CINXE.COM

Search results for: earth coordinate system

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: earth coordinate system</title> <meta name="description" content="Search results for: earth coordinate system"> <meta name="keywords" content="earth coordinate system"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="earth coordinate system" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="earth coordinate system"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 18493</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: earth coordinate system</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18493</span> The Problems of Current Earth Coordinate System for Earthquake Forecasting Using Single Layer Hierarchical Graph Neuron</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benny%20Benyamin%20Nasution">Benny Benyamin Nasution</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahmat%20Widia%20Sembiring"> Rahmat Widia Sembiring</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Rahman%20Dalimunthe"> Abdul Rahman Dalimunthe</a>, <a href="https://publications.waset.org/abstracts/search?q=Nursiah%20Mustari"> Nursiah Mustari</a>, <a href="https://publications.waset.org/abstracts/search?q=Nisfan%20Bahri"> Nisfan Bahri</a>, <a href="https://publications.waset.org/abstracts/search?q=Berta%20br%20Ginting"> Berta br Ginting</a>, <a href="https://publications.waset.org/abstracts/search?q=Riadil%20Akhir%20Lubis"> Riadil Akhir Lubis</a>, <a href="https://publications.waset.org/abstracts/search?q=Rita%20Tavip%20Megawati"> Rita Tavip Megawati</a>, <a href="https://publications.waset.org/abstracts/search?q=Indri%20Dithisari"> Indri Dithisari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The earth coordinate system is an important part of an attempt for earthquake forecasting, such as the one using Single Layer Hierarchical Graph Neuron (SLHGN). However, there are a number of problems that need to be worked out before the coordinate system can be utilized for the forecaster. One example of those is that SLHGN requires that the focused area of an earthquake must be constructed in a grid-like form. In fact, within the current earth coordinate system, the same longitude-difference would produce different distances. This can be observed at the distance on the Equator compared to distance at both poles. To deal with such a problem, a coordinate system has been developed, so that it can be used to support the ongoing earthquake forecasting using SLHGN. Two important issues have been developed in this system: 1) each location is not represented through two-value (longitude and latitude), but only a single value, 2) the conversion of the earth coordinate system to the x-y cartesian system requires no angular formulas, which is therefore fast. The accuracy and the performance have not been measured yet, since earthquake data is difficult to obtain. However, the characteristics of the SLHGN results show a very promising answer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20graph%20neuron" title="hierarchical graph neuron">hierarchical graph neuron</a>, <a href="https://publications.waset.org/abstracts/search?q=multidimensional%20hierarchical%20graph%20neuron" title=" multidimensional hierarchical graph neuron"> multidimensional hierarchical graph neuron</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20layer%20hierarchical%20graph%20neuron" title=" single layer hierarchical graph neuron"> single layer hierarchical graph neuron</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20disaster%20forecasting" title=" natural disaster forecasting"> natural disaster forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20forecasting" title=" earthquake forecasting"> earthquake forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=earth%20coordinate%20system" title=" earth coordinate system"> earth coordinate system</a> </p> <a href="https://publications.waset.org/abstracts/118471/the-problems-of-current-earth-coordinate-system-for-earthquake-forecasting-using-single-layer-hierarchical-graph-neuron" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18492</span> New Coordinate System for Countries with Big Territories</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Sabri%20Ali%20Akresh">Mohammed Sabri Ali Akresh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The modern technologies and developments in computer and Global Positioning System (GPS) as well as Geographic Information System (GIS) and total station TS. This paper presents a new proposal for coordinates system by a harmonic equations “United projections”, which have five projections (Mercator, Lambert, Russell, Lagrange, and compound of projection) in one zone coordinate system width 14 degrees, also it has one degree for overlap between zones, as well as two standards parallels for zone from 10 S to 45 S. Also this paper presents two cases; first case is to compare distances between a new coordinate system and UTM, second case creating local coordinate system for the city of Sydney to measure the distances directly from rectangular coordinates using projection of Mercator, Lambert and UTM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=harmonic%20equations" title="harmonic equations">harmonic equations</a>, <a href="https://publications.waset.org/abstracts/search?q=coordinate%20system" title=" coordinate system"> coordinate system</a>, <a href="https://publications.waset.org/abstracts/search?q=projections" title=" projections"> projections</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithms" title=" algorithms"> algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=parallels" title=" parallels"> parallels</a> </p> <a href="https://publications.waset.org/abstracts/6986/new-coordinate-system-for-countries-with-big-territories" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18491</span> Study on Accurate Calculation Method of Model Attidude on Wind Tunnel Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinjun%20Jiang">Jinjun Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lianzhong%20Chen"> Lianzhong Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Rui%20Xu"> Rui Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The accurate of model attitude angel plays an important role on the aerodynamic test results in the wind tunnel test. The original method applies the spherical coordinate system transformation to obtain attitude angel calculation.The model attitude angel is obtained by coordinate transformation and spherical surface mapping applying the nominal attitude angel (the balance attitude angel in the wind tunnel coordinate system) indicated by the mechanism. First, the coordinate transformation of this method is not only complex but also difficult to establish the transformed relationship between the space coordinate systems especially after many steps of coordinate transformation, moreover it cannot realize the iterative calculation of the interference relationship between attitude angels; Second, during the calculate process to solve the problem the arc is approximately used to replace the straight line, the angel for the tangent value, and the inverse trigonometric function is applied. Therefore, in the calculation of attitude angel, the process is complex and inaccurate, which can be solved approximately when calculating small attack angel. However, with the advancing development of modern aerodynamic unsteady research, the aircraft tends to develop high or super large attack angel and unsteadyresearch field.According to engineering practice and vector theory, the concept of vector angel coordinate systemis proposed for the first time, and the vector angel coordinate system of attitude angel is established.With the iterative correction calculation and avoiding the problem of approximate and inverse trigonometric function solution, the model attitude calculation process is carried out in detail, which validates that the calculation accuracy and accuracy of model attitude angels are improved.Based on engineering and theoretical methods, a vector angel coordinate systemis established for the first time, which gives the transformation and angel definition relations between different flight attitude coordinate systems, that can accurately calculate the attitude angel of the corresponding coordinate systemand determine its direction, especially in the channel coupling calculation, the calculation of the attitude angel between the coordinate systems is only related to the angel, and has nothing to do with the change order s of the coordinate system, whichsimplifies the calculation process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attitude%20angel" title="attitude angel">attitude angel</a>, <a href="https://publications.waset.org/abstracts/search?q=angel%20vector%20coordinate%20system" title=" angel vector coordinate system"> angel vector coordinate system</a>, <a href="https://publications.waset.org/abstracts/search?q=iterative%20calculation" title=" iterative calculation"> iterative calculation</a>, <a href="https://publications.waset.org/abstracts/search?q=spherical%20coordinate%20system" title=" spherical coordinate system"> spherical coordinate system</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel%20test" title=" wind tunnel test"> wind tunnel test</a> </p> <a href="https://publications.waset.org/abstracts/159541/study-on-accurate-calculation-method-of-model-attidude-on-wind-tunnel-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18490</span> Formex Algebra Adaptation into Parametric Design Tools: Dome Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R%C3%A9ka%20S%C3%A1rk%C3%B6zi">Réka Sárközi</a>, <a href="https://publications.waset.org/abstracts/search?q=P%C3%A9ter%20Iv%C3%A1nyi"> Péter Iványi</a>, <a href="https://publications.waset.org/abstracts/search?q=Attila%20B.%20Sz%C3%A9ll"> Attila B. Széll</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to present the adaptation of the dome construction tool for formex algebra to the parametric design software Grasshopper. Formex algebra is a mathematical system, primarily used for planning structural systems such like truss-grid domes and vaults, together with the programming language Formian. The goal of the research is to allow architects to plan truss-grid structures easily with parametric design tools based on the versatile formex algebra mathematical system. To produce regular structures, coordinate system transformations are used and the dome structures are defined in spherical coordinate system. Owing to the abilities of the parametric design software, it is possible to apply further modifications on the structures and gain special forms. The paper covers the basic dome types, and also additional dome-based structures using special coordinate-system solutions based on spherical coordinate systems. It also contains additional structural possibilities like making double layer grids in all geometry forms. The adaptation of formex algebra and the parametric workflow of Grasshopper together give the possibility of quick and easy design and optimization of special truss-grid domes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=parametric%20design" title="parametric design">parametric design</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20morphology" title=" structural morphology"> structural morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20structures" title=" space structures"> space structures</a>, <a href="https://publications.waset.org/abstracts/search?q=spherical%20coordinate%20system" title=" spherical coordinate system"> spherical coordinate system</a> </p> <a href="https://publications.waset.org/abstracts/82738/formex-algebra-adaptation-into-parametric-design-tools-dome-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18489</span> Unified Coordinate System Approach for Swarm Search Algorithms in Global Information Deficit Environments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rohit%20Dey">Rohit Dey</a>, <a href="https://publications.waset.org/abstracts/search?q=Sailendra%20Karra"> Sailendra Karra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims at solving the problem of multi-target searching in a Global Positioning System (GPS) denied environment using swarm robots with limited sensing and communication abilities. Typically, existing swarm-based search algorithms rely on the presence of a global coordinate system (vis-à-vis, GPS) that is shared by the entire swarm which, in turn, limits its application in a real-world scenario. This can be attributed to the fact that robots in a swarm need to share information among themselves regarding their location and signal from targets to decide their future course of action but this information is only meaningful when they all share the same coordinate frame. The paper addresses this very issue by eliminating any dependency of a search algorithm on the need of a predetermined global coordinate frame by the unification of the relative coordinate of individual robots when within the communication range, therefore, making the system more robust in real scenarios. Our algorithm assumes that all the robots in the swarm are equipped with range and bearing sensors and have limited sensing range and communication abilities. Initially, every robot maintains their relative coordinate frame and follow Levy walk random exploration until they come in range with other robots. When two or more robots are within communication range, they share sensor information and their location w.r.t. their coordinate frames based on which we unify their coordinate frames. Now they can share information about the areas that were already explored, information about the surroundings, and target signal from their location to make decisions about their future movement based on the search algorithm. During the process of exploration, there can be several small groups of robots having their own coordinate systems but eventually, it is expected for all the robots to be under one global coordinate frame where they can communicate information on the exploration area following swarm search techniques. Using the proposed method, swarm-based search algorithms can work in a real-world scenario without GPS and any initial information about the size and shape of the environment. Initial simulation results show that running our modified-Particle Swarm Optimization (PSO) without global information we can still achieve the desired results that are comparable to basic PSO working with GPS. In the full paper, we plan on doing the comparison study between different strategies to unify the coordinate system and to implement them on other bio-inspired algorithms, to work in GPS denied environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-inspired%20search%20algorithms" title="bio-inspired search algorithms">bio-inspired search algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=decentralized%20control" title=" decentralized control"> decentralized control</a>, <a href="https://publications.waset.org/abstracts/search?q=GPS%20denied%20environment" title=" GPS denied environment"> GPS denied environment</a>, <a href="https://publications.waset.org/abstracts/search?q=swarm%20robotics" title=" swarm robotics"> swarm robotics</a>, <a href="https://publications.waset.org/abstracts/search?q=target%20searching" title=" target searching"> target searching</a>, <a href="https://publications.waset.org/abstracts/search?q=unifying%20coordinate%20systems" title=" unifying coordinate systems"> unifying coordinate systems</a> </p> <a href="https://publications.waset.org/abstracts/128283/unified-coordinate-system-approach-for-swarm-search-algorithms-in-global-information-deficit-environments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18488</span> Periodic Change in the Earth’s Rotation Velocity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sung%20Duk%20Kim">Sung Duk Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwan%20U.%20Kim"> Kwan U. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Sim"> Jin Sim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryong%20Jin%20Jang"> Ryong Jin Jang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The phenomenon of seasonal variations in the Earth’s rotation velocity was discovered in the 1930s when a crystal clock was developed and analyzed in a quantitative way for the first time between 1955 and 1968 when observation data of the seasonal variations was analyzed by an atomic clock. According to the previous investigation, atmospheric circulation is supposed to be a factor affecting the seasonal variations in the Earth’s rotation velocity in many cases, but the problem has not been solved yet. In order to solve the problem, it is necessary to apply dynamics to consider the Earth’s spatial motion, rotation, and change of shape of the Earth (movement of materials in and out of the Earth and change of the Earth’s figure) at the same time and in interrelation to the accuracy of post-Newtonian approximation regarding the Earth body as a system of mass points because the stability of the Earth’s rotation angular velocity is in the range of 10⁻⁸~10⁻⁹. For it, the equation was derived, which can consider the 3 kinds of motion above mentioned at the same time by taking the effect of the resultant external force on the Earth’s rotation into account in a relativistic way to the accuracy of post-Newtonian approximation. Therefore, the equation has been solved to obtain the theoretical values of periodic change in the Earth’s rotation velocity, and they have been compared with the astronomical observation data so to reveal the cause for the periodic change in the Earth’s rotation velocity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Earth%20rotation" title="Earth rotation">Earth rotation</a>, <a href="https://publications.waset.org/abstracts/search?q=moment%20function" title=" moment function"> moment function</a>, <a href="https://publications.waset.org/abstracts/search?q=periodic%20change" title=" periodic change"> periodic change</a>, <a href="https://publications.waset.org/abstracts/search?q=seasonal%20variation" title=" seasonal variation"> seasonal variation</a>, <a href="https://publications.waset.org/abstracts/search?q=relativistic%20change" title=" relativistic change"> relativistic change</a> </p> <a href="https://publications.waset.org/abstracts/182897/periodic-change-in-the-earths-rotation-velocity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182897.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18487</span> Separation of Rare-Earth Metals from E-Wastes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gulsara%20%20Akanova">Gulsara Akanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Akmaral%20Ismailova"> Akmaral Ismailova</a>, <a href="https://publications.waset.org/abstracts/search?q=Duisek%20Kamysbayev"> Duisek Kamysbayev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The separation of rare earth metals (REM) from a neodymium magnet has been widely studied in the last year. The waste of computer hard disk contains 25.41 % neodymium, 64.09 % iron, and <<1 % boron. To further the separation of rare-earth metals, the magnet dissolved in open and closed systems with nitric acid. In the closed system, the magnet was dissolved in a microwave sample preparation system at different temperatures and pressures and the dissolution process lasted 1 hour. In the open system, the acid dissolution of the magnet was conducted at room temperature and the process lasted 30-40 minutes. To remove the iron in the magnet, oxalic acid was used and precipitated as oxalates under both conditions. For separation of rare earth metals (Nd, Pr and Dy) from magnet waste is used sorption method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dissolution%20of%20the%20magnet" title="dissolution of the magnet">dissolution of the magnet</a>, <a href="https://publications.waset.org/abstracts/search?q=Neodymium%20magnet" title=" Neodymium magnet"> Neodymium magnet</a>, <a href="https://publications.waset.org/abstracts/search?q=rare%20earth%20metals" title=" rare earth metals"> rare earth metals</a>, <a href="https://publications.waset.org/abstracts/search?q=separation" title=" separation"> separation</a>, <a href="https://publications.waset.org/abstracts/search?q=Sorption" title=" Sorption"> Sorption</a> </p> <a href="https://publications.waset.org/abstracts/138763/separation-of-rare-earth-metals-from-e-wastes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138763.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18486</span> A Coordinate-Based Heuristic Route Search Algorithm for Delivery Truck Routing Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Tarek">Ahmed Tarek</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Alveed"> Ahmed Alveed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vehicle routing problem is a well-known re-search avenue in computing. Modern vehicle routing is more focused with the GPS-based coordinate system, as the state-of-the-art vehicle, and trucking systems are equipped with digital navigation. In this paper, a new two dimensional coordinate-based algorithm for addressing the vehicle routing problem for a supply chain network is proposed and explored, and the algorithm is compared with other available, and recently devised heuristics. For the algorithms discussed, which includes the pro-posed coordinate-based search heuristic as well, the advantages and the disadvantages associated with the heuristics are explored. The proposed algorithm is studied from the stand point of a small supermarket chain delivery network that supplies to its stores in four different states around the East Coast area, and is trying to optimize its trucking delivery cost. Minimizing the delivery cost for the supply network of a supermarket chain is important to ensure its business success. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coordinate-based%20optimal%20routing" title="coordinate-based optimal routing">coordinate-based optimal routing</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamiltonian%20Circuit" title=" Hamiltonian Circuit"> Hamiltonian Circuit</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristic%20algorithm" title=" heuristic algorithm"> heuristic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=traveling%20salesman%20problem" title=" traveling salesman problem"> traveling salesman problem</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20routing%20problem" title=" vehicle routing problem"> vehicle routing problem</a> </p> <a href="https://publications.waset.org/abstracts/136218/a-coordinate-based-heuristic-route-search-algorithm-for-delivery-truck-routing-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18485</span> Influence of Replacement used Reference Coordinate System for Georeferencing of the Old Map of Europe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jakub%20Havlicek">Jakub Havlicek</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiri%20Cajthaml"> Jiri Cajthaml</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article describes the effect of the replacement of the used reference coordinate system in the georeferencing of an old map of Europe. In particular, it was the map entitled “Europe, the Map of Rivers and Mountains on a 1 : 12 000 000 Scale”, elaborated by professor D. Cipera and Dr. J. Metelka for Otto’s Geographic Atlas of 1924. The work was most likely produced using the equal-area conic (Albers) projection. The map was georeferenced into three types of projection – the equal-area conic, cylindrical Plate Carrée and cylindrical Mercator map projection. The map was georeferenced by means of the affine and the second-order polynomial transformation. The resulting georeferenced raster datasets from the Plate Carrée and Mercator projection were projected into the equal-area conic projection by means of projection equations. The output is the comparison of drawn graphics, the magnitude of standard deviations for individual projections and types of transformation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=georeferencing" title="georeferencing">georeferencing</a>, <a href="https://publications.waset.org/abstracts/search?q=reference%20coordinate%20system" title=" reference coordinate system"> reference coordinate system</a>, <a href="https://publications.waset.org/abstracts/search?q=transformation" title=" transformation"> transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=standard%20deviation" title=" standard deviation"> standard deviation</a> </p> <a href="https://publications.waset.org/abstracts/27471/influence-of-replacement-used-reference-coordinate-system-for-georeferencing-of-the-old-map-of-europe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18484</span> Main Factor That Causes the Instabilities of the Earth’s Rotation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jin-Sim">Jin-Sim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwan-U%20Kim"> Kwan-U Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryong-Jin%20Jang"> Ryong-Jin Jang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung-Duk%20Kim"> Sung-Duk Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earth rotation is one of astronomical phenomena without which it is impossible to think of human life. That is why the investigation of the Earth's rotation is very important, and it has a long history of study. The invention of quartz clocks in the 1930s, atomic time in the 1950s, and the introduction of modern technology into astronomic observation in recent years resulted in rapid development of the study of Earth’s rotation. The theory of the Earth's rotation, however, has not been up to the high level of astronomic observation due to the limitation of time. As a typical example, we can take the problems that cover the instabilities of the Earth’s rotation, proved completely by the astronomic observations as well as polar motion, the precession and nutation of the Earth's rotation axis, which have not been described in a single equation in a quantificational way from the unique law of Earth rotation. In particular, at present the problem of what is the main factor causing the instabilities of the Earth rotation has not been solved clearly in quantificational ways yet. Therefore, this paper gives quantificational proof that the main factor that causes the instabilities of the Earth's rotation is the moment of external force other than variations in the relative atmospheric angular momentum due to the time limitation and under some assumptions or the moment of inertia of the Earth’s body. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20angular%20momentum" title="atmospheric angular momentum">atmospheric angular momentum</a>, <a href="https://publications.waset.org/abstracts/search?q=instabilities%20of%20the%20earth%E2%80%99s%20rotation" title=" instabilities of the earth’s rotation"> instabilities of the earth’s rotation</a>, <a href="https://publications.waset.org/abstracts/search?q=law%20of%20the%20earth%E2%80%99s%20rotation%20change" title=" law of the earth’s rotation change"> law of the earth’s rotation change</a>, <a href="https://publications.waset.org/abstracts/search?q=moment%20of%20inertia%20of%20the%20earth" title=" moment of inertia of the earth"> moment of inertia of the earth</a> </p> <a href="https://publications.waset.org/abstracts/182768/main-factor-that-causes-the-instabilities-of-the-earths-rotation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182768.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18483</span> Iris Detection on RGB Image for Controlling Side Mirror</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Norzalina%20Othman">Norzalina Othman</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurul%20Na%E2%80%99imy%20Wan"> Nurul Na’imy Wan</a>, <a href="https://publications.waset.org/abstracts/search?q=Azliza%20Mohd%20Rusli"> Azliza Mohd Rusli</a>, <a href="https://publications.waset.org/abstracts/search?q=Wan%20Noor%20Syahirah%20Meor%20Idris"> Wan Noor Syahirah Meor Idris</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Iris detection is a process where the position of the eyes is extracted from the face images. It is a current method used for many applications such as for security purpose and drowsiness detection. This paper proposes the use of eyes detection in controlling side mirror of motor vehicles. The eyes detection method aims to make driver easy to adjust the side mirrors automatically. The system will determine the midpoint coordinate of eyes detection on RGB (color) image and the input signal from y-coordinate will send it to controller in order to rotate the angle of side mirror on vehicle. The eye position was cropped and the coordinate of midpoint was successfully detected from the circle of iris detection using Viola Jones detection and circular Hough transform methods on RGB image. The coordinate of midpoint from the experiment are tested using controller to determine the angle of rotation on the side mirrors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=iris%20detection" title="iris detection">iris detection</a>, <a href="https://publications.waset.org/abstracts/search?q=midpoint%20coordinates" title=" midpoint coordinates"> midpoint coordinates</a>, <a href="https://publications.waset.org/abstracts/search?q=RGB%20images" title=" RGB images"> RGB images</a>, <a href="https://publications.waset.org/abstracts/search?q=side%20mirror" title=" side mirror"> side mirror</a> </p> <a href="https://publications.waset.org/abstracts/8133/iris-detection-on-rgb-image-for-controlling-side-mirror" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18482</span> Postbuckling Analysis of End Supported Rods under Self-Weight Using Intrinsic Coordinate Finite Elements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Juntarasaid">C. Juntarasaid</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Pulngern"> T. Pulngern</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chucheepsakul"> S. Chucheepsakul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A formulation of postbuckling analysis of end supported rods under self-weight has been presented by the variational method. The variational formulation involving the strain energy due to bending and the potential energy of the self-weight, are expressed in terms of the intrinsic coordinates. The variational formulation is accomplished by introducing the Lagrange multiplier technique to impose the boundary conditions. The finite element method is used to derive a system of nonlinear equations resulting from the stationary of the total potential energy and then Newton-Raphson iterative procedure is applied to solve this system of equations. The numerical results demonstrate the postbluckled configurations of end supported rods under self-weight. This finite element method based on variational formulation expressed in term of intrinsic coordinate is highly recommended for postbuckling analysis of end-supported rods under self-weight. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=postbuckling" title="postbuckling">postbuckling</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=variational%20method" title=" variational method"> variational method</a>, <a href="https://publications.waset.org/abstracts/search?q=intrinsic%20coordinate" title=" intrinsic coordinate"> intrinsic coordinate</a> </p> <a href="https://publications.waset.org/abstracts/112297/postbuckling-analysis-of-end-supported-rods-under-self-weight-using-intrinsic-coordinate-finite-elements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18481</span> Effect of Integrity of the Earthing System on the Rise of Earth Potential</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Ullah">N. Ullah</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Haddad"> A. Haddad</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Van%20Der%20Linde"> F. Van Der Linde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the effects of breaks in bonds, breaks in the earthing system and breaks in earth wire on the rise of the earth potential (EPR) in a substation and at the transmission tower bases using various models of an L6 tower. Different approaches were adopted to examine the integrity of the earthing system and the terminal towers. These effects were investigated to see the associated difference in the EPR magnitudes with respect to a healthy system at various locations. Comparisons of the computed EPR magnitudes were then made between the healthy and unhealthy system to detect any difference. The studies were conducted at power frequency for a uniform soil with different soil resistivities. It was found that full breaks in the double bond of the terminal towers increase the EPR significantly at the fault location, while they reduce EPR at the terminal tower bases. A fault on the isolated section of the grid can result in EPR values up to 8 times of those on a healthy system at higher soil resistivities, provided that the extended earthing system stays connected to the grid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bonding" title="bonding">bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=earthing" title=" earthing"> earthing</a>, <a href="https://publications.waset.org/abstracts/search?q=EPR" title=" EPR"> EPR</a>, <a href="https://publications.waset.org/abstracts/search?q=integrity" title=" integrity"> integrity</a>, <a href="https://publications.waset.org/abstracts/search?q=system" title=" system"> system</a> </p> <a href="https://publications.waset.org/abstracts/43049/effect-of-integrity-of-the-earthing-system-on-the-rise-of-earth-potential" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43049.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18480</span> A Study on Finite Element Modelling of Earth Retaining Wall Anchored by Deadman Anchor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20S.%20Chai">K. S. Chai</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Chan"> S. H. Chan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the earth retaining wall anchored by discrete deadman anchor to support excavations in sand is modelled and analysed by finite element analysis. A study is conducted to examine how deadman anchorage system helps in reducing the deflection of earth retaining wall. A simplified numerical model is suggested in order to reduce the simulation duration. A comparison between 3-D and 2-D finite element analyses is illustrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title="finite element">finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=earth%20retaining%20wall" title=" earth retaining wall"> earth retaining wall</a>, <a href="https://publications.waset.org/abstracts/search?q=deadman%20anchor" title=" deadman anchor"> deadman anchor</a>, <a href="https://publications.waset.org/abstracts/search?q=sand" title=" sand"> sand</a> </p> <a href="https://publications.waset.org/abstracts/8554/a-study-on-finite-element-modelling-of-earth-retaining-wall-anchored-by-deadman-anchor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8554.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18479</span> On the Main Factor That Causes the Instabilities of the Earth Rotation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jin%20Sim">Jin Sim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwan%20U.%20Kim"> Kwan U. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryong%20Jin%20Jang"> Ryong Jin Jang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung%20Duk%20Kim"> Sung Duk Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earth rotation is one of astronomical phenomena without which it is impossible to think of human life. That is why the investigation of the Earth's rotation is very important, and it has a long history of study. The invention of quartz clocks in the 1930s and atomic time 1950s and the introduction of modern technology into astronomic observation in recent years resulted in rapid development of the study of Earth’s rotation. The theory of the Earth rotation, however, has not been up to the high level of astronomic observation due to limitation of the time such as impossibility of quantitative calculation of moment of external force for Euler’s dynamical equation based on Newtonian mechanics. As a typical example, we can take the problems that cover the instabilities of the Earth’s rotation proved completely by the astronomic observations as well as polar motion, the precession and nutation of the Earth rotation axis which have not been described in a single equation in a quantitative way from the unique law of Earth rotation. In particular, at present the problem of what the main factor causing the instabilities of the Earth rotation is has not been solved clearly in quantitative ways yet. Therefore, this paper addresses quantitative proof that the main factor which causes the instabilities of the Earth rotation is the moment of external force rather than variations in the relative atmospheric angular momentum and in moment of inertia of the Earth’s body due to the time limitation and under some assumptions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20angular%20momentum" title="atmospheric angular momentum">atmospheric angular momentum</a>, <a href="https://publications.waset.org/abstracts/search?q=instabilities%20of%20the%20Earth%E2%80%99s%20rotation" title=" instabilities of the Earth’s rotation"> instabilities of the Earth’s rotation</a>, <a href="https://publications.waset.org/abstracts/search?q=law%20of%20the%20Earth%E2%80%99s%20rotation%20change" title=" law of the Earth’s rotation change"> law of the Earth’s rotation change</a>, <a href="https://publications.waset.org/abstracts/search?q=moment%20of%20%20%20%20inertia%20of%20the%20Earth" title=" moment of inertia of the Earth"> moment of inertia of the Earth</a> </p> <a href="https://publications.waset.org/abstracts/192592/on-the-main-factor-that-causes-the-instabilities-of-the-earth-rotation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">18</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18478</span> First Earth Size</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20M.%20Metwally">Ibrahim M. Metwally</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Have you ever thought that earth was not the same earth we live on? Was it bigger or smaller? Was it a great continent surrounded by huge ocean as Alfred Wegener (1912) claimed? Earth is the most amazing planet in our Milky Way galaxy and may be in the universe. It is the only deformed planet that has a variable orbit around the sun and the only planet that has water on its surface. How did earth deformation take place? What does cause earth to deform? What are the results of earth deformation? How does its orbit around the sun change? First earth size computation can be achieved only considering the quantum of iron and nickel rested into earth core. This paper introduces a new theory “Earth expansion Theory”. The principles of “Earth Expansion Theory” are leading to new approaches and concepts to interpret whole earth dynamics and its geological and environmental changes. This theory is not an attempt to unify the two divergent dominant theories of continental drift, plate tectonic theory and earth expansion theory. The new theory is unique since it has a mathematical derivation, explains all the change to and around earth in terms of geological and environmental changes, and answers all unanswered questions in other theories. This paper presents the basic of the introduced theory and discusses the mechanism of earth expansion and how it took place, the forces that made the expansion. The mechanisms of earth size change from its spherical shape with radius about 3447.6 km to an elliptic shape of major radius about 6378.1 km and minor radius of about 6356.8 km and how it took place, are introduced and discussed. This article also introduces, in a more realistic explanation the formation of oceans and seas, the preparation of river formation. It also addresses the role of iron in earth size enlargement process within the continuum mechanics framework. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earth%20size" title="earth size">earth size</a>, <a href="https://publications.waset.org/abstracts/search?q=earth%20expansion" title=" earth expansion"> earth expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=continuum%20mechanics" title=" continuum mechanics"> continuum mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=continental%20and%20ocean%20formation" title=" continental and ocean formation"> continental and ocean formation</a> </p> <a href="https://publications.waset.org/abstracts/26111/first-earth-size" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26111.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18477</span> Rigorous Photogrammetric Push-Broom Sensor Modeling for Lunar and Planetary Image Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Elaksher">Ahmed Elaksher</a>, <a href="https://publications.waset.org/abstracts/search?q=Islam%20Omar"> Islam Omar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accurate geometric relation algorithms are imperative in Earth and planetary satellite and aerial image processing, particularly for high-resolution images that are used for topographic mapping. Most of these satellites carry push-broom sensors. These sensors are optical scanners equipped with linear arrays of CCDs. These sensors have been deployed on most EOSs. In addition, the LROC is equipped with two push NACs that provide 0.5 meter-scale panchromatic images over a 5 km swath of the Moon. The HiRISE carried by the MRO and the HRSC carried by MEX are examples of push-broom sensor that produces images of the surface of Mars. Sensor models developed in photogrammetry relate image space coordinates in two or more images with the 3D coordinates of ground features. Rigorous sensor models use the actual interior orientation parameters and exterior orientation parameters of the camera, unlike approximate models. In this research, we generate a generic push-broom sensor model to process imageries acquired through linear array cameras and investigate its performance, advantages, and disadvantages in generating topographic models for the Earth, Mars, and the Moon. We also compare and contrast the utilization, effectiveness, and applicability of available photogrammetric techniques and softcopies with the developed model. We start by defining an image reference coordinate system to unify image coordinates from all three arrays. The transformation from an image coordinate system to a reference coordinate system involves a translation and three rotations. For any image point within the linear array, its image reference coordinates, the coordinates of the exposure center of the array in the ground coordinate system at the imaging epoch (t), and the corresponding ground point coordinates are related through the collinearity condition that states that all these three points must be on the same line. The rotation angles for each CCD array at the epoch t are defined and included in the transformation model. The exterior orientation parameters of an image line, i.e., coordinates of exposure station and rotation angles, are computed by a polynomial interpolation function in time (t). The parameter (t) is the time at a certain epoch from a certain orbit position. Depending on the types of observations, coordinates, and parameters may be treated as knowns or unknowns differently in various situations. The unknown coefficients are determined in a bundle adjustment. The orientation process starts by extracting the sensor position and, orientation and raw images from the PDS. The parameters of each image line are then estimated and imported into the push-broom sensor model. We also define tie points between image pairs to aid the bundle adjustment model, determine the refined camera parameters, and generate highly accurate topographic maps. The model was tested on different satellite images such as IKONOS, QuickBird, and WorldView-2, HiRISE. It was found that the accuracy of our model is comparable to those of commercial and open-source software, the computational efficiency of the developed model is high, the model could be used in different environments with various sensors, and the implementation process is much more cost-and effort-consuming. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photogrammetry" title="photogrammetry">photogrammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=push-broom%20sensors" title=" push-broom sensors"> push-broom sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=IKONOS" title=" IKONOS"> IKONOS</a>, <a href="https://publications.waset.org/abstracts/search?q=HiRISE" title=" HiRISE"> HiRISE</a>, <a href="https://publications.waset.org/abstracts/search?q=collinearity%20condition" title=" collinearity condition"> collinearity condition</a> </p> <a href="https://publications.waset.org/abstracts/171850/rigorous-photogrammetric-push-broom-sensor-modeling-for-lunar-and-planetary-image-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171850.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18476</span> Crater Pattern on the Moon and Origin of the Moon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xuguang%20Leng">Xuguang Leng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The crater pattern on the Moon indicates the Moon was captured by Earth in the more recent years, disproves the theory that the Moon was born as a satellite to the Earth. The Moon was tidal locked since it became the satellite of the Earth. Moon’s near side is shielded by Earth from asteroid/comet collisions, with the center of the near side most protected. Yet the crater pattern on the Moon is fairly random, with no distinguishable empty spot/strip, no distinguishable difference near side vs. far side. Were the Moon born as Earth’s satellite, there would be a clear crater free spot, or strip should the tial lock shifts over time, on the near side; and far more craters on the far side. The nonexistence of even a vague crater free spot on the near side of the Moon indicates the capture was a more recent event. Given Earth’s much larger mass and sphere size over the Moon, Earth should have collided with asteroids and comets in much higher frequency, resulting in significant mass gain over the lifespan. Earth’s larger mass and magnetic field are better at retaining water and gas from solar wind’s stripping effect, thus accelerating the mass gain. A dwarf planet Moon can be pulled closer and closer to the Earth over time as Earth’s gravity grows stronger, eventually being captured as a satellite. Given enough time, it is possible Earth’s mass would be large enough to cause the Moon to collide with Earth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=moon" title="moon">moon</a>, <a href="https://publications.waset.org/abstracts/search?q=origin" title=" origin"> origin</a>, <a href="https://publications.waset.org/abstracts/search?q=crater" title=" crater"> crater</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern" title=" pattern"> pattern</a> </p> <a href="https://publications.waset.org/abstracts/149225/crater-pattern-on-the-moon-and-origin-of-the-moon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18475</span> Hygrothermal Properties of Raw Earth Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ichrak%20Hamrouni">Ichrak Hamrouni</a>, <a href="https://publications.waset.org/abstracts/search?q=Tariq%20Ouahbi"> Tariq Ouahbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalija%20Lhuissier"> Natalija Lhuissier</a>, <a href="https://publications.waset.org/abstracts/search?q=Sa%C3%AFd%20Taibi"> Saïd Taibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehrez%20Jemai"> Mehrez Jemai</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivier%20Crumeyrolle"> Olivier Crumeyrolle</a>, <a href="https://publications.waset.org/abstracts/search?q=Hatem%20Zenzri"> Hatem Zenzri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Raw earth is the oldest building technique used for over 11 centuries, thanks to its various benefits. The most known raw earth construction technics are compressed earth blocks, rammed earth, raw earth concrete, and daub. The raw earth can be stabilized with hydraulic binders, mixed by fibers, or hyper-compacted in order to improve its mechanical behaviour. Moreover, raw earth is characterized by a low thermal conductivity what make it a good thermal insulator, and it has a very important capacity to condense and evaporate relative humidity. In this context, many researches have been developed. They have shown that the mechanical characteristics of earth materials increase with the hyper-compaction and adding fibers or hydraulic binders. Besides, other researches have been determined the thermal and hygroscopic properties of raw earth. They have shown that this material able to contribute to moisture and heat control in constructions. Its hygrothermal properties are better than fired earth bricks and concrete. The aim of this study is to evaluate the thermal and hygrometric behavior of raw earth material using experimental tests allows to determine the main Hygrothermal properties such as the water Vapour permeability and thermal conductivity and compare the results with those of other building materials such as fired clay bricks and cement concrete is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=raw%20earth%20material" title="raw earth material">raw earth material</a>, <a href="https://publications.waset.org/abstracts/search?q=hygro-thermal" title=" hygro-thermal"> hygro-thermal</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20vapour%20permeability" title=" water vapour permeability"> water vapour permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20materials" title=" building materials"> building materials</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20materials" title=" building materials"> building materials</a> </p> <a href="https://publications.waset.org/abstracts/143371/hygrothermal-properties-of-raw-earth-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18474</span> Hawking Radiation of Grumiller Black </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sherwan%20Kher%20Alden%20Yakub%20Alsofy">Sherwan Kher Alden Yakub Alsofy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we consider the relativistic Hamilton-Jacobi (HJ) equation and study the Hawking radiation (HR) of scalar particles from uncharged Grumiller black hole (GBH) which is affordable for testing in astrophysics. GBH is also known as Rindler modified Schwarzschild BH. Our aim is not only to investigate the effect of the Rindler parameter A on the Hawking temperature (TH ), but to examine whether there is any discrepancy between the computed horizon temperature and the standard TH as well. For this purpose, in addition to its naive coordinate system, we study on the three regular coordinate systems which are Painlev´-Gullstrand (PG), ingoing Eddington- Finkelstein (IEF) and Kruskal-Szekeres (KS) coordinates. In all coordinate systems, we calculate the tunneling probabilities of incoming and outgoing scalar particles from the event horizon by using the HJ equation. It has been shown in detail that the considered HJ method is concluded with the conventional TH in all these coordinate systems without giving rise to the famous factor- 2 problem. Furthermore, in the PG coordinates Parikh-Wilczek’s tunneling (PWT) method is employed in order to show how one can integrate the quantum gravity (QG) corrections to the semiclassical tunneling rate by including the effects of self-gravitation and back reaction. We then show how these corrections yield a modification in the TH. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ingoing%20Eddington" title="ingoing Eddington">ingoing Eddington</a>, <a href="https://publications.waset.org/abstracts/search?q=Finkelstein" title=" Finkelstein"> Finkelstein</a>, <a href="https://publications.waset.org/abstracts/search?q=coordinates%20Parikh-Wilczek%E2%80%99s" title=" coordinates Parikh-Wilczek’s"> coordinates Parikh-Wilczek’s</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamilton-Jacobi%20equation" title=" Hamilton-Jacobi equation"> Hamilton-Jacobi equation</a> </p> <a href="https://publications.waset.org/abstracts/20508/hawking-radiation-of-grumiller-black" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">615</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18473</span> Analysis of Three-Dimensional Cracks in an Isotropic Medium by the Semi-Analytical Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdoulnabi%20Tavangari">Abdoulnabi Tavangari</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasim%20Salehzadeh"> Nasim Salehzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We presume a cylindrical medium that is under a uniform loading and there is a penny shaped crack located in the center of cylinder. In the crack growth analysis, the Stress Intensity Factor (SIF) is a fundamental prerequisite. In the present study, according to the RITZ method and by considering a cylindrical coordinate system as the main coordinate and a local polar coordinate, the mode-I SIF of threedimensional penny-shaped crack is obtained. In this method the unknown coefficients will be obtained with minimizing the potential energy that is including the strain energy and the external force work. By using the hook's law, stress fields will be obtained and then by using the Irvine equations, the amount of SIF will be obtained near the edge of the crack. This question has been solved for extreme medium in the Tada handbook and the result of the present research has been compared with that. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=three-dimensional%20cracks" title="three-dimensional cracks">three-dimensional cracks</a>, <a href="https://publications.waset.org/abstracts/search?q=penny-shaped%20crack" title=" penny-shaped crack"> penny-shaped crack</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20intensity%20factor" title=" stress intensity factor"> stress intensity factor</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20mechanics" title=" fracture mechanics"> fracture mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=Ritz%20method" title=" Ritz method"> Ritz method</a> </p> <a href="https://publications.waset.org/abstracts/29894/analysis-of-three-dimensional-cracks-in-an-isotropic-medium-by-the-semi-analytical-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29894.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18472</span> Religion: The Human Entropy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abul%20Kayum%20Zarzis%20Alam">Abul Kayum Zarzis Alam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Death is not a terminal; it is just a junction. From Agamas to Vedas, from Buddhism to Judaism, all the major scriptures and religions of the world always do converge to this hypothesis of death. Death is the ultimate catastrophe of life and it is the genesis of every religion on this Earth. Several hundred thousand years ago, the Homo Sapiens in Paleolithic age introduced the notion of religion on this Earth in its most primitive form just to escape from death and natural catastrophes through their belief in supernatural things which created the sense of superstition among the Homo Sapiens which has only increased over time. This sense of superstition and belief in supernatural things are building blocks of religion. Religion is like entropy, a degree of disorder. Entropy for an irreversible system like our own Universe always increases. Same is happening to our human civilization where the disorder had been increasing over time. The degree of this disorder of human civilization is religion divides and conquers over the human civilization of Earth. Religion is the human entropy which had been governing and will govern us. Just like entropy, religion is also an essential intrinsic property of the system which makes the system evolved. We have to optimize this ambivalence of the human entropy to make our civilization an inclusive and sustainable one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=death" title="death">death</a>, <a href="https://publications.waset.org/abstracts/search?q=earth" title=" earth"> earth</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy" title=" entropy"> entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=Homo%20sapiens" title=" Homo sapiens"> Homo sapiens</a>, <a href="https://publications.waset.org/abstracts/search?q=religion%20and%20human%20entropy" title=" religion and human entropy"> religion and human entropy</a> </p> <a href="https://publications.waset.org/abstracts/88127/religion-the-human-entropy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18471</span> Tectonic Movements and Ecosystems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Kumar%20Trivedi">Arvind Kumar Trivedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our Earth is dynamic in nature and its structure behaves like a puzzle because the interior of the Earth is in both gaseous as well as molten (liquid) form and the crust i.e. the outermost surface is in solid form. This Earth was one landmass known as ‘Pangaea’ in the beginning. With time due to complex phenomena of tectonic movements, it was broken into various landmasses along with water bodies. This Pangaea was in direct contact with the atmosphere playing dominant role in creating various ecosystems on the Earth. Ecosystems mean: Eco (environment body) and systems (interdependent complex of all the organisms interacting with each other). This paper provides an in-depth discussion on tectonic movements as well as ecosystems & how these two affect each other and in the end, we will enlist various methods on how to preserve our ‘Mother Earth’. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tectonic%20movements" title="tectonic movements">tectonic movements</a>, <a href="https://publications.waset.org/abstracts/search?q=ecosystems" title=" ecosystems"> ecosystems</a>, <a href="https://publications.waset.org/abstracts/search?q=plate%20tectonics" title=" plate tectonics"> plate tectonics</a>, <a href="https://publications.waset.org/abstracts/search?q=impact" title=" impact"> impact</a> </p> <a href="https://publications.waset.org/abstracts/186089/tectonic-movements-and-ecosystems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186089.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">48</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18470</span> Overtopping Protection Systems for Overflow Earth Dams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omid%20Pourabdollah">Omid Pourabdollah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Misaghian"> Mohsen Misaghian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Overtopping is known as one the most important reasons for the failure of earth dams. In some cases, it has resulted in heavy damages and losses. Therefore, enhancing the safety of earth dams against overtopping has received much attention in the past four decades. In this paper, at first, the overtopping phenomena and its destructive consequences will be introduced. Then, overtopping failure mechanism of embankments will be described. Finally, different types of protection systems for stabilization of earth dams against overtopping will be presented. These include timber cribs, riprap and gabions, reinforced earth, roller compacted concrete, and the precast concrete blocks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=embankment%20dam" title="embankment dam">embankment dam</a>, <a href="https://publications.waset.org/abstracts/search?q=overtopping" title=" overtopping"> overtopping</a>, <a href="https://publications.waset.org/abstracts/search?q=roller%20compacted%20concrete" title=" roller compacted concrete"> roller compacted concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=wedge%20concrete%20block" title=" wedge concrete block"> wedge concrete block</a> </p> <a href="https://publications.waset.org/abstracts/109537/overtopping-protection-systems-for-overflow-earth-dams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18469</span> Single Pole-To-Earth Fault Detection and Location on the Tehran Railway System Using ICA and PSO Trained Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Safarishaal">Masoud Safarishaal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Detecting the location of pole-to-earth faults is essential for the safe operation of the electrical system of the railroad. This paper aims to use a combination of evolutionary algorithms and neural networks to increase the accuracy of single pole-to-earth fault detection and location on the Tehran railroad power supply system. As a result, the Imperialist Competitive Algorithm (ICA) and Particle Swarm Optimization (PSO) are used to train the neural network to improve the accuracy and convergence of the learning process. Due to the system's nonlinearity, fault detection is an ideal application for the proposed method, where the 600 Hz harmonic ripple method is used in this paper for fault detection. The substations were simulated by considering various situations in feeding the circuit, the transformer, and typical Tehran metro parameters that have developed the silicon rectifier. Required data for the network learning process has been gathered from simulation results. The 600Hz component value will change with the change of the location of a single pole to the earth's fault. Therefore, 600Hz components are used as inputs of the neural network when fault location is the output of the network system. The simulation results show that the proposed methods can accurately predict the fault location. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single%20pole-to-pole%20fault" title="single pole-to-pole fault">single pole-to-pole fault</a>, <a href="https://publications.waset.org/abstracts/search?q=Tehran%20railway" title=" Tehran railway"> Tehran railway</a>, <a href="https://publications.waset.org/abstracts/search?q=ICA" title=" ICA"> ICA</a>, <a href="https://publications.waset.org/abstracts/search?q=PSO" title=" PSO"> PSO</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title=" artificial neural network"> artificial neural network</a> </p> <a href="https://publications.waset.org/abstracts/155706/single-pole-to-earth-fault-detection-and-location-on-the-tehran-railway-system-using-ica-and-pso-trained-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155706.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18468</span> Effectiveness of Earthing System in Vertical Configurations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Yunus">S. Yunus</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Suratman"> A. Suratman</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Mohamad%20Nor"> N. Mohamad Nor</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Othman"> M. Othman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the measurement and simulation results by Finite Element Method (FEM) for earth resistance (R<sub>DC</sub>) for interconnected vertical ground rod configurations. The soil resistivity was measured using the Wenner four-pin Method, and R<sub>DC </sub>was measured using the Fall of Potential (FOP) method, as outlined in the standard. Genetic Algorithm (GA) is employed to interpret the soil resistivity to that of a 2-layer soil model. The same soil resistivity data that were obtained by Wenner four-pin method were used in FEM for simulation. This paper compares the results of R<sub>DC</sub> obtained by FEM simulation with the real measurement at field site. A good agreement was seen for R<sub>DC </sub>obtained by measurements and FEM. This shows that FEM is a reliable software to be used for design of earthing systems. It is also found that the parallel rod system has a better performance compared to a similar setup using a grid layout. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthing%20system" title="earthing system">earthing system</a>, <a href="https://publications.waset.org/abstracts/search?q=earth%20electrodes" title=" earth electrodes"> earth electrodes</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=earth%20resistances" title=" earth resistances"> earth resistances</a> </p> <a href="https://publications.waset.org/abstracts/128846/effectiveness-of-earthing-system-in-vertical-configurations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18467</span> Evaluate the Possibility of Using ArcGIS Basemaps as GCP for Large Scale Maps</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jali%20Octariady">Jali Octariady</a>, <a href="https://publications.waset.org/abstracts/search?q=Ida%20Herliningsih"> Ida Herliningsih</a>, <a href="https://publications.waset.org/abstracts/search?q=Ade%20K.%20Mulyana"> Ade K. Mulyana</a>, <a href="https://publications.waset.org/abstracts/search?q=Annisa%20Fitria"> Annisa Fitria</a>, <a href="https://publications.waset.org/abstracts/search?q=Diaz%20C.%20K.%20Yuwana"> Diaz C. K. Yuwana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Awareness of the importance large-scale maps for development of a country is growing in all walks of life, especially for governments in Indonesia. Various parties, especially local governments throughout Indonesia demanded for immediate availability the large-scale maps of 1:5000 for regional development. But in fact, the large-scale maps of 1:5000 is only available less than 5% of the entire territory of Indonesia. Unavailability precise GCP at the entire territory of Indonesia is one of causes of slow availability the large scale maps of 1:5000. This research was conducted to find an alternative solution to this problem. This study was conducted to assess the accuracy of ArcGIS base maps coordinate when it shall be used as GCP for creating a map scale of 1:5000. The study was conducted by comparing the GCP coordinate from Field survey using GPS Geodetic than the coordinate from ArcGIS basemaps in various locations in Indonesia. Some areas are used as a study area are Lombok Island, Kupang City, Surabaya City and Kediri District. The differences value of the coordinates serve as the basis for assessing the accuracy of ArcGIS basemaps coordinates. The results of the study at various study area show the variation of the amount of the coordinates value given. Differences coordinate value in the range of millimeters (mm) to meters (m) in the entire study area. This is shown the inconsistency quality of ArcGIS base maps coordinates. This inconsistency shows that the coordinate value from ArcGIS Basemaps is careless. The Careless coordinate from ArcGIS Basemaps indicates that its cannot be used as GCP for large-scale mapping on the entire territory of Indonesia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accuracy" title="accuracy">accuracy</a>, <a href="https://publications.waset.org/abstracts/search?q=ArcGIS%20base%20maps" title=" ArcGIS base maps"> ArcGIS base maps</a>, <a href="https://publications.waset.org/abstracts/search?q=GCP" title=" GCP"> GCP</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20scale%20maps" title=" large scale maps"> large scale maps</a> </p> <a href="https://publications.waset.org/abstracts/66927/evaluate-the-possibility-of-using-arcgis-basemaps-as-gcp-for-large-scale-maps" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18466</span> The Evaluation of Gravity Anomalies Based on Global Models by Land Gravity Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Yilmaz">M. Yilmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Yilmaz"> I. Yilmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Uysal"> M. Uysal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Earth system generates different phenomena that are observable at the surface of the Earth such as mass deformations and displacements leading to plate tectonics, earthquakes, and volcanism. The dynamic processes associated with the interior, surface, and atmosphere of the Earth affect the three pillars of geodesy: shape of the Earth, its gravity field, and its rotation. Geodesy establishes a characteristic structure in order to define, monitor, and predict of the whole Earth system. The traditional and new instruments, observables, and techniques in geodesy are related to the gravity field. Therefore, the geodesy monitors the gravity field and its temporal variability in order to transform the geodetic observations made on the physical surface of the Earth into the geometrical surface in which positions are mathematically defined. In this paper, the main components of the gravity field modeling, (Free-air and Bouguer) gravity anomalies are calculated via recent global models (EGM2008, EIGEN6C4, and GECO) over a selected study area. The model-based gravity anomalies are compared with the corresponding terrestrial gravity data in terms of standard deviation (SD) and root mean square error (RMSE) for determining the best fit global model in the study area at a regional scale in Turkey. The least SD (13.63 mGal) and RMSE (15.71 mGal) were obtained by EGM2008 for the Free-air gravity anomaly residuals. For the Bouguer gravity anomaly residuals, EIGEN6C4 provides the least SD (8.05 mGal) and RMSE (8.12 mGal). The results indicated that EIGEN6C4 can be a useful tool for modeling the gravity field of the Earth over the study area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=free-air%20gravity%20anomaly" title="free-air gravity anomaly">free-air gravity anomaly</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouguer%20gravity%20anomaly" title=" Bouguer gravity anomaly"> Bouguer gravity anomaly</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20model" title=" global model"> global model</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20gravity" title=" land gravity"> land gravity</a> </p> <a href="https://publications.waset.org/abstracts/97149/the-evaluation-of-gravity-anomalies-based-on-global-models-by-land-gravity-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18465</span> Dilation Effect on 3D Passive Earth Pressure Coefficients for Retaining Wall </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khelifa%20Tarek">Khelifa Tarek</a>, <a href="https://publications.waset.org/abstracts/search?q=Benmebarek%20Sadok"> Benmebarek Sadok</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The 2D passive earth pressures acting on rigid retaining walls problem has been widely treated in the literature using different approaches (limit equilibrium, limit analysis, slip line and numerical computation), however, the 3D passive earth pressures problem has received less attention. This paper is concerned with the numerical study of 3D passive earth pressures induced by the translation of a rigid rough retaining wall for associated and non-associated soils. Using the explicit finite difference code FLAC3D, the increase of the passive earth pressures due to the decrease of the wall breadth is investigated. The results given by the present numerical analysis are compared with other investigation. The influence of the angle of dilation on the coefficients is also studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title="numerical modeling">numerical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=FLAC3D" title=" FLAC3D"> FLAC3D</a>, <a href="https://publications.waset.org/abstracts/search?q=retaining%20wall" title=" retaining wall"> retaining wall</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20earth%20pressures" title=" passive earth pressures"> passive earth pressures</a>, <a href="https://publications.waset.org/abstracts/search?q=angle%20of%20dilation" title=" angle of dilation"> angle of dilation</a> </p> <a href="https://publications.waset.org/abstracts/33167/dilation-effect-on-3d-passive-earth-pressure-coefficients-for-retaining-wall" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18464</span> A Comparison between Modelled and Actual Thermal Performance of Load Bearing Rammed Earth Walls in Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Hafez">H. Hafez</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mekkawy"> A. Mekkawy</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Rostom"> R. Rostom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Around 10% of the world’s CO₂ emissions could be attributed to the operational energy of buildings; that is why more research is directed towards the use of rammed earth walls which is claimed to have enhanced thermal properties compared to conventional building materials. The objective of this paper is to outline how the thermal performance of rammed earth walls compares to conventional reinforced concrete skeleton and red brick in-fill walls. For this sake, the indoor temperature and relative humidity of a classroom built with rammed earth walls and a vaulted red brick roof in the area of Behbeit, Giza, Egypt were measured hourly over 6 months using smart sensors. These parameters for the rammed earth walls were later also compared against the values obtained using a 'DesignBuilder v5' model to verify the model assumptions. The thermal insulation of rammed earth walls was found to be 30% better than this of the redbrick infill, and the recorded data were found to be almost 90% similar to the modelled values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rammed%20earth" title="rammed earth">rammed earth</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20insulation" title=" thermal insulation"> thermal insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20air%20quality" title=" indoor air quality"> indoor air quality</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20builder" title=" design builder"> design builder</a> </p> <a href="https://publications.waset.org/abstracts/99687/a-comparison-between-modelled-and-actual-thermal-performance-of-load-bearing-rammed-earth-walls-in-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=earth%20coordinate%20system&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=earth%20coordinate%20system&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=earth%20coordinate%20system&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=earth%20coordinate%20system&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=earth%20coordinate%20system&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=earth%20coordinate%20system&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=earth%20coordinate%20system&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=earth%20coordinate%20system&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=earth%20coordinate%20system&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=earth%20coordinate%20system&amp;page=616">616</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=earth%20coordinate%20system&amp;page=617">617</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=earth%20coordinate%20system&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10