs synthesized using environmentally benign pathway for detection of mercury ions in aqueous phase. <span class='html-italic'>J. Fluoresc.</span> <b>2020</b>, <span class='html-italic'>30</span>, 773–785. [<a href="https://scholar.google.com/scholar_lookup?title=Glutathione+modified+fluorescent+CdS+QDs+synthesized+using+environmentally+benign+pathway+for+detection+of+mercury+ions+in+aqueous+phase&author=Kaur,+J.&author=Komal&author=Renu&author=Kumar,+V.&author=Tikoo,+K.B.&author=Bansal,+S.&author=Kaushik,+A.&author=Singhal,+S.&publication_year=2020&journal=J.+Fluoresc.&volume=30&pages=773%E2%80%93785&doi=10.1007/s10895-020-02545-8&pmid=32418161" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s10895-020-02545-8" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/32418161" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B87-chemosensors-11-00405' class='html-xx' data-content='87.'>You, J.Q.; Yan, D.; He, Y.; Zhou, J.G.; Ge, Y.L.; Song, G.W. Polyethyleneimine-protected Ag<sub>2</sub>S quantum dots for near-infrared fluorescence-enhanced detection of trace-level Hg<sup>2+</sup> in water. <span class='html-italic'>J. Water Chem. Technol.</span> <b>2020</b>, <span class='html-italic'>42</span>, 36–44. [<a href="https://scholar.google.com/scholar_lookup?title=Polyethyleneimine-protected+Ag2S+quantum+dots+for+near-infrared+fluorescence-enhanced+detection+of+trace-level+Hg2++in+water&author=You,+J.Q.&author=Yan,+D.&author=He,+Y.&author=Zhou,+J.G.&author=Ge,+Y.L.&author=Song,+G.W.&publication_year=2020&journal=J.+Water+Chem.+Technol.&volume=42&pages=36%E2%80%9344&doi=10.3103/S1063455X20010105" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3103/S1063455X20010105" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B88-chemosensors-11-00405' class='html-xx' data-content='88.'>Granados-Oliveros, G.; Pineros, B.S.G.; Calderon, F.G.O. CdSe/ZnS quantum dots capped with oleic acid and L-glutathione: Structural properties and application in detection of Hg<sup>2+</sup>. <span class='html-italic'>J. Mol. Struct.</span> <b>2022</b>, <span class='html-italic'>1254</span>, 132293. [<a href="https://scholar.google.com/scholar_lookup?title=CdSe/ZnS+quantum+dots+capped+with+oleic+acid+and+L-glutathione:+Structural+properties+and+application+in+detection+of+Hg2+&author=Granados-Oliveros,+G.&author=Pineros,+B.S.G.&author=Calderon,+F.G.O.&publication_year=2022&journal=J.+Mol.+Struct.&volume=1254&pages=132293&doi=10.1016/j.molstruc.2021.132293" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.molstruc.2021.132293" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B89-chemosensors-11-00405' class='html-xx' data-content='89.'>Yang, Y.; Xiao, X.C.; Xing, X.X.; Wang, Z.Z.; Zou, T.; Wang, Z.D.; Wang, Y.D. One-pot synthesis of N-doped graphene quantum dots as highly sensitive fluorescent sensor for detection of mercury ions water solutions. <span class='html-italic'>Mater. Res. Express</span> <b>2019</b>, <span class='html-italic'>6</span>, 095615. [<a href="https://scholar.google.com/scholar_lookup?title=One-pot+synthesis+of+N-doped+graphene+quantum+dots+as+highly+sensitive+fluorescent+sensor+for+detection+of+mercury+ions+water+solutions&author=Yang,+Y.&author=Xiao,+X.C.&author=Xing,+X.X.&author=Wang,+Z.Z.&author=Zou,+T.&author=Wang,+Z.D.&author=Wang,+Y.D.&publication_year=2019&journal=Mater.+Res.+Express&volume=6&pages=095615&doi=10.1088/2053-1591/ab3006" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1088/2053-1591/ab3006" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B90-chemosensors-11-00405' class='html-xx' data-content='90.'>Yang, Y.; Zou, T.; Wang, Z.Z.; Xing, X.X.; Peng, S.J.; Zhao, R.J.; Zhang, X.; Wang, Y.D. The fluorescent quenching mechanism of N and S co-doped graphene quantum dots with Fe<sup>3+</sup> and Hg<sup>2+</sup> ions and their application as a novel fluorescent sensor. <span class='html-italic'>Nanomaterials</span> <b>2019</b>, <span class='html-italic'>9</span>, 738. [<a href="https://scholar.google.com/scholar_lookup?title=The+fluorescent+quenching+mechanism+of+N+and+S+co-doped+graphene+quantum+dots+with+Fe3++and+Hg2++ions+and+their+application+as+a+novel+fluorescent+sensor&author=Yang,+Y.&author=Zou,+T.&author=Wang,+Z.Z.&author=Xing,+X.X.&author=Peng,+S.J.&author=Zhao,+R.J.&author=Zhang,+X.&author=Wang,+Y.D.&publication_year=2019&journal=Nanomaterials&volume=9&pages=738&doi=10.3390/nano9050738" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/nano9050738" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.mdpi.com/2079-4991/9/5/738/pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B91-chemosensors-11-00405' class='html-xx' data-content='91.'>Yang, Y.; Xiao, X.C.; Xing, X.X.; Wang, Z.Z.; Zou, T.; Wang, Z.D.; Zhao, R.J.; Wang, Y.D. Rhodamine B assisted graphene quantum dots flourescent sensor system for sensitive recognition of mercury ions. <span class='html-italic'>J. Lumin.</span> <b>2019</b>, <span class='html-italic'>207</span>, 273–281. [<a href="https://scholar.google.com/scholar_lookup?title=Rhodamine+B+assisted+graphene+quantum+dots+flourescent+sensor+system+for+sensitive+recognition+of+mercury+ions&author=Yang,+Y.&author=Xiao,+X.C.&author=Xing,+X.X.&author=Wang,+Z.Z.&author=Zou,+T.&author=Wang,+Z.D.&author=Zhao,+R.J.&author=Wang,+Y.D.&publication_year=2019&journal=J.+Lumin.&volume=207&pages=273%E2%80%93281&doi=10.1016/j.jlumin.2018.11.033" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.jlumin.2018.11.033" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B92-chemosensors-11-00405' class='html-xx' data-content='92.'>Khose, R.V.; Chakraborty, G.; Bondarde, M.P.; Wadekar, P.H.; Ray, A.K.; Some, S. Red-fluorescent graphene quantum dots from guava leaf as a turn-off probe for sensing aqueous Hg(II). <span class='html-italic'>New J. Chem.</span> <b>2021</b>, <span class='html-italic'>45</span>, 4617–4625. [<a href="https://scholar.google.com/scholar_lookup?title=Red-fluorescent+graphene+quantum+dots+from+guava+leaf+as+a+turn-off+probe+for+sensing+aqueous+Hg(II)&author=Khose,+R.V.&author=Chakraborty,+G.&author=Bondarde,+M.P.&author=Wadekar,+P.H.&author=Ray,+A.K.&author=Some,+S.&publication_year=2021&journal=New+J.+Chem.&volume=45&pages=4617%E2%80%934625&doi=10.1039/D0NJ06259F" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1039/D0NJ06259F" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B93-chemosensors-11-00405' class='html-xx' data-content='93.'>Llaver, M.; Barrionuevo, S.D.; Prieto, E.; Wuilloud, R.G.; Ibanez, F.J. Functionalized graphene quantum dots obtained from graphene foams used for highly selective detection of Hg<sup>2+</sup> in real samples. <span class='html-italic'>Anal. Chim. Acta</span> <b>2022</b>, <span class='html-italic'>1232</span>, 340422. [<a href="https://scholar.google.com/scholar_lookup?title=Functionalized+graphene+quantum+dots+obtained+from+graphene+foams+used+for+highly+selective+detection+of+Hg2++in+real+samples&author=Llaver,+M.&author=Barrionuevo,+S.D.&author=Prieto,+E.&author=Wuilloud,+R.G.&author=Ibanez,+F.J.&publication_year=2022&journal=Anal.+Chim.+Acta&volume=1232&pages=340422&doi=10.1016/j.aca.2022.340422&pmid=36257729" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.aca.2022.340422" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/36257729" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B94-chemosensors-11-00405' class='html-xx' data-content='94.'>Abdolmohammad-Zadeh, H.; Azari, Z.; Pourbasheer, E. Fluorescence resonance energy transfer between carbon quantum dots and silver nanoparticles: Application to mercuric ion sensing. <span class='html-italic'>Spectrochim. Acta Part A Mol. Biomol. Spectrosc.</span> <b>2021</b>, <span class='html-italic'>245</span>, 118924. [<a href="https://scholar.google.com/scholar_lookup?title=Fluorescence+resonance+energy+transfer+between+carbon+quantum+dots+and+silver+nanoparticles:+Application+to+mercuric+ion+sensing&author=Abdolmohammad-Zadeh,+H.&author=Azari,+Z.&author=Pourbasheer,+E.&publication_year=2021&journal=Spectrochim.+Acta+Part+A+Mol.+Biomol.+Spectrosc.&volume=245&pages=118924&doi=10.1016/j.saa.2020.118924&pmid=32950856" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.saa.2020.118924" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/32950856" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B95-chemosensors-11-00405' class='html-xx' data-content='95.'>Dhandapani, E.; Maadeswaran, P.; Raj, R.M.; Raj, V.; Kandiah, K.; Duraisamy, N. A potential forecast of carbon quantum dots (CQDs) as an ultrasensitive and selective fluorescence probe for Hg (II) ions sensing. <span class='html-italic'>Mater. Sci. Eng. B</span> <b>2023</b>, <span class='html-italic'>287</span>, 116098. [<a href="https://scholar.google.com/scholar_lookup?title=A+potential+forecast+of+carbon+quantum+dots+(CQDs)+as+an+ultrasensitive+and+selective+fluorescence+probe+for+Hg+(II)+ions+sensing&author=Dhandapani,+E.&author=Maadeswaran,+P.&author=Raj,+R.M.&author=Raj,+V.&author=Kandiah,+K.&author=Duraisamy,+N.&publication_year=2023&journal=Mater.+Sci.+Eng.+B&volume=287&pages=116098&doi=10.1016/j.mseb.2022.116098" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.mseb.2022.116098" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B96-chemosensors-11-00405' class='html-xx' data-content='96.'>Hao, Y.Q.; Yu, L.Y.; Li, T.T.; Chen, L.H.; Han, X.; Chai, F. The synthesis of carbon dots by folic acid and utilized as sustainable probe and paper sensor for Hg<sup>2+</sup> sensing and cellular imaging. <span class='html-italic'>Spectrochim. Acta A Mol. Biomol. Spectrosc.</span> <b>2023</b>, <span class='html-italic'>285</span>, 121865. [<a href="https://scholar.google.com/scholar_lookup?title=The+synthesis+of+carbon+dots+by+folic+acid+and+utilized+as+sustainable+probe+and+paper+sensor+for+Hg2++sensing+and+cellular+imaging&author=Hao,+Y.Q.&author=Yu,+L.Y.&author=Li,+T.T.&author=Chen,+L.H.&author=Han,+X.&author=Chai,+F.&publication_year=2023&journal=Spectrochim.+Acta+A+Mol.+Biomol.+Spectrosc.&volume=285&pages=121865&doi=10.1016/j.saa.2022.121865" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.saa.2022.121865" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B97-chemosensors-11-00405' class='html-xx' data-content='97.'>Dewangan, L.; Chawre, Y.; Korram, J.; Karbhal, I.; Nagwanshi, R.; Jain, V.; Satnami, M.L. N-doped, silver, and cerium co-doped carbon quantum dots based sensor for detection of Hg<sup>2+</sup> and captopril. <span class='html-italic'>Microchem. J.</span> <b>2022</b>, <span class='html-italic'>182</span>, 107867. [<a href="https://scholar.google.com/scholar_lookup?title=N-doped,+silver,+and+cerium+co-doped+carbon+quantum+dots+based+sensor+for+detection+of+Hg2++and+captopril&author=Dewangan,+L.&author=Chawre,+Y.&author=Korram,+J.&author=Karbhal,+I.&author=Nagwanshi,+R.&author=Jain,+V.&author=Satnami,+M.L.&publication_year=2022&journal=Microchem.+J.&volume=182&pages=107867&doi=10.1016/j.microc.2022.107867" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.microc.2022.107867" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B98-chemosensors-11-00405' class='html-xx' data-content='98.'>Qi, H.Y.; Sun, X.N.; Jing, T.; Li, J.L.; Li, J. Integration detection of mercury(II) and GSH with a fluorescent “on-off-on” switch sensor based on nitrogen, sulfur co-doped carbon dots. <span class='html-italic'>RSC Adv.</span> <b>2022</b>, <span class='html-italic'>12</span>, 1989–1997. [<a href="https://scholar.google.com/scholar_lookup?title=Integration+detection+of+mercury(II)+and+GSH+with+a+fluorescent+%E2%80%9Con-off-on%E2%80%9D+switch+sensor+based+on+nitrogen,+sulfur+co-doped+carbon+dots&author=Qi,+H.Y.&author=Sun,+X.N.&author=Jing,+T.&author=Li,+J.L.&author=Li,+J.&publication_year=2022&journal=RSC+Adv.&volume=12&pages=1989%E2%80%931997&doi=10.1039/D1RA08890D" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1039/D1RA08890D" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B99-chemosensors-11-00405' class='html-xx' data-content='99.'>Xing, X.X.; Yang, Y.; Zou, T.; Wang, Z.Z.; Wang, Z.D.; Zhao, R.J.; Zhang, X.; Wang, Y.D. Thioglycolic acid-capped ZnSe quantum dots as nanoprobe for cobalt(II) and iron(III) via measurement of grey level, UV-vis spectra and dynamic light scattering. <span class='html-italic'>Microchim. Acta</span> <b>2019</b>, <span class='html-italic'>186</span>, 444. [<a href="https://scholar.google.com/scholar_lookup?title=Thioglycolic+acid-capped+ZnSe+quantum+dots+as+nanoprobe+for+cobalt(II)+and+iron(III)+via+measurement+of+grey+level,+UV-vis+spectra+and+dynamic+light+scattering&author=Xing,+X.X.&author=Yang,+Y.&author=Zou,+T.&author=Wang,+Z.Z.&author=Wang,+Z.D.&author=Zhao,+R.J.&author=Zhang,+X.&author=Wang,+Y.D.&publication_year=2019&journal=Microchim.+Acta&volume=186&pages=444&doi=10.1007/s00604-019-3561-z" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s00604-019-3561-z" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B100-chemosensors-11-00405' class='html-xxx' data-content='100.'>Ma, J.; Yu, H.H.; Jiang, X.; Luo, Z.Z.; Zheng, Y. High sensitivity label-free detection of Fe<sup>3+</sup> ion in aqueous solution using fluorescent MoS<sub>2</sub> quantum dots. <span class='html-italic'>Sens. Actuators B Chem.</span> <b>2019</b>, <span class='html-italic'>281</span>, 989–997. [<a href="https://scholar.google.com/scholar_lookup?title=High+sensitivity+label-free+detection+of+Fe3++ion+in+aqueous+solution+using+fluorescent+MoS2+quantum+dots&author=Ma,+J.&author=Yu,+H.H.&author=Jiang,+X.&author=Luo,+Z.Z.&author=Zheng,+Y.&publication_year=2019&journal=Sens.+Actuators+B+Chem.&volume=281&pages=989%E2%80%93997&doi=10.1016/j.snb.2018.11.039" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.snb.2018.11.039" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B101-chemosensors-11-00405' class='html-xxx' data-content='101.'>Huang, C.; Wang, H.W.; Xu, Y.J.; Ma, S.J.; Gong, B.L.; Ou, J.J. Carbon dot-functionalized macroporous adsorption resin for bifunctional ultra-sensitive detection and fast removal of iron(III) ions. <span class='html-italic'>Anal. Methods</span> <b>2022</b>, <span class='html-italic'>14</span>, 3727. [<a href="https://scholar.google.com/scholar_lookup?title=Carbon+dot-functionalized+macroporous+adsorption+resin+for+bifunctional+ultra-sensitive+detection+and+fast+removal+of+iron(III)+ions&author=Huang,+C.&author=Wang,+H.W.&author=Xu,+Y.J.&author=Ma,+S.J.&author=Gong,+B.L.&author=Ou,+J.J.&publication_year=2022&journal=Anal.+Methods&volume=14&pages=3727&doi=10.1039/D2AY01366E" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1039/D2AY01366E" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B102-chemosensors-11-00405' class='html-xxx' data-content='102.'>Zhou, M.J.; Guo, J.J.; Yang, C.X. Ratiometric fluorescence sensor for Fe<sup>3+</sup> ions detection based on quantum dot-doped hydrogel optical fiber. <span class='html-italic'>Sens. Actuators B Chem.</span> <b>2018</b>, <span class='html-italic'>264</span>, 52–58. [<a href="https://scholar.google.com/scholar_lookup?title=Ratiometric+fluorescence+sensor+for+Fe3++ions+detection+based+on+quantum+dot-doped+hydrogel+optical+fiber&author=Zhou,+M.J.&author=Guo,+J.J.&author=Yang,+C.X.&publication_year=2018&journal=Sens.+Actuators+B+Chem.&volume=264&pages=52%E2%80%9358&doi=10.1016/j.snb.2018.02.119" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.snb.2018.02.119" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B103-chemosensors-11-00405' class='html-xxx' data-content='103.'>Kuang, Y.S.; Wang, X.; Tian, X.K.; Yang, C.; Li, Y.; Nie, Y.L. Silica-embedded CdTe quantum dots functionalized with rhodamine derivative for instant visual detection of ferric ions in aqueous media. <span class='html-italic'>J. Photochem. Photobiol. A Chem.</span> <b>2019</b>, <span class='html-italic'>372</span>, 140–146. [<a href="https://scholar.google.com/scholar_lookup?title=Silica-embedded+CdTe+quantum+dots+functionalized+with+rhodamine+derivative+for+instant+visual+detection+of+ferric+ions+in+aqueous+media&author=Kuang,+Y.S.&author=Wang,+X.&author=Tian,+X.K.&author=Yang,+C.&author=Li,+Y.&author=Nie,+Y.L.&publication_year=2019&journal=J.+Photochem.+Photobiol.+A+Chem.&volume=372&pages=140%E2%80%93146&doi=10.1016/j.jphotochem.2018.12.015" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.jphotochem.2018.12.015" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B104-chemosensors-11-00405' class='html-xxx' data-content='104.'>Srivastava, R.R.; Singh, V.K.; Srivastava, A. Facile synthesis of highly fluorescent water-soluble SnS<sub>2</sub> QDs for effective detection of Fe<sup>3+</sup> and unveiling its fluorescence quenching mechanism. <span class='html-italic'>Opt. Mater.</span> <b>2020</b>, <span class='html-italic'>109</span>, 110337. [<a href="https://scholar.google.com/scholar_lookup?title=Facile+synthesis+of+highly+fluorescent+water-soluble+SnS2+QDs+for+effective+detection+of+Fe3++and+unveiling+its+fluorescence+quenching+mechanism&author=Srivastava,+R.R.&author=Singh,+V.K.&author=Srivastava,+A.&publication_year=2020&journal=Opt.+Mater.&volume=109&pages=110337&doi=10.1016/j.optmat.2020.110337" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.optmat.2020.110337" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B105-chemosensors-11-00405' class='html-xxx' data-content='105.'>Wu, D.M.; Qu, C.J.; Wang, J.Z.; Yang, R.; Qu, L.B. Highly sensitive and selective fluorescence sensing and imaging of Fe<sup>3+</sup> based on a novel nitrogen-doped graphene quantum dots. <span class='html-italic'>Luminescence</span> <b>2021</b>, <span class='html-italic'>36</span>, 1592–1599. [<a href="https://scholar.google.com/scholar_lookup?title=Highly+sensitive+and+selective+fluorescence+sensing+and+imaging+of+Fe3++based+on+a+novel+nitrogen-doped+graphene+quantum+dots&author=Wu,+D.M.&author=Qu,+C.J.&author=Wang,+J.Z.&author=Yang,+R.&author=Qu,+L.B.&publication_year=2021&journal=Luminescence&volume=36&pages=1592%E2%80%931599&doi=10.1002/bio.4062" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/bio.4062" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B106-chemosensors-11-00405' class='html-xxx' data-content='106.'>Wang, Z.H.; Chen, D.; Gu, B.L.; Gao, B.; Liu, Z.D.; Yang, Y.S.; Guo, Q.L.; Zheng, X.H.; Wang, G. Yellow emissive nitrogen-doped graphene quantum dots as a label-free fluorescent probe for Fe<sup>3+</sup> sensing and bioimaging. <span class='html-italic'>Diam. Relat. Mater.</span> <b>2020</b>, <span class='html-italic'>104</span>, 107749. [<a href="https://scholar.google.com/scholar_lookup?title=Yellow+emissive+nitrogen-doped+graphene+quantum+dots+as+a+label-free+fluorescent+probe+for+Fe3++sensing+and+bioimaging&author=Wang,+Z.H.&author=Chen,+D.&author=Gu,+B.L.&author=Gao,+B.&author=Liu,+Z.D.&author=Yang,+Y.S.&author=Guo,+Q.L.&author=Zheng,+X.H.&author=Wang,+G.&publication_year=2020&journal=Diam.+Relat.+Mater.&volume=104&pages=107749&doi=10.1016/j.diamond.2020.107749" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.diamond.2020.107749" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B107-chemosensors-11-00405' class='html-xxx' data-content='107.'>Lou, Y.; Ji, J.Y.; Qin, A.M.; Liao, L.; Li, Z.Y.; Chen, S.P.; Zhang, K.Y.; Ou, J. Cane molasses graphene quantum dots passivated by PEG functionalization for detection of metal ions. <span class='html-italic'>ACS Omega</span> <b>2020</b>, <span class='html-italic'>5</span>, 6763–6772. [<a href="https://scholar.google.com/scholar_lookup?title=Cane+molasses+graphene+quantum+dots+passivated+by+PEG+functionalization+for+detection+of+metal+ions&author=Lou,+Y.&author=Ji,+J.Y.&author=Qin,+A.M.&author=Liao,+L.&author=Li,+Z.Y.&author=Chen,+S.P.&author=Zhang,+K.Y.&author=Ou,+J.&publication_year=2020&journal=ACS+Omega&volume=5&pages=6763%E2%80%936772&doi=10.1021/acsomega.0c00098" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1021/acsomega.0c00098" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://pubs.acs.org/doi/pdf/10.1021/acsomega.0c00098" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B108-chemosensors-11-00405' class='html-xxx' data-content='108.'>Zhou, H.; Ou, M.G.; Sun, D.H.; Yang, C.L. Facile preparation of highly fluorescent nitrogen-doped graphene quantum dots for sensitive Fe<sup>3+</sup> detection. <span class='html-italic'>Opt. Laser Technol.</span> <b>2022</b>, <span class='html-italic'>156</span>, 108542. [<a href="https://scholar.google.com/scholar_lookup?title=Facile+preparation+of+highly+fluorescent+nitrogen-doped+graphene+quantum+dots+for+sensitive+Fe3++detection&author=Zhou,+H.&author=Ou,+M.G.&author=Sun,+D.H.&author=Yang,+C.L.&publication_year=2022&journal=Opt.+Laser+Technol.&volume=156&pages=108542&doi=10.1016/j.optlastec.2022.108542" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.optlastec.2022.108542" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B109-chemosensors-11-00405' class='html-xxx' data-content='109.'>Wu, S.W.; Zhou, C.; Ma, C.M.; Yin, Y.Z.; Sun, C.Y. Carbon quantum dots-based fluorescent hydrogel hybrid platform for sensitive detection of iron ions. <span class='html-italic'>J. Chem.</span> <b>2022</b>, <span class='html-italic'>2022</span>, 3737646. [<a href="https://scholar.google.com/scholar_lookup?title=Carbon+quantum+dots-based+fluorescent+hydrogel+hybrid+platform+for+sensitive+detection+of+iron+ions&author=Wu,+S.W.&author=Zhou,+C.&author=Ma,+C.M.&author=Yin,+Y.Z.&author=Sun,+C.Y.&publication_year=2022&journal=J.+Chem.&volume=2022&pages=3737646&doi=10.1155/2022/3737646" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1155/2022/3737646" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B110-chemosensors-11-00405' class='html-xxx' data-content='110.'>Huang, M.Q.; Tong, C.L. A dual-emission ratiometric fluorescence probe for highly selective and simultaneous detection of tetracycline and ferric ions in environmental water samples based on a boron-doped carbon quantum dot/CdTe-Eu<sup>3+</sup> composite. <span class='html-italic'>Environ. Sci. Nano</span> <b>2022</b>, <span class='html-italic'>9</span>, 1712–1723. [<a href="https://scholar.google.com/scholar_lookup?title=A+dual-emission+ratiometric+fluorescence+probe+for+highly+selective+and+simultaneous+detection+of+tetracycline+and+ferric+ions+in+environmental+water+samples+based+on+a+boron-doped+carbon+quantum+dot/CdTe-Eu3++composite&author=Huang,+M.Q.&author=Tong,+C.L.&publication_year=2022&journal=Environ.+Sci.+Nano&volume=9&pages=1712%E2%80%931723&doi=10.1039/D2EN00110A" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1039/D2EN00110A" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B111-chemosensors-11-00405' class='html-xxx' data-content='111.'>Sohal, N.; Maity, B.; Basu, S. Transformation of bulk MnO<sub>2</sub> to fluorescent quantum dots for selective and sensitive detection of ferric ions and ascorbic acid by turn-off-on strategy. <span class='html-italic'>J. Photochem. Photobiol. A Chem.</span> <b>2023</b>, <span class='html-italic'>434</span>, 114280. [<a href="https://scholar.google.com/scholar_lookup?title=Transformation+of+bulk+MnO2+to+fluorescent+quantum+dots+for+selective+and+sensitive+detection+of+ferric+ions+and+ascorbic+acid+by+turn-off-on+strategy&author=Sohal,+N.&author=Maity,+B.&author=Basu,+S.&publication_year=2023&journal=J.+Photochem.+Photobiol.+A+Chem.&volume=434&pages=114280&doi=10.1016/j.jphotochem.2022.114280" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.jphotochem.2022.114280" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B112-chemosensors-11-00405' class='html-xxx' data-content='112.'>Lv, S.H.; Zhang, S.S.; Zuo, J.J.; Liang, S.; Liu, L.P.; Wei, D.Q. The efficient detection of Fe<sup>3+</sup> by sulfonamidated lignin composite carbon quantum dots. <span class='html-italic'>Polym. Eng. Sci.</span> <b>2023</b>, <span class='html-italic'>2023</span>, 26295. [<a href="https://scholar.google.com/scholar_lookup?title=The+efficient+detection+of+Fe3++by+sulfonamidated+lignin+composite+carbon+quantum+dots&author=Lv,+S.H.&author=Zhang,+S.S.&author=Zuo,+J.J.&author=Liang,+S.&author=Liu,+L.P.&author=Wei,+D.Q.&publication_year=2023&journal=Polym.+Eng.+Sci.&volume=2023&pages=26295&doi=10.1002/pen.26295" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/pen.26295" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B113-chemosensors-11-00405' class='html-xxx' data-content='113.'>Lai, C.M.; Lin, S.M.; Xiong, L.; Wu, Y.X.; Liu, C.; Jin, Y.Q. High quantum yield nitrogen-doped carbon quantum dots: Green synthesis and application as “on-off” fluorescent sensors for specific Fe<sup>3+</sup> ions detection and cell imaging. <span class='html-italic'>Diam. Relat. Mater.</span> <b>2023</b>, <span class='html-italic'>133</span>, 109702. [<a href="https://scholar.google.com/scholar_lookup?title=High+quantum+yield+nitrogen-doped+carbon+quantum+dots:+Green+synthesis+and+application+as+%E2%80%9Con-off%E2%80%9D+fluorescent+sensors+for+specific+Fe3++ions+detection+and+cell+imaging&author=Lai,+C.M.&author=Lin,+S.M.&author=Xiong,+L.&author=Wu,+Y.X.&author=Liu,+C.&author=Jin,+Y.Q.&publication_year=2023&journal=Diam.+Relat.+Mater.&volume=133&pages=109702&doi=10.1016/j.diamond.2023.109702" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.diamond.2023.109702" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B114-chemosensors-11-00405' class='html-xxx' data-content='114.'>Singh, S.; Kansal, S.K. Dual Fluorometric detection of Fe<sup>3+</sup> and Hg<sup>2+</sup> ions in an aqueous medium using carbon quantum dots as a “turn-off” fluorescence sensor. <span class='html-italic'>J. Fluoresc.</span> <b>2022</b>, <span class='html-italic'>32</span>, 1143–1154. [<a href="https://scholar.google.com/scholar_lookup?title=Dual+Fluorometric+detection+of+Fe3++and+Hg2++ions+in+an+aqueous+medium+using+carbon+quantum+dots+as+a+%E2%80%9Cturn-off%E2%80%9D+fluorescence+sensor&author=Singh,+S.&author=Kansal,+S.K.&publication_year=2022&journal=J.+Fluoresc.&volume=32&pages=1143%E2%80%931154&doi=10.1007/s10895-022-02922-5&pmid=35318547" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s10895-022-02922-5" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/35318547" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B115-chemosensors-11-00405' class='html-xxx' data-content='115.'>Kang, K.M.; Liu, B.Y.; Yue, G.; Ren, H.W.; Zheng, K.Y.; Wang, L.M.; Wang, Z.Q. Preparation of carbon quantum dots from ionic liquid modified biomass for the detection of Fe<sup>3+</sup> and Pd<sup>2+</sup> in environmental water. <span class='html-italic'>Ecotoxicol. Environ. Saf.</span> <b>2023</b>, <span class='html-italic'>255</span>, 114795. [<a href="https://scholar.google.com/scholar_lookup?title=Preparation+of+carbon+quantum+dots+from+ionic+liquid+modified+biomass+for+the+detection+of+Fe3++and+Pd2++in+environmental+water&author=Kang,+K.M.&author=Liu,+B.Y.&author=Yue,+G.&author=Ren,+H.W.&author=Zheng,+K.Y.&author=Wang,+L.M.&author=Wang,+Z.Q.&publication_year=2023&journal=Ecotoxicol.+Environ.+Saf.&volume=255&pages=114795&doi=10.1016/j.ecoenv.2023.114795&pmid=36933478" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.ecoenv.2023.114795" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/36933478" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B116-chemosensors-11-00405' class='html-xxx' data-content='116.'>Kang, S.; Han, H.; Lee, K.; Kim, K.M. Ultrasensitive detection of Fe<sup>3+</sup> ions using functionalized graphene quantum dots fabricated by a one-step pulsed laser ablation process. <span class='html-italic'>ACS Omega</span> <b>2022</b>, <span class='html-italic'>7</span>, 2074–2081. [<a href="https://scholar.google.com/scholar_lookup?title=Ultrasensitive+detection+of+Fe3++ions+using+functionalized+graphene+quantum+dots+fabricated+by+a+one-step+pulsed+laser+ablation+process&author=Kang,+S.&author=Han,+H.&author=Lee,+K.&author=Kim,+K.M.&publication_year=2022&journal=ACS+Omega&volume=7&pages=2074%E2%80%932081&doi=10.1021/acsomega.1c05542&pmid=35071895" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1021/acsomega.1c05542" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/35071895" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B117-chemosensors-11-00405' class='html-xxx' data-content='117.'>Singh, H.; Bamrah, A.; Bhardwaj, S.K.; Deep, A.; Khatri, M.; Kim, K.H.; Bhardwaj, N. Nanomaterial-based fluorescent sensors for the detection of lead ions. <span class='html-italic'>J. Hazard. Mater.</span> <b>2021</b>, <span class='html-italic'>407</span>, 124379. [<a href="https://scholar.google.com/scholar_lookup?title=Nanomaterial-based+fluorescent+sensors+for+the+detection+of+lead+ions&author=Singh,+H.&author=Bamrah,+A.&author=Bhardwaj,+S.K.&author=Deep,+A.&author=Khatri,+M.&author=Kim,+K.H.&author=Bhardwaj,+N.&publication_year=2021&journal=J.+Hazard.+Mater.&volume=407&pages=124379&doi=10.1016/j.jhazmat.2020.124379" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.jhazmat.2020.124379" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B118-chemosensors-11-00405' class='html-xxx' data-content='118.'>Shi, H.L.; Zhao, Q.; Zhou, C.H.; Jia, N.Q. Nitrogen and sulfur co-doped carbon quantum dots as fluorescence sensor for detection of lead ion. <span class='html-italic'>Chin. J. Anal. Chem.</span> <b>2022</b>, <span class='html-italic'>50</span>, 63–68. [<a href="https://scholar.google.com/scholar_lookup?title=Nitrogen+and+sulfur+co-doped+carbon+quantum+dots+as+fluorescence+sensor+for+detection+of+lead+ion&author=Shi,+H.L.&author=Zhao,+Q.&author=Zhou,+C.H.&author=Jia,+N.Q.&publication_year=2022&journal=Chin.+J.+Anal.+Chem.&volume=50&pages=63%E2%80%9368&doi=10.1016/j.cjac.2021.09.010" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.cjac.2021.09.010" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B119-chemosensors-11-00405' class='html-xxx' data-content='119.'>Hadidi, M.; Ahour, F.; Keshipour, S. Electrochemical determination of trace amounts of lead ions using D-penicillamine-functionalized graphene quantum dot-modified glassy carbon electrode. <span class='html-italic'>J. Iran. Chem. Soc.</span> <b>2021</b>, <span class='html-italic'>19</span>, 1179–1189. [<a href="https://scholar.google.com/scholar_lookup?title=Electrochemical+determination+of+trace+amounts+of+lead+ions+using+D-penicillamine-functionalized+graphene+quantum+dot-modified+glassy+carbon+electrode&author=Hadidi,+M.&author=Ahour,+F.&author=Keshipour,+S.&publication_year=2021&journal=J.+Iran.+Chem.+Soc.&volume=19&pages=1179%E2%80%931189&doi=10.1007/s13738-021-02367-w" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s13738-021-02367-w" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B120-chemosensors-11-00405' class='html-xxx' data-content='120.'>Wu, H.M.; Liang, J.G.; Han, H.Y. A novel method for the determination of Pb<sup>2+</sup> based on the quenching of the fluorescence of CdTe quantum dots. <span class='html-italic'>Microchim. Acta</span> <b>2008</b>, <span class='html-italic'>161</span>, 81–86. [<a href="https://scholar.google.com/scholar_lookup?title=A+novel+method+for+the+determination+of+Pb2++based+on+the+quenching+of+the+fluorescence+of+CdTe+quantum+dots&author=Wu,+H.M.&author=Liang,+J.G.&author=Han,+H.Y.&publication_year=2008&journal=Microchim.+Acta&volume=161&pages=81%E2%80%9386&doi=10.1007/s00604-007-0801-4" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s00604-007-0801-4" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B121-chemosensors-11-00405' class='html-xxx' data-content='121.'>Zhong, W.; Zhang, C.; Gao, Q.; Li, H. Highly sensitive detection of lead(II) ion using multicolor CdTe quantum dots. <span class='html-italic'>Microchim. Acta</span> <b>2012</b>, <span class='html-italic'>176</span>, 101–107. [<a href="https://scholar.google.com/scholar_lookup?title=Highly+sensitive+detection+of+lead(II)+ion+using+multicolor+CdTe+quantum+dots&author=Zhong,+W.&author=Zhang,+C.&author=Gao,+Q.&author=Li,+H.&publication_year=2012&journal=Microchim.+Acta&volume=176&pages=101%E2%80%93107&doi=10.1007/s00604-011-0695-z" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s00604-011-0695-z" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B122-chemosensors-11-00405' class='html-xxx' data-content='122.'>Mabrouk, S.; Rinnert, H.; Balan, L.; Jasniewski, J.; Medjahdi, G.; Ben Chaabane, R.; Schneider, R. Aqueous synthesis of core/shell/shell ZnSeS/Cu:ZnS/ZnS quantum dots and their use as a probe for the selective photoluminescent detection of Pb<sup>2+</sup> in water. <span class='html-italic'>J. Photochem. Photobiol. A</span> <b>2022</b>, <span class='html-italic'>431</span>, 114050. [<a href="https://scholar.google.com/scholar_lookup?title=Aqueous+synthesis+of+core/shell/shell+ZnSeS/Cu:ZnS/ZnS+quantum+dots+and+their+use+as+a+probe+for+the+selective+photoluminescent+detection+of+Pb2++in+water&author=Mabrouk,+S.&author=Rinnert,+H.&author=Balan,+L.&author=Jasniewski,+J.&author=Medjahdi,+G.&author=Ben+Chaabane,+R.&author=Schneider,+R.&publication_year=2022&journal=J.+Photochem.+Photobiol.+A&volume=431&pages=114050&doi=10.1016/j.jphotochem.2022.114050" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.jphotochem.2022.114050" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B123-chemosensors-11-00405' class='html-xxx' data-content='123.'>Cheng, S.S.; Hou, D.Y.; Li, C.; Liu, S.; Zhang, C.L.; Kong, Q.Q.; Ye, M.Q.; Wu, S.; Xian, Y.Z. Dual-ligand functionalized Ag<sub>2</sub>S quantum dots for turn-on detection of lead(II) ions in mineral samples based on aggregation-induced enhanced emission. <span class='html-italic'>ChemistrySelect</span> <b>2021</b>, <span class='html-italic'>6</span>, 4063–4066. [<a href="https://scholar.google.com/scholar_lookup?title=Dual-ligand+functionalized+Ag2S+quantum+dots+for+turn-on+detection+of+lead(II)+ions+in+mineral+samples+based+on+aggregation-induced+enhanced+emission&author=Cheng,+S.S.&author=Hou,+D.Y.&author=Li,+C.&author=Liu,+S.&author=Zhang,+C.L.&author=Kong,+Q.Q.&author=Ye,+M.Q.&author=Wu,+S.&author=Xian,+Y.Z.&publication_year=2021&journal=ChemistrySelect&volume=6&pages=4063%E2%80%934066&doi=10.1002/slct.202100654" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/slct.202100654" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B124-chemosensors-11-00405' class='html-xxx' data-content='124.'>Bamrah, A.; Singh, H.; Singh, S.; Bhardwaj, S.K.; Khatri, M.; Deep, A.; Bhardwaj, N. Surface-functionalized fluorescent carbon dots (CDs) for dual-mode detection of lead ions. <span class='html-italic'>Chem. Pap.</span> <b>2022</b>, <span class='html-italic'>76</span>, 6193–6203. [<a href="https://scholar.google.com/scholar_lookup?title=Surface-functionalized+fluorescent+carbon+dots+(CDs)+for+dual-mode+detection+of+lead+ions&author=Bamrah,+A.&author=Singh,+H.&author=Singh,+S.&author=Bhardwaj,+S.K.&author=Khatri,+M.&author=Deep,+A.&author=Bhardwaj,+N.&publication_year=2022&journal=Chem.+Pap.&volume=76&pages=6193%E2%80%936203&doi=10.1007/s11696-022-02307-9" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s11696-022-02307-9" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B125-chemosensors-11-00405' class='html-xxx' data-content='125.'>Babu, A.M.; Bijoy, G.; Keerthana, P.; Varghese, A. Fluorescent detection of Pb<sup>2+</sup> pollutant in water samples with the help of Delonix regia leaf-derived CQDs. <span class='html-italic'>Synth. Met.</span> <b>2023</b>, <span class='html-italic'>291</span>, 117211. [<a href="https://scholar.google.com/scholar_lookup?title=Fluorescent+detection+of+Pb2++pollutant+in+water+samples+with+the+help+of+Delonix+regia+leaf-derived+CQDs&author=Babu,+A.M.&author=Bijoy,+G.&author=Keerthana,+P.&author=Varghese,+A.&publication_year=2023&journal=Synth.+Met.&volume=291&pages=117211&doi=10.1016/j.synthmet.2022.117211" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.synthmet.2022.117211" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B126-chemosensors-11-00405' class='html-xxx' data-content='126.'>Qi, Y.X.; Zhang, M.; Fu, Q.Q.; Liu, R.; Shi, G.Y. Highly sensitive and selective fluorescent detection of cerebral lead(II) based on graphene quantum dot conjugates. <span class='html-italic'>Chem. Commun.</span> <b>2013</b>, <span class='html-italic'>49</span>, 10599–10601. [<a href="https://scholar.google.com/scholar_lookup?title=Highly+sensitive+and+selective+fluorescent+detection+of+cerebral+lead(II)+based+on+graphene+quantum+dot+conjugates&author=Qi,+Y.X.&author=Zhang,+M.&author=Fu,+Q.Q.&author=Liu,+R.&author=Shi,+G.Y.&publication_year=2013&journal=Chem.+Commun.&volume=49&pages=10599%E2%80%9310601&doi=10.1039/c3cc46059b&pmid=24091904" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1039/c3cc46059b" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/24091904" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B127-chemosensors-11-00405' class='html-xxx' data-content='127.'>Qian, Z.S.; Shan, X.Y.; Chai, L.J.; Chen, J.R.; Peng, H. A fluorescent nanosensor based on graphene quantum dots-aptamer probe and graphene oxide platform for detection of lead (II) ion. <span class='html-italic'>Biosens. Bioelectron.</span> <b>2015</b>, <span class='html-italic'>68</span>, 225–231. [<a href="https://scholar.google.com/scholar_lookup?title=A+fluorescent+nanosensor+based+on+graphene+quantum+dots-aptamer+probe+and+graphene+oxide+platform+for+detection+of+lead+(II)+ion&author=Qian,+Z.S.&author=Shan,+X.Y.&author=Chai,+L.J.&author=Chen,+J.R.&author=Peng,+H.&publication_year=2015&journal=Biosens.+Bioelectron.&volume=68&pages=225%E2%80%93231&doi=10.1016/j.bios.2014.12.057" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.bios.2014.12.057" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B128-chemosensors-11-00405' class='html-xxx' data-content='128.'>Sebastian, D.; Kala, R.; Parvathy, K.P.N.; Savitha, D.P. A fluorescent probe based on visible light-emitting functionalized graphene quantum dots for the sensitive and selective detection of Pb (II) ions. <span class='html-italic'>J. Mater. Sci.</span> <b>2021</b>, <span class='html-italic'>56</span>, 18126–18146. [<a href="https://scholar.google.com/scholar_lookup?title=A+fluorescent+probe+based+on+visible+light-emitting+functionalized+graphene+quantum+dots+for+the+sensitive+and+selective+detection+of+Pb+(II)+ions&author=Sebastian,+D.&author=Kala,+R.&author=Parvathy,+K.P.N.&author=Savitha,+D.P.&publication_year=2021&journal=J.+Mater.+Sci.&volume=56&pages=18126%E2%80%9318146&doi=10.1007/s10853-021-06478-w" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s10853-021-06478-w" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B129-chemosensors-11-00405' class='html-xxx' data-content='129.'>Sharma, P.; Mehata, M.S. Rapid sensing of lead metal ions in an aqueous medium by MoS<sub>2</sub> quantum dots fluorescence turn-off. <span class='html-italic'>Mater. Res. Bull.</span> <b>2020</b>, <span class='html-italic'>131</span>, 110978. [<a href="https://scholar.google.com/scholar_lookup?title=Rapid+sensing+of+lead+metal+ions+in+an+aqueous+medium+by+MoS2+quantum+dots+fluorescence+turn-off&author=Sharma,+P.&author=Mehata,+M.S.&publication_year=2020&journal=Mater.+Res.+Bull.&volume=131&pages=110978&doi=10.1016/j.materresbull.2020.110978" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.materresbull.2020.110978" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B130-chemosensors-11-00405' class='html-xxx' data-content='130.'>Cai, Z.X.; Shi, B.Q.; Zhao, L.; Ma, M.H. Ultrasensitive and rapid lead sensing in water based on environmental friendly and high luminescent l-glutathione-capped-ZnSe quantum dots. <span class='html-italic'>Spectrochim. Acta A Mol. Biomol. Spectrosc.</span> <b>2012</b>, <span class='html-italic'>97</span>, 909–914. [<a href="https://scholar.google.com/scholar_lookup?title=Ultrasensitive+and+rapid+lead+sensing+in+water+based+on+environmental+friendly+and+high+luminescent+l-glutathione-capped-ZnSe+quantum+dots&author=Cai,+Z.X.&author=Shi,+B.Q.&author=Zhao,+L.&author=Ma,+M.H.&publication_year=2012&journal=Spectrochim.+Acta+A+Mol.+Biomol.+Spectrosc.&volume=97&pages=909%E2%80%93914&doi=10.1016/j.saa.2012.07.069" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.saa.2012.07.069" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B131-chemosensors-11-00405' class='html-xxx' data-content='131.'>Zhou, J.R.; Li, B.W.; Qi, A.J.; Shi, Y.J.; Qi, J.; Xu, H.Z.; Chen, L.X. ZnSe quantum dot based ion imprinting technology for fluorescence detecting cadmium and lead ions on a three-dimensional rotary paper-based microfluidic chip. <span class='html-italic'>Sens. Actuators B Chem.</span> <b>2020</b>, <span class='html-italic'>305</span>, 127462. [<a href="https://scholar.google.com/scholar_lookup?title=ZnSe+quantum+dot+based+ion+imprinting+technology+for+fluorescence+detecting+cadmium+and+lead+ions+on+a+three-dimensional+rotary+paper-based+microfluidic+chip&author=Zhou,+J.R.&author=Li,+B.W.&author=Qi,+A.J.&author=Shi,+Y.J.&author=Qi,+J.&author=Xu,+H.Z.&author=Chen,+L.X.&publication_year=2020&journal=Sens.+Actuators+B+Chem.&volume=305&pages=127462&doi=10.1016/j.snb.2019.127462" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.snb.2019.127462" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B132-chemosensors-11-00405' class='html-xxx' data-content='132.'>Sefid-Sefidehkhan, Y.; Jouyban, A.; Rahimpour, E. Fluorescence turn-off sensing of lead and gentamicin based on phosphorus and chlorine co-doped carbon dots. <span class='html-italic'>Microchem. J.</span> <b>2022</b>, <span class='html-italic'>181</span>, 107753. [<a href="https://scholar.google.com/scholar_lookup?title=Fluorescence+turn-off+sensing+of+lead+and+gentamicin+based+on+phosphorus+and+chlorine+co-doped+carbon+dots&author=Sefid-Sefidehkhan,+Y.&author=Jouyban,+A.&author=Rahimpour,+E.&publication_year=2022&journal=Microchem.+J.&volume=181&pages=107753&doi=10.1016/j.microc.2022.107753" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.microc.2022.107753" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B133-chemosensors-11-00405' class='html-xxx' data-content='133.'>Kumar, A.; Chowdhuri, A.R.; Laha, D.; Mahto, T.K.; Karmakar, P.; Sahu, S.K. Green synthesis of carbon dots from Ocimum sanctum for effective fluorescent sensing of Pb<sup>2+</sup> ions and live cell imaging. <span class='html-italic'>Sens. Actuators B Chem.</span> <b>2017</b>, <span class='html-italic'>242</span>, 679–686. [<a href="https://scholar.google.com/scholar_lookup?title=Green+synthesis+of+carbon+dots+from+Ocimum+sanctum+for+effective+fluorescent+sensing+of+Pb2++ions+and+live+cell+imaging&author=Kumar,+A.&author=Chowdhuri,+A.R.&author=Laha,+D.&author=Mahto,+T.K.&author=Karmakar,+P.&author=Sahu,+S.K.&publication_year=2017&journal=Sens.+Actuators+B+Chem.&volume=242&pages=679%E2%80%93686&doi=10.1016/j.snb.2016.11.109" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.snb.2016.11.109" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B134-chemosensors-11-00405' class='html-xxx' data-content='134.'>Tabaraki, R.; Abdi, O. Fluorescent sensing of Pb<sup>2+</sup> by microwave-assisted synthesized N-doped carbon dots: Application of response surface methodology and Doehlert design. <span class='html-italic'>J. Iran. Chem. Soc.</span> <b>2020</b>, <span class='html-italic'>17</span>, 839–846. [<a href="https://scholar.google.com/scholar_lookup?title=Fluorescent+sensing+of+Pb2++by+microwave-assisted+synthesized+N-doped+carbon+dots:+Application+of+response+surface+methodology+and+Doehlert+design&author=Tabaraki,+R.&author=Abdi,+O.&publication_year=2020&journal=J.+Iran.+Chem.+Soc.&volume=17&pages=839%E2%80%93846&doi=10.1007/s13738-019-01815-y" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s13738-019-01815-y" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B135-chemosensors-11-00405' class='html-xxx' data-content='135.'>Bandi, R.; Dadigala, R.; Gangapuram, B.R.; Guttena, V. Green synthesis of highly fluorescent nitrogen-Doped carbon dots from Lantana camara berries for effective detection of lead(II) and bioimaging. <span class='html-italic'>J. Photochem. Photobiol. B Biol.</span> <b>2018</b>, <span class='html-italic'>178</span>, 330–338. [<a href="https://scholar.google.com/scholar_lookup?title=Green+synthesis+of+highly+fluorescent+nitrogen-Doped+carbon+dots+from+Lantana+camara+berries+for+effective+detection+of+lead(II)+and+bioimaging&author=Bandi,+R.&author=Dadigala,+R.&author=Gangapuram,+B.R.&author=Guttena,+V.&publication_year=2018&journal=J.+Photochem.+Photobiol.+B+Biol.&volume=178&pages=330%E2%80%93338&doi=10.1016/j.jphotobiol.2017.11.010" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.jphotobiol.2017.11.010" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B136-chemosensors-11-00405' class='html-xxx' data-content='136.'>Sebastian, D.; Soman, S.; Kala, R. A nanohybrid system based on covalently functionalized graphene quantum dots with dithienopyrrole derivative for the sensitive and selective fluorometric detection of Pb<sup>2+</sup> ions. <span class='html-italic'>Luminescence</span> <b>2021</b>, <span class='html-italic'>36</span>, 1743–1750. [<a href="https://scholar.google.com/scholar_lookup?title=A+nanohybrid+system+based+on+covalently+functionalized+graphene+quantum+dots+with+dithienopyrrole+derivative+for+the+sensitive+and+selective+fluorometric+detection+of+Pb2++ions&author=Sebastian,+D.&author=Soman,+S.&author=Kala,+R.&publication_year=2021&journal=Luminescence&volume=36&pages=1743%E2%80%931750&doi=10.1002/bio.4116" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/bio.4116" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B137-chemosensors-11-00405' class='html-xxx' data-content='137.'>Niu, X.F.; Zhong, Y.B.; Chen, R.; Wang, F.; Liu, Y.J.; Luo, D. A “turn-on” fluorescence sensor for Pb<sup>2+</sup> detection based on graphene quantum dots and gold nanoparticles. <span class='html-italic'>Sens. Actuators B Chem.</span> <b>2018</b>, <span class='html-italic'>255</span>, 1577–1581. [<a href="https://scholar.google.com/scholar_lookup?title=A+%E2%80%9Cturn-on%E2%80%9D+fluorescence+sensor+for+Pb2++detection+based+on+graphene+quantum+dots+and+gold+nanoparticles&author=Niu,+X.F.&author=Zhong,+Y.B.&author=Chen,+R.&author=Wang,+F.&author=Liu,+Y.J.&author=Luo,+D.&publication_year=2018&journal=Sens.+Actuators+B+Chem.&volume=255&pages=1577%E2%80%931581&doi=10.1016/j.snb.2017.08.167" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.snb.2017.08.167" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B138-chemosensors-11-00405' class='html-xxx' data-content='138.'>Bian, S.Y.; Shen, C.; Hua, H.; Zhou, L.; Zhu, H.L.; Xi, F.N.; Liu, J.Y.; Dong, X.P. One-pot synthesis of sulfur-doped graphene quantum dots as a novel fluorescent probe for highly selective and sensitive detection of lead(II). <span class='html-italic'>RSC Adv.</span> <b>2016</b>, <span class='html-italic'>6</span>, 69977–69983. [<a href="https://scholar.google.com/scholar_lookup?title=One-pot+synthesis+of+sulfur-doped+graphene+quantum+dots+as+a+novel+fluorescent+probe+for+highly+selective+and+sensitive+detection+of+lead(II)&author=Bian,+S.Y.&author=Shen,+C.&author=Hua,+H.&author=Zhou,+L.&author=Zhu,+H.L.&author=Xi,+F.N.&author=Liu,+J.Y.&author=Dong,+X.P.&publication_year=2016&journal=RSC+Adv.&volume=6&pages=69977%E2%80%9369983&doi=10.1039/C6RA10836A" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1039/C6RA10836A" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B139-chemosensors-11-00405' class='html-xxx' data-content='139.'>Wang, Z.Z.; Yang, Y.; Zou, T.; Xing, X.X.; Zhao, R.J.; Wang, Y.D. Novel method for the qualitative identification of chromium ions (III) using L-aspartic acid stabilized CdS quantum dots. <span class='html-italic'>J. Phys. Chem. Solids</span> <b>2020</b>, <span class='html-italic'>136</span>, 109160. [<a href="https://scholar.google.com/scholar_lookup?title=Novel+method+for+the+qualitative+identification+of+chromium+ions+(III)+using+L-aspartic+acid+stabilized+CdS+quantum+dots&author=Wang,+Z.Z.&author=Yang,+Y.&author=Zou,+T.&author=Xing,+X.X.&author=Zhao,+R.J.&author=Wang,+Y.D.&publication_year=2020&journal=J.+Phys.+Chem.+Solids&volume=136&pages=109160&doi=10.1016/j.jpcs.2019.109160" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.jpcs.2019.109160" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B140-chemosensors-11-00405' class='html-xxx' data-content='140.'>Liu, X.; Yang, Y.; Li, Q.; Wang, Z.Z.; Xing, X.X.; Wang, Y.D. Portably colorimetric paper sensor based on ZnS quantum dots for semi-quantitative detection of Co<sup>2+</sup> through the measurement of grey level. <span class='html-italic'>Sens. Actuators B Chem.</span> <b>2018</b>, <span class='html-italic'>260</span>, 1068–1075. [<a href="https://scholar.google.com/scholar_lookup?title=Portably+colorimetric+paper+sensor+based+on+ZnS+quantum+dots+for+semi-quantitative+detection+of+Co2++through+the+measurement+of+grey+level&author=Liu,+X.&author=Yang,+Y.&author=Li,+Q.&author=Wang,+Z.Z.&author=Xing,+X.X.&author=Wang,+Y.D.&publication_year=2018&journal=Sens.+Actuators+B+Chem.&volume=260&pages=1068%E2%80%931075&doi=10.1016/j.snb.2018.01.121" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.snb.2018.01.121" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B141-chemosensors-11-00405' class='html-xxx' data-content='141.'>Wang, Z.Z.; Xing, X.X.; Yang, Y.; Zhao, R.J.; Zou, T.; Wang, Z.D.; Wang, Y.D. One-step hydrothermal synthesis of thioglycolic acid capped CdS quantum dots as fuorescence determination of cobalt ion. <span class='html-italic'>Sci. Rep.</span> <b>2018</b>, <span class='html-italic'>8</span>, 8953. [<a href="https://scholar.google.com/scholar_lookup?title=One-step+hydrothermal+synthesis+of+thioglycolic+acid+capped+CdS+quantum+dots+as+fuorescence+determination+of+cobalt+ion&author=Wang,+Z.Z.&author=Xing,+X.X.&author=Yang,+Y.&author=Zhao,+R.J.&author=Zou,+T.&author=Wang,+Z.D.&author=Wang,+Y.D.&publication_year=2018&journal=Sci.+Rep.&volume=8&pages=8953&doi=10.1038/s41598-018-27244-0" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/s41598-018-27244-0" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.nature.com/articles/s41598-018-27244-0.pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B142-chemosensors-11-00405' class='html-xxx' data-content='142.'>Tong, Z.; Xing, X.X.; Yang, Y.; Hong, P.; Wang, Z.D.; Zhao, R.J.; Zhang, X.; Peng, S.J.; Wang, Y.D. Fluorescent ZnO quantum dots synthesized with urea for the selective detection of Cr<sup>6+</sup> ion in water with a wide range of concentrations. <span class='html-italic'>Methods Appl. Fluoresc.</span> <b>2019</b>, <span class='html-italic'>7</span>, 035007. [<a href="https://scholar.google.com/scholar_lookup?title=Fluorescent+ZnO+quantum+dots+synthesized+with+urea+for+the+selective+detection+of+Cr6++ion+in+water+with+a+wide+range+of+concentrations&author=Tong,+Z.&author=Xing,+X.X.&author=Yang,+Y.&author=Hong,+P.&author=Wang,+Z.D.&author=Zhao,+R.J.&author=Zhang,+X.&author=Peng,+S.J.&author=Wang,+Y.D.&publication_year=2019&journal=Methods+Appl.+Fluoresc.&volume=7&pages=035007&doi=10.1088/2050-6120/ab29c8&pmid=31195378" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1088/2050-6120/ab29c8" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/31195378" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B143-chemosensors-11-00405' class='html-xxx' data-content='143.'>Yang, Y.; Zou, T.; Zhao, R.J.; Kong, Y.L.; Su, L.F.; Ma, D.; Xiao, X.C.; Wang, Y.D. Fluorescence ‘turn-on’ probe for Al<sup>3+</sup> detection in water based on ZnS/ZnO quantum dots with excellent selectivity and stability. <span class='html-italic'>Nanotechnology</span> <b>2021</b>, <span class='html-italic'>32</span>, 375001. [<a href="https://scholar.google.com/scholar_lookup?title=Fluorescence+%E2%80%98turn-on%E2%80%99+probe+for+Al3++detection+in+water+based+on+ZnS/ZnO+quantum+dots+with+excellent+selectivity+and+stability&author=Yang,+Y.&author=Zou,+T.&author=Zhao,+R.J.&author=Kong,+Y.L.&author=Su,+L.F.&author=Ma,+D.&author=Xiao,+X.C.&author=Wang,+Y.D.&publication_year=2021&journal=Nanotechnology&volume=32&pages=375001&doi=10.1088/1361-6528/ac0935&pmid=34102626" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1088/1361-6528/ac0935" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/34102626" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B144-chemosensors-11-00405' class='html-xxx' data-content='144.'>Wang, Z.Z.; Xiao, X.C.; Yang, Y.; Zou, T.; Xing, X.X.; Zhao, R.J.; Wang, Z.D.; Wang, Y.D. L-aspartic acid capped CdS quantum dots as a high performance fluorescence assay for sliver ions (I) detection. <span class='html-italic'>Nanomaterials</span> <b>2019</b>, <span class='html-italic'>9</span>, 1165. [<a href="https://scholar.google.com/scholar_lookup?title=L-aspartic+acid+capped+CdS+quantum+dots+as+a+high+performance+fluorescence+assay+for+sliver+ions+(I)+detection&author=Wang,+Z.Z.&author=Xiao,+X.C.&author=Yang,+Y.&author=Zou,+T.&author=Xing,+X.X.&author=Zhao,+R.J.&author=Wang,+Z.D.&author=Wang,+Y.D.&publication_year=2019&journal=Nanomaterials&volume=9&pages=1165&doi=10.3390/nano9081165" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/nano9081165" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.mdpi.com/2079-4991/9/8/1165/pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B145-chemosensors-11-00405' class='html-xxx' data-content='145.'>Xia, Y.S.; Cao, C.; Zhu, C.Q. Two distinct photoluminescence responses of CdTe quantum dots to Ag (I). <span class='html-italic'>J. Lumin.</span> <b>2008</b>, <span class='html-italic'>128</span>, 166–172. [<a href="https://scholar.google.com/scholar_lookup?title=Two+distinct+photoluminescence+responses+of+CdTe+quantum+dots+to+Ag+(I)&author=Xia,+Y.S.&author=Cao,+C.&author=Zhu,+C.Q.&publication_year=2008&journal=J.+Lumin.&volume=128&pages=166%E2%80%93172&doi=10.1016/j.jlumin.2007.07.007" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.jlumin.2007.07.007" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B146-chemosensors-11-00405' class='html-xxx' data-content='146.'>Chen, B.; Liu, J.J.; Yang, T.; Chen, L.; Hou, J.; Feng, C.H.; Huang, C.Z. Development of a portable device for Ag<sup>+</sup> sensing using CdTe QDs as fluorescence probe via an electron transfer process. <span class='html-italic'>Talanta</span> <b>2018</b>, <span class='html-italic'>191</span>, 357–363. [<a href="https://scholar.google.com/scholar_lookup?title=Development+of+a+portable+device+for+Ag++sensing+using+CdTe+QDs+as+fluorescence+probe+via+an+electron+transfer+process&author=Chen,+B.&author=Liu,+J.J.&author=Yang,+T.&author=Chen,+L.&author=Hou,+J.&author=Feng,+C.H.&author=Huang,+C.Z.&publication_year=2018&journal=Talanta&volume=191&pages=357%E2%80%93363&doi=10.1016/j.talanta.2018.08.088" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.talanta.2018.08.088" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B147-chemosensors-11-00405' class='html-xxx' data-content='147.'>Liu, Y.F.; Gao, Z.J.; Shao, X.W.; Yang, J.P.; Tang, X.S.; Wang, J.; Chen, W.W.; Lin, H.; Deng, M.; Zhu, T. A turn-on ratiometric fluorescent nanoprobe based on AgInZnS and nitrogen-doped graphene quantum dots for Cd<sup>2+</sup> detection in lake water. <span class='html-italic'>J. Mater. Sci.</span> <b>2022</b>, <span class='html-italic'>57</span>, 17336–17346. [<a href="https://scholar.google.com/scholar_lookup?title=A+turn-on+ratiometric+fluorescent+nanoprobe+based+on+AgInZnS+and+nitrogen-doped+graphene+quantum+dots+for+Cd2++detection+in+lake+water&author=Liu,+Y.F.&author=Gao,+Z.J.&author=Shao,+X.W.&author=Yang,+J.P.&author=Tang,+X.S.&author=Wang,+J.&author=Chen,+W.W.&author=Lin,+H.&author=Deng,+M.&author=Zhu,+T.&publication_year=2022&journal=J.+Mater.+Sci.&volume=57&pages=17336%E2%80%9317346&doi=10.1007/s10853-022-07721-8" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s10853-022-07721-8" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B148-chemosensors-11-00405' class='html-xxx' data-content='148.'>Xu, H.; Miao, R.; Fang, Z.; Zhong, X.H. Quantum dot-based “turn-on” fluorescent probe for detection of zinc and cadmium ions in aqueous media. <span class='html-italic'>Anal. Chim. Acta</span> <b>2011</b>, <span class='html-italic'>687</span>, 82–88. [<a href="https://scholar.google.com/scholar_lookup?title=Quantum+dot-based+%E2%80%9Cturn-on%E2%80%9D+fluorescent+probe+for+detection+of+zinc+and+cadmium+ions+in+aqueous+media&author=Xu,+H.&author=Miao,+R.&author=Fang,+Z.&author=Zhong,+X.H.&publication_year=2011&journal=Anal.+Chim.+Acta&volume=687&pages=82%E2%80%9388&doi=10.1016/j.aca.2010.12.002" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.aca.2010.12.002" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B149-chemosensors-11-00405' class='html-xxx' data-content='149.'>Yan, Z.H.; Yao, W.; Mai, K.; Huang, J.Q.; Wan, Y.T.; Huang, L.; Cai, B.; Liu, Y. A highly selective and sensitive “on–off” fluorescent probe for detecting cadmium ions and L-cysteine based on nitrogen and boron co-doped carbon quantum dots. <span class='html-italic'>RSC Adv.</span> <b>2022</b>, <span class='html-italic'>12</span>, 8202–8210. [<a href="https://scholar.google.com/scholar_lookup?title=A+highly+selective+and+sensitive+%E2%80%9Con%E2%80%93off%E2%80%9D+fluorescent+probe+for+detecting+cadmium+ions+and+L-cysteine+based+on+nitrogen+and+boron+co-doped+carbon+quantum+dots&author=Yan,+Z.H.&author=Yao,+W.&author=Mai,+K.&author=Huang,+J.Q.&author=Wan,+Y.T.&author=Huang,+L.&author=Cai,+B.&author=Liu,+Y.&publication_year=2022&journal=RSC+Adv.&volume=12&pages=8202%E2%80%938210&doi=10.1039/D1RA08219A" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1039/D1RA08219A" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B150-chemosensors-11-00405' class='html-xxx' data-content='150.'>Zhu, L.L.; Shen, D.K.; Luo, K.H. Triple-emission nitrogen and boron co-doped carbon quantum dots from lignin: Highly fluorescent sensing platform for detection of hexavalent chromium ions. <span class='html-italic'>J. Colloid Interface Sci.</span> <b>2022</b>, <span class='html-italic'>617</span>, 557–567. [<a href="https://scholar.google.com/scholar_lookup?title=Triple-emission+nitrogen+and+boron+co-doped+carbon+quantum+dots+from+lignin:+Highly+fluorescent+sensing+platform+for+detection+of+hexavalent+chromium+ions&author=Zhu,+L.L.&author=Shen,+D.K.&author=Luo,+K.H.&publication_year=2022&journal=J.+Colloid+Interface+Sci.&volume=617&pages=557%E2%80%93567&doi=10.1016/j.jcis.2022.03.039" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.jcis.2022.03.039" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B151-chemosensors-11-00405' class='html-xxx' data-content='151.'>Hu, Q.; Li, T.; Gao, L.; Gong, X.J.; Rao, S.Q.; Fang, W.M.; Gu, R.X.; Yang, Z.Q. Ultrafast and energy-saving synthesis of nitrogen and chlorine co-doped carbon nanodots via neutralization heat for selective detection of Cr(VI) in aqueous phase. <span class='html-italic'>Sensors</span> <b>2018</b>, <span class='html-italic'>18</span>, 3416. [<a href="https://scholar.google.com/scholar_lookup?title=Ultrafast+and+energy-saving+synthesis+of+nitrogen+and+chlorine+co-doped+carbon+nanodots+via+neutralization+heat+for+selective+detection+of+Cr(VI)+in+aqueous+phase&author=Hu,+Q.&author=Li,+T.&author=Gao,+L.&author=Gong,+X.J.&author=Rao,+S.Q.&author=Fang,+W.M.&author=Gu,+R.X.&author=Yang,+Z.Q.&publication_year=2018&journal=Sensors&volume=18&pages=3416&doi=10.3390/s18103416" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/s18103416" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.mdpi.com/1424-8220/18/10/3416/pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B152-chemosensors-11-00405' class='html-xxx' data-content='152.'>Wang, C.L.; Xu, J.; Li, H.Z.; Zhao, W.L. Tunable multicolour S/N co-doped carbon quantum dots synthesized from waste foam and application to detection of Cr<sup>3+</sup> ions. <span class='html-italic'>Luminscence</span> <b>2020</b>, <span class='html-italic'>35</span>, 1373–1383. [<a href="https://scholar.google.com/scholar_lookup?title=Tunable+multicolour+S/N+co-doped+carbon+quantum+dots+synthesized+from+waste+foam+and+application+to+detection+of+Cr3++ions&author=Wang,+C.L.&author=Xu,+J.&author=Li,+H.Z.&author=Zhao,+W.L.&publication_year=2020&journal=Luminscence&volume=35&pages=1373%E2%80%931383&doi=10.1002/bio.3901" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/bio.3901" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B153-chemosensors-11-00405' class='html-xxx' data-content='153.'>Mohamed, N.B.H.; Ben Brahim, N.; Mrad, R.; Haouari, M.; Ben Chaabane, R.; Negrerie, M. Use of MPA-capped CdS quantum dots for sensitive detection and quantification of Co<sup>2+</sup> ions in aqueous solution. <span class='html-italic'>Anal. Chim. Acta</span> <b>2018</b>, <span class='html-italic'>1028</span>, 50–58. [<a href="https://scholar.google.com/scholar_lookup?title=Use+of+MPA-capped+CdS+quantum+dots+for+sensitive+detection+and+quantification+of+Co2++ions+in+aqueous+solution&author=Mohamed,+N.B.H.&author=Ben+Brahim,+N.&author=Mrad,+R.&author=Haouari,+M.&author=Ben+Chaabane,+R.&author=Negrerie,+M.&publication_year=2018&journal=Anal.+Chim.+Acta&volume=1028&pages=50%E2%80%9358&doi=10.1016/j.aca.2018.04.041&pmid=29884353" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.aca.2018.04.041" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/29884353" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B154-chemosensors-11-00405' class='html-xxx' data-content='154.'>Zikalala, N.; Parani, S.; Oluwafemi, O.S. Facile aqueous synthesis of ZnInS quantum dots and its application for selective detection of Co<sup>2+</sup> ions. <span class='html-italic'>Nanotechnology</span> <b>2021</b>, <span class='html-italic'>32</span>, 295503. [<a href="https://scholar.google.com/scholar_lookup?title=Facile+aqueous+synthesis+of+ZnInS+quantum+dots+and+its+application+for+selective+detection+of+Co2++ions&author=Zikalala,+N.&author=Parani,+S.&author=Oluwafemi,+O.S.&publication_year=2021&journal=Nanotechnology&volume=32&pages=295503&doi=10.1088/1361-6528/abf193&pmid=33761493" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1088/1361-6528/abf193" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/33761493" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B155-chemosensors-11-00405' class='html-xxx' data-content='155.'>Song, Y.X.; Xia, X.F.; Xiao, Z.W.; Zhao, Y.; Yan, M.J.; Li, J.Y.; Li, H.Q.; Liu, X.T. Synthesis of N, S co-doped carbon dots for fluorescence turn-on detection of Fe<sup>2+</sup> and Al<sup>3+</sup> in a wide pH range. <span class='html-italic'>J. Mol. Liq.</span> <b>2022</b>, <span class='html-italic'>368</span>, 120663. [<a href="https://scholar.google.com/scholar_lookup?title=Synthesis+of+N,+S+co-doped+carbon+dots+for+fluorescence+turn-on+detection+of+Fe2++and+Al3++in+a+wide+pH+range&author=Song,+Y.X.&author=Xia,+X.F.&author=Xiao,+Z.W.&author=Zhao,+Y.&author=Yan,+M.J.&author=Li,+J.Y.&author=Li,+H.Q.&author=Liu,+X.T.&publication_year=2022&journal=J.+Mol.+Liq.&volume=368&pages=120663&doi=10.1016/j.molliq.2022.120663" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.molliq.2022.120663" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B156-chemosensors-11-00405' class='html-xxx' data-content='156.'>Peng, C.F.; Zhang, Y.Y.; Qian, Z.J.; Xie, Z.J. Fluorescence sensor based on glutathione capped CdTe QDs for detection of Cr<sup>3+</sup> ions in vitamins. <span class='html-italic'>Food Sci. Hum. Wellness</span> <b>2018</b>, <span class='html-italic'>7</span>, 71–76. [<a href="https://scholar.google.com/scholar_lookup?title=Fluorescence+sensor+based+on+glutathione+capped+CdTe+QDs+for+detection+of+Cr3++ions+in+vitamins&author=Peng,+C.F.&author=Zhang,+Y.Y.&author=Qian,+Z.J.&author=Xie,+Z.J.&publication_year=2018&journal=Food+Sci.+Hum.+Wellness&volume=7&pages=71%E2%80%9376&doi=10.1016/j.fshw.2017.12.001" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.fshw.2017.12.001" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B157-chemosensors-11-00405' class='html-xxx' data-content='157.'>Oliveira, J.J.P.; Carneiro, S.V.; Cruz, A.A.C.; Fechine, L.M.U.D.; Michea, S.; Antunes, R.A.; Neto, M.L.A.; Moura, T.A.; Cesar, C.L.; Carvalho, H.F. Determination of Co<sup>2+</sup> ions in blood samples: A multi-way sensing based on NH<sub>2</sub>-rich carbon quantum dots. <span class='html-italic'>Dye Pigment.</span> <b>2023</b>, <span class='html-italic'>215</span>, 11253. [<a href="https://scholar.google.com/scholar_lookup?title=Determination+of+Co2++ions+in+blood+samples:+A+multi-way+sensing+based+on+NH2-rich+carbon+quantum+dots&author=Oliveira,+J.J.P.&author=Carneiro,+S.V.&author=Cruz,+A.A.C.&author=Fechine,+L.M.U.D.&author=Michea,+S.&author=Antunes,+R.A.&author=Neto,+M.L.A.&author=Moura,+T.A.&author=Cesar,+C.L.&author=Carvalho,+H.F.&publication_year=2023&journal=Dye+Pigment.&volume=215&pages=11253&doi=10.1016/j.dyepig.2023.111253" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.dyepig.2023.111253" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B158-chemosensors-11-00405' class='html-xxx' data-content='158.'>Jing, N.; Tian, M.; Wang, Y.T.; Zhang, Y. Nitrogen-doped carbon dots synthesized from acrylic acid and ethylenediamine for simple and selective determination of cobalt ions in aqueous media. <span class='html-italic'>J. Lumin.</span> <b>2019</b>, <span class='html-italic'>206</span>, 169–175. [<a href="https://scholar.google.com/scholar_lookup?title=Nitrogen-doped+carbon+dots+synthesized+from+acrylic+acid+and+ethylenediamine+for+simple+and+selective+determination+of+cobalt+ions+in+aqueous+media&author=Jing,+N.&author=Tian,+M.&author=Wang,+Y.T.&author=Zhang,+Y.&publication_year=2019&journal=J.+Lumin.&volume=206&pages=169%E2%80%93175&doi=10.1016/j.jlumin.2018.10.059" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.jlumin.2018.10.059" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B159-chemosensors-11-00405' class='html-xxx' data-content='159.'>Wang, C.J.; Sun, Q.; Li, C.X.; Tang, D.B.; Shi, H.X.; Liu, E.Z.; Guo, P.Q.; Xue, W.M.; Fan, J. Biocompatible double emission boron nitrogen co-doped carbon quantum dots for selective and sensitive detection of Al<sup>3+</sup> and Fe<sup>2+</sup>. <span class='html-italic'>Mater. Res. Bull.</span> <b>2022</b>, <span class='html-italic'>155</span>, 111970. [<a href="https://scholar.google.com/scholar_lookup?title=Biocompatible+double+emission+boron+nitrogen+co-doped+carbon+quantum+dots+for+selective+and+sensitive+detection+of+Al3++and+Fe2+&author=Wang,+C.J.&author=Sun,+Q.&author=Li,+C.X.&author=Tang,+D.B.&author=Shi,+H.X.&author=Liu,+E.Z.&author=Guo,+P.Q.&author=Xue,+W.M.&author=Fan,+J.&publication_year=2022&journal=Mater.+Res.+Bull.&volume=155&pages=111970&doi=10.1016/j.materresbull.2022.111970" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.materresbull.2022.111970" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B160-chemosensors-11-00405' class='html-xxx' data-content='160.'>Wu, Q.A.; Zhou, M.; Shi, J.; Li, Q.J.; Yang, M.Y.; Zhang, Z.X. Synthesis of water-soluble Ag<sub>2</sub>S quantum dots with fluorescence in the second near-infrared window for turn-on detection of Zn(II) and Cd(II). <span class='html-italic'>Anal. Chem.</span> <b>2017</b>, <span class='html-italic'>89</span>, 6616–6623. [<a href="https://scholar.google.com/scholar_lookup?title=Synthesis+of+water-soluble+Ag2S+quantum+dots+with+fluorescence+in+the+second+near-infrared+window+for+turn-on+detection+of+Zn(II)+and+Cd(II)&author=Wu,+Q.A.&author=Zhou,+M.&author=Shi,+J.&author=Li,+Q.J.&author=Yang,+M.Y.&author=Zhang,+Z.X.&publication_year=2017&journal=Anal.+Chem.&volume=89&pages=6616%E2%80%936623&doi=10.1021/acs.analchem.7b00777" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1021/acs.analchem.7b00777" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B161-chemosensors-11-00405' class='html-xxx' data-content='161.'>Dastidar, D.G.; Mukherjee, P.; Ghosh, D.; Banerjee, D. Carbon quantum dots prepared from onion extract as fluorescence turn-on probes for selective estimation of Zn<sup>2+</sup> in blood plasma. <span class='html-italic'>Colloids Surf. A Physicochem. Eng. Asp.</span> <b>2021</b>, <span class='html-italic'>611</span>, 125781. [<a href="https://scholar.google.com/scholar_lookup?title=Carbon+quantum+dots+prepared+from+onion+extract+as+fluorescence+turn-on+probes+for+selective+estimation+of+Zn2++in+blood+plasma&author=Dastidar,+D.G.&author=Mukherjee,+P.&author=Ghosh,+D.&author=Banerjee,+D.&publication_year=2021&journal=Colloids+Surf.+A+Physicochem.+Eng.+Asp.&volume=611&pages=125781&doi=10.1016/j.colsurfa.2020.125781" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.colsurfa.2020.125781" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B162-chemosensors-11-00405' class='html-xxx' data-content='162.'>Zhou, Z.Q.; Yang, L.Y.; Liao, Y.P.; Wu, H.Y.; Zhou, X.H.; Huang, S.; Liu, Y.; Xiao, Q. A Mn:ZnSe quantum dot-based turn-on fluorescent sensor for the highly selective and sensitive detection of Cd<sup>2+</sup>. <span class='html-italic'>Anal. Methods</span> <b>2020</b>, <span class='html-italic'>12</span>, 552–556. [<a href="https://scholar.google.com/scholar_lookup?title=A+Mn:ZnSe+quantum+dot-based+turn-on+fluorescent+sensor+for+the+highly+selective+and+sensitive+detection+of+Cd2+&author=Zhou,+Z.Q.&author=Yang,+L.Y.&author=Liao,+Y.P.&author=Wu,+H.Y.&author=Zhou,+X.H.&author=Huang,+S.&author=Liu,+Y.&author=Xiao,+Q.&publication_year=2020&journal=Anal.+Methods&volume=12&pages=552%E2%80%93556&doi=10.1039/C9AY02445J" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1039/C9AY02445J" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B163-chemosensors-11-00405' class='html-xxx' data-content='163.'>Zhang, X.; Liao, X.F.; Hou, Y.J.; Jia, B.Y.; Fu, L.Z.; Jia, M.X.; Zhou, L.D.; Lu, J.H.; Kong, W.J. Recent advances in synthesis and modification of carbon dots for optical sensing of pesticides. <span class='html-italic'>J. Hazard. Mater.</span> <b>2022</b>, <span class='html-italic'>422</span>, 126881. [<a href="https://scholar.google.com/scholar_lookup?title=Recent+advances+in+synthesis+and+modification+of+carbon+dots+for+optical+sensing+of+pesticides&author=Zhang,+X.&author=Liao,+X.F.&author=Hou,+Y.J.&author=Jia,+B.Y.&author=Fu,+L.Z.&author=Jia,+M.X.&author=Zhou,+L.D.&author=Lu,+J.H.&author=Kong,+W.J.&publication_year=2022&journal=J.+Hazard.+Mater.&volume=422&pages=126881&doi=10.1016/j.jhazmat.2021.126881&pmid=34449329" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.jhazmat.2021.126881" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/34449329" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B164-chemosensors-11-00405' class='html-xxx' data-content='164.'>Mahajan, M.R.; Patil, P.O. Design of zero-dimensional graphene quantum dots based nanostructures for the detection of organophosphorus pesticides in food and water: A review. <span class='html-italic'>Inorg. Chem. Commun.</span> <b>2022</b>, <span class='html-italic'>144</span>, 109883. [<a href="https://scholar.google.com/scholar_lookup?title=Design+of+zero-dimensional+graphene+quantum+dots+based+nanostructures+for+the+detection+of+organophosphorus+pesticides+in+food+and+water:+A+review&author=Mahajan,+M.R.&author=Patil,+P.O.&publication_year=2022&journal=Inorg.+Chem.+Commun.&volume=144&pages=109883&doi=10.1016/j.inoche.2022.109883" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.inoche.2022.109883" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B165-chemosensors-11-00405' class='html-xxx' data-content='165.'>Maluleke, R.; Oluwafemi, O.S. Synthetic approaches, modification strategies and the application of quantum dots in the sensing of priority pollutants. <span class='html-italic'>Appl. Sci.</span> <b>2021</b>, <span class='html-italic'>11</span>, 11580. [<a href="https://scholar.google.com/scholar_lookup?title=Synthetic+approaches,+modification+strategies+and+the+application+of+quantum+dots+in+the+sensing+of+priority+pollutants&author=Maluleke,+R.&author=Oluwafemi,+O.S.&publication_year=2021&journal=Appl.+Sci.&volume=11&pages=11580&doi=10.3390/app112411580" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/app112411580" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B166-chemosensors-11-00405' class='html-xxx' data-content='166.'>Yang, Y.X.; Huo, D.Q.; Wu, H.X.; Wang, X.F.; Yang, J.S.; Bian, M.H.; Ma, Y.; Hou, C.J. N, P-doped carbon quantum dots as a fluorescent sensing platform for carbendazim detection based on fluorescence resonance energy transfer. <span class='html-italic'>Sens. Actuators B Chem.</span> <b>2018</b>, <span class='html-italic'>274</span>, 296–303. [<a href="https://scholar.google.com/scholar_lookup?title=N,+P-doped+carbon+quantum+dots+as+a+fluorescent+sensing+platform+for+carbendazim+detection+based+on+fluorescence+resonance+energy+transfer&author=Yang,+Y.X.&author=Huo,+D.Q.&author=Wu,+H.X.&author=Wang,+X.F.&author=Yang,+J.S.&author=Bian,+M.H.&author=Ma,+Y.&author=Hou,+C.J.&publication_year=2018&journal=Sens.+Actuators+B+Chem.&volume=274&pages=296%E2%80%93303&doi=10.1016/j.snb.2018.07.130" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.snb.2018.07.130" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B167-chemosensors-11-00405' class='html-xxx' data-content='167.'>Yang, Y.; Xing, X.X.; Zou, T.; Wang, Z.D.; Zhao, R.J.; Hong, P.; Peng, S.J.; Zhang, X.; Wang, Y.D. A novel and sensitive ratiometric fluorescence assay for carbendazim based on N-doped carbon quantum dots and gold nanocluster nanohybrid. <span class='html-italic'>J. Hazard. Mater.</span> <b>2020</b>, <span class='html-italic'>386</span>, 121958. [<a href="https://scholar.google.com/scholar_lookup?title=A+novel+and+sensitive+ratiometric+fluorescence+assay+for+carbendazim+based+on+N-doped+carbon+quantum+dots+and+gold+nanocluster+nanohybrid&author=Yang,+Y.&author=Xing,+X.X.&author=Zou,+T.&author=Wang,+Z.D.&author=Zhao,+R.J.&author=Hong,+P.&author=Peng,+S.J.&author=Zhang,+X.&author=Wang,+Y.D.&publication_year=2020&journal=J.+Hazard.+Mater.&volume=386&pages=121958&doi=10.1016/j.jhazmat.2019.121958" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.jhazmat.2019.121958" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B168-chemosensors-11-00405' class='html-xxx' data-content='168.'>Yang, Y.; Wei, Q.Y.; Zou, T.; Kong, Y.L.; Su, L.F.; Ma, D.; Wang, Y.D. Dual-emission ratiometric fluorescent detection of dinotefuran based on sulfur-doped carbon quantum dots and copper nanocluster hybrid. <span class='html-italic'>Sens. Actuators B Chem.</span> <b>2020</b>, <span class='html-italic'>321</span>, 128534. [<a href="https://scholar.google.com/scholar_lookup?title=Dual-emission+ratiometric+fluorescent+detection+of+dinotefuran+based+on+sulfur-doped+carbon+quantum+dots+and+copper+nanocluster+hybrid&author=Yang,+Y.&author=Wei,+Q.Y.&author=Zou,+T.&author=Kong,+Y.L.&author=Su,+L.F.&author=Ma,+D.&author=Wang,+Y.D.&publication_year=2020&journal=Sens.+Actuators+B+Chem.&volume=321&pages=128534&doi=10.1016/j.snb.2020.128534" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.snb.2020.128534" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B169-chemosensors-11-00405' class='html-xxx' data-content='169.'>Bera, M.K.; Mohapatra, S. Ultrasensitive detection of glyphosate through effective photoelectron transfer between CdTe and chitosan derived carbon dot. <span class='html-italic'>Colloids Surf. A Physicochem. Eng. Asp.</span> <b>2020</b>, <span class='html-italic'>596</span>, 124710. [<a href="https://scholar.google.com/scholar_lookup?title=Ultrasensitive+detection+of+glyphosate+through+effective+photoelectron+transfer+between+CdTe+and+chitosan+derived+carbon+dot&author=Bera,+M.K.&author=Mohapatra,+S.&publication_year=2020&journal=Colloids+Surf.+A+Physicochem.+Eng.+Asp.&volume=596&pages=124710&doi=10.1016/j.colsurfa.2020.124710" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.colsurfa.2020.124710" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B170-chemosensors-11-00405' class='html-xxx' data-content='170.'>Cheng, C.H.; Peng, F.; Hou, W.L.; Wang, X.P. Selective and sensitive detection of malathion pesticide with CdSe quantum dots as ligand-exchange probes. <span class='html-italic'>Environ. Eng. Sci.</span> <b>2021</b>, <span class='html-italic'>39</span>, 453–459. [<a href="https://scholar.google.com/scholar_lookup?title=Selective+and+sensitive+detection+of+malathion+pesticide+with+CdSe+quantum+dots+as+ligand-exchange+probes&author=Cheng,+C.H.&author=Peng,+F.&author=Hou,+W.L.&author=Wang,+X.P.&publication_year=2021&journal=Environ.+Eng.+Sci.&volume=39&pages=453%E2%80%93459&doi=10.1089/ees.2021.0091" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1089/ees.2021.0091" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B171-chemosensors-11-00405' class='html-xxx' data-content='171.'>Yang, L.M.; Zhang, X.H.; Jiang, L. Determination of organophosphorus pesticides in fortified tomatoes by fluorescence quenching of cadmium selenium-zinc sulfide quantum dots. <span class='html-italic'>Anal. Lett.</span> <b>2019</b>, <span class='html-italic'>52</span>, 729–744. [<a href="https://scholar.google.com/scholar_lookup?title=Determination+of+organophosphorus+pesticides+in+fortified+tomatoes+by+fluorescence+quenching+of+cadmium+selenium-zinc+sulfide+quantum+dots&author=Yang,+L.M.&author=Zhang,+X.H.&author=Jiang,+L.&publication_year=2019&journal=Anal.+Lett.&volume=52&pages=729%E2%80%93744&doi=10.1080/00032719.2018.1490311" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1080/00032719.2018.1490311" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B172-chemosensors-11-00405' class='html-xxx' data-content='172.'>Nair, R.V.; Chandran, P.R.; Mohamed, A.P.; Pillai, S. Sulphur-doped graphene quantum dot based fluorescent turn-on aptasensor for selective and ultrasensitive detection of omethoate. <span class='html-italic'>Anal. Chim. Acta</span> <b>2021</b>, <span class='html-italic'>1181</span>, 338893. [<a href="https://scholar.google.com/scholar_lookup?title=Sulphur-doped+graphene+quantum+dot+based+fluorescent+turn-on+aptasensor+for+selective+and+ultrasensitive+detection+of+omethoate&author=Nair,+R.V.&author=Chandran,+P.R.&author=Mohamed,+A.P.&author=Pillai,+S.&publication_year=2021&journal=Anal.+Chim.+Acta&volume=1181&pages=338893&doi=10.1016/j.aca.2021.338893&pmid=34556227" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.aca.2021.338893" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/34556227" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B173-chemosensors-11-00405' class='html-xxx' data-content='173.'>Nair, R.V.; Thomas, R.T.; Mohamed, A.P.; Pillai, S. Fluorescent turn-off sensor based on sulphur-doped graphene quantum dots in colloidal and film forms for the ultrasensitive detection of carbamate pesticides. <span class='html-italic'>Microchem. J.</span> <b>2020</b>, <span class='html-italic'>157</span>, 104971. [<a href="https://scholar.google.com/scholar_lookup?title=Fluorescent+turn-off+sensor+based+on+sulphur-doped+graphene+quantum+dots+in+colloidal+and+film+forms+for+the+ultrasensitive+detection+of+carbamate+pesticides&author=Nair,+R.V.&author=Thomas,+R.T.&author=Mohamed,+A.P.&author=Pillai,+S.&publication_year=2020&journal=Microchem.+J.&volume=157&pages=104971&doi=10.1016/j.microc.2020.104971" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.microc.2020.104971" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B174-chemosensors-11-00405' class='html-xxx' data-content='174.'>Chen, L.; Lu, J.; Luo, M.; Yu, H.; Chen, X.J.; Deng, J.G.; Hou, X.T.; Hao, E.W.; Wei, J.C.; Li, P. A ratiometric fluorescent sensing system for the selective and ultrasensitive detection of pesticide residues via the synergetic effects of copper nanoclusters and carbon quantum dots. <span class='html-italic'>Food Chem.</span> <b>2022</b>, <span class='html-italic'>379</span>, 132139. [<a href="https://scholar.google.com/scholar_lookup?title=A+ratiometric+fluorescent+sensing+system+for+the+selective+and+ultrasensitive+detection+of+pesticide+residues+via+the+synergetic+effects+of+copper+nanoclusters+and+carbon+quantum+dots&author=Chen,+L.&author=Lu,+J.&author=Luo,+M.&author=Yu,+H.&author=Chen,+X.J.&author=Deng,+J.G.&author=Hou,+X.T.&author=Hao,+E.W.&author=Wei,+J.C.&author=Li,+P.&publication_year=2022&journal=Food+Chem.&volume=379&pages=132139&doi=10.1016/j.foodchem.2022.132139" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.foodchem.2022.132139" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B175-chemosensors-11-00405' class='html-xxx' data-content='175.'>Shahdost-fard, F.; Fahimi-Kashani, N.; Hormozi-nezhad, M.R. A ratiometric fluorescence nanoprobe using CdTe QDs for fast detection of carbaryl insecticide in apple. <span class='html-italic'>Talanta</span> <b>2020</b>, <span class='html-italic'>221</span>, 121467. [<a href="https://scholar.google.com/scholar_lookup?title=A+ratiometric+fluorescence+nanoprobe+using+CdTe+QDs+for+fast+detection+of+carbaryl+insecticide+in+apple&author=Shahdost-fard,+F.&author=Fahimi-Kashani,+N.&author=Hormozi-nezhad,+M.R.&publication_year=2020&journal=Talanta&volume=221&pages=121467&doi=10.1016/j.talanta.2020.121467&pmid=33076086" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.talanta.2020.121467" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/33076086" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B176-chemosensors-11-00405' class='html-xxx' data-content='176.'>Li, H.Q.; Deng, R.; Tavakoli, H.M.; Li, X.C.; Li, X.J. Ultrasensitive detection of acephate based on carbon quantum dot-mediated fluorescence inner filter effects. <span class='html-italic'>Analyst</span> <b>2022</b>, <span class='html-italic'>147</span>, 5462–5469. [<a href="https://scholar.google.com/scholar_lookup?title=Ultrasensitive+detection+of+acephate+based+on+carbon+quantum+dot-mediated+fluorescence+inner+filter+effects&author=Li,+H.Q.&author=Deng,+R.&author=Tavakoli,+H.M.&author=Li,+X.C.&author=Li,+X.J.&publication_year=2022&journal=Analyst&volume=147&pages=5462%E2%80%935469&doi=10.1039/D2AN01552H" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1039/D2AN01552H" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B177-chemosensors-11-00405' class='html-xxx' data-content='177.'>Chandra, S.; Bano, D.; Sahoo, K.; Kumar, D.; Kumar, V.; Yadav, P.K.; Hasan, S.H. Synthesis of fluorescent carbon quantum dots from Jatropha fruits and their application in fluorometric sensor for the detection of chlorpyrifos. <span class='html-italic'>Microchem. J.</span> <b>2022</b>, <span class='html-italic'>172</span>, 106953. [<a href="https://scholar.google.com/scholar_lookup?title=Synthesis+of+fluorescent+carbon+quantum+dots+from+Jatropha+fruits+and+their+application+in+fluorometric+sensor+for+the+detection+of+chlorpyrifos&author=Chandra,+S.&author=Bano,+D.&author=Sahoo,+K.&author=Kumar,+D.&author=Kumar,+V.&author=Yadav,+P.K.&author=Hasan,+S.H.&publication_year=2022&journal=Microchem.+J.&volume=172&pages=106953&doi=10.1016/j.microc.2021.106953" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.microc.2021.106953" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B178-chemosensors-11-00405' class='html-xxx' data-content='178.'>Lv, S.C.; Liu, D.H.; Liu, X.K.; Zhou, Z.Q.; Wang, P. Aminophenol functionalized carbon quantum dots as fluorescent sensor for nitroalkenes. <span class='html-italic'>Microchem. J.</span> <b>2023</b>, <span class='html-italic'>189</span>, 108569. [<a href="https://scholar.google.com/scholar_lookup?title=Aminophenol+functionalized+carbon+quantum+dots+as+fluorescent+sensor+for+nitroalkenes&author=Lv,+S.C.&author=Liu,+D.H.&author=Liu,+X.K.&author=Zhou,+Z.Q.&author=Wang,+P.&publication_year=2023&journal=Microchem.+J.&volume=189&pages=108569&doi=10.1016/j.microc.2023.108569" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.microc.2023.108569" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B179-chemosensors-11-00405' class='html-xxx' data-content='179.'>Luo, J.M.; Li, S.H.; Pang, C.H.; Wang, M.Y.; Ma, X.H.; Zhang, C.H. Highly selective fluorescence probe for imidacloprid measurement based on fluorescence resonance energy transfer. <span class='html-italic'>Microchem. J.</span> <b>2022</b>, <span class='html-italic'>175</span>, 107172. [<a href="https://scholar.google.com/scholar_lookup?title=Highly+selective+fluorescence+probe+for+imidacloprid+measurement+based+on+fluorescence+resonance+energy+transfer&author=Luo,+J.M.&author=Li,+S.H.&author=Pang,+C.H.&author=Wang,+M.Y.&author=Ma,+X.H.&author=Zhang,+C.H.&publication_year=2022&journal=Microchem.+J.&volume=175&pages=107172&doi=10.1016/j.microc.2021.107172" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.microc.2021.107172" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li></ol></section><section id='FiguresandTables' type='display-objects'><div class="html-fig-wrap" id="chemosensors-11-00405-f001"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2227-9040/11/7/405/display" href="#fig_body_display_chemosensors-11-00405-f001"> <img alt="Chemosensors 11 00405 g001 550" data-large="/chemosensors/chemosensors-11-00405/article_deploy/html/images/chemosensors-11-00405-g001.png" data-original="/chemosensors/chemosensors-11-00405/article_deploy/html/images/chemosensors-11-00405-g001.png" data-lsrc="/chemosensors/chemosensors-11-00405/article_deploy/html/images/chemosensors-11-00405-g001-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2227-9040/11/7/405/display" href="#fig_body_display_chemosensors-11-00405-f001"></a> </div> </div> <div class="html-fig_description"> <b>Figure 1.</b> (<b>a</b>) Fluorescence spectra of NALC-CdS QDs with different concentrations of Cu<sup>2+</sup> in aqueous solution, (<b>b</b>) the relationship between the relative fluorescence intensity (<span class='html-italic'>F</span><sub>0</sub>/<span class='html-italic'>F</span>) and the concentration of Cu<sup>2+</sup>, and (<b>c</b>) schematic of the quenching mechanism of NALC-CdS QDs by Cu<sup>2+</sup>. Reprinted with permission from ref. [<a href="#B61-chemosensors-11-00405" class="html-bibr">61</a>]; Copyright IOP Publishing. (<b>d</b>) Fluorescence spectra of the NH<sub>2</sub>-ZnO QDs with different concentrations of Cu<sup>2+</sup> in aqueous solution; (<b>e</b>,<b>f</b>) the linear relation curves of <span class='html-italic'>F</span><sub>0</sub>/<span class='html-italic'>F</span> and the concentration of Cu<sup>2+</sup>: (<b>e</b>) 2–20 nM; (<b>f</b>) 1–100 μM. (<b>g</b>) Schematic of quenching mechanism of NH<sub>2</sub>-ZnO QDs by Cu<sup>2+</sup>. Reprinted with permission from ref. [<a href="#B63-chemosensors-11-00405" class="html-bibr">63</a>]; Copyright 2020 Elsevier. <!-- <p><a class="html-figpopup" href="#fig_body_display_chemosensors-11-00405-f001"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_chemosensors-11-00405-f001" > <div class="html-caption" > <b>Figure 1.</b> (<b>a</b>) Fluorescence spectra of NALC-CdS QDs with different concentrations of Cu<sup>2+</sup> in aqueous solution, (<b>b</b>) the relationship between the relative fluorescence intensity (<span class='html-italic'>F</span><sub>0</sub>/<span class='html-italic'>F</span>) and the concentration of Cu<sup>2+</sup>, and (<b>c</b>) schematic of the quenching mechanism of NALC-CdS QDs by Cu<sup>2+</sup>. Reprinted with permission from ref. [<a href="#B61-chemosensors-11-00405" class="html-bibr">61</a>]; Copyright IOP Publishing. (<b>d</b>) Fluorescence spectra of the NH<sub>2</sub>-ZnO QDs with different concentrations of Cu<sup>2+</sup> in aqueous solution; (<b>e</b>,<b>f</b>) the linear relation curves of <span class='html-italic'>F</span><sub>0</sub>/<span class='html-italic'>F</span> and the concentration of Cu<sup>2+</sup>: (<b>e</b>) 2–20 nM; (<b>f</b>) 1–100 μM. (<b>g</b>) Schematic of quenching mechanism of NH<sub>2</sub>-ZnO QDs by Cu<sup>2+</sup>. Reprinted with permission from ref. [<a href="#B63-chemosensors-11-00405" class="html-bibr">63</a>]; Copyright 2020 Elsevier.</div> <div class="html-img"><img alt="Chemosensors 11 00405 g001" data-large="/chemosensors/chemosensors-11-00405/article_deploy/html/images/chemosensors-11-00405-g001.png" data-original="/chemosensors/chemosensors-11-00405/article_deploy/html/images/chemosensors-11-00405-g001.png" data-lsrc="/chemosensors/chemosensors-11-00405/article_deploy/html/images/chemosensors-11-00405-g001.png" /></div> </div><div class="html-fig-wrap" id="chemosensors-11-00405-f002"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2227-9040/11/7/405/display" href="#fig_body_display_chemosensors-11-00405-f002"> <img alt="Chemosensors 11 00405 g002 550" data-large="/chemosensors/chemosensors-11-00405/article_deploy/html/images/chemosensors-11-00405-g002.png" data-original="/chemosensors/chemosensors-11-00405/article_deploy/html/images/chemosensors-11-00405-g002.png" data-lsrc="/chemosensors/chemosensors-11-00405/article_deploy/html/images/chemosensors-11-00405-g002-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2227-9040/11/7/405/display" href="#fig_body_display_chemosensors-11-00405-f002"></a> </div> </div> <div class="html-fig_description"> <b>Figure 2.</b> (<b>A</b>) UV-vis spectra (a, b) and FL spectra (excitation spectra, c, d; emission spectra, e, f) of BPEI-CQD solution in the absence (a, c, e) and presence (b, d, f) of 150 μM Cu<sup>2+</sup> ions. The inset shows photos of BPEI-CQD solutions in the absence (left) and presence (right) of Cu<sup>2+</sup> under UV light of 365 nm. (<b>B</b>) FL response of BPEI-CQDs upon addition of various concentrations of copper ions. Inset: Linear relationship between <span class='html-italic'>F</span><sub>0</sub>/<span class='html-italic'>F</span> of BPEI-CQDs and the concentration of Cu<sup>2+</sup>. (<b>C</b>) Schematic diagram of the fluorescence quenching of the BPEI-CQDs by Cu<sup>2+</sup>. Reprinted with permission from ref. [<a href="#B66-chemosensors-11-00405" class="html-bibr">66</a>]; Copyright IOP Publishing. <!-- <p><a class="html-figpopup" href="#fig_body_display_chemosensors-11-00405-f002"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_chemosensors-11-00405-f002" > <div class="html-caption" > <b>Figure 2.</b> (<b>A</b>) UV-vis spectra (a, b) and FL spectra (excitation spectra, c, d; emission spectra, e, f) of BPEI-CQD solution in the absence (a, c, e) and presence (b, d, f) of 150 μM Cu<sup>2+</sup> ions. The inset shows photos of BPEI-CQD solutions in the absence (left) and presence (right) of Cu<sup>2+</sup> under UV light of 365 nm. (<b>B</b>) FL response of BPEI-CQDs upon addition of various concentrations of copper ions. Inset: Linear relationship between <span class='html-italic'>F</span><sub>0</sub>/<span class='html-italic'>F</span> of BPEI-CQDs and the concentration of Cu<sup>2+</sup>. (<b>C</b>) Schematic diagram of the fluorescence quenching of the BPEI-CQDs by Cu<sup>2+</sup>. Reprinted with permission from ref. [<a href="#B66-chemosensors-11-00405" class="html-bibr">66</a>]; Copyright IOP Publishing.</div> <div class="html-img"><img alt="Chemosensors 11 00405 g002" data-large="/chemosensors/chemosensors-11-00405/article_deploy/html/images/chemosensors-11-00405-g002.png" data-original="/chemosensors/chemosensors-11-00405/article_deploy/html/images/chemosensors-11-00405-g002.png" data-lsrc="/chemosensors/chemosensors-11-00405/article_deploy/html/images/chemosensors-11-00405-g002.png" /></div> </div><div class="html-fig-wrap" id="chemosensors-11-00405-f003"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2227-9040/11/7/405/display" href="#fig_body_display_chemosensors-11-00405-f003"> <img alt="Chemosensors 11 00405 g003 550" data-large="/chemosensors/chemosensors-11-00405/article_deploy/html/images/chemosensors-11-00405-g003.png" data-original="/chemosensors/chemosensors-11-00405/article_deploy/html/images/chemosensors-11-00405-g003.png" data-lsrc="/chemosensors/chemosensors-11-00405/article_deploy/html/images/chemosensors-11-00405-g003-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2227-9040/11/7/405/display" href="#fig_body_display_chemosensors-11-00405-f003"></a> </div> </div> <div class="html-fig_description"> <b>Figure 3.</b> The top views of density functional theory (DFT) simulation mode for (<b>a</b>) N, S-GQDs and (<b>b</b>) M cations (M = Fe<sup>3+</sup>, Hg<sup>2+</sup>) adsorbed on the surface of N, S-GQDs. (<b>c</b>) Schematic diagram of N, S-GQDs as a fluorescence probe. Reprinted with permission from ref. [<a href="#B90-chemosensors-11-00405" class="html-bibr">90</a>]. <!-- <p><a class="html-figpopup" href="#fig_body_display_chemosensors-11-00405-f003"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_chemosensors-11-00405-f003" > <div class="html-caption" > <b>Figure 3.</b> The top views of density functional theory (DFT) simulation mode for (<b>a</b>) N, S-GQDs and (<b>b</b>) M cations (M = Fe<sup>3+</sup>, Hg<sup>2+</sup>) adsorbed on the surface of N, S-GQDs. (<b>c</b>) Schematic diagram of N, S-GQDs as a fluorescence probe. Reprinted with permission from ref. [<a href="#B90-chemosensors-11-00405" class="html-bibr">90</a>].</div> <div class="html-img"><img alt="Chemosensors 11 00405 g003" data-large="/chemosensors/chemosensors-11-00405/article_deploy/html/images/chemosensors-11-00405-g003.png" data-original="/chemosensors/chemosensors-11-00405/article_deploy/html/images/chemosensors-11-00405-g003.png" data-lsrc="/chemosensors/chemosensors-11-00405/article_deploy/html/images/chemosensors-11-00405-g003.png" /></div> </div><div class="html-fig-wrap" id="chemosensors-11-00405-f004"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2227-9040/11/7/405/display" href="#fig_body_display_chemosensors-11-00405-f004"> <img alt="Chemosensors 11 00405 g004 550" data-large="/chemosensors/chemosensors-11-00405/article_deploy/html/images/chemosensors-11-00405-g004.png" data-original="/chemosensors/chemosensors-11-00405/article_deploy/html/images/chemosensors-11-00405-g004.png" data-lsrc="/chemosensors/chemosensors-11-00405/article_deploy/html/images/chemosensors-11-00405-g004-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2227-9040/11/7/405/display" href="#fig_body_display_chemosensors-11-00405-f004"></a> </div> </div> <div class="html-fig_description"> <b>Figure 4.</b> (<b>a</b>) PL intensity of QDs in the presence of Fe<sup>3+</sup> ions. (<b>b</b>) The linear relationship between the fluorescence intensity and Fe<sup>3+</sup>. (<b>c</b>) Schematic diagram for static and dynamic quenching of f-SnS<sub>2</sub> QDs by Fe<sup>3+</sup> ions. Reprinted with permission from ref. [<a href="#B104-chemosensors-11-00405" class="html-bibr">104</a>]. Copyright 2020 Elsevier. <!-- <p><a class="html-figpopup" href="#fig_body_display_chemosensors-11-00405-f004"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_chemosensors-11-00405-f004" > <div class="html-caption" > <b>Figure 4.</b> (<b>a</b>) PL intensity of QDs in the presence of Fe<sup>3+</sup> ions. (<b>b</b>) The linear relationship between the fluorescence intensity and Fe<sup>3+</sup>. (<b>c</b>) Schematic diagram for static and dynamic quenching of f-SnS<sub>2</sub> QDs by Fe<sup>3+</sup> ions. Reprinted with permission from ref. [<a href="#B104-chemosensors-11-00405" class="html-bibr">104</a>]. Copyright 2020 Elsevier.</div> <div class="html-img"><img alt="Chemosensors 11 00405 g004" data-large="/chemosensors/chemosensors-11-00405/article_deploy/html/images/chemosensors-11-00405-g004.png" data-original="/chemosensors/chemosensors-11-00405/article_deploy/html/images/chemosensors-11-00405-g004.png" data-lsrc="/chemosensors/chemosensors-11-00405/article_deploy/html/images/chemosensors-11-00405-g004.png" /></div> </div><div class="html-fig-wrap" id="chemosensors-11-00405-f005"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2227-9040/11/7/405/display" href="#fig_body_display_chemosensors-11-00405-f005"> <img alt="Chemosensors 11 00405 g005 550" data-large="/chemosensors/chemosensors-11-00405/article_deploy/html/images/chemosensors-11-00405-g005.png" data-original="/chemosensors/chemosensors-11-00405/article_deploy/html/images/chemosensors-11-00405-g005.png" data-lsrc="/chemosensors/chemosensors-11-00405/article_deploy/html/images/chemosensors-11-00405-g005-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2227-9040/11/7/405/display" href="#fig_body_display_chemosensors-11-00405-f005"></a> </div> </div> <div class="html-fig_description"> <b>Figure 5.</b> (<b>a</b>) Interference test of QD solution for various metal ions. (<b>b</b>) The fluorescence spectra of QDs upon different concentrations of Pb<sup>2+</sup>. (<b>c</b>) Linear relationship between the concentration of Pb<sup>2+</sup> and FL intensity. (<b>d</b>) Mechanism of florescence quenching. Reprinted with permission from ref. [<a href="#B125-chemosensors-11-00405" class="html-bibr">125</a>]. Copyright 2022 Elsevier. <!-- <p><a class="html-figpopup" href="#fig_body_display_chemosensors-11-00405-f005"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_chemosensors-11-00405-f005" > <div class="html-caption" > <b>Figure 5.</b> (<b>a</b>) Interference test of QD solution for various metal ions. (<b>b</b>) The fluorescence spectra of QDs upon different concentrations of Pb<sup>2+</sup>. (<b>c</b>) Linear relationship between the concentration of Pb<sup>2+</sup> and FL intensity. (<b>d</b>) Mechanism of florescence quenching. Reprinted with permission from ref. [<a href="#B125-chemosensors-11-00405" class="html-bibr">125</a>]. Copyright 2022 Elsevier.</div> <div class="html-img"><img alt="Chemosensors 11 00405 g005" data-large="/chemosensors/chemosensors-11-00405/article_deploy/html/images/chemosensors-11-00405-g005.png" data-original="/chemosensors/chemosensors-11-00405/article_deploy/html/images/chemosensors-11-00405-g005.png" data-lsrc="/chemosensors/chemosensors-11-00405/article_deploy/html/images/chemosensors-11-00405-g005.png" /></div> </div><div class="html-table-wrap" id="chemosensors-11-00405-t001"> <div class="html-table_wrap_td" > <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual = "https://www.mdpi.com/2227-9040/11/7/405/display" href='#table_body_display_chemosensors-11-00405-t001'> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual = "https://www.mdpi.com/2227-9040/11/7/405/display" href="#table_body_display_chemosensors-11-00405-t001"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 1.</b> A summary of QD-based sensors for the detection of Cu<sup>2+</sup>. </div> </div> <div class="html-table_show mfp-hide " id ="table_body_display_chemosensors-11-00405-t001" > <div class="html-caption" ><b>Table 1.</b> A summary of QD-based sensors for the detection of Cu<sup>2+</sup>.</div> <table > <thead ><tr ><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >QD-Based Sensors</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Analyte</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Linearity</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >LOD (nM)</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Applications</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Mechanism</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Ref.</th></tr></thead><tbody ><tr ><td align='center' valign='middle' class='html-align-center' >AgInS<sub>2</sub> QDs</td><td align='center' valign='middle' class='html-align-center' >Cu<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >0–340 μM</td><td align='center' valign='middle' class='html-align-center' >27.3</td><td align='center' valign='middle' class='html-align-center' >Drinking/natural water</td><td align='center' valign='middle' class='html-align-center' >FRET</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B69-chemosensors-11-00405" class="html-bibr">69</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >Ag<sub>2</sub>S QDs</td><td align='center' valign='middle' class='html-align-center' >Cu<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >0.025–10 μM</td><td align='center' valign='middle' class='html-align-center' >27.6</td><td align='center' valign='middle' class='html-align-center' >Drinking water</td><td align='center' valign='middle' class='html-align-center' >PET</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B70-chemosensors-11-00405" class="html-bibr">70</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CdSe/ZnS QDs</td><td align='center' valign='middle' class='html-align-center' >Cu<sup>2+</sup>, Hg<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >0.02–0.7 μM</td><td align='center' valign='middle' class='html-align-center' >6.94</td><td align='center' valign='middle' class='html-align-center' >~</td><td align='center' valign='middle' class='html-align-center' >PET</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B71-chemosensors-11-00405" class="html-bibr">71</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >MPA-InP/ZnS QDs</td><td align='center' valign='middle' class='html-align-center' >Cu<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >0–1000 nM</td><td align='center' valign='middle' class='html-align-center' >0.22</td><td align='center' valign='middle' class='html-align-center' >River/tap/purified/mineral/drinking water, beverages</td><td align='center' valign='middle' class='html-align-center' >SQE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B53-chemosensors-11-00405" class="html-bibr">53</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >TGA-CdTe QDs</td><td align='center' valign='middle' class='html-align-center' >Cu<sup>2+</sup>, Ag<sup>+</sup></td><td align='center' valign='middle' class='html-align-center' >40–60 nM</td><td align='center' valign='middle' class='html-align-center' >35</td><td align='center' valign='middle' class='html-align-center' >Urine</td><td align='center' valign='middle' class='html-align-center' >SQE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B72-chemosensors-11-00405" class="html-bibr">72</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CdSe/ZnS QDs@PESM</td><td align='center' valign='middle' class='html-align-center' >Cu<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >0.15–15 μM</td><td align='center' valign='middle' class='html-align-center' >67</td><td align='center' valign='middle' class='html-align-center' >Tap water, baijiu, orange juice, beer, milk</td><td align='center' valign='middle' class='html-align-center' >SQE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B73-chemosensors-11-00405" class="html-bibr">73</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >ZnSe/ZnS-MPA QDs</td><td align='center' valign='middle' class='html-align-center' >Cu<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >0.049–59 μM</td><td align='center' valign='middle' class='html-align-center' >170</td><td align='center' valign='middle' class='html-align-center' >~</td><td align='center' valign='middle' class='html-align-center' >SQE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B74-chemosensors-11-00405" class="html-bibr">74</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >P, N-CQDs</td><td align='center' valign='middle' class='html-align-center' >Cu<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >4–400 nM</td><td align='center' valign='middle' class='html-align-center' >1.5</td><td align='center' valign='middle' class='html-align-center' >Water</td><td align='center' valign='middle' class='html-align-center' >IFE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B75-chemosensors-11-00405" class="html-bibr">75</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >N-CQDs</td><td align='center' valign='middle' class='html-align-center' >Cu<sup>2+</sup>, GSH, pH</td><td align='center' valign='middle' class='html-align-center' >0.1–40 μM</td><td align='center' valign='middle' class='html-align-center' >90</td><td align='center' valign='middle' class='html-align-center' >Cellular imaging, natural water</td><td align='center' valign='middle' class='html-align-center' >SQE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B76-chemosensors-11-00405" class="html-bibr">76</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >N, S-CQDs</td><td align='center' valign='middle' class='html-align-center' >Cu<sup>2+</sup>, EDT</td><td align='center' valign='middle' class='html-align-center' >5–125 μM</td><td align='center' valign='middle' class='html-align-center' >~</td><td align='center' valign='middle' class='html-align-center' >Natural water</td><td align='center' valign='middle' class='html-align-center' >IFE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B77-chemosensors-11-00405" class="html-bibr">77</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >P-CQDs</td><td align='center' valign='middle' class='html-align-center' >Cu<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >0–260 μM</td><td align='center' valign='middle' class='html-align-center' >32</td><td align='center' valign='middle' class='html-align-center' >Tap water</td><td align='center' valign='middle' class='html-align-center' >IFE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B78-chemosensors-11-00405" class="html-bibr">78</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >N–GQDs</td><td align='center' valign='middle' class='html-align-center' >Cu<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >0–10 μM</td><td align='center' valign='middle' class='html-align-center' >57</td><td align='center' valign='middle' class='html-align-center' >~</td><td align='center' valign='middle' class='html-align-center' >SQE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B79-chemosensors-11-00405" class="html-bibr">79</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >GQDs</td><td align='center' valign='middle' class='html-align-center' >Cu<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >1–40 μM</td><td align='center' valign='middle' class='html-align-center' >440</td><td align='center' valign='middle' class='html-align-center' >~</td><td align='center' valign='middle' class='html-align-center' >ACQ</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B80-chemosensors-11-00405" class="html-bibr">80</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >GQDs</td><td align='center' valign='middle' class='html-align-center' >Cu<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >0–15 μM</td><td align='center' valign='middle' class='html-align-center' >226</td><td align='center' valign='middle' class='html-align-center' >River water</td><td align='center' valign='middle' class='html-align-center' >SQE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B81-chemosensors-11-00405" class="html-bibr">81</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >GQDs</td><td align='center' valign='middle' class='html-align-center' >Cu<sup>2+</sup>, MPG</td><td align='center' valign='middle' class='html-align-center' >0.01–0.5 μM</td><td align='center' valign='middle' class='html-align-center' >2.5</td><td align='center' valign='middle' class='html-align-center' >~</td><td align='center' valign='middle' class='html-align-center' >PET</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B82-chemosensors-11-00405" class="html-bibr">82</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >N–GQDs</td><td align='center' valign='middle' class='html-align-center' >Cu<sup>2+</sup>, Co<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >0.2–1 μM</td><td align='center' valign='middle' class='html-align-center' >~</td><td align='center' valign='middle' class='html-align-center' >~</td><td align='center' valign='middle' class='html-align-center' >~</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B83-chemosensors-11-00405" class="html-bibr">83</a>]</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > a-GQDs </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Cu<sup>2+</sup></td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0–100 μM</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >5.6</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >~</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >PET</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >[<a href="#B84-chemosensors-11-00405" class="html-bibr">84</a>]</td></tr></tbody> </table> </div><div class="html-table-wrap" id="chemosensors-11-00405-t002"> <div class="html-table_wrap_td" > <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual = "https://www.mdpi.com/2227-9040/11/7/405/display" href='#table_body_display_chemosensors-11-00405-t002'> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual = "https://www.mdpi.com/2227-9040/11/7/405/display" href="#table_body_display_chemosensors-11-00405-t002"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 2.</b> A summary of QD-based sensors for the detection of Hg<sup>2+</sup>. </div> </div> <div class="html-table_show mfp-hide " id ="table_body_display_chemosensors-11-00405-t002" > <div class="html-caption" ><b>Table 2.</b> A summary of QD-based sensors for the detection of Hg<sup>2+</sup>.</div> <table > <thead ><tr ><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >QDs-Based Sensors</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Analyte(s)</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Linearity</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >LOD<br>(nM)</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Applications</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Mechanisms</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Ref.</th></tr></thead><tbody ><tr ><td align='center' valign='middle' class='html-align-center' >CdTe@3-MIBA</td><td align='center' valign='middle' class='html-align-center' >Hg<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >1.5–100 nM</td><td align='center' valign='middle' class='html-align-center' >1.5 ± 0.5</td><td align='center' valign='middle' class='html-align-center' >~</td><td align='center' valign='middle' class='html-align-center' >ACQ, DQE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B85-chemosensors-11-00405" class="html-bibr">85</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >GSH@CdS QDs</td><td align='center' valign='middle' class='html-align-center' >Hg<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >10–1000 nM/<br>1–20 µM</td><td align='center' valign='middle' class='html-align-center' >0.54</td><td align='center' valign='middle' class='html-align-center' >Tap/water</td><td align='center' valign='middle' class='html-align-center' >ACQ, DQE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B86-chemosensors-11-00405" class="html-bibr">86</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CdSe/ZnS QDs</td><td align='center' valign='middle' class='html-align-center' >Hg<sup>2+</sup>, Cu<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >0.1–1.4 μM</td><td align='center' valign='middle' class='html-align-center' >20.58</td><td align='center' valign='middle' class='html-align-center' >~</td><td align='center' valign='middle' class='html-align-center' >ACQ</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B71-chemosensors-11-00405" class="html-bibr">71</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >PEI-Ag<sub>2</sub>S</td><td align='center' valign='middle' class='html-align-center' >Hg<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >5–625 nM</td><td align='center' valign='middle' class='html-align-center' >5</td><td align='center' valign='middle' class='html-align-center' >Lake water</td><td align='center' valign='middle' class='html-align-center' >ACQ</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B87-chemosensors-11-00405" class="html-bibr">87</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CdSe/ZnS/OA</td><td align='center' valign='middle' class='html-align-center' >Hg<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >0.3–6.1 µM</td><td align='center' valign='middle' class='html-align-center' >74.8</td><td align='center' valign='middle' class='html-align-center' >~</td><td align='center' valign='middle' class='html-align-center' >ACQ</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B88-chemosensors-11-00405" class="html-bibr">88</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CdSe/ZnS/GSH</td><td align='center' valign='middle' class='html-align-center' >Hg<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >0.3–6.1 µM</td><td align='center' valign='middle' class='html-align-center' >54.8</td><td align='center' valign='middle' class='html-align-center' >~</td><td align='center' valign='middle' class='html-align-center' >ACQ</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B88-chemosensors-11-00405" class="html-bibr">88</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >N-GQDs</td><td align='center' valign='middle' class='html-align-center' >Hg<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >1–1000 nM</td><td align='center' valign='middle' class='html-align-center' >0.45</td><td align='center' valign='middle' class='html-align-center' >~</td><td align='center' valign='middle' class='html-align-center' >DQE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B89-chemosensors-11-00405" class="html-bibr">89</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >N, S-GQDs</td><td align='center' valign='middle' class='html-align-center' >Hg<sup>2+</sup>, Fe<sup>3+</sup></td><td align='center' valign='middle' class='html-align-center' >1–30 nM</td><td align='center' valign='middle' class='html-align-center' >0.27</td><td align='center' valign='middle' class='html-align-center' >Drinking water</td><td align='center' valign='middle' class='html-align-center' >DQE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B90-chemosensors-11-00405" class="html-bibr">90</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >RhB-GQDs</td><td align='center' valign='middle' class='html-align-center' >Hg<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >0–1000 nM</td><td align='center' valign='middle' class='html-align-center' >0.16</td><td align='center' valign='middle' class='html-align-center' >Drinking water</td><td align='center' valign='middle' class='html-align-center' >DQE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B91-chemosensors-11-00405" class="html-bibr">91</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >GQDs</td><td align='center' valign='middle' class='html-align-center' >Hg<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >0–380 µM</td><td align='center' valign='middle' class='html-align-center' >82</td><td align='center' valign='middle' class='html-align-center' >~</td><td align='center' valign='middle' class='html-align-center' >DQE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B92-chemosensors-11-00405" class="html-bibr">92</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >8-HQ-GQDs</td><td align='center' valign='middle' class='html-align-center' >Hg<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >0–200 nM</td><td align='center' valign='middle' class='html-align-center' >2.4</td><td align='center' valign='middle' class='html-align-center' >Tap/lake/underground/dam water</td><td align='center' valign='middle' class='html-align-center' >DQE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B93-chemosensors-11-00405" class="html-bibr">93</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CQDs–Ag NPs</td><td align='center' valign='middle' class='html-align-center' >Hg<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >0.5–500 nM</td><td align='center' valign='middle' class='html-align-center' >0.1</td><td align='center' valign='middle' class='html-align-center' >Lake water, wastewater, green/Galin/Lahijan tea</td><td align='center' valign='middle' class='html-align-center' >FRET</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B94-chemosensors-11-00405" class="html-bibr">94</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CQDs</td><td align='center' valign='middle' class='html-align-center' >Hg<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >50–500 µM</td><td align='center' valign='middle' class='html-align-center' >6.2</td><td align='center' valign='middle' class='html-align-center' >~</td><td align='center' valign='middle' class='html-align-center' >DQE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B95-chemosensors-11-00405" class="html-bibr">95</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >FA-CDs</td><td align='center' valign='middle' class='html-align-center' >Hg<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >10–1000 nM</td><td align='center' valign='middle' class='html-align-center' >1.29</td><td align='center' valign='middle' class='html-align-center' >Lake/tap/sea water, cellular imaging</td><td align='center' valign='middle' class='html-align-center' >DQE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B96-chemosensors-11-00405" class="html-bibr">96</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >N-CQDs</td><td align='center' valign='middle' class='html-align-center' >Hg<sup>2+</sup>, captopril</td><td align='center' valign='middle' class='html-align-center' >10–100 nM</td><td align='center' valign='middle' class='html-align-center' >1.43</td><td align='center' valign='middle' class='html-align-center' >River/pond water</td><td align='center' valign='middle' class='html-align-center' >DQE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B97-chemosensors-11-00405" class="html-bibr">97</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >N/Ag-CQDs</td><td align='center' valign='middle' class='html-align-center' >Hg<sup>2+</sup>, captopril</td><td align='center' valign='middle' class='html-align-center' >10–100 nM</td><td align='center' valign='middle' class='html-align-center' >0.93</td><td align='center' valign='middle' class='html-align-center' >River/pond water</td><td align='center' valign='middle' class='html-align-center' >DQE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B97-chemosensors-11-00405" class="html-bibr">97</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >N/Ce-CQDs</td><td align='center' valign='middle' class='html-align-center' >Hg<sup>2+</sup>, captopril</td><td align='center' valign='middle' class='html-align-center' >10–100 nM</td><td align='center' valign='middle' class='html-align-center' >1.39</td><td align='center' valign='middle' class='html-align-center' >River/pond water</td><td align='center' valign='middle' class='html-align-center' >DQE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B97-chemosensors-11-00405" class="html-bibr">97</a>]</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >NS-CDs</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Hg<sup>2+</sup>, GSH</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0–100 µM</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >50</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Tap water</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >SQE</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >[<a href="#B98-chemosensors-11-00405" class="html-bibr">98</a>]</td></tr></tbody> </table> </div><div class="html-table-wrap" id="chemosensors-11-00405-t003"> <div class="html-table_wrap_td" > <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual = "https://www.mdpi.com/2227-9040/11/7/405/display" href='#table_body_display_chemosensors-11-00405-t003'> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual = "https://www.mdpi.com/2227-9040/11/7/405/display" href="#table_body_display_chemosensors-11-00405-t003"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 3.</b> A summary of QD-based sensors for the detection of Fe<sup>3+</sup>. </div> </div> <div class="html-table_show mfp-hide " id ="table_body_display_chemosensors-11-00405-t003" > <div class="html-caption" ><b>Table 3.</b> A summary of QD-based sensors for the detection of Fe<sup>3+</sup>.</div> <table > <thead ><tr ><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >QDs-Based Sensors</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Analyte(s)</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Linearity</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >LOD (nM)</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Applications</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Mechanism</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Ref.</th></tr></thead><tbody ><tr ><td align='center' valign='middle' class='html-align-center' >NAC-CdTe QDs&<br>TGA-CdTe QDs</td><td align='center' valign='middle' class='html-align-center' >Fe<sup>3+</sup></td><td align='center' valign='middle' class='html-align-center' >0–3.5 µM</td><td align='center' valign='middle' class='html-align-center' >14</td><td align='center' valign='middle' class='html-align-center' >Tap water</td><td align='center' valign='middle' class='html-align-center' >IFE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B102-chemosensors-11-00405" class="html-bibr">102</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CdTe@SiO<sub>2</sub> QDs</td><td align='center' valign='middle' class='html-align-center' >Fe<sup>3+</sup></td><td align='center' valign='middle' class='html-align-center' >0–3.25 µM</td><td align='center' valign='middle' class='html-align-center' >26.5</td><td align='center' valign='middle' class='html-align-center' >Tap/river/lake water</td><td align='center' valign='middle' class='html-align-center' >FRET</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B103-chemosensors-11-00405" class="html-bibr">103</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >f-SnS<sub>2</sub> QDs</td><td align='center' valign='middle' class='html-align-center' >Fe<sup>3+</sup></td><td align='center' valign='middle' class='html-align-center' >0–68 µM</td><td align='center' valign='middle' class='html-align-center' >840</td><td align='center' valign='middle' class='html-align-center' >~</td><td align='center' valign='middle' class='html-align-center' >SQE, DQE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B104-chemosensors-11-00405" class="html-bibr">104</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >PEG-GQDs</td><td align='center' valign='middle' class='html-align-center' >Fe<sup>3+</sup></td><td align='center' valign='middle' class='html-align-center' >8–24 μM</td><td align='center' valign='middle' class='html-align-center' >5770</td><td align='center' valign='middle' class='html-align-center' >Healthy human serum</td><td align='center' valign='middle' class='html-align-center' >FRET, ACQ</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B107-chemosensors-11-00405" class="html-bibr">107</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >N-GQDs</td><td align='center' valign='middle' class='html-align-center' >Fe<sup>3+</sup></td><td align='center' valign='middle' class='html-align-center' >0–100 μM</td><td align='center' valign='middle' class='html-align-center' >740</td><td align='center' valign='middle' class='html-align-center' >~</td><td align='center' valign='middle' class='html-align-center' >FRET</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B108-chemosensors-11-00405" class="html-bibr">108</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CQDsHG</td><td align='center' valign='middle' class='html-align-center' >Fe<sup>3+</sup></td><td align='center' valign='middle' class='html-align-center' >0–150 μM</td><td align='center' valign='middle' class='html-align-center' >240</td><td align='center' valign='middle' class='html-align-center' >Tap/river water</td><td align='center' valign='middle' class='html-align-center' >SQE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B109-chemosensors-11-00405" class="html-bibr">109</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >N-GQDs</td><td align='center' valign='middle' class='html-align-center' >Fe<sup>3+</sup></td><td align='center' valign='middle' class='html-align-center' >0.02–12 μM</td><td align='center' valign='middle' class='html-align-center' >1.43</td><td align='center' valign='middle' class='html-align-center' >Cellular imaging, lake water</td><td align='center' valign='middle' class='html-align-center' >SQE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B105-chemosensors-11-00405" class="html-bibr">105</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >N, S-GQDs</td><td align='center' valign='middle' class='html-align-center' >Fe<sup>3+</sup>, Hg<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >1–90 nM/<br>0.1–30 μM</td><td align='center' valign='middle' class='html-align-center' >2.88</td><td align='center' valign='middle' class='html-align-center' >Drinking water</td><td align='center' valign='middle' class='html-align-center' >IFE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B90-chemosensors-11-00405" class="html-bibr">90</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >N-GQDs</td><td align='center' valign='middle' class='html-align-center' >Fe<sup>3+</sup></td><td align='center' valign='middle' class='html-align-center' >0–80 μM</td><td align='center' valign='middle' class='html-align-center' >63</td><td align='center' valign='middle' class='html-align-center' >Tap/river water, cellular imaging</td><td align='center' valign='middle' class='html-align-center' >SQE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B106-chemosensors-11-00405" class="html-bibr">106</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >B-CQDs/CdTe-Eu<sup>3+</sup></td><td align='center' valign='middle' class='html-align-center' >Fe<sup>3+</sup>, tetracycline</td><td align='center' valign='middle' class='html-align-center' >0.1–15 μM</td><td align='center' valign='middle' class='html-align-center' >53</td><td align='center' valign='middle' class='html-align-center' >River/lake water</td><td align='center' valign='middle' class='html-align-center' >SQE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B110-chemosensors-11-00405" class="html-bibr">110</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CA-MnO<sub>2</sub> QDs</td><td align='center' valign='middle' class='html-align-center' >Fe<sup>3+</sup>, ascorbic acid</td><td align='center' valign='middle' class='html-align-center' >0–25 µM</td><td align='center' valign='middle' class='html-align-center' >43</td><td align='center' valign='middle' class='html-align-center' >Water</td><td align='center' valign='middle' class='html-align-center' >DQE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B111-chemosensors-11-00405" class="html-bibr">111</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >PSA-L-CQDs</td><td align='center' valign='middle' class='html-align-center' >Fe<sup>3+</sup></td><td align='center' valign='middle' class='html-align-center' >0–500 µM</td><td align='center' valign='middle' class='html-align-center' >29.5</td><td align='center' valign='middle' class='html-align-center' >Natural water organic wastewater</td><td align='center' valign='middle' class='html-align-center' >~</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B112-chemosensors-11-00405" class="html-bibr">112</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >N-CQDs</td><td align='center' valign='middle' class='html-align-center' >Fe<sup>3+</sup></td><td align='center' valign='middle' class='html-align-center' >0–110 μM</td><td align='center' valign='middle' class='html-align-center' >177</td><td align='center' valign='middle' class='html-align-center' >Tap water,<br>cellular imaging</td><td align='center' valign='middle' class='html-align-center' >SQE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B113-chemosensors-11-00405" class="html-bibr">113</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CQDs</td><td align='center' valign='middle' class='html-align-center' >Fe<sup>3+</sup>, Hg<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >0–50 μM</td><td align='center' valign='middle' class='html-align-center' >406</td><td align='center' valign='middle' class='html-align-center' >~</td><td align='center' valign='middle' class='html-align-center' >SQE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B114-chemosensors-11-00405" class="html-bibr">114</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >ILB-CQDs</td><td align='center' valign='middle' class='html-align-center' >Fe<sup>3+</sup>, Pb<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >0–40 μM</td><td align='center' valign='middle' class='html-align-center' >0.001</td><td align='center' valign='middle' class='html-align-center' >Tap/river water</td><td align='center' valign='middle' class='html-align-center' >PET</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B115-chemosensors-11-00405" class="html-bibr">115</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >MoS<sub>2</sub></td><td align='center' valign='middle' class='html-align-center' >Fe<sup>3+</sup></td><td align='center' valign='middle' class='html-align-center' >0–50 μM</td><td align='center' valign='middle' class='html-align-center' >1000</td><td align='center' valign='middle' class='html-align-center' >Tap/pond/mineral water</td><td align='center' valign='middle' class='html-align-center' >SQE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B100-chemosensors-11-00405" class="html-bibr">100</a>]</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >F-GQDs</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Fe<sup>3+</sup></td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.5–50 μM</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >500</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >~</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >SQE</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >[<a href="#B116-chemosensors-11-00405" class="html-bibr">116</a>]</td></tr></tbody> </table> </div><div class="html-table-wrap" id="chemosensors-11-00405-t004"> <div class="html-table_wrap_td" > <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual = "https://www.mdpi.com/2227-9040/11/7/405/display" href='#table_body_display_chemosensors-11-00405-t004'> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual = "https://www.mdpi.com/2227-9040/11/7/405/display" href="#table_body_display_chemosensors-11-00405-t004"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 4.</b> A summary of QD-based sensors for the detection of Pb<sup>2+</sup>. </div> </div> <div class="html-table_show mfp-hide " id ="table_body_display_chemosensors-11-00405-t004" > <div class="html-caption" ><b>Table 4.</b> A summary of QD-based sensors for the detection of Pb<sup>2+</sup>.</div> <table > <thead ><tr ><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >QDs-Based Sensors</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Analyte(s)</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Linearity</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >LOD (nM)</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Applications</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Mechanism</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Ref.</th></tr></thead><tbody ><tr ><td align='center' valign='middle' class='html-align-center' >TGA-CdTe QDs</td><td align='center' valign='middle' class='html-align-center' >Pb<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >1.96–330 nM</td><td align='center' valign='middle' class='html-align-center' >4.7</td><td align='center' valign='middle' class='html-align-center' >Spinach, citrus</td><td align='center' valign='middle' class='html-align-center' >Fluorescence<br>quenching</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B121-chemosensors-11-00405" class="html-bibr">121</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CdTe QDs</td><td align='center' valign='middle' class='html-align-center' >Pb<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >2–100 µM</td><td align='center' valign='middle' class='html-align-center' >270</td><td align='center' valign='middle' class='html-align-center' >~</td><td align='center' valign='middle' class='html-align-center' >SQE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B120-chemosensors-11-00405" class="html-bibr">120</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >ZnSeS/Cu:ZnS/ZnS QDs</td><td align='center' valign='middle' class='html-align-center' >Pb<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >0.04–6 µM</td><td align='center' valign='middle' class='html-align-center' >21</td><td align='center' valign='middle' class='html-align-center' >Mineral/lake water</td><td align='center' valign='middle' class='html-align-center' >DQE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B122-chemosensors-11-00405" class="html-bibr">122</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >3-MPA/GSH-Ag<sub>2</sub>S QDs</td><td align='center' valign='middle' class='html-align-center' >Pb<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >0.05–20 µM</td><td align='center' valign='middle' class='html-align-center' >15.5</td><td align='center' valign='middle' class='html-align-center' >Tap/mineral water</td><td align='center' valign='middle' class='html-align-center' >AIEE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B123-chemosensors-11-00405" class="html-bibr">123</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >MoS<sub>2</sub></td><td align='center' valign='middle' class='html-align-center' >Pb<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >0.033–8 mM</td><td align='center' valign='middle' class='html-align-center' >50,000</td><td align='center' valign='middle' class='html-align-center' >~</td><td align='center' valign='middle' class='html-align-center' >Fluorescence<br>quenching</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B129-chemosensors-11-00405" class="html-bibr">129</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >GSH-ZnSe QDs</td><td align='center' valign='middle' class='html-align-center' >Pb<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >10–800 nM</td><td align='center' valign='middle' class='html-align-center' >0.71</td><td align='center' valign='middle' class='html-align-center' >Water</td><td align='center' valign='middle' class='html-align-center' >FRET</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B130-chemosensors-11-00405" class="html-bibr">130</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >ZnSe QDs</td><td align='center' valign='middle' class='html-align-center' >Pb<sup>2+</sup>, Cd<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >4.8–289 nM</td><td align='center' valign='middle' class='html-align-center' >1.6</td><td align='center' valign='middle' class='html-align-center' >Lake/sea water</td><td align='center' valign='middle' class='html-align-center' >FRET</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B131-chemosensors-11-00405" class="html-bibr">131</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >N, S-CQDs</td><td align='center' valign='middle' class='html-align-center' >Pb<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >0.2–12 µM<br>40–200 µM</td><td align='center' valign='middle' class='html-align-center' >97/5624</td><td align='center' valign='middle' class='html-align-center' >River water</td><td align='center' valign='middle' class='html-align-center' >Fluorescence<br>quenching</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B118-chemosensors-11-00405" class="html-bibr">118</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CQDs</td><td align='center' valign='middle' class='html-align-center' >Pb<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >10–180 µM</td><td align='center' valign='middle' class='html-align-center' >3.3</td><td align='center' valign='middle' class='html-align-center' > River/lake/tap water </td><td align='center' valign='middle' class='html-align-center' > FRET </td><td align='center' valign='middle' class='html-align-center' >[<a href="#B115-chemosensors-11-00405" class="html-bibr">115</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >MPA@CDs</td><td align='center' valign='middle' class='html-align-center' >Pb<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >0.05–6 µM</td><td align='center' valign='middle' class='html-align-center' >0.051</td><td align='center' valign='middle' class='html-align-center' >Tap water</td><td align='center' valign='middle' class='html-align-center' >AIEE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B114-chemosensors-11-00405" class="html-bibr">114</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >P, Cl-CQDs</td><td align='center' valign='middle' class='html-align-center' >Pb<sup>2+</sup>, gentamicin</td><td align='center' valign='middle' class='html-align-center' >0.0483–14.49 µM</td><td align='center' valign='middle' class='html-align-center' >14.49</td><td align='center' valign='middle' class='html-align-center' >River/tap/mineral water,</td><td align='center' valign='middle' class='html-align-center' >Fluorescence<br>quenching</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B132-chemosensors-11-00405" class="html-bibr">132</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CQDs</td><td align='center' valign='middle' class='html-align-center' >Pb<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >0.01–1 µM</td><td align='center' valign='middle' class='html-align-center' >0.59</td><td align='center' valign='middle' class='html-align-center' >Mineral/tap/pond water,<br>cellular imaging</td><td align='center' valign='middle' class='html-align-center' >Fluorescence<br>quenching</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B133-chemosensors-11-00405" class="html-bibr">133</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >N-CQDs</td><td align='center' valign='middle' class='html-align-center' >Pb<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >0.05–25 µM</td><td align='center' valign='middle' class='html-align-center' >20</td><td align='center' valign='middle' class='html-align-center' >River/mineral/tap water</td><td align='center' valign='middle' class='html-align-center' >SQE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B134-chemosensors-11-00405" class="html-bibr">134</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >N-CQDs</td><td align='center' valign='middle' class='html-align-center' >Pb<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >0–200 nM</td><td align='center' valign='middle' class='html-align-center' >9.64</td><td align='center' valign='middle' class='html-align-center' >Cellular imaging,<br>MCF cells</td><td align='center' valign='middle' class='html-align-center' >DQE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B135-chemosensors-11-00405" class="html-bibr">135</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >DMA-GQDs</td><td align='center' valign='middle' class='html-align-center' >Pb<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >0.01–1 nM</td><td align='center' valign='middle' class='html-align-center' >0.009</td><td align='center' valign='middle' class='html-align-center' >Cerebral spinal fluid of rats</td><td align='center' valign='middle' class='html-align-center' >Fluorescence<br>enhancement</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B126-chemosensors-11-00405" class="html-bibr">126</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >GQDs-GO</td><td align='center' valign='middle' class='html-align-center' >Pb<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >0–400 nM</td><td align='center' valign='middle' class='html-align-center' >0.6</td><td align='center' valign='middle' class='html-align-center' >~</td><td align='center' valign='middle' class='html-align-center' >PET</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B127-chemosensors-11-00405" class="html-bibr">127</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >DTPAN-fn-GQDs</td><td align='center' valign='middle' class='html-align-center' >Pb<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >0.5–40 nM</td><td align='center' valign='middle' class='html-align-center' >0.25</td><td align='center' valign='middle' class='html-align-center' >River/tap/well water, paper strips</td><td align='center' valign='middle' class='html-align-center' >SQE, DQE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B128-chemosensors-11-00405" class="html-bibr">128</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >DTP-PPD-fn-GQD</td><td align='center' valign='middle' class='html-align-center' >Pb<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >3–30 nM</td><td align='center' valign='middle' class='html-align-center' >1.02</td><td align='center' valign='middle' class='html-align-center' >Tap/lake water</td><td align='center' valign='middle' class='html-align-center' >SQE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B136-chemosensors-11-00405" class="html-bibr">136</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >GQDs-AuNPs</td><td align='center' valign='middle' class='html-align-center' >Pb<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >50–4000 nM</td><td align='center' valign='middle' class='html-align-center' >16.7</td><td align='center' valign='middle' class='html-align-center' >~</td><td align='center' valign='middle' class='html-align-center' >FRET</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B137-chemosensors-11-00405" class="html-bibr">137</a>]</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >S-GQDs</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Pb<sup>2+</sup></td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1–140 µM</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >30</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >~</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >FRET</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >[<a href="#B138-chemosensors-11-00405" class="html-bibr">138</a>]</td></tr></tbody> </table> </div><div class="html-table-wrap" id="chemosensors-11-00405-t005"> <div class="html-table_wrap_td" > <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual = "https://www.mdpi.com/2227-9040/11/7/405/display" href='#table_body_display_chemosensors-11-00405-t005'> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual = "https://www.mdpi.com/2227-9040/11/7/405/display" href="#table_body_display_chemosensors-11-00405-t005"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 5.</b> A summary of QD-based sensors for the detection of Cd<sup>2+</sup>, Zn<sup>2+</sup>, Ag+, Co<sup>2+</sup>, Fe<sup>2+</sup>, Cr<sup>6+</sup>, and Cr<sup>3+</sup>. </div> </div> <div class="html-table_show mfp-hide " id ="table_body_display_chemosensors-11-00405-t005" > <div class="html-caption" ><b>Table 5.</b> A summary of QD-based sensors for the detection of Cd<sup>2+</sup>, Zn<sup>2+</sup>, Ag+, Co<sup>2+</sup>, Fe<sup>2+</sup>, Cr<sup>6+</sup>, and Cr<sup>3+</sup>.</div> <table > <thead ><tr ><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >QDs-Based Sensors</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Analyte(s)</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Linearity</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >LOD (nM)</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Applications</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Mechanism</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Ref.</th></tr></thead><tbody ><tr ><td align='center' valign='middle' class='html-align-center' >TGA-CdTe QDs</td><td align='center' valign='middle' class='html-align-center' >Ag<sup>+</sup></td><td align='center' valign='middle' class='html-align-center' >5–200 nM</td><td align='center' valign='middle' class='html-align-center' >5</td><td align='center' valign='middle' class='html-align-center' >Lake water</td><td align='center' valign='middle' class='html-align-center' >DQE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B146-chemosensors-11-00405" class="html-bibr">146</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >AgInZnS QDs-NGQDs</td><td align='center' valign='middle' class='html-align-center' >Cd<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >0.5–100 µM</td><td align='center' valign='middle' class='html-align-center' >28.6</td><td align='center' valign='middle' class='html-align-center' >Lake water</td><td align='center' valign='middle' class='html-align-center' >CHEF</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B147-chemosensors-11-00405" class="html-bibr">147</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >L-Asp@CdS QDs</td><td align='center' valign='middle' class='html-align-center' >Ag<sup>+</sup></td><td align='center' valign='middle' class='html-align-center' >100–7000 nM</td><td align='center' valign='middle' class='html-align-center' >39</td><td align='center' valign='middle' class='html-align-center' >Drinking water</td><td align='center' valign='middle' class='html-align-center' >FRET</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B144-chemosensors-11-00405" class="html-bibr">144</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CdTe QDs</td><td align='center' valign='middle' class='html-align-center' >Zn<sup>2+</sup><br>Cd<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >1.6–35 µM<br>1.3–25 µM</td><td align='center' valign='middle' class='html-align-center' >1200<br>500</td><td align='center' valign='middle' class='html-align-center' >Tap/spring water</td><td align='center' valign='middle' class='html-align-center' >CHEF</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B148-chemosensors-11-00405" class="html-bibr">148</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >N, B-CQDs</td><td align='center' valign='middle' class='html-align-center' >Cd<sup>2+</sup>, L-cysteine</td><td align='center' valign='middle' class='html-align-center' >2.5–22.5 µM</td><td align='center' valign='middle' class='html-align-center' >450</td><td align='center' valign='middle' class='html-align-center' >Human urine</td><td align='center' valign='middle' class='html-align-center' >CHEF</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B149-chemosensors-11-00405" class="html-bibr">149</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >urea-ZnO QDs</td><td align='center' valign='middle' class='html-align-center' >Cr<sup>6+</sup></td><td align='center' valign='middle' class='html-align-center' >4–1000 µM</td><td align='center' valign='middle' class='html-align-center' >19.53</td><td align='center' valign='middle' class='html-align-center' >~</td><td align='center' valign='middle' class='html-align-center' >ACQ, DQE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B142-chemosensors-11-00405" class="html-bibr">142</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >N, B-CQDs</td><td align='center' valign='middle' class='html-align-center' >Cr<sup>6+</sup></td><td align='center' valign='middle' class='html-align-center' >1–100 µM</td><td align='center' valign='middle' class='html-align-center' >54, 49, 77</td><td align='center' valign='middle' class='html-align-center' >~</td><td align='center' valign='middle' class='html-align-center' >DQE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B150-chemosensors-11-00405" class="html-bibr">150</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >S, N-CQDs</td><td align='center' valign='middle' class='html-align-center' >Cr<sup>3+</sup></td><td align='center' valign='middle' class='html-align-center' >0–500 µM</td><td align='center' valign='middle' class='html-align-center' >600</td><td align='center' valign='middle' class='html-align-center' >DI/mineral/tap/river water</td><td align='center' valign='middle' class='html-align-center' >Fluorescence <br>quenching</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B152-chemosensors-11-00405" class="html-bibr">152</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >GSH-CdTe QDs</td><td align='center' valign='middle' class='html-align-center' >Cr<sup>3+</sup></td><td align='center' valign='middle' class='html-align-center' >0–2 µM</td><td align='center' valign='middle' class='html-align-center' >3</td><td align='center' valign='middle' class='html-align-center' >Vitamin tablets</td><td align='center' valign='middle' class='html-align-center' >SQE, DQE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B156-chemosensors-11-00405" class="html-bibr">156</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >MPA-CdS QDs</td><td align='center' valign='middle' class='html-align-center' >Co<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >0.04–2 µM</td><td align='center' valign='middle' class='html-align-center' >~</td><td align='center' valign='middle' class='html-align-center' >~</td><td align='center' valign='middle' class='html-align-center' >SQE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B153-chemosensors-11-00405" class="html-bibr">153</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >ZnInS QDs</td><td align='center' valign='middle' class='html-align-center' >Co<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >0.1–100 μM</td><td align='center' valign='middle' class='html-align-center' >99</td><td align='center' valign='middle' class='html-align-center' >~</td><td align='center' valign='middle' class='html-align-center' >ACQ</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B154-chemosensors-11-00405" class="html-bibr">154</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CQDs</td><td align='center' valign='middle' class='html-align-center' >Co<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >0–250 μM</td><td align='center' valign='middle' class='html-align-center' >3010</td><td align='center' valign='middle' class='html-align-center' >Human blood</td><td align='center' valign='middle' class='html-align-center' >Fluorescence <br>quenching</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B157-chemosensors-11-00405" class="html-bibr">157</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >N-CQDs</td><td align='center' valign='middle' class='html-align-center' >Co<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >1–60 μM</td><td align='center' valign='middle' class='html-align-center' >250</td><td align='center' valign='middle' class='html-align-center' >Tap water</td><td align='center' valign='middle' class='html-align-center' >SQE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B158-chemosensors-11-00405" class="html-bibr">158</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >B,N-CQDs</td><td align='center' valign='middle' class='html-align-center' >Al<sup>3+</sup><br>Fe<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >0–20 μM<br>0–25 μM</td><td align='center' valign='middle' class='html-align-center' >187<br>276</td><td align='center' valign='middle' class='html-align-center' >Tap water<br>Ferrous sulfate tablets</td><td align='center' valign='middle' class='html-align-center' >AIEE<br>ACQ</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B159-chemosensors-11-00405" class="html-bibr">159</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >N,S-CQDs</td><td align='center' valign='middle' class='html-align-center' >Al<sup>3+</sup><br>Fe<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >0–20 μM<br>0–25 μM</td><td align='center' valign='middle' class='html-align-center' >6.99<br>5.5</td><td align='center' valign='middle' class='html-align-center' > ~ </td><td align='center' valign='middle' class='html-align-center' >FE<br>AIEE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B155-chemosensors-11-00405" class="html-bibr">155</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >ZnS/ZnO QDs</td><td align='center' valign='middle' class='html-align-center' >Al<sup>3+</sup></td><td align='center' valign='middle' class='html-align-center' >0.001–8 μM/<br>8–100 μM</td><td align='center' valign='middle' class='html-align-center' >1</td><td align='center' valign='middle' class='html-align-center' >Tap/lake water</td><td align='center' valign='middle' class='html-align-center' >Fluorescence enhancement</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B143-chemosensors-11-00405" class="html-bibr">143</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >Ag<sub>2</sub>S QDs</td><td align='center' valign='middle' class='html-align-center' >Zn<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >1–40 μM</td><td align='center' valign='middle' class='html-align-center' >760</td><td align='center' valign='middle' class='html-align-center' >Peptone/intracellular fluid</td><td align='center' valign='middle' class='html-align-center' >Fluorescence enhancement</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B160-chemosensors-11-00405" class="html-bibr">160</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >Ag<sub>2</sub>S QDs</td><td align='center' valign='middle' class='html-align-center' >Cd<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >1–40 μM</td><td align='center' valign='middle' class='html-align-center' >546</td><td align='center' valign='middle' class='html-align-center' >Tap/lake water</td><td align='center' valign='middle' class='html-align-center' >Fluorescence enhancement</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B160-chemosensors-11-00405" class="html-bibr">160</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CQDs</td><td align='center' valign='middle' class='html-align-center' >Zn<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >~</td><td align='center' valign='middle' class='html-align-center' >6400</td><td align='center' valign='middle' class='html-align-center' >Blood plasma</td><td align='center' valign='middle' class='html-align-center' >Fluorescence enhancement</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B161-chemosensors-11-00405" class="html-bibr">161</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CdTe QDs</td><td align='center' valign='middle' class='html-align-center' >Zn<sup>2+</sup><br>Cd<sup>2+</sup></td><td align='center' valign='middle' class='html-align-center' >1.6–35 μM<br>1.3–25 μM</td><td align='center' valign='middle' class='html-align-center' >1200<br>500</td><td align='center' valign='middle' class='html-align-center' >Tap/spring water</td><td align='center' valign='middle' class='html-align-center' >Fluorescence enhancement</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B148-chemosensors-11-00405" class="html-bibr">148</a>]</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Mn:ZnSe QDs</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Cd<sup>2+</sup></td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.02–60 μM</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >18</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Tap water</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Fluorescence enhancement</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >[<a href="#B162-chemosensors-11-00405" class="html-bibr">162</a>]</td></tr></tbody> </table> </div><div class="html-table-wrap" id="chemosensors-11-00405-t006"> <div class="html-table_wrap_td" > <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual = "https://www.mdpi.com/2227-9040/11/7/405/display" href='#table_body_display_chemosensors-11-00405-t006'> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual = "https://www.mdpi.com/2227-9040/11/7/405/display" href="#table_body_display_chemosensors-11-00405-t006"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 6.</b> A summary of QD-based sensors for the detection of pesticide residues. </div> </div> <div class="html-table_show mfp-hide " id ="table_body_display_chemosensors-11-00405-t006" > <div class="html-caption" ><b>Table 6.</b> A summary of QD-based sensors for the detection of pesticide residues.</div> <table > <thead ><tr ><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >QDs-Based Sensors</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Selectivity</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Linearity</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >LOD</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Applications</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Mechanism</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Ref.</th></tr></thead><tbody ><tr ><td align='center' valign='middle' class='html-align-center' >N, P-CQDs/<br>Au NPs</td><td align='center' valign='middle' class='html-align-center' >carbendazim</td><td align='center' valign='middle' class='html-align-center' >0.005–0.16 µM</td><td align='center' valign='middle' class='html-align-center' >2 nM</td><td align='center' valign='middle' class='html-align-center' >Cabbage, apple</td><td align='center' valign='middle' class='html-align-center' >FRET</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B166-chemosensors-11-00405" class="html-bibr">166</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >N,CQDs/AuNCs</td><td align='center' valign='middle' class='html-align-center' >carbendazim</td><td align='center' valign='middle' class='html-align-center' >1–100 µM<br>150–1000 µM</td><td align='center' valign='middle' class='html-align-center' >0.83 µM</td><td align='center' valign='middle' class='html-align-center' >Strawberry, apple</td><td align='center' valign='middle' class='html-align-center' >FRET</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B167-chemosensors-11-00405" class="html-bibr">167</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >S-CQDs/CuNCs</td><td align='center' valign='middle' class='html-align-center' >dinotefuran</td><td align='center' valign='middle' class='html-align-center' >10–500 µM</td><td align='center' valign='middle' class='html-align-center' >7.04 µM</td><td align='center' valign='middle' class='html-align-center' >Honey</td><td align='center' valign='middle' class='html-align-center' >IFE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B168-chemosensors-11-00405" class="html-bibr">168</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CdTe-CQDs</td><td align='center' valign='middle' class='html-align-center' >glyphosate</td><td align='center' valign='middle' class='html-align-center' >0–1000 nM</td><td align='center' valign='middle' class='html-align-center' >2 pM</td><td align='center' valign='middle' class='html-align-center' >Cucumber, capsicum, ginger</td><td align='center' valign='middle' class='html-align-center' >PET</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B169-chemosensors-11-00405" class="html-bibr">169</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CdSe QDs</td><td align='center' valign='middle' class='html-align-center' >malathion</td><td align='center' valign='middle' class='html-align-center' >0.908–303 nM</td><td align='center' valign='middle' class='html-align-center' >303 pM</td><td align='center' valign='middle' class='html-align-center' >Cabbage leaves</td><td align='center' valign='middle' class='html-align-center' >Fluorescence quenching</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B170-chemosensors-11-00405" class="html-bibr">170</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CdSe/ZnS QDs</td><td align='center' valign='middle' class='html-align-center' >organophosphorus</td><td align='center' valign='middle' class='html-align-center' >0.0001–160<br>μg/mL</td><td align='center' valign='middle' class='html-align-center' >96.7 <br>μg/mL</td><td align='center' valign='middle' class='html-align-center' >Tomato</td><td align='center' valign='middle' class='html-align-center' >Fluorescence quenching</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B171-chemosensors-11-00405" class="html-bibr">171</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >S-GQDs</td><td align='center' valign='middle' class='html-align-center' >omethoate</td><td align='center' valign='middle' class='html-align-center' >4.7–470 µM</td><td align='center' valign='middle' class='html-align-center' >4.7 nM</td><td align='center' valign='middle' class='html-align-center' >~</td><td align='center' valign='middle' class='html-align-center' >Fluorescence enhancement</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B172-chemosensors-11-00405" class="html-bibr">172</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >S-GQDs</td><td align='center' valign='middle' class='html-align-center' >carbofuran<br>thiram</td><td align='center' valign='middle' class='html-align-center' >0–225 ppb<br>0–800 ppb</td><td align='center' valign='middle' class='html-align-center' >0.45 ppb<br>1.6 ppb</td><td align='center' valign='middle' class='html-align-center' >Apple</td><td align='center' valign='middle' class='html-align-center' >PET</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B173-chemosensors-11-00405" class="html-bibr">173</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >N-CQDs</td><td align='center' valign='middle' class='html-align-center' >thiram<br>paraquat</td><td align='center' valign='middle' class='html-align-center' >10–500 nM<br>5–100 nM</td><td align='center' valign='middle' class='html-align-center' >7.49 nM<br>3.03 nM</td><td align='center' valign='middle' class='html-align-center' ><span class='html-italic'>Semen nelumbinis</span>, coix lacryma-jobi, ginseng</td><td align='center' valign='middle' class='html-align-center' > FRET </td><td align='center' valign='middle' class='html-align-center' >[<a href="#B174-chemosensors-11-00405" class="html-bibr">174</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CdTe QDs</td><td align='center' valign='middle' class='html-align-center' >carbaryl</td><td align='center' valign='middle' class='html-align-center' >0–14 μg/mL</td><td align='center' valign='middle' class='html-align-center' >0.12 ng/mL</td><td align='center' valign='middle' class='html-align-center' >Apple</td><td align='center' valign='middle' class='html-align-center' >Ratiometric fluorescence</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B175-chemosensors-11-00405" class="html-bibr">175</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CQDs</td><td align='center' valign='middle' class='html-align-center' >acephate</td><td align='center' valign='middle' class='html-align-center' >0–100 ng/mL</td><td align='center' valign='middle' class='html-align-center' >0.052 ppb</td><td align='center' valign='middle' class='html-align-center' >Pear</td><td align='center' valign='middle' class='html-align-center' >IFE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B176-chemosensors-11-00405" class="html-bibr">176</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CQDs</td><td align='center' valign='middle' class='html-align-center' >chlorpyrifos</td><td align='center' valign='middle' class='html-align-center' >0.02–0.18 μg/mL</td><td align='center' valign='middle' class='html-align-center' >2.7 ng/mL</td><td align='center' valign='middle' class='html-align-center' >River water,<br>apple juice</td><td align='center' valign='middle' class='html-align-center' >DQE</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B177-chemosensors-11-00405" class="html-bibr">177</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >AP-NSCDs</td><td align='center' valign='middle' class='html-align-center' >nitroalkenes</td><td align='center' valign='middle' class='html-align-center' >0.05–10 mg/L</td><td align='center' valign='middle' class='html-align-center' >0.02 mg/L</td><td align='center' valign='middle' class='html-align-center' > Rice, orange, cabbage, serum, urine, water </td><td align='center' valign='middle' class='html-align-center' > FRET </td><td align='center' valign='middle' class='html-align-center' >[<a href="#B178-chemosensors-11-00405" class="html-bibr">178</a>]</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >GQDs/CDs</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >imidacloprid</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >5–4000 nM</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.823 nM</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > Banana, apple, cabbage, cucumber </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > FRET </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >[<a href="#B179-chemosensors-11-00405" class="html-bibr">179</a>]</td></tr></tbody> </table> </div></section><section class='html-fn_group'><table><tr id=''><td></td><td><div class='html-p'><b>Disclaimer/Publisher’s Note:</b> The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.</div></td></tr></table></section> <section id="html-copyright"><br>© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<a href='https://creativecommons.org/licenses/by/4.0/' target='_blank' rel="noopener noreferrer" >https://creativecommons.org/licenses/by/4.0/</a>).</section> </div> </div> <div class="additional-content"> <h2><a name="cite"></a>Share and Cite</h2> <div class="social-media-links" style="text-align: left;"> <a href="/cdn-cgi/l/email-protection#5a657c3b372a61292f38303f392e671c2835377f686a171e0a137f691b7f686a7f68681c362f35283f29393f342e7f686a0b2f3b342e2f377f686a1e352e297f686a3b343e7f686a132e297f686a1935372a3529332e3f297f686a3c35287f686a12333d3236237f686a093f3429332e332c3f7f686a1e3f2e3f392e3335347f686a353c7f686a123f3b2c237f686a173f2e3b367f686a133534297f686a3b343e7f686a0a3f292e3339333e3f7f686a083f29333e2f3f297f691b7f686a1b7f686a083f2c333f2d7c2b2f352e617c3b372a6138353e2367322e2e2a296075752d2d2d74373e2a3374393537756869636e6d686e7f691b7f6a1b7f6a1b1c362f35283f29393f342e7f686a0b2f3b342e2f377f686a1e352e297f686a3b343e7f686a132e297f686a1935372a3529332e3f297f686a3c35287f686a12333d3236237f686a093f3429332e332c3f7f686a1e3f2e3f392e3335347f686a353c7f686a123f3b2c237f686a173f2e3b367f686a133534297f686a3b343e7f686a0a3f292e3339333e3f7f686a083f29333e2f3f297f691b7f686a1b7f686a083f2c333f2d7f6a1b7f6a1b1b38292e283b392e7f691b7f686a0b2f3b342e2f377f686a3e352e297f686a343b3435373b2e3f28333b36297f686a323b2c3f7f686a3b2e2e283b392e3f3e7f686a3f222e3f3429332c3f7f686a33342e3f283f292e7f686a3c35287f686a3c362f35283f29393f34393f7f686a39323f3733393b367f686a293f34293528297f686a3e2f3f7f686a2e323f33287f686a3b2e2e2833382f2e3f297f68197f686a292f39327f686a3b297f686a3f22393f36363f342e7f686a352a2e33393b367f686a39323b283b392e3f2833292e3339297f68197f686a2b2f3b342e2f377f686a2933203f7f686a3f3c3c3f392e297f68197f686a33342e3f283c3b393f7f686a3f3c3c3f392e297f68197f686a3f2e39747f686a1735283f352c3f287f68197f686a2e323f7f686a3c362f35283f29393f34393f7f686a2a28352a3f282e333f297f686a353c7f686a2b2f3b342e2f377f686a3e352e297f686a393b347f686a383f7f686a3b3e302f292e3f3e7f686a38237f686a39323b343d33343d7f686a2e323f33287f686a292e282f392e2f283f7f68197f686a2933203f7f68197f686a3735282a323536353d237f68197f686a3935372a3529332e3335347f68197f686a3e352a33343d7f68197f686a3b343e7f686a292f283c3b393f7f686a37353e333c33393b2e333534747f686a13347f686a283f393f342e7f686a233f3b28297f68197f686a2b2f3b342e2f377f686a3e352e297f686a343b3435373b2e3f28333b36297f686a323b2c3f7f686a383f3f347f686a39353429333e3f283f3e7f686a2e323f7f686a2a283f3c3f28283f3e7f686a293f342933343d7f686a373b2e3f28333b36297f686a3c35287f686a2e323f7f686a3e3f2e3f392e3335347f686a353c7f686a323f3b2c237f686a373f2e3b367f686a333534297f686a3b343e7f686a2a3f292e3339333e3f7f686a283f29333e2f3f297f686a38237f686a2e323f7f686a33342e3f283b392e333534297f686a383f2e2d3f3f347f686a2b2f3b342e2f377f686a3e352e297f686a3b343e7f686a2c3b2833352f297f686a3b343b36232e3f297f68197f686a2932352d33343d7f686a3f22393f36363f342e7f686a293f3429332e332c332e237f68197f686a293f363f392e332c332e237f68197f686a3b343e7f686a33342e3f283c3f283f34393f7f68197f686a3b297f686a2d3f36367f686a3b297f686a283f3e2f3933343d7f686a2e323f7f686a3935292e7f686a353c7f686a3f2b2f332a373f342e7f686a3935372a3b283f3e7f686a2d332e327f686a2e283b3e332e3335343b367f686a373f3b292f283f373f342e7f686a373f2e32353e29747f686a13347f686a2e3233297f686a283f2c333f2d7f68197f686a2e323f7f686a3b2a2a3633393b2e333534297f686a3b343e7f686a293f342933343d7f686a373f39323b34332937297f686a353c7f686a293f37333935343e2f392e35287f686a2b2f3b342e2f377f686a3e352e297f686a3b343e7f686a393b2838353477383b293f3e7f686a2b2f3b342e2f377f686a3e352e297f686a3b283f7f686a3935372a283f323f3429332c3f36237f686a3e3329392f29293f3e747f686a0e323f7f686a3b2a2a3633393b2e3335347f686a353c7f686a293f37333935343e2f392e35287f686a2b2f3b342e2f377f686a3e352e297f68197f686a393b283835347f686a2b2f3b342e2f377f686a3e352e297f68197f686a3d283b2a323f343f7f686a2b2f3b342e2f377f686a3e352e297f68197f686a3b343e7f686a2e323f33287f686a343b34353935372a3529332e3f297f686a2e323b2e7f686a3b283f7f686a2f2e333633203f3e7f686a3b297f686a3c362f35283f29393f34393f7f686a293f34293528297f686a3b283f7f686a3e3329392f29293f3e7f686a33347f686a3e3f2e3b33363f3e7f68197f686a3b343e7f686a2e323f7f686a2a28352a3f282e333f297f686a353c7f686a2c3b2833352f297f686a2b2f3b342e2f377f686a3e352e297f686a3c35287f686a323f3b2c237f686a373f2e3b367f686a3335347f686a3b343e7f686a2a3f292e3339333e3f7f686a283f29333e2f3f0174747407" title="Email"> <i class="fa fa-envelope-square" style="font-size: 30px;"></i> </a> <a href="https://twitter.com/intent/tweet?text=Fluorescent+Quantum+Dots+and+Its+Composites+for+Highly+Sensitive+Detection+of+Heavy+Metal+Ions+and+Pesticide+Residues%3A+A+Review&hashtags=mdpichemosensors&url=https%3A%2F%2Fwww.mdpi.com%2F2394724&via=chemosens_MDPI" onclick="windowOpen(this.href,600,800); return false" target="_blank" rel="noopener noreferrer"> <i class="fa fa-twitter-x-square" style="font-size: 30px;"></i> </a> <a href=" http://www.linkedin.com/shareArticle?mini=true&url=https%3A%2F%2Fwww.mdpi.com%2F2394724&title=Fluorescent%20Quantum%20Dots%20and%20Its%20Composites%20for%20Highly%20Sensitive%20Detection%20of%20Heavy%20Metal%20Ions%20and%20Pesticide%20Residues%3A%20A%20Review%26source%3Dhttps%3A%2F%2Fwww.mdpi.com%26summary%3DQuantum%20dots%20nanomaterials%20have%20attracted%20extensive%20interest%20for%20fluorescence%20chemical%20sensors%20due%20their%20attributes%2C%20such%20as%20excellent%20optical%20characteristics%2C%20quantum%20size%20effects%2C%20interface%20effects%2C%20etc.%20Moreover%2C%20the%20fluorescence%20properties%20of%20%5B...%5D" onclick="windowOpen(this.href,600,800); return false" title="LinkedIn" target="_blank" rel="noopener noreferrer"> <i class="fa fa-linkedin-square" style="font-size: 30px;"></i> </a> <a href="https://www.facebook.com/sharer.php?u=https://www.mdpi.com/2394724" title="facebook" target="_blank" rel="noopener noreferrer"> <i class="fa fa-facebook-square" style="font-size: 30px;"></i> </a> <a href="javascript:void(0);" title="Wechat" data-reveal-id="weixin-share-modal"> <i class="fa fa-weixin-square" style="font-size: 26px;"></i> </a> <a href="http://www.reddit.com/submit?url=https://www.mdpi.com/2394724" title="Reddit" target="_blank" rel="noopener noreferrer"> <i class="fa fa-reddit-square" style="font-size: 30px;"></i> </a> <a href="http://www.mendeley.com/import/?url=https://www.mdpi.com/2394724" title="Mendeley" target="_blank" rel="noopener noreferrer"> <i class="fa fa-mendeley-square" style="font-size: 30px;"></i> </a> </div> <div class="in-tab" style="padding-top: 0px!important; margin-top: 15px;"> <div><b>MDPI and ACS Style</b></div> <p> Wang, Z.; Yao, B.; Xiao, Y.; Tian, X.; Wang, Y. Fluorescent Quantum Dots and Its Composites for Highly Sensitive Detection of Heavy Metal Ions and Pesticide Residues: A Review. <em>Chemosensors</em> <b>2023</b>, <em>11</em>, 405. https://doi.org/10.3390/chemosensors11070405 </p> <div style="display: block"> <b>AMA Style</b><br> <p> Wang Z, Yao B, Xiao Y, Tian X, Wang Y. Fluorescent Quantum Dots and Its Composites for Highly Sensitive Detection of Heavy Metal Ions and Pesticide Residues: A Review. <em>Chemosensors</em>. 2023; 11(7):405. https://doi.org/10.3390/chemosensors11070405 </p> <b>Chicago/Turabian Style</b><br> <p> Wang, Zhezhe, Bo Yao, Yawei Xiao, Xu Tian, and Yude Wang. 2023. "Fluorescent Quantum Dots and Its Composites for Highly Sensitive Detection of Heavy Metal Ions and Pesticide Residues: A Review" <em>Chemosensors</em> 11, no. 7: 405. https://doi.org/10.3390/chemosensors11070405 </p> <b>APA Style</b><br> <p> Wang, Z., Yao, B., Xiao, Y., Tian, X., & Wang, Y. (2023). Fluorescent Quantum Dots and Its Composites for Highly Sensitive Detection of Heavy Metal Ions and Pesticide Residues: A Review. <em>Chemosensors</em>, <em>11</em>(7), 405. https://doi.org/10.3390/chemosensors11070405 </p> </div> </div> <div class="info-box no-margin"> Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details <a target="_blank" href="https://www.mdpi.com/about/announcements/784">here</a>. </div> <h2><a name="metrics"></a>Article Metrics</h2> <div class="row"> <div class="small-12 columns"> <div id="loaded_cite_count" style="display:none">No</div> <div id="framed_div_cited_count" class="in-tab" style="display: none; overflow: auto;"></div> <div id="loaded" style="display:none">No</div> <div id="framed_div" class="in-tab" style="display: none; margin-top: 10px;"></div> </div> <div class="small-12 columns"> <div id="article_stats_div" style="display: none; margin-bottom: 1em;"> <h3>Article Access Statistics</h3> <div id="article_stats_swf" ></div> For more information on the journal statistics, click <a href="/journal/chemosensors/stats">here</a>. <div class="info-box"> Multiple requests from the same IP address are counted as one view. </div> </div> </div> </div> </div> </div> </article> </div> </div></div> <div class="webpymol-controls webpymol-controls-template" style="margin-top: 10px; display: none;"> <a class="bzoom">Zoom</a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="borient"> Orient </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="blines"> As Lines </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bsticks"> As Sticks </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bcartoon"> As Cartoon </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bsurface"> As Surface </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bprevscene">Previous Scene</a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bnextscene">Next Scene</a> </div> <div id="scifeed-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> </div> <div id="recommended-articles-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> </div> <div id="author-biographies-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> </div> <div id="cite-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="Captcha" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 style="margin: 0;">Cite</h2> </div> <div class="small-12 columns"> <!-- BibTeX --> <form style="margin:0; padding:0; display:inline;" name="export-bibtex" method="POST" action="/export"> <input type="hidden" name="articles_ids[]" value="1197362"> <input type="hidden" name="export_format_top" value="bibtex"> <input type="hidden" name="export_submit_top" value=""> </form> <!-- EndNote --> <form style="margin:0; padding:0; display:inline;" name="export-endnote" method="POST" action="/export"> <input type="hidden" name="articles_ids[]" value="1197362"> <input type="hidden" name="export_format_top" value="endnote_no_abstract"> <input type="hidden" name="export_submit_top" value=""> </form> <!-- RIS --> <form style="margin:0; padding:0; display:inline;" name="export-ris" method="POST" action="/export"> <input type="hidden" name="articles_ids[]" value="1197362"> <input type="hidden" name="export_format_top" value="ris"> <input type="hidden" name="export_submit_top" value=""> </form> <div> Export citation file: <a href="javascript:window.document.forms['export-bibtex'].submit()">BibTeX</a> | <a href="javascript:window.document.forms['export-endnote'].submit()">EndNote</a> | <a href="javascript:window.document.forms['export-ris'].submit()">RIS</a> </div> </div> <div class="small-12 columns"> <div class="in-tab"> <div><b>MDPI and ACS Style</b></div> <p> Wang, Z.; Yao, B.; Xiao, Y.; Tian, X.; Wang, Y. Fluorescent Quantum Dots and Its Composites for Highly Sensitive Detection of Heavy Metal Ions and Pesticide Residues: A Review. <em>Chemosensors</em> <b>2023</b>, <em>11</em>, 405. https://doi.org/10.3390/chemosensors11070405 </p> <div style="display: block"> <b>AMA Style</b><br> <p> Wang Z, Yao B, Xiao Y, Tian X, Wang Y. Fluorescent Quantum Dots and Its Composites for Highly Sensitive Detection of Heavy Metal Ions and Pesticide Residues: A Review. <em>Chemosensors</em>. 2023; 11(7):405. https://doi.org/10.3390/chemosensors11070405 </p> <b>Chicago/Turabian Style</b><br> <p> Wang, Zhezhe, Bo Yao, Yawei Xiao, Xu Tian, and Yude Wang. 2023. "Fluorescent Quantum Dots and Its Composites for Highly Sensitive Detection of Heavy Metal Ions and Pesticide Residues: A Review" <em>Chemosensors</em> 11, no. 7: 405. https://doi.org/10.3390/chemosensors11070405 </p> <b>APA Style</b><br> <p> Wang, Z., Yao, B., Xiao, Y., Tian, X., & Wang, Y. (2023). Fluorescent Quantum Dots and Its Composites for Highly Sensitive Detection of Heavy Metal Ions and Pesticide Residues: A Review. <em>Chemosensors</em>, <em>11</em>(7), 405. https://doi.org/10.3390/chemosensors11070405 </p> </div> </div> <div class="info-box no-margin"> Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details <a target="_blank" href="https://www.mdpi.com/about/announcements/784">here</a>. </div> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> </div> </div> </div> </div> </section> <div id="footer"> <div class="journal-info"> <span> <em><a class="Var_JournalInfo" href="/journal/chemosensors">Chemosensors</a></em>, EISSN 2227-9040, Published by MDPI </span> <div class="large-right"> <span> <a href="/rss/journal/chemosensors" class="rss-link">RSS</a> </span> <span> <a href="/journal/chemosensors/toc-alert">Content Alert</a> </span> </div> </div> <div class="row full-width footer-links" data-equalizer="footer" data-equalizer-mq="small"> <div class="large-2 large-push-4 medium-3 small-6 columns" data-equalizer-watch="footer"> <h3> Further Information </h3> <a href="/apc"> Article Processing Charges </a> <a href="/about/payment"> Pay an Invoice </a> <a href="/openaccess"> Open Access Policy </a> <a href="/about/contact"> Contact MDPI </a> <a href="https://careers.mdpi.com" target="_blank" rel="noopener noreferrer"> Jobs at MDPI </a> </div> <div class="large-2 large-push-4 medium-3 small-6 columns" data-equalizer-watch="footer"> <h3> Guidelines </h3> <a href="/authors"> For Authors </a> <a href="/reviewers"> For Reviewers </a> <a href="/editors"> For Editors </a> <a href="/librarians"> For Librarians </a> <a href="/publishing_services"> For Publishers </a> <a href="/societies"> For Societies </a> <a href="/conference_organizers"> For Conference Organizers </a> </div> <div class="large-2 large-push-4 medium-3 small-6 columns"> <h3> MDPI Initiatives </h3> <a href="https://sciforum.net" target="_blank" rel="noopener noreferrer"> Sciforum </a> <a href="https://www.mdpi.com/books" target="_blank" rel="noopener noreferrer"> MDPI Books </a> <a href="https://www.preprints.org" target="_blank" rel="noopener noreferrer"> Preprints.org </a> <a href="https://www.scilit.net" target="_blank" rel="noopener noreferrer"> Scilit </a> <a href="https://sciprofiles.com?utm_source=mpdi.com&utm_medium=bottom_menu&utm_campaign=initiative" target="_blank" rel="noopener noreferrer"> SciProfiles </a> <a href="https://encyclopedia.pub" target="_blank" rel="noopener noreferrer"> Encyclopedia </a> <a href="https://jams.pub" target="_blank" rel="noopener noreferrer"> JAMS </a> <a href="/about/proceedings"> Proceedings Series </a> </div> <div class="large-2 large-push-4 medium-3 small-6 right-border-large-without columns UA_FooterFollowMDPI"> <h3> Follow MDPI </h3> <a href="https://www.linkedin.com/company/mdpi" target="_blank" rel="noopener noreferrer"> LinkedIn </a> <a href="https://www.facebook.com/MDPIOpenAccessPublishing" target="_blank" rel="noopener noreferrer"> Facebook </a> <a href="https://twitter.com/MDPIOpenAccess" target="_blank" rel="noopener noreferrer"> Twitter </a> </div> <div id="footer-subscribe" class="large-4 large-pull-8 medium-12 small-12 left-border-large columns"> <div class="footer-subscribe__container"> <img class="show-for-large-up" src="https://pub.mdpi-res.com/img/design/mdpi-pub-logo-white-small.png?71d18e5f805839ab?1732615622" alt="MDPI" title="MDPI Open Access Journals" style="height: 50px; margin-bottom: 10px;"> <form id="newsletter" method="POST" action="/subscribe"> <p> Subscribe to receive issue release notifications and newsletters from MDPI journals </p> <select multiple id="newsletter-journal" class="foundation-select" name="journals[]"> <option value="acoustics">Acoustics</option> <option value="amh">Acta Microbiologica Hellenica</option> <option value="actuators">Actuators</option> <option value="admsci">Administrative Sciences</option> <option value="adolescents">Adolescents</option> <option value="arm">Advances in Respiratory Medicine</option> <option value="aerobiology">Aerobiology</option> <option value="aerospace">Aerospace</option> <option value="agriculture">Agriculture</option> <option value="agriengineering">AgriEngineering</option> <option value="agrochemicals">Agrochemicals</option> <option value="agronomy">Agronomy</option> <option value="ai">AI</option> <option value="air">Air</option> <option value="algorithms">Algorithms</option> <option value="allergies">Allergies</option> <option value="alloys">Alloys</option> <option value="analytica">Analytica</option> <option value="analytics">Analytics</option> <option value="anatomia">Anatomia</option> <option value="anesthres">Anesthesia Research</option> <option value="animals">Animals</option> <option value="antibiotics">Antibiotics</option> <option value="antibodies">Antibodies</option> <option value="antioxidants">Antioxidants</option> <option value="applbiosci">Applied Biosciences</option> <option value="applmech">Applied Mechanics</option> <option value="applmicrobiol">Applied Microbiology</option> <option value="applnano">Applied Nano</option> <option value="applsci">Applied Sciences</option> <option value="asi">Applied System Innovation</option> <option value="appliedchem">AppliedChem</option> <option value="appliedmath">AppliedMath</option> <option value="aquacj">Aquaculture Journal</option> <option value="architecture">Architecture</option> <option value="arthropoda">Arthropoda</option> <option value="arts">Arts</option> <option value="astronomy">Astronomy</option> <option value="atmosphere">Atmosphere</option> <option value="atoms">Atoms</option> <option value="audiolres">Audiology Research</option> <option value="automation">Automation</option> <option value="axioms">Axioms</option> <option value="bacteria">Bacteria</option> <option value="batteries">Batteries</option> <option value="behavsci">Behavioral Sciences</option> <option value="beverages">Beverages</option> <option value="BDCC">Big Data and Cognitive Computing</option> <option value="biochem">BioChem</option> <option value="bioengineering">Bioengineering</option> <option value="biologics">Biologics</option> <option value="biology">Biology</option> <option value="blsf">Biology and Life Sciences Forum</option> <option value="biomass">Biomass</option> <option value="biomechanics">Biomechanics</option> <option value="biomed">BioMed</option> <option value="biomedicines">Biomedicines</option> <option value="biomedinformatics">BioMedInformatics</option> <option value="biomimetics">Biomimetics</option> <option value="biomolecules">Biomolecules</option> <option value="biophysica">Biophysica</option> <option value="biosensors">Biosensors</option> <option value="biotech">BioTech</option> <option value="birds">Birds</option> <option value="blockchains">Blockchains</option> <option value="brainsci">Brain Sciences</option> <option value="buildings">Buildings</option> <option value="businesses">Businesses</option> <option value="carbon">C</option> <option value="cancers">Cancers</option> <option value="cardiogenetics">Cardiogenetics</option> <option value="catalysts">Catalysts</option> <option value="cells">Cells</option> <option value="ceramics">Ceramics</option> <option value="challenges">Challenges</option> <option value="ChemEngineering">ChemEngineering</option> <option value="chemistry">Chemistry</option> <option value="chemproc">Chemistry Proceedings</option> <option value="chemosensors">Chemosensors</option> <option value="children">Children</option> <option value="chips">Chips</option> <option value="civileng">CivilEng</option> <option value="cleantechnol">Clean Technologies</option> <option value="climate">Climate</option> <option value="ctn">Clinical and Translational Neuroscience</option> <option value="clinbioenerg">Clinical Bioenergetics</option> <option value="clinpract">Clinics and Practice</option> <option value="clockssleep">Clocks & Sleep</option> <option value="coasts">Coasts</option> <option value="coatings">Coatings</option> <option value="colloids">Colloids and Interfaces</option> <option value="colorants">Colorants</option> <option value="commodities">Commodities</option> <option value="complications">Complications</option> <option value="compounds">Compounds</option> <option value="computation">Computation</option> <option value="csmf">Computer Sciences & Mathematics Forum</option> <option value="computers">Computers</option> <option value="condensedmatter">Condensed Matter</option> <option value="conservation">Conservation</option> <option value="constrmater">Construction Materials</option> <option value="cmd">Corrosion and Materials Degradation</option> <option value="cosmetics">Cosmetics</option> <option value="covid">COVID</option> <option value="crops">Crops</option> <option value="cryo">Cryo</option> <option value="cryptography">Cryptography</option> <option value="crystals">Crystals</option> <option value="cimb">Current Issues in Molecular Biology</option> <option value="curroncol">Current Oncology</option> <option value="dairy">Dairy</option> <option value="data">Data</option> <option value="dentistry">Dentistry Journal</option> <option value="dermato">Dermato</option> <option value="dermatopathology">Dermatopathology</option> <option value="designs">Designs</option> <option value="diabetology">Diabetology</option> <option value="diagnostics">Diagnostics</option> <option value="dietetics">Dietetics</option> <option value="digital">Digital</option> <option value="disabilities">Disabilities</option> <option value="diseases">Diseases</option> <option value="diversity">Diversity</option> <option value="dna">DNA</option> <option value="drones">Drones</option> <option value="ddc">Drugs and Drug Candidates</option> <option value="dynamics">Dynamics</option> <option value="earth">Earth</option> <option value="ecologies">Ecologies</option> <option value="econometrics">Econometrics</option> <option value="economies">Economies</option> <option value="education">Education Sciences</option> <option value="electricity">Electricity</option> <option value="electrochem">Electrochem</option> <option value="electronicmat">Electronic Materials</option> <option value="electronics">Electronics</option> <option value="ecm">Emergency Care and Medicine</option> <option value="encyclopedia">Encyclopedia</option> <option value="endocrines">Endocrines</option> <option value="energies">Energies</option> <option value="esa">Energy Storage and Applications</option> <option value="eng">Eng</option> <option value="engproc">Engineering Proceedings</option> <option value="entropy">Entropy</option> <option value="environsciproc">Environmental Sciences Proceedings</option> <option value="environments">Environments</option> <option value="epidemiologia">Epidemiologia</option> <option value="epigenomes">Epigenomes</option> <option value="ebj">European Burn Journal</option> <option value="ejihpe">European Journal of Investigation in Health, Psychology and Education</option> <option value="fermentation">Fermentation</option> <option value="fibers">Fibers</option> <option value="fintech">FinTech</option> <option value="fire">Fire</option> <option value="fishes">Fishes</option> <option value="fluids">Fluids</option> <option value="foods">Foods</option> <option value="forecasting">Forecasting</option> <option value="forensicsci">Forensic Sciences</option> <option value="forests">Forests</option> <option value="fossstud">Fossil Studies</option> <option value="foundations">Foundations</option> <option value="fractalfract">Fractal and Fractional</option> <option value="fuels">Fuels</option> <option value="future">Future</option> <option value="futureinternet">Future Internet</option> <option value="futurepharmacol">Future Pharmacology</option> <option value="futuretransp">Future Transportation</option> <option value="galaxies">Galaxies</option> <option value="games">Games</option> <option value="gases">Gases</option> <option value="gastroent">Gastroenterology Insights</option> <option value="gastrointestdisord">Gastrointestinal Disorders</option> <option value="gastronomy">Gastronomy</option> <option value="gels">Gels</option> <option value="genealogy">Genealogy</option> <option value="genes">Genes</option> <option value="geographies">Geographies</option> <option value="geohazards">GeoHazards</option> <option value="geomatics">Geomatics</option> <option value="geometry">Geometry</option> <option value="geosciences">Geosciences</option> <option value="geotechnics">Geotechnics</option> <option value="geriatrics">Geriatrics</option> <option value="glacies">Glacies</option> <option value="gucdd">Gout, Urate, and Crystal Deposition Disease</option> <option value="grasses">Grasses</option> <option value="hardware">Hardware</option> <option value="healthcare">Healthcare</option> <option value="hearts">Hearts</option> <option value="hemato">Hemato</option> <option value="hematolrep">Hematology Reports</option> <option value="heritage">Heritage</option> <option value="histories">Histories</option> <option value="horticulturae">Horticulturae</option> <option value="hospitals">Hospitals</option> <option value="humanities">Humanities</option> <option value="humans">Humans</option> <option value="hydrobiology">Hydrobiology</option> <option value="hydrogen">Hydrogen</option> <option value="hydrology">Hydrology</option> <option value="hygiene">Hygiene</option> <option value="immuno">Immuno</option> <option value="idr">Infectious Disease Reports</option> <option value="informatics">Informatics</option> <option value="information">Information</option> <option value="infrastructures">Infrastructures</option> <option value="inorganics">Inorganics</option> <option value="insects">Insects</option> <option value="instruments">Instruments</option> <option value="iic">Intelligent Infrastructure and Construction</option> <option value="ijerph">International Journal of Environmental Research and Public Health</option> <option value="ijfs">International Journal of Financial Studies</option> <option value="ijms">International Journal of Molecular Sciences</option> <option value="IJNS">International Journal of Neonatal Screening</option> <option value="ijpb">International Journal of Plant Biology</option> <option value="ijt">International Journal of Topology</option> <option value="ijtm">International Journal of Translational Medicine</option> <option value="ijtpp">International Journal of Turbomachinery, Propulsion and Power</option> <option value="ime">International Medical Education</option> <option value="inventions">Inventions</option> <option value="IoT">IoT</option> <option value="ijgi">ISPRS International Journal of Geo-Information</option> <option value="J">J</option> <option value="jal">Journal of Ageing and Longevity</option> <option value="jcdd">Journal of Cardiovascular Development and Disease</option> <option value="jcto">Journal of Clinical & Translational Ophthalmology</option> <option value="jcm">Journal of Clinical Medicine</option> <option value="jcs">Journal of Composites Science</option> <option value="jcp">Journal of Cybersecurity and Privacy</option> <option value="jdad">Journal of Dementia and Alzheimer's Disease</option> <option value="jdb">Journal of Developmental Biology</option> <option value="jeta">Journal of Experimental and Theoretical Analyses</option> <option value="jfb">Journal of Functional Biomaterials</option> <option value="jfmk">Journal of Functional Morphology and Kinesiology</option> <option value="jof">Journal of Fungi</option> <option value="jimaging">Journal of Imaging</option> <option value="jintelligence">Journal of Intelligence</option> <option value="jlpea">Journal of Low Power Electronics and Applications</option> <option value="jmmp">Journal of Manufacturing and Materials Processing</option> <option value="jmse">Journal of Marine Science and Engineering</option> <option value="jmahp">Journal of Market Access & Health Policy</option> <option value="jmp">Journal of Molecular Pathology</option> <option value="jnt">Journal of Nanotheranostics</option> <option value="jne">Journal of Nuclear Engineering</option> <option value="ohbm">Journal of Otorhinolaryngology, Hearing and Balance Medicine</option> <option value="jop">Journal of Parks</option> <option value="jpm">Journal of Personalized Medicine</option> <option value="jpbi">Journal of Pharmaceutical and BioTech Industry</option> <option value="jor">Journal of Respiration</option> <option value="jrfm">Journal of Risk and Financial Management</option> <option value="jsan">Journal of Sensor and Actuator Networks</option> <option value="joma">Journal of the Oman Medical Association</option> <option value="jtaer">Journal of Theoretical and Applied Electronic Commerce Research</option> <option value="jvd">Journal of Vascular Diseases</option> <option value="jox">Journal of Xenobiotics</option> <option value="jzbg">Journal of Zoological and Botanical Gardens</option> <option value="journalmedia">Journalism and Media</option> <option value="kidneydial">Kidney and Dialysis</option> <option value="kinasesphosphatases">Kinases and Phosphatases</option> <option value="knowledge">Knowledge</option> <option value="labmed">LabMed</option> <option value="laboratories">Laboratories</option> <option value="land">Land</option> <option value="languages">Languages</option> <option value="laws">Laws</option> <option value="life">Life</option> <option value="limnolrev">Limnological Review</option> <option value="lipidology">Lipidology</option> <option value="liquids">Liquids</option> <option value="literature">Literature</option> <option value="livers">Livers</option> <option value="logics">Logics</option> <option value="logistics">Logistics</option> <option value="lubricants">Lubricants</option> <option value="lymphatics">Lymphatics</option> <option value="make">Machine Learning and Knowledge Extraction</option> <option value="machines">Machines</option> <option value="macromol">Macromol</option> <option value="magnetism">Magnetism</option> <option value="magnetochemistry">Magnetochemistry</option> <option value="marinedrugs">Marine Drugs</option> <option value="materials">Materials</option> <option value="materproc">Materials Proceedings</option> <option value="mca">Mathematical and Computational Applications</option> <option value="mathematics">Mathematics</option> <option value="medsci">Medical Sciences</option> <option value="msf">Medical Sciences Forum</option> <option value="medicina">Medicina</option> <option value="medicines">Medicines</option> <option value="membranes">Membranes</option> <option value="merits">Merits</option> <option value="metabolites">Metabolites</option> <option value="metals">Metals</option> <option value="meteorology">Meteorology</option> <option value="methane">Methane</option> <option value="mps">Methods and Protocols</option> <option value="metrics">Metrics</option> <option value="metrology">Metrology</option> <option value="micro">Micro</option> <option value="microbiolres">Microbiology Research</option> <option value="micromachines">Micromachines</option> <option value="microorganisms">Microorganisms</option> <option value="microplastics">Microplastics</option> <option value="minerals">Minerals</option> <option value="mining">Mining</option> <option value="modelling">Modelling</option> <option value="mmphys">Modern Mathematical Physics</option> <option value="molbank">Molbank</option> <option value="molecules">Molecules</option> <option value="mti">Multimodal Technologies and Interaction</option> <option value="muscles">Muscles</option> <option value="nanoenergyadv">Nanoenergy Advances</option> <option value="nanomanufacturing">Nanomanufacturing</option> <option value="nanomaterials">Nanomaterials</option> <option value="ndt">NDT</option> <option value="network">Network</option> <option value="neuroglia">Neuroglia</option> <option value="neurolint">Neurology International</option> <option value="neurosci">NeuroSci</option> <option value="nitrogen">Nitrogen</option> <option value="ncrna">Non-Coding RNA</option> <option value="nursrep">Nursing Reports</option> <option value="nutraceuticals">Nutraceuticals</option> <option value="nutrients">Nutrients</option> <option value="obesities">Obesities</option> <option value="oceans">Oceans</option> <option value="onco">Onco</option> <option value="optics">Optics</option> <option value="oral">Oral</option> <option value="organics">Organics</option> <option value="organoids">Organoids</option> <option value="osteology">Osteology</option> <option value="oxygen">Oxygen</option> <option value="parasitologia">Parasitologia</option> <option value="particles">Particles</option> <option value="pathogens">Pathogens</option> <option value="pathophysiology">Pathophysiology</option> <option value="pediatrrep">Pediatric Reports</option> <option value="pets">Pets</option> <option value="pharmaceuticals">Pharmaceuticals</option> <option value="pharmaceutics">Pharmaceutics</option> <option value="pharmacoepidemiology">Pharmacoepidemiology</option> <option value="pharmacy">Pharmacy</option> <option value="philosophies">Philosophies</option> <option value="photochem">Photochem</option> <option value="photonics">Photonics</option> <option value="phycology">Phycology</option> <option value="physchem">Physchem</option> <option value="psf">Physical Sciences Forum</option> <option value="physics">Physics</option> <option value="physiologia">Physiologia</option> <option value="plants">Plants</option> <option value="plasma">Plasma</option> <option value="platforms">Platforms</option> <option value="pollutants">Pollutants</option> <option value="polymers">Polymers</option> <option value="polysaccharides">Polysaccharides</option> <option value="populations">Populations</option> <option value="poultry">Poultry</option> <option value="powders">Powders</option> <option value="proceedings">Proceedings</option> <option value="processes">Processes</option> <option value="prosthesis">Prosthesis</option> <option value="proteomes">Proteomes</option> <option value="psychiatryint">Psychiatry International</option> <option value="psychoactives">Psychoactives</option> <option value="psycholint">Psychology International</option> <option value="publications">Publications</option> <option value="qubs">Quantum Beam Science</option> <option value="quantumrep">Quantum Reports</option> <option value="quaternary">Quaternary</option> <option value="radiation">Radiation</option> <option value="reactions">Reactions</option> <option value="realestate">Real Estate</option> <option value="receptors">Receptors</option> <option value="recycling">Recycling</option> <option value="rsee">Regional Science and Environmental Economics</option> <option value="religions">Religions</option> <option value="remotesensing">Remote Sensing</option> <option value="reports">Reports</option> <option value="reprodmed">Reproductive Medicine</option> <option value="resources">Resources</option> <option value="rheumato">Rheumato</option> <option value="risks">Risks</option> <option value="robotics">Robotics</option> <option value="ruminants">Ruminants</option> <option value="safety">Safety</option> <option value="sci">Sci</option> <option value="scipharm">Scientia Pharmaceutica</option> <option value="sclerosis">Sclerosis</option> <option value="seeds">Seeds</option> <option value="sensors">Sensors</option> <option value="separations">Separations</option> <option value="sexes">Sexes</option> <option value="signals">Signals</option> <option value="sinusitis">Sinusitis</option> <option value="smartcities">Smart Cities</option> <option value="socsci">Social Sciences</option> <option value="siuj">Société Internationale d’Urologie Journal</option> <option value="societies">Societies</option> <option value="software">Software</option> <option value="soilsystems">Soil Systems</option> <option value="solar">Solar</option> <option value="solids">Solids</option> <option value="spectroscj">Spectroscopy Journal</option> <option value="sports">Sports</option> <option value="standards">Standards</option> <option value="stats">Stats</option> <option value="stresses">Stresses</option> <option value="surfaces">Surfaces</option> <option value="surgeries">Surgeries</option> <option value="std">Surgical Techniques Development</option> <option value="sustainability">Sustainability</option> <option value="suschem">Sustainable Chemistry</option> <option value="symmetry">Symmetry</option> <option value="synbio">SynBio</option> <option value="systems">Systems</option> <option value="targets">Targets</option> <option value="taxonomy">Taxonomy</option> <option value="technologies">Technologies</option> <option value="telecom">Telecom</option> <option value="textiles">Textiles</option> <option value="thalassrep">Thalassemia Reports</option> <option value="therapeutics">Therapeutics</option> <option value="thermo">Thermo</option> <option value="timespace">Time and Space</option> <option value="tomography">Tomography</option> <option value="tourismhosp">Tourism and Hospitality</option> <option value="toxics">Toxics</option> <option value="toxins">Toxins</option> <option value="transplantology">Transplantology</option> <option value="traumacare">Trauma Care</option> <option value="higheredu">Trends in Higher Education</option> <option value="tropicalmed">Tropical Medicine and Infectious Disease</option> <option value="universe">Universe</option> <option value="urbansci">Urban Science</option> <option value="uro">Uro</option> <option value="vaccines">Vaccines</option> <option value="vehicles">Vehicles</option> <option value="venereology">Venereology</option> <option value="vetsci">Veterinary Sciences</option> <option value="vibration">Vibration</option> <option value="virtualworlds">Virtual Worlds</option> <option value="viruses">Viruses</option> <option value="vision">Vision</option> <option value="waste">Waste</option> <option value="water">Water</option> <option value="wild">Wild</option> <option value="wind">Wind</option> <option value="women">Women</option> <option value="world">World</option> <option value="wevj">World Electric Vehicle Journal</option> <option value="youth">Youth</option> <option value="zoonoticdis">Zoonotic Diseases</option> </select> <input name="email" type="email" placeholder="Enter your email address..." required="required" /> <button class="genericCaptcha button button--dark UA_FooterNewsletterSubscribeButton" type="submit">Subscribe</button> </form> </div> </div> </div> <div id="footer-copyright"> <div class="row"> <div class="columns large-6 medium-6 small-12 text-left"> © 1996-2024 MDPI (Basel, Switzerland) unless otherwise stated </div> <div class="columns large-6 medium-6 small-12 small-text-left medium-text-right large-text-right"> <a data-dropdown="drop-view-disclaimer" aria-controls="drop-view-disclaimer" aria-expanded="false" data-options="align:top; is_hover:true; hover_timeout:2000;"> Disclaimer </a> <div id="drop-view-disclaimer" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide text-left" data-dropdown-content aria-hidden="true" tabindex="-1"> Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. </div> <a href="/about/terms-and-conditions"> Terms and Conditions </a> <a href="/about/privacy"> Privacy Policy </a> </div> </div> </div> </div> <div id="cookie-notification" class="js-allow-cookies" style="display: none;"> <div class="columns large-10 medium-10 small-12"> We use cookies on our website to ensure you get the best experience.<br class="show-for-medium-up"/> Read more about our cookies <a href="/about/privacy">here</a>. </div> <div class="columns large-2 medium-2 small-12 small-only-text-left text-right"> <a class="button button--default" href="/accept_cookies">Accept</a> </div> </div> </div> <div id="main-share-modal" class="reveal-modal reveal-modal-new reveal-modal-new--small" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 style="margin: 0;">Share Link</h2> </div> <div class="small-12 columns"> <div class="social-media-links UA_ShareModalLinks" style="text-align: left;"> <a href="/cdn-cgi/l/email-protection#2b140d4a465b10585e49414e485f166d5944460e191b666f7b620e186a0e191b0e19196d475e44594e58484e455f0e191b7a5e4a455f5e460e191b6f445f580e191b4a454f0e191b625f580e191b6844465b4458425f4e580e191b4d44590e191b63424c4347520e191b784e4558425f425d4e0e191b6f4e5f4e485f4244450e191b444d0e191b634e4a5d520e191b664e5f4a470e191b624445580e191b4a454f0e191b7b4e585f4248424f4e0e191b794e58424f5e4e580e186a0e191b6a0e191b794e5d424e5c0d5a5e445f100d4a465b1049444f5216435f5f5b581104045c5c5c05464f5b4205484446041918121f1c191f0e186a0e1b6a0e1b6a6d475e44594e58484e455f0e191b7a5e4a455f5e460e191b6f445f580e191b4a454f0e191b625f580e191b6844465b4458425f4e580e191b4d44590e191b63424c4347520e191b784e4558425f425d4e0e191b6f4e5f4e485f4244450e191b444d0e191b634e4a5d520e191b664e5f4a470e191b624445580e191b4a454f0e191b7b4e585f4248424f4e0e191b794e58424f5e4e580e186a0e191b6a0e191b794e5d424e5c21217a5e4a455f5e460e191b4f445f580e191b454a4544464a5f4e59424a47580e191b434a5d4e0e191b4a5f5f594a485f4e4f0e191b4e535f4e4558425d4e0e191b42455f4e594e585f0e191b4d44590e191b4d475e44594e58484e45484e0e191b48434e4642484a470e191b584e45584459580e191b4f5e4e0e191b5f434e42590e191b4a5f5f5942495e5f4e580e19680e191b585e48430e191b4a580e191b4e53484e47474e455f0e191b445b5f42484a470e191b48434a594a485f4e5942585f4248580e19680e191b5a5e4a455f5e460e191b5842514e0e191b4e4d4d4e485f580e19680e191b42455f4e594d4a484e0e191b4e4d4d4e485f580e19680e191b4e5f48050e191b6644594e445d4e590e19680e191b5f434e0e191b4d475e44594e58484e45484e0e191b5b59445b4e595f424e580e191b444d0e191b5a5e4a455f5e460e191b4f445f580e191b484a450e191b494e0e191b4a4f415e585f4e4f0e191b49520e191b48434a454c42454c0e191b5f434e42590e191b585f595e485f5e594e0e19680e191b5842514e0e19680e191b4644595b434447444c520e19680e191b4844465b4458425f4244450e19680e191b4f445b42454c0e19680e191b4a454f0e191b585e594d4a484e0e191b46444f424d42484a5f424445050e191b62450e191b594e484e455f0e191b524e4a59580e19680e191b5a5e4a455f5e460e191b4f445f580e191b454a4544464a5f4e59424a47580e191b434a5d4e0e191b494e4e450e191b48444558424f4e594e4f0e191b5f434e0e191b5b594e4d4e59594e4f0e191b584e455842454c0e191b464a5f4e59424a47580e191b4d44590e191b5f434e0e191b4f4e5f4e485f4244450e191b444d0e191b434e4a5d520e191b464e5f4a470e191b424445580e191b4a454f0e191b5b4e585f4248424f4e0e191b594e58424f5e4e580e191b49520e191b5f434e0e191b42455f4e594a485f424445580e191b494e5f5c4e4e450e191b5a5e4a455f5e460e191b4f445f580e191b4a454f0e191b5d4a5942445e580e191b4a454a47525f4e580e19680e191b5843445c42454c0e191b4e53484e47474e455f0e191b584e4558425f425d425f520e19680e191b584e474e485f425d425f520e19680e191b4a454f0e191b42455f4e594d4e594e45484e0e19680e191b4a580e191b5c4e47470e191b4a580e191b594e4f5e4842454c0e191b5f434e0e191b4844585f0e191b444d0e191b4e5a5e425b464e455f0e191b4844465b4a594e4f0e191b5c425f430e191b5f594a4f425f4244454a470e191b464e4a585e594e464e455f0e191b464e5f43444f58050e191b62450e191b5f4342580e191b594e5d424e5c0e19680e191b5f434e0e191b4a5b5b4742484a5f424445580e191b4a454f0e191b584e455842454c0e191b464e48434a45425846580e191b444d0e191b584e46424844454f5e485f44590e191b5a5e4a455f5e460e191b4f445f580e191b4a454f0e191b484a5949444506494a584e4f0e191b5a5e4a455f5e460e191b4f445f580e191b4a594e0e191b4844465b594e434e4558425d4e47520e191b4f4258485e58584e4f050e191b7f434e0e191b4a5b5b4742484a5f4244450e191b444d0e191b584e46424844454f5e485f44590e191b5a5e4a455f5e460e191b4f445f580e19680e191b484a594944450e191b5a5e4a455f5e460e191b4f445f580e19680e191b4c594a5b434e454e0e191b5a5e4a455f5e460e191b4f445f580e19680e191b4a454f0e191b5f434e42590e191b454a45444844465b4458425f4e580e191b5f434a5f0e191b4a594e0e191b5e5f424742514e4f0e191b4a580e191b4d475e44594e58484e45484e0e191b584e45584459580e191b4a594e0e191b4f4258485e58584e4f0e191b42450e191b4f4e5f4a42474e4f0e19680e191b4a454f0e191b5f434e0e191b5b59445b4e595f424e580e191b444d0e191b5d4a5942445e580e191b5a5e4a455f5e460e191b4f445f580e191b4d44590e191b434e4a5d520e191b464e5f4a470e191b4244450e191b4a454f0e191b5b4e585f4248424f4e0e191b594e58424f5e4e0e191b4f4e5f4e594642454a5f4244450e191b4a594e7005050576" title="Email"> <i class="fa fa-envelope-square" style="font-size: 30px;"></i> </a> <a href="https://twitter.com/intent/tweet?text=Fluorescent+Quantum+Dots+and+Its+Composites+for+Highly+Sensitive+Detection+of+Heavy+Metal+Ions+and+Pesticide+Residues%3A+A+Review&hashtags=mdpichemosensors&url=https%3A%2F%2Fwww.mdpi.com%2F2394724&via=chemosens_MDPI" onclick="windowOpen(this.href,600,800); return false" title="Twitter" target="_blank" rel="noopener noreferrer"> <i class="fa fa-twitter-x-square" style="font-size: 30px;"></i> </a> <a href=" http://www.linkedin.com/shareArticle?mini=true&url=https%3A%2F%2Fwww.mdpi.com%2F2394724&title=Fluorescent%20Quantum%20Dots%20and%20Its%20Composites%20for%20Highly%20Sensitive%20Detection%20of%20Heavy%20Metal%20Ions%20and%20Pesticide%20Residues%3A%20A%20Review%26source%3Dhttps%3A%2F%2Fwww.mdpi.com%26summary%3DQuantum%20dots%20nanomaterials%20have%20attracted%20extensive%20interest%20for%20fluorescence%20chemical%20sensors%20due%20their%20attributes%2C%20such%20as%20excellent%20optical%20characteristics%2C%20quantum%20size%20effects%2C%20interface%20effects%2C%20etc.%20Moreover%2C%20the%20fluorescence%20properties%20of%20%5B...%5D" onclick="windowOpen(this.href,600,800); return false" title="LinkedIn" target="_blank" rel="noopener noreferrer"> <i class="fa fa-linkedin-square" style="font-size: 30px;"></i> </a> <a href="https://www.facebook.com/sharer.php?u=https://www.mdpi.com/2394724" title="facebook" target="_blank" rel="noopener noreferrer"> <i class="fa fa-facebook-square" style="font-size: 30px;"></i> </a> <a href="javascript:void(0);" title="Wechat" data-reveal-id="weixin-share-modal"> <i class="fa fa-weixin-square" style="font-size: 26px;"></i> </a> <a href="http://www.reddit.com/submit?url=https://www.mdpi.com/2394724" title="Reddit" target="_blank" rel="noopener noreferrer"> <i class="fa fa-reddit-square" style="font-size: 30px;"></i> </a> <a href="http://www.mendeley.com/import/?url=https://www.mdpi.com/2394724" title="Mendeley" target="_blank" rel="noopener noreferrer"> <i class="fa fa-mendeley-square" style="font-size: 30px;"></i> </a> <a href="http://www.citeulike.org/posturl?url=https://www.mdpi.com/2394724" title="CiteULike" target="_blank" rel="noopener noreferrer"> <i class="fa fa-citeulike-square" style="font-size: 30px;"></i> </a> </div> </div> <div class="small-9 columns"> <input id="js-clipboard-text" type="text" readonly value="https://www.mdpi.com/2394724" /> </div> <div class="small-3 columns text-left"> <a class="button button--color js-clipboard-copy" data-clipboard-target="#js-clipboard-text">Copy</a> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div id="weixin-share-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="weixin-share-modal-title" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 id="weixin-share-modal-title" style="margin: 0;">Share</h2> </div> <div class="small-12 columns"> <div class="weixin-qr-code-section"> <?xml version="1.0" standalone="no"?> <!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"> <svg width="300" height="300" version="1.1" xmlns="http://www.w3.org/2000/svg"> <desc>https://www.mdpi.com/2394724</desc> <g id="elements" fill="black" stroke="none"> <rect x="0" y="0" width="12" height="12" /> <rect x="12" y="0" width="12" height="12" /> <rect x="24" y="0" width="12" height="12" /> <rect x="36" y="0" width="12" height="12" /> <rect x="48" y="0" width="12" height="12" /> <rect x="60" y="0" width="12" height="12" /> <rect x="72" y="0" width="12" height="12" /> <rect x="108" y="0" width="12" height="12" /> <rect x="120" y="0" width="12" height="12" /> <rect x="132" y="0" width="12" height="12" /> <rect x="156" y="0" width="12" height="12" /> <rect x="168" y="0" width="12" height="12" /> <rect x="216" y="0" width="12" height="12" /> <rect x="228" y="0" width="12" height="12" /> <rect x="240" y="0" width="12" height="12" /> <rect x="252" y="0" width="12" height="12" /> <rect x="264" y="0" width="12" height="12" /> <rect x="276" y="0" width="12" height="12" /> <rect x="288" y="0" width="12" height="12" /> <rect x="0" y="12" width="12" height="12" /> <rect x="72" y="12" width="12" height="12" /> <rect x="132" y="12" width="12" height="12" /> <rect x="144" y="12" width="12" height="12" /> <rect x="156" y="12" width="12" height="12" /> <rect x="216" y="12" width="12" height="12" /> <rect x="288" y="12" width="12" height="12" /> <rect x="0" y="24" width="12" height="12" /> <rect x="24" y="24" width="12" height="12" /> <rect x="36" y="24" width="12" height="12" /> <rect x="48" y="24" width="12" height="12" /> <rect x="72" y="24" width="12" height="12" /> <rect x="108" y="24" width="12" height="12" /> <rect x="120" y="24" width="12" height="12" /> <rect x="132" y="24" width="12" height="12" /> <rect x="168" y="24" width="12" height="12" /> <rect x="192" y="24" width="12" height="12" /> <rect x="216" y="24" width="12" height="12" /> <rect x="240" y="24" width="12" height="12" /> <rect x="252" y="24" width="12" height="12" /> <rect x="264" y="24" width="12" height="12" /> <rect x="288" y="24" width="12" height="12" /> <rect x="0" y="36" width="12" height="12" /> <rect x="24" y="36" width="12" height="12" /> <rect x="36" y="36" width="12" height="12" /> <rect x="48" y="36" width="12" height="12" /> <rect x="72" y="36" width="12" height="12" /> <rect x="96" y="36" width="12" height="12" /> <rect x="120" y="36" width="12" height="12" /> <rect x="132" y="36" width="12" height="12" /> <rect x="144" y="36" width="12" height="12" /> <rect x="156" y="36" width="12" height="12" /> <rect x="180" y="36" width="12" height="12" /> <rect x="192" y="36" width="12" height="12" /> <rect x="216" y="36" width="12" height="12" /> <rect x="240" y="36" width="12" height="12" /> <rect x="252" y="36" width="12" height="12" /> <rect x="264" y="36" width="12" height="12" /> <rect x="288" y="36" width="12" height="12" /> <rect x="0" y="48" width="12" height="12" /> <rect x="24" y="48" width="12" height="12" /> <rect x="36" y="48" width="12" height="12" /> <rect x="48" y="48" width="12" height="12" /> <rect x="72" y="48" width="12" height="12" /> <rect x="96" y="48" width="12" height="12" /> <rect x="120" y="48" width="12" height="12" /> <rect x="144" y="48" width="12" height="12" /> <rect x="156" y="48" width="12" height="12" /> <rect x="216" y="48" width="12" height="12" /> <rect x="240" y="48" width="12" height="12" /> <rect x="252" y="48" width="12" height="12" /> <rect x="264" y="48" width="12" height="12" /> <rect x="288" y="48" width="12" height="12" /> <rect x="0" y="60" width="12" height="12" /> <rect x="72" y="60" width="12" height="12" /> <rect x="108" y="60" width="12" height="12" /> <rect x="120" y="60" width="12" height="12" /> <rect x="144" y="60" width="12" height="12" /> <rect x="156" y="60" width="12" height="12" /> <rect x="168" y="60" width="12" height="12" /> <rect x="192" y="60" width="12" height="12" /> <rect x="216" y="60" width="12" height="12" /> <rect x="288" y="60" width="12" height="12" /> <rect x="0" y="72" width="12" height="12" /> <rect x="12" y="72" width="12" height="12" /> <rect x="24" y="72" width="12" height="12" /> <rect x="36" y="72" width="12" height="12" /> <rect x="48" y="72" width="12" height="12" /> <rect x="60" y="72" width="12" height="12" /> <rect x="72" y="72" width="12" height="12" /> <rect x="96" y="72" width="12" height="12" /> <rect x="120" y="72" width="12" height="12" /> <rect x="144" y="72" width="12" height="12" /> <rect x="168" y="72" width="12" height="12" /> <rect x="192" y="72" width="12" height="12" /> <rect x="216" y="72" width="12" height="12" /> <rect x="228" y="72" width="12" height="12" /> <rect x="240" y="72" width="12" height="12" /> <rect x="252" y="72" width="12" height="12" /> <rect x="264" y="72" width="12" height="12" /> <rect x="276" y="72" width="12" height="12" /> <rect x="288" y="72" width="12" height="12" /> <rect x="108" y="84" width="12" height="12" /> <rect x="144" y="84" width="12" height="12" /> <rect x="168" y="84" width="12" height="12" /> <rect x="0" y="96" width="12" height="12" /> <rect x="12" y="96" width="12" height="12" /> <rect x="60" y="96" width="12" height="12" /> <rect x="72" y="96" width="12" height="12" /> <rect x="84" y="96" width="12" height="12" /> <rect x="108" y="96" width="12" height="12" /> <rect x="120" y="96" width="12" height="12" /> <rect x="144" y="96" width="12" height="12" /> <rect x="156" y="96" width="12" height="12" /> <rect x="168" y="96" width="12" height="12" /> <rect x="240" y="96" width="12" height="12" /> <rect x="252" y="96" width="12" height="12" /> <rect x="0" y="108" width="12" height="12" /> <rect x="12" y="108" width="12" height="12" /> <rect x="24" y="108" width="12" height="12" /> <rect x="48" y="108" width="12" height="12" /> <rect x="60" y="108" width="12" height="12" /> <rect x="120" y="108" width="12" height="12" /> <rect x="144" y="108" width="12" height="12" /> <rect x="156" y="108" width="12" height="12" /> <rect x="168" y="108" width="12" height="12" /> <rect x="180" y="108" width="12" height="12" /> <rect x="204" y="108" width="12" height="12" /> <rect x="228" y="108" width="12" height="12" /> <rect x="240" y="108" width="12" height="12" /> <rect x="252" y="108" width="12" height="12" /> <rect x="264" y="108" width="12" height="12" /> <rect x="276" y="108" width="12" height="12" /> <rect x="12" y="120" width="12" height="12" /> <rect x="36" y="120" width="12" height="12" /> <rect x="48" y="120" width="12" height="12" /> <rect x="72" y="120" width="12" height="12" /> <rect x="108" y="120" width="12" height="12" /> <rect x="168" y="120" width="12" height="12" /> <rect x="180" y="120" width="12" height="12" /> <rect x="204" y="120" width="12" height="12" /> <rect x="216" y="120" width="12" height="12" /> <rect x="228" y="120" width="12" height="12" /> <rect x="240" y="120" width="12" height="12" /> <rect x="252" y="120" width="12" height="12" /> <rect x="276" y="120" width="12" height="12" /> <rect x="288" y="120" width="12" height="12" /> <rect x="48" y="132" width="12" height="12" /> <rect x="60" y="132" width="12" height="12" /> <rect x="84" y="132" width="12" height="12" /> <rect x="96" y="132" width="12" height="12" /> <rect x="120" y="132" width="12" height="12" /> <rect x="132" y="132" width="12" height="12" /> <rect x="168" y="132" width="12" height="12" /> <rect x="204" y="132" width="12" height="12" /> <rect x="228" y="132" width="12" height="12" /> <rect x="252" y="132" width="12" height="12" /> <rect x="288" y="132" width="12" height="12" /> <rect x="0" y="144" width="12" height="12" /> <rect x="24" y="144" width="12" height="12" /> <rect x="36" y="144" width="12" height="12" /> <rect x="72" y="144" width="12" height="12" /> <rect x="108" y="144" width="12" height="12" /> <rect x="120" y="144" width="12" height="12" /> <rect x="144" y="144" width="12" height="12" /> <rect x="168" y="144" width="12" height="12" /> <rect x="180" y="144" width="12" height="12" /> <rect x="216" y="144" width="12" height="12" /> <rect x="288" y="144" width="12" height="12" /> <rect x="0" y="156" width="12" height="12" /> <rect x="12" y="156" width="12" height="12" /> <rect x="48" y="156" width="12" height="12" /> <rect x="60" y="156" width="12" height="12" /> <rect x="120" y="156" width="12" height="12" /> <rect x="132" y="156" width="12" height="12" /> <rect x="144" y="156" width="12" height="12" /> <rect x="180" y="156" width="12" height="12" /> <rect x="192" y="156" width="12" height="12" /> <rect x="204" y="156" width="12" height="12" /> <rect x="228" y="156" width="12" height="12" /> <rect x="276" y="156" width="12" height="12" /> <rect x="0" y="168" width="12" height="12" /> <rect x="36" y="168" width="12" height="12" /> <rect x="48" y="168" width="12" height="12" /> <rect x="72" y="168" width="12" height="12" /> <rect x="84" y="168" width="12" height="12" /> <rect x="120" y="168" width="12" height="12" /> <rect x="144" y="168" width="12" height="12" /> <rect x="180" y="168" width="12" height="12" /> <rect x="204" y="168" width="12" height="12" /> <rect x="216" y="168" width="12" height="12" /> <rect x="228" y="168" width="12" height="12" /> <rect x="240" y="168" width="12" height="12" /> <rect x="252" y="168" width="12" height="12" /> <rect x="276" y="168" width="12" height="12" /> <rect x="288" y="168" width="12" height="12" /> <rect x="0" y="180" width="12" height="12" /> <rect x="24" y="180" width="12" height="12" /> <rect x="36" y="180" width="12" height="12" /> <rect x="48" y="180" width="12" height="12" /> <rect x="84" y="180" width="12" height="12" /> <rect x="96" y="180" width="12" height="12" /> <rect x="108" y="180" width="12" height="12" /> <rect x="168" y="180" width="12" height="12" /> <rect x="204" y="180" width="12" height="12" /> <rect x="228" y="180" width="12" height="12" /> <rect x="252" y="180" width="12" height="12" /> <rect x="264" y="180" width="12" height="12" /> <rect x="288" y="180" width="12" height="12" /> <rect x="0" y="192" width="12" height="12" /> <rect x="24" y="192" width="12" height="12" /> <rect x="36" y="192" width="12" height="12" /> <rect x="60" y="192" width="12" height="12" /> <rect x="72" y="192" width="12" height="12" /> <rect x="84" y="192" width="12" height="12" /> <rect x="132" y="192" width="12" height="12" /> <rect x="144" y="192" width="12" height="12" /> <rect x="168" y="192" width="12" height="12" /> <rect x="180" y="192" width="12" height="12" /> <rect x="192" y="192" width="12" height="12" /> <rect x="204" y="192" width="12" height="12" /> <rect x="216" y="192" width="12" height="12" /> <rect x="228" y="192" width="12" height="12" /> <rect x="240" y="192" width="12" height="12" /> <rect x="264" y="192" width="12" height="12" /> <rect x="96" y="204" width="12" height="12" /> <rect x="108" y="204" width="12" height="12" /> <rect x="132" y="204" width="12" height="12" /> <rect x="192" y="204" width="12" height="12" /> <rect x="240" y="204" width="12" height="12" /> <rect x="0" y="216" width="12" height="12" /> <rect x="12" y="216" width="12" height="12" /> <rect x="24" y="216" width="12" height="12" /> <rect x="36" y="216" width="12" height="12" /> <rect x="48" y="216" width="12" height="12" /> <rect x="60" y="216" width="12" height="12" /> <rect x="72" y="216" width="12" height="12" /> <rect x="96" y="216" width="12" height="12" /> <rect x="108" y="216" width="12" height="12" /> <rect x="120" y="216" width="12" height="12" /> <rect x="144" y="216" width="12" height="12" /> <rect x="192" y="216" width="12" height="12" /> <rect x="216" y="216" width="12" height="12" /> <rect x="240" y="216" width="12" height="12" /> <rect x="288" y="216" width="12" height="12" /> <rect x="0" y="228" width="12" height="12" /> <rect x="72" y="228" width="12" height="12" /> <rect x="96" y="228" width="12" height="12" /> <rect x="120" y="228" width="12" height="12" /> <rect x="132" y="228" width="12" height="12" /> <rect x="144" y="228" width="12" height="12" /> <rect x="156" y="228" width="12" height="12" /> <rect x="168" y="228" width="12" height="12" /> <rect x="180" y="228" width="12" height="12" /> <rect x="192" y="228" width="12" height="12" /> <rect x="240" y="228" width="12" height="12" /> <rect x="288" y="228" width="12" height="12" /> <rect x="0" y="240" width="12" height="12" /> <rect x="24" y="240" width="12" height="12" /> <rect x="36" y="240" width="12" height="12" /> <rect x="48" y="240" width="12" height="12" /> <rect x="72" y="240" width="12" height="12" /> <rect x="108" y="240" width="12" height="12" /> <rect x="144" y="240" width="12" height="12" /> <rect x="180" y="240" width="12" height="12" /> <rect x="192" y="240" width="12" height="12" /> <rect x="204" y="240" width="12" height="12" /> <rect x="216" y="240" width="12" height="12" /> <rect x="228" y="240" width="12" height="12" /> <rect x="240" y="240" width="12" height="12" /> <rect x="264" y="240" width="12" height="12" /> <rect x="276" y="240" width="12" height="12" /> <rect x="288" y="240" width="12" height="12" /> <rect x="0" y="252" width="12" height="12" /> <rect x="24" y="252" width="12" height="12" /> <rect x="36" y="252" width="12" height="12" /> <rect x="48" y="252" width="12" height="12" /> <rect x="72" y="252" width="12" height="12" /> <rect x="108" y="252" width="12" height="12" /> <rect x="144" y="252" width="12" height="12" /> <rect x="180" y="252" width="12" height="12" /> <rect x="192" y="252" width="12" height="12" /> <rect x="216" y="252" width="12" height="12" /> <rect x="276" y="252" width="12" height="12" /> <rect x="288" y="252" width="12" height="12" /> <rect x="0" y="264" width="12" height="12" /> <rect x="24" y="264" width="12" height="12" /> <rect x="36" y="264" width="12" height="12" /> <rect x="48" y="264" width="12" height="12" /> <rect x="72" y="264" width="12" height="12" /> <rect x="144" y="264" width="12" height="12" /> <rect x="192" y="264" width="12" height="12" /> <rect x="252" y="264" width="12" height="12" /> <rect x="264" y="264" width="12" height="12" /> <rect x="288" y="264" width="12" height="12" /> <rect x="0" y="276" width="12" height="12" /> <rect x="72" y="276" width="12" height="12" /> <rect x="96" y="276" width="12" height="12" /> <rect x="120" y="276" width="12" height="12" /> <rect x="132" y="276" width="12" height="12" /> <rect x="144" y="276" width="12" height="12" /> <rect x="168" y="276" width="12" height="12" /> <rect x="192" y="276" width="12" height="12" /> <rect x="204" y="276" width="12" height="12" /> <rect x="228" y="276" width="12" height="12" /> <rect x="240" y="276" width="12" height="12" /> <rect x="288" y="276" width="12" height="12" /> <rect x="0" y="288" width="12" height="12" /> <rect x="12" y="288" width="12" height="12" /> <rect x="24" y="288" width="12" height="12" /> <rect x="36" y="288" width="12" height="12" /> <rect x="48" y="288" width="12" height="12" /> <rect x="60" y="288" width="12" height="12" /> <rect x="72" y="288" width="12" height="12" /> <rect x="96" y="288" width="12" height="12" /> <rect x="132" y="288" width="12" height="12" /> <rect x="156" y="288" width="12" height="12" /> <rect x="168" y="288" width="12" height="12" /> <rect x="192" y="288" width="12" height="12" /> <rect x="204" y="288" width="12" height="12" /> <rect x="252" y="288" width="12" height="12" /> <rect x="288" y="288" width="12" height="12" /> </g> </svg> </div> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <a href="#" class="back-to-top"><span class="show-for-medium-up">Back to Top</span><span class="show-for-small">Top</span></a> <script data-cfasync="false" src="/cdn-cgi/scripts/5c5dd728/cloudflare-static/email-decode.min.js"></script><script src="https://pub.mdpi-res.com/assets/js/modernizr-2.8.3.min.js?5227e0738f7f421d?1732615622"></script> <script src="https://pub.mdpi-res.com/assets/js/jquery-1.12.4.min.js?4f252523d4af0b47?1732615622"></script> <script src="https://pub.mdpi-res.com/assets/js/foundation-5.5.3.min.js?6b2ec41c18b29054?1732615622"></script> <script src="https://pub.mdpi-res.com/assets/js/foundation-5.5.3.equalizer.min.js?0f6c549b75ec554c?1732615622"></script> <script src="https://pub.mdpi-res.com/assets/js/jquery.multiselect.js?0edd3998731d1091?1732615622"></script> <script src="https://pub.mdpi-res.com/assets/js/jquery.cycle2.min.js?63413052928f97ee?1732615622"></script> <script> // old browser fix - this way the console log rows won't throw (silent) errors in browsers not supporting console log if (!window.console) window.console = {}; if (!window.console.log) window.console.log = function () { }; var currentJournalNameSystem = "chemosensors"; $(document).ready(function() { $('select.foundation-select').multiselect({ search: true, minHeight: 130, maxHeight: 130, }); $(document).foundation({ orbit: { timer_speed: 4000, }, reveal: { animation: 'fadeAndPop', animation_speed: 100, } }); $(".chosen-select").each(function(element) { var maxSelected = (undefined !== $(this).data('maxselectedoptions') ? $(this).data('maxselectedoptions') : 100); $(this).on('chosen:ready', function(event, data) { var select = $(data.chosen.form_field); if (select.attr('id') === 'journal-browser-volume') { $(data.chosen.dropdown).addClass('UI_JournalBrowser_Volume_Options'); } if (select.attr('id') === 'journal-browser-issue') { $(data.chosen.dropdown).addClass('UI_JournalBrowser_Issue_Options'); } }).chosen({ display_disabled_options: false, disable_search_threshold: 7, max_selected_options: maxSelected, width: "100%" }); }); $(".toEncode").each(function(e) { var oldHref = $(this).attr("href"); var newHref = oldHref.replace('.botdefense.please.enable.javascript.','@'); $(this).attr("href", newHref); if (!$(this).hasClass("emailCaptcha")) { $(this).html(newHref.replace('mailto:', '')); } $(this).removeClass("visibility-hidden"); }); $(document).on('opened.fndtn.reveal', '[data-reveal]', function() { $(document).foundation('equalizer', 'reflow'); }); // fix the images that have tag height / width defined // otherwise the default foundation styles overwrite the tag definitions $("img").each(function() { if ($(this).attr('width') != undefined || $(this).attr('height') != undefined) { $(this).addClass("img-fixed"); } }); $("#basic_search, #advanced_search").submit(function(e) { var searchArguments = false; $(this).find("input,select").not("#search,.search-button").each(function() { if (undefined === $(this).val() || "" === $(this).val()) { $(this).attr('name', null); } else { $(this).attr('name'); searchArguments = true; } }); if (!searchArguments) { window.location = $(this).attr('action'); return false; } }); $(".hide-show-desktop-option").click(function(e) { e.preventDefault(); var parentDiv = $(this).closest("div"); $.ajax({ url: $(this).attr('href'), success: function(msg) { parentDiv.removeClass().hide(); } }); }); $(".generic-toggleable-header").click(function(e) { $(this).toggleClass("active"); $(this).next(".generic-toggleable-content").toggleClass("active"); }); /* * handle whole row as a link if the row contains only one visible link */ $("table.new tr").hover(function() { if ($(this).find("td:visible a").length == 1) { $(this).addClass("single-link"); } }, function() { $(this).removeClass("single-link"); }); $("table.new:not(.table-of-tables)").on("click", "tr.single-link", function(e) { var target = $(e.target); if (!e.ctrlKey && !target.is("a")) { $(this).find("td:visible a")[0].click(); } }); $(document).on("click", ".custom-accordion-for-small-screen-link", function(e) { if ($(this).closest("#basic_search").length > 0) { if ($(".search-container__advanced").first().is(":visible")) { openAdvanced() } } if (Foundation.utils.is_small_only()) { if ($(this).hasClass("active")) { $(this).removeClass("active"); $(this).next(".custom-accordion-for-small-screen-content").addClass("show-for-medium-up"); } else { $(this).addClass("active"); $(this).next(".custom-accordion-for-small-screen-content").removeClass("show-for-medium-up"); $(document).foundation('orbit', 'reflow'); } } if (undefined !== $(this).data("callback")) { var customCallback = $(this).data("callback"); func = window[customCallback]; func(); } }); $(document).on("click", ".js-open-small-search", function(e) { e.preventDefault(); $(this).toggleClass("active").closest(".tab-bar").toggleClass("active"); $(".search-container").toggleClass("hide-for-small-down"); }); $(document).on("click", ".js-open-menu", function(e) { $(".search-container").addClass("hide-for-small-down"); }); $(window).on('resize', function() { recalculate_main_browser_position(); recalculate_responsive_moving_containers(); }); updateSearchLabelVisibilities(); recalculate_main_browser_position(); recalculate_responsive_moving_containers(); if (window.document.documentMode == 11) { $("<link/>", { rel: "stylesheet", type: "text/css", href: "https://fonts.googleapis.com/icon?family=Material+Icons"}).appendTo("head"); } }); function recalculate_main_browser_position() { if (Foundation.utils.is_small_only()) { if ($("#js-main-top-container").parent("#js-large-main-top-container").length > 0) { $("#js-main-top-container").appendTo($("#js-small-main-top-container")); } } else { if ($("#js-main-top-container").parent("#js-small-main-top-container").length > 0) { $("#js-main-top-container").appendTo($("#js-large-main-top-container")); } } } function recalculate_responsive_moving_containers() { $(".responsive-moving-container.large").each(function() { var previousParent = $(".responsive-moving-container.active[data-id='"+$(this).data("id")+"']"); var movingContent = previousParent.html(); if (Foundation.utils.is_small_only()) { var currentParent = $(".responsive-moving-container.small[data-id='"+$(this).data("id")+"']"); } else if (Foundation.utils.is_medium_only()) { var currentParent = $(".responsive-moving-container.medium[data-id='"+$(this).data("id")+"']"); } else { var currentParent = $(".responsive-moving-container.large[data-id='"+$(this).data("id")+"']"); } if (previousParent.attr("class") !== currentParent.attr("class")) { currentParent.html(movingContent); previousParent.html(); currentParent.addClass("active"); previousParent.removeClass("active"); } }); } // cookies allowed is checked from a) local storage and b) from server separately so that the footer bar doesn't // get included in the custom page caches function checkCookiesAllowed() { var cookiesEnabled = localStorage.getItem("mdpi_cookies_enabled"); if (null === cookiesEnabled) { $.ajax({ url: "/ajax_cookie_value/mdpi_cookies_accepted", success: function(data) { if (data.value) { localStorage.setItem("mdpi_cookies_enabled", true); checkDisplaySurvey(); } else { $(".js-allow-cookies").show(); } } }); } else { checkDisplaySurvey(); } } function checkDisplaySurvey() { } window.addEventListener('CookiebotOnAccept', function (e) { var CookieDate = new Date; if (Cookiebot.consent.preferences) { CookieDate.setFullYear(CookieDate.getFullYear() + 1); document.cookie = "mdpi_layout_type_v2=mobile; path=/; expires=" + CookieDate.toUTCString() + ";"; $(".js-toggle-desktop-layout-link").css("display", "inline-block"); } }, false); window.addEventListener('CookiebotOnDecline', function (e) { if (!Cookiebot.consent.preferences) { $(".js-toggle-desktop-layout-link").hide(); if ("" === "desktop") { window.location = "/toggle_desktop_layout_cookie"; } } }, false); var hash = $(location).attr('hash'); if ("#share" === hash) { if (1 === $("#main-share-modal").length) { $('#main-share-modal').foundation('reveal', 'open'); } } </script> <script src="https://pub.mdpi-res.com/assets/js/lib.js?f8d3d71b3a772f9d?1732615622"></script> <script src="https://pub.mdpi-res.com/assets/js/mdpi.js?c267ce58392b15da?1732615622"></script> <script>var banners_url = 'https://serve.mdpi.com';</script> <script type='text/javascript' src='https://pub.mdpi-res.com/assets/js/ifvisible.min.js?c621d19ecb761212?1732615622'></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/affix.js?ac4ea55275297c15?1732615622"></script> <script src="https://pub.mdpi-res.com/assets/js/clipboard.min.js?3f3688138a1b9fc4?1732615622"></script> <script type="text/javascript"> $(document).ready(function() { var helpFunctions = $(".middle-column__help__fixed"); var leftColumnAffix = $(".left-column__fixed"); var middleColumn = $("#middle-column"); var clone = null; helpFunctions.affix({ offset: { top: function() { return middleColumn.offset().top - 8 - (Foundation.utils.is_medium_only() ? 30 : 0); }, bottom: function() { return $("#footer").innerHeight() + 74 + (Foundation.utils.is_medium_only() ? 0 : 0); } } }); if (leftColumnAffix.length > 0) { clone = leftColumnAffix.clone(); clone.addClass("left-column__fixed__affix"); clone.insertBefore(leftColumnAffix); clone.css('width', leftColumnAffix.outerWidth() + 50); clone.affix({ offset: { top: function() { return leftColumnAffix.offset().top - 30 - (Foundation.utils.is_medium_only() ? 50 : 0); }, bottom: function() { return $("#footer").innerHeight() + 92 + (Foundation.utils.is_medium_only() ? 0 : 0); } } }); } $(window).on("resize", function() { if (clone !== null) { clone.css('width', leftColumnAffix.outerWidth() + 50); } }); new ClipboardJS('.js-clipboard-copy'); }); </script> <script src="https://pub.mdpi-res.com/assets/js/jquery-ui-1.13.2.min.js?1e2047978946a1d2?1732615622"></script> <script src="https://pub.mdpi-res.com/assets/js/slick.min.js?d5a61c749e44e471?1732615622"></script> <script> $(document).ready(function() { $(".link-article-menu").click(function(e) { e.preventDefault(); $(this).find('span').toggle(); $(this).next("div").toggleClass("active"); }); $(".js-similarity-related-articles").click(function(e) { e.preventDefault(); if ('' !== $('#recommended-articles-modal').attr('data-url')) { $('#recommended-articles-modal').foundation('reveal', 'open', $('#recommended-articles-modal').attr('data-url')); } }); $.ajax({ url: "/article/1197362/similarity-related/show-link", success: function(result) { if (result.show) { $('#recommended-articles-modal').attr('data-url', result.link); $('.js-article-similarity-container').show(); } } }); $(document).on('opened.fndtn.reveal', '[data-reveal]', function() { var modal = $(this); if (modal.attr('id') === "author-biographies-modal") { modal.find('.multiple-items').slick({ slidesToShow: 1, nextArrow: '<a class="slick-next" href="#"><i class="material-icons">chevron_right</i></a>', prevArrow: '<a class="slick-prev" href="#"><i class="material-icons">chevron_left</i></a>', slidesToScroll: 1, draggable: false, }); modal.find('.multiple-items').slick('refresh'); } }); }); </script> <script> $(document).ready(function() { $(document).on('keyup', function (e) { if (e.keyCode == 27) { var hElem = $(this).find(".annotator-adder"); if (hElem.length){ hElem.css({'visibility':'hidden'}); } else { document.querySelector("hypothesis-adder").shadowRoot.querySelector(".annotator-adder").style.visibility = "hidden"; } } }); }); </script> <script> window.hypothesisConfig = function () { return { sidebarAppUrl: 'https://commenting.mdpi.com/app.html', showHighlights: 'whenSidebarOpen' , openSidebar: false , assetRoot: 'https://commentingres.mdpi.com/hypothesis', services: [{ apiUrl: 'https://commenting.mdpi.com/api/', authority: 'mdpi', grantToken: '', doi: '10.3390/chemosensors11070405' }], }; }; </script> <script async id="hypothesis_frame"></script> <script type="text/javascript"> if (-1 !== window.location.href.indexOf("?src=")) { window.history.replaceState({}, '', `${location.pathname}`); } $(document).ready(function() { var scifeedCounter = 0; var search = window.location.search; var mathjaxReady = false; // late image file loading $("img[data-lsrc]").each(function() { $(this).attr("src", $(this).data("lsrc")); }); // late mathjax initialization var head = document.getElementsByTagName("head")[0]; var script = document.createElement("script"); script.type = "text/x-mathjax-config"; script[(window.opera ? "innerHTML" : "text")] = "MathJax.Hub.processSectionDelay = 0;\n" + "MathJax.Hub.Config({\n" + " \"menuSettings\": {\n" + " CHTMLpreview: false\n" + " },\n" + " \"CHTML-preview\":{\n" + " disabled: true\n" + " },\n" + " \"HTML-CSS\": {\n" + " scale: 90,\n" + " availableFonts: [],\n" + " preferredFont: null,\n" + " preferredFonts: null,\n" + " webFont:\"Gyre-Pagella\",\n" + " imageFont:'TeX',\n" + " undefinedFamily:\"'Arial Unicode MS',serif\",\n" + " linebreaks: { automatic: false }\n" + " },\n" + " \"TeX\": {\n" + " extensions: ['noErrors.js'],\n" + " noErrors: {\n" + " inlineDelimiters: [\"\",\"\"],\n" + " multiLine: true,\n" + " style: {\n" + " 'font-size': '90%',\n" + " 'text-align': 'left',\n" + " 'color': 'black',\n" + " 'padding': '1px 3px',\n" + " 'border': '1px solid'\n" + " }\n" + " }\n" + " }\n" + "});\n" + "MathJax.Hub.Register.StartupHook('End', function() {\n" + " refreshMathjaxWidths();\n" + " mathjaxReady = true;\n" + "});\n" + "MathJax.Hub.Startup.signal.Interest(function (message) {\n" + " if (message == 'End') {\n" + " var hypoLink = document.getElementById('hypothesis_frame');\n" + " if (null !== hypoLink) {\n" + " hypoLink.setAttribute('src', 'https://commenting.mdpi.com/embed.js');\n" + " }\n" + " }\n" + "});"; head.appendChild(script); script = document.createElement("script"); script.type = "text/javascript"; script.src = "https://pub.mdpi-res.com/bundles/mathjax/MathJax.js?config=TeX-AMS-MML_HTMLorMML"; head.appendChild(script); // article version checker if (0 === search.indexOf('?type=check_update&version=')) { $.ajax({ url: "/2227-9040/11/7/405" + "/versioncheck" + search, success: function(result) { $(".js-check-update-container").html(result); } }); } $('#feed_option').click(function() { // tracker if ($('#scifeed_clicked').length<1) { $(this).append('<span style="display:none" id="scifeed_clicked">done</span>'); } $('#feed_data').toggle('slide', { direction: 'up'}, '1000'); // slideToggle(700); OR toggle(700) $("#scifeed_error_msg").html('').hide(); $("#scifeed_notice_msg").html('').hide(); }); $('#feed_option').click(function(event) { setTimeout(function(){ var captchaSection = $("#captchaSection"); captchaSection.removeClass('ui-helper-hidden').find('input').prop('disabled', false); // var img = captchaSection.find('img'); // img.attr('src', img.data('url') + "?" + (new Date()).getTime()); // $(".captcha_reload").trigger("click"); var img = document.getElementById('gregwar_captcha_scifeed'); img.src = '/generate-captcha/gcb_captcha?n=' + (new Date()).getTime(); },800); }); $(document).on('click', '.split_feeds', function() { var name = $( this ).attr('name'); var flag = 1 - ($(this).is(":checked")*1); $('.split_feeds').each(function (index) { if ($( this ).attr('name') !== name) { $(this)[0].checked = flag; } }); }); $(document).on('click', '#scifeed_submit, #scifeed_submit1', function(event) { event.preventDefault(); $(".captcha_reload").trigger("click"); $("#scifeed_error_msg").html(""); $("#scifeed_error_msg").hide(); }); $(document).on('click', '.subscription_toggle', function(event) { if ($(this).val() === 'Create SciFeed' && $('#scifeed_hidden_flag').length>0) { event.preventDefault(); // alert('Here there would be a captcha because user is not logged in'); var captchaSection = $("#captchaSection"); if (captchaSection.hasClass('ui-helper-hidden')) { captchaSection.removeClass('ui-helper-hidden').find('input').prop('disabled', false); var img = captchaSection.find('img'); img.attr('src', img.data('url') + "?" + (new Date()).getTime()); $("#reloadCaptcha").trigger("click"); } } }); $(document).on('click', '.scifeed_msg', function(){ $(this).hide(); }); $(document).on('click', '.article-scilit-search', function(e) { e.preventDefault(); var data = $(".article-scilit-search-data").val(); var dataArray = data.split(';').map(function(keyword) { return "(\"" + keyword.trim() + "\")"; }); var searchQuery = dataArray.join(" OR "); var searchUrl = encodeURI("https://www.scilit.net/articles/search?q="+ searchQuery + "&advanced=1&highlight=1"); var win = window.open(searchUrl, '_blank'); if (win) { win.focus(); } else { window.location(searchUrl); } }); display_stats(); citedCount(); follow_goto(); // Select the node that will be observed for mutations const targetNodes = document.getElementsByClassName('hypothesis-count-container'); // Options for the observer (which mutations to observe) const config = { attributes: false, childList: true, subtree: false }; // Callback function to execute when mutations are observed const callback = function(mutationList, observer) { for(const mutation of mutationList) { if (mutation.type === 'childList') { let node = $(mutation.target); if (parseInt(node.html()) > 0) { node.show(); } } } }; // Create an observer instance linked to the callback function const observer = new MutationObserver(callback); // Start observing the target node for configured mutations for(const targetNode of targetNodes) { observer.observe(targetNode, config); } // Select the node that will be observed for mutations const mathjaxTargetNode = document.getElementById('middle-column'); // Callback function to execute when mutations are observed const mathjaxCallback = function(mutationList, observer) { if (mathjaxReady && typeof(MathJax) !== 'undefined') { refreshMathjaxWidths(); } }; // Create an observer instance linked to the callback function const mathjaxObserver = new ResizeObserver(mathjaxCallback); // Start observing the target node for configured mutations mathjaxObserver.observe(mathjaxTargetNode); }); /* END $(document).ready */ function refreshMathjaxWidths() { let width = ($('.html-body').width()*0.9) + "px"; $('.MathJax_Display').css('max-width', width); $('.MJXc-display').css('max-width', width); } function sendScifeedFrom(form) { if (!$('#scifeed_email').val().trim()) { // empty email alert('Please, provide an email for subscribe to this scifeed'); return false; } else if (!$('#captchaSection').hasClass('ui-helper-hidden') && !$('#captchaSection').find('input').val().trim()) { // empty captcha alert('Please, fill the captcha field.'); return false; } else if( ((($('#scifeed_form').find('input:checkbox:checked').length)-($('#split_feeds:checked').length))<1) || ($('#scifeed_kwd_txt').length < 0 && !$('#scifeed_kwd_txt').val().trim()) || ($('#scifeed_author_txt').length<0 &&!$('#scifeed_author_txt').val().trim()) ) { alert('You did not select anything to subscribe'); return false; } else if(($('#scifeed_form').find('input:checkbox:checked').length)-($('#split_feeds2:checked').length)<1){ alert("You did not select anything to subscribe"); return false; } else { var url = $('#scifeed_subscribe_url').html(); var formData = $(form).serializeArray(); $.post(url, formData).done(function (data) { if (JSON.parse(data)) { $('.scifeed_msg').hide(); var res = JSON.parse(data); var successFeeds = 0; var errorFeeds = 0; if (res) { $('.scifeed_msg').html(''); $.each(res, function (index, val) { if (val) { if (val.error) { errorFeeds++; $("#scifeed_error_msg").append(index+' - '+val.error+'<br>'); } if (val.notice) // for successful feed creation { successFeeds++; // $("#scifeed_notice_msg").append(index+' - '+val.notice+'<br>'); $("#scifeed_notice_msg").append('<li>'+index+'</li>'); } } }); if (successFeeds>0) { text = $('#scifeed_notice_msg').html(); text = 'The following feed'+(successFeeds>1?'s have':' has')+ ' been sucessfully created:<br><ul>'+ text + '</ul>' +($('#scifeed_hidden_flag').length>0 ? 'You are not logged in, so you probably need to validate '+ (successFeeds>1?'them':' it')+'.<br>' :'' ) +'Please check your email'+(successFeeds>1?'s':'')+' for more details.'; //(successFeeds>1?' for each of them':'')+'.<br>'; $("#scifeed_notice_msg").html(text); $("#scifeed_notice_msg").show(); } if (errorFeeds>0) { $("#scifeed_error_msg").show();; } } $("#feed_data").hide(); } }); } } function follow_goto() { var hashStr = location.hash.replace("#",""); if(typeof hashStr !== 'undefined') { if( hashStr == 'supplementary') { document.getElementById('suppl_id').scrollIntoView(); } if( hashStr == 'citedby') { document.getElementById('cited_id').scrollIntoView(); } } } function cited() { $("#framed_div").toggle('fast', function(){ if ($(this).css('display') != 'none') { var loaded = document.getElementById("loaded"); if(loaded.innerHTML == "No") { // Load Xref result var container = document.getElementById("framed_div"); // This replace the content container.innerHTML = "<img src=\"https://pub.mdpi-res.com/img/loading_circle.gif?9a82694213036313?1732615622\" height=\"20\" width=\"20\" alt=\"Processing...\" style=\"vertical-align:middle; margin-right:0.6em;\">"; var url = "/citedby/10.3390%252Fchemosensors11070405/161"; $.post(url, function(result) { if (result.success) { container.innerHTML = result.view; } loaded.innerHTML = "Yes"; }); } } return true; // for not going at the beginning of the page... }) return true; // for not going at the beginning of the page... } function detect_device() { // Added by Bastien (18/08/2014): based on the http://detectmobilebrowsers.com/ detector var check = false; (function(a){if(/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows (ce|phone)|xda|xiino/i.test(a)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(a.substr(0,4)))check = true})(navigator.userAgent||navigator.vendor||window.opera); return check; } function display_stats(){ $("#article_stats_div").toggle(); return false; } /* * Cited By Scopus */ function citedCount(){ $("#framed_div_cited_count").toggle('fast', function(){ if ($(this).css('display') != 'none') { var loaded = document.getElementById("loaded_cite_count"); // to load only once the result! if(loaded.innerHTML == "No") { // Load Xref result var d = document.getElementById("framed_div_cited_count"); // This replace the content d.innerHTML = "<img src=\"https://pub.mdpi-res.com/img/loading_circle.gif?9a82694213036313?1732615622\" height=\"20\" width=\"20\" alt=\"Processing...\" style=\"vertical-align:middle; margin-right:0.6em;\">"; $.ajax({ method : "POST", url : "/cite-count/10.3390%252Fchemosensors11070405", success : function(data) { if (data.succ) { d.innerHTML = data.view; loaded.innerHTML = "Yes"; follow_goto(); } } }); } } // end else return true; // for not going at the beginning of the page... }) return true; // for not going at the beginning of the page... } </script><script type="text/javascript" src="https://pub.mdpi-res.com/assets/js/third-party/highcharts/highcharts.js?bdd06f45e34c33df?1732615622"></script><script type="text/javascript" src="https://pub.mdpi-res.com/assets/js/third-party/highcharts/modules/exporting.js?944dc938d06de3a8?1732615622"></script><script type="text/javascript" defer="defer"> var advancedStatsData; var selectedStatsType = "abstract"; $(function(){ var countWrapper = $('#counts-wrapper'); $('#author_stats_id #type_links a').on('click', function(e) { e.preventDefault(); selectedStatsType = $(this).data('type'); $('#article_advanced_stats').vectorMap('set', 'values', advancedStatsData[selectedStatsType]); $('#advanced_stats_max').html(advancedStatsData[selectedStatsType].max); $('#type_links a').removeClass('active'); $(this).addClass('active'); }); $.get('/2227-9040/11/7/405/stats', function (result) { if (!result.success) { return; } // process article metrics part in left column var viewNumber = countWrapper.find(".view-number"); viewNumber.html(result.metrics.views); viewNumber.parent().toggleClass("count-div--grey", result.metrics.views == 0); var downloadNumber = countWrapper.find(".download-number"); downloadNumber.html(result.metrics.downloads); downloadNumber.parent().toggleClass("count-div--grey", result.metrics.downloads == 0); var citationsNumber = countWrapper.find(".citations-number"); citationsNumber.html(result.metrics.citations); citationsNumber.parent().toggleClass("count-div--grey", result.metrics.citations == 0); if (result.metrics.views > 0 || result.metrics.downloads > 0 || result.metrics.citations > 0) { countWrapper.find("#js-counts-wrapper__views, #js-counts-wrapper__downloads").addClass("visible").show(); if (result.metrics.citations > 0) { countWrapper.find('.citations-number').html(result.metrics.citations).show(); countWrapper.find("#js-counts-wrapper__citations").addClass("visible").show(); } else { countWrapper.find("#js-counts-wrapper__citations").remove(); } $("[data-id='article-counters']").removeClass("hidden"); } if (result.metrics.altmetrics_score > 0) { $("#js-altmetrics-donut").show(); } // process view chart in main column var jsondata = result.chart; var series = new Array(); $.each(jsondata.elements, function(i, element) { var dataValues = new Array(); $.each(element.values, function(i, value) { dataValues.push(new Array(value.tip, value.value)); }); series[i] = {name: element.text, data:dataValues}; }); Highcharts.setOptions({ chart: { style: { fontFamily: 'Arial,sans-serif' } } }); $('#article_stats_swf').highcharts({ chart: { type: 'line', width: $("#tabs").width() //* 0.91 }, credits: { enabled: false }, exporting: { enabled: true }, title: { text: jsondata.title.text, x: -20 //center }, xAxis: { categories: jsondata.x_axis.labels.labels, offset: jsondata.x_axis.offset, labels:{ step: jsondata.x_axis.labels.steps, rotation: 30 } }, yAxis: { max: jsondata.y_axis.max, min: jsondata.y_axis.min, offset: jsondata.y_axis.offset, labels: { steps: jsondata.y_axis.steps }, title: { enabled: false } }, tooltip: { formatter: function (){ return this.key.replace("#val#", this.y); } }, legend: { align: 'top', itemDistance: 50 }, series: series }); }); $('#supplement_link').click(function() { document.getElementById('suppl_id').scrollIntoView(); }); $('#stats_link').click(function() { document.getElementById('stats_id').scrollIntoView(); }); // open mol viewer for molbank special supplementary files $('.showJmol').click(function(e) { e.preventDefault(); var jmolModal = $("#jmolModal"); var url = "/article/1197362/jsmol_viewer/__supplementary_id__"; url = url.replace(/__supplementary_id__/g, $(this).data('index')); $('#jsmol-content').attr('src', url); jmolModal.find(".content").html($(this).data('description')); jmolModal.foundation("reveal", "open"); }); }); !function() { "use strict"; function e(e) { try { if ("undefined" == typeof console) return; "error"in console ? console.error(e) : console.log(e) } catch (e) {} } function t(e) { return d.innerHTML = '<a href="' + e.replace(/"/g, """) + '"></a>', d.childNodes[0].getAttribute("href") || "" } function n(n, c) { var o = ""; var k = parseInt(n.substr(c + 4, 2), 16); for (var i = c; i < n.length; i += 2) { if (i != c + 4) { var s = parseInt(n.substr(i, 2), 16) ^ k; o += String.fromCharCode(s); } } try { o = decodeURIComponent(escape(o)); } catch (error) { console.error(error); } return t(o); } function c(t) { for (var r = t.querySelectorAll("a"), c = 0; c < r.length; c++) try { var o = r[c] , a = o.href.indexOf(l); a > -1 && (o.href = "mailto:" + n(o.href, a + l.length)) } catch (i) { e(i) } } function o(t) { for (var r = t.querySelectorAll(u), c = 0; c < r.length; c++) try { var o = r[c] , a = o.parentNode , i = o.getAttribute(f); if (i) { var l = n(i, 0) , d = document.createTextNode(l); a.replaceChild(d, o) } } catch (h) { e(h) } } function a(t) { for (var r = t.querySelectorAll("template"), n = 0; n < r.length; n++) try { i(r[n].content) } catch (c) { e(c) } } function i(t) { try { c(t), o(t), a(t) } catch (r) { e(r) } } var l = "/cnd-cgi/l/email-protection#" , u = ".__cf_email__" , f = "data-cfemail" , d = document.createElement("div"); i(document), function() { var e = document.currentScript || document.scripts[document.scripts.length - 1]; e.parentNode.removeChild(e) }() }(); </script><script type="text/javascript"> function setCookie(cname, cvalue, ctime) { ctime = (typeof ctime === 'undefined') ? 10*365*24*60*60*1000 : ctime; // default => 10 years var d = new Date(); d.setTime(d.getTime() + ctime); // ==> 1 hour = 60*60*1000 var expires = "expires="+d.toUTCString(); document.cookie = cname + "=" + cvalue + "; " + expires +"; path=/"; } function getCookie(cname) { var name = cname + "="; var ca = document.cookie.split(';'); for(var i=0; i<ca.length; i++) { var c = ca[i]; while (c.charAt(0)==' ') c = c.substring(1); if (c.indexOf(name) == 0) return c.substring(name.length, c.length); } return ""; } </script><script type="text/javascript" src="https://d1bxh8uas1mnw7.cloudfront.net/assets/embed.js"></script><script> $(document).ready(function() { if ($("#js-similarity-related-data").length > 0) { $.ajax({ url: '/article/1197362/similarity-related', success: function(response) { $("#js-similarity-related-data").html(response); $("#js-related-articles-menu").show(); $(document).foundation('tab', 'reflow'); MathJax.Hub.Queue(["Typeset", MathJax.Hub]); } }); } }); </script><link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/jquery-ui-1.10.4.custom.min.css?80647d88647bf347?1732615622"><link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/magnific-popup.min.css?04d343e036f8eecd?1732615622"><script type="text/javascript" src="https://pub.mdpi-res.com/assets/js/magnific-popup.min.js?2be3d9e7dc569146?1732615622"></script><script> $(function() { $(".js-show-more-academic-editors").on("click", function(e) { e.preventDefault(); $(this).hide(); $(".academic-editor-container").removeClass("hidden"); }); }); </script> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/vmap/jqvmap.min.css?126a06688aa11c13?1732615622"> <script src="https://pub.mdpi-res.com/assets/js/vmap/jquery.vmap.min.js?935f68d33bdd88a1?1732615622"></script> <script src="https://pub.mdpi-res.com/assets/js/vmap/jquery.vmap.world.js?16677403c0e1bef1?1732615622"></script> <script> function updateSlick() { $('.multiple-items').slick('setPosition'); } $(document).ready(function() { $('.multiple-items').slick({ slidesToShow: 1, nextArrow: '<a class="slick-next" href="#"><i class="material-icons">chevron_right</i></a>', prevArrow: '<a class="slick-prev" href="#"><i class="material-icons">chevron_left</i></a>', slidesToScroll: 1, responsive: [ { breakpoint: 1024, settings: { slidesToShow: 1, slidesToScroll: 1, } }, { breakpoint: 600, settings: { slidesToShow: 1, slidesToScroll: 1, } }, { breakpoint: 480, settings: { slidesToShow: 1, slidesToScroll: 1, } } ] }); $('.multiple-items').show(); $(document).on('click', '.reviewReportSelector', function(e) { let path = $(this).attr('data-path'); handleReviews(path, $(this)); }); $(document).on('click', '.viewReviewReports', function(e) { let versionOne = $('#versionTab_1'); if (!versionOne.hasClass('activeTab')) { let path = $(this).attr('data-path'); handleReviews(path, versionOne); } location.href = "#reviewReports"; }); $(document).on('click', '.reviewersResponse, .authorResponse', function(e) { let version = $(this).attr('data-version'); let targetVersion = $('#versionTab_' + version); if (!targetVersion.hasClass('activeTab')) { let path = targetVersion.attr('data-path'); handleReviews(path, targetVersion); } location.href = $(this).attr('data-link'); }); $(document).on('click', '.tab', function (e) { e.preventDefault(); $('.tab').removeClass('activeTab'); $(this).addClass('activeTab') $('.tab').each(function() { $(this).closest('.tab-title').removeClass('active'); }); $(this).closest('.tab-title').addClass('active') }); }); function handleReviews(path, target) { $.ajax({ url: path, context: this, success: function (data) { $('.activeTab').removeClass('activeTab'); target.addClass('activeTab'); $('#reviewSection').html(data.view); }, error: function (xhr, ajaxOptions, thrownError) { console.log(xhr.status); console.log(thrownError); } }); } </script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/affix.js?v1?1732615622"></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/storage.js?e9b262d3a3476d25?1732615622"></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/jquery-scrollspy.js?09cbaec0dbb35a67?1732615622"></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/magnific-popup.js?4a09c18460afb26c?1732615622"></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/underscore.js?f893e294cde60c24?1732615622"></script> <script type="text/javascript"> $('document').ready(function(){ $("#left-column").addClass("show-for-large-up"); $("#middle-column").removeClass("medium-9").removeClass("left-bordered").addClass("medium-12"); $(window).on('resize scroll', function() { /* if ($('.button--drop-down').isInViewport($(".top-bar").outerHeight())) { */ if ($('.button--drop-down').isInViewport()) { $("#js-button-download").hide(); } else { $("#js-button-download").show(); } }); }); $(document).on('DOMNodeInserted', function(e) { var element = $(e.target); if (element.hasClass('menu') && element.hasClass('html-nav') ) { element.addClass("side-menu-ul"); } }); </script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/articles.js?5118449d9ad8913a?1732615622"></script> <script> repositionOpenSideBar = function() { $('#left-column').addClass("show-for-large-up show-for-medium-up").show(); $('#middle-column').removeClass('large-12').removeClass('medium-12'); $('#middle-column').addClass('large-9'); } repositionCloseSideBar = function() { $('#left-column').removeClass("show-for-large-up show-for-medium-up").hide(); $('#middle-column').removeClass('large-9'); $('#middle-column').addClass('large-12').addClass('medium-12'); } </script> <!--[if lt IE 9]> <script src="https://pub.mdpi-res.com/assets/js/ie8/ie8.js?6eef8fcbc831f5bd?1732615622"></script> <script src="https://pub.mdpi-res.com/assets/js/ie8/jquery.xdomainrequest.min.js?a945caca315782b0?1732615622"></script> <![endif]--> <!-- Twitter universal website tag code --> <script type="text/plain" data-cookieconsent="marketing"> !function(e,t,n,s,u,a){e.twq||(s=e.twq=function(){s.exe?s.exe.apply(s,arguments):s.queue.push(arguments); },s.version='1.1',s.queue=[],u=t.createElement(n),u.async=!0,u.src='//static.ads-twitter.com/uwt.js', a=t.getElementsByTagName(n)[0],a.parentNode.insertBefore(u,a))}(window,document,'script'); // Insert Twitter Pixel ID and Standard Event data below twq('init','o2pip'); twq('track','PageView'); </script> <!-- End Twitter universal website tag code --> <script>(function(){function c(){var b=a.contentDocument||a.contentWindow.document;if(b){var d=b.createElement('script');d.innerHTML="window.__CF$cv$params={r:'8e8e2a14cc04ce4b',t:'MTczMjY2OTA0OS4wMDAwMDA='};var a=document.createElement('script');a.nonce='';a.src='/cdn-cgi/challenge-platform/scripts/jsd/main.js';document.getElementsByTagName('head')[0].appendChild(a);";b.getElementsByTagName('head')[0].appendChild(d)}}if(document.body){var a=document.createElement('iframe');a.height=1;a.width=1;a.style.position='absolute';a.style.top=0;a.style.left=0;a.style.border='none';a.style.visibility='hidden';document.body.appendChild(a);if('loading'!==document.readyState)c();else if(window.addEventListener)document.addEventListener('DOMContentLoaded',c);else{var e=document.onreadystatechange||function(){};document.onreadystatechange=function(b){e(b);'loading'!==document.readyState&&(document.onreadystatechange=e,c())}}}})();</script></body> </html>