CINXE.COM

Search results for: fluid

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: fluid</title> <meta name="description" content="Search results for: fluid"> <meta name="keywords" content="fluid"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="fluid" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="fluid"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2169</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: fluid</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2169</span> Numerical Simulation of Fluid Structure Interaction Using Two-Way Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samira%20Laidaoui">Samira Laidaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Djermane"> Mohammed Djermane</a>, <a href="https://publications.waset.org/abstracts/search?q=Nazihe%20Terfaya"> Nazihe Terfaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fluid-structure coupling is a natural phenomenon which reflects the effects of two continuums: fluid and structure of different types in the reciprocal action on each other, involving knowledge of elasticity and fluid mechanics. The solution for such problems is based on the relations of continuum mechanics and is mostly solved with numerical methods. It is a computational challenge to solve such problems because of the complex geometries, intricate physics of fluids, and complicated fluid-structure interactions. The way in which the interaction between fluid and solid is described gives the largest opportunity for reducing the computational effort. In this paper, a problem of fluid structure interaction is investigated with two-way coupling method. The formulation Arbitrary Lagrangian-Eulerian (ALE) was used, by considering a dynamic grid, where the solid is described by a Lagrangian formulation and the fluid by a Eulerian formulation. The simulation was made on the ANSYS software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ALE" title="ALE">ALE</a>, <a href="https://publications.waset.org/abstracts/search?q=coupling" title=" coupling"> coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid-structure" title=" fluid-structure"> fluid-structure</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction" title=" interaction"> interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=one-way%20method" title=" one-way method"> one-way method</a>, <a href="https://publications.waset.org/abstracts/search?q=two-way%20method" title=" two-way method"> two-way method</a> </p> <a href="https://publications.waset.org/abstracts/36752/numerical-simulation-of-fluid-structure-interaction-using-two-way-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36752.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">678</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2168</span> Herschel-Bulkley Fluid Flow through Narrow Tubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Santhosh%20Nallapu">Santhosh Nallapu</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Radhakrishnamacharya"> G. Radhakrishnamacharya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A two-fluid model of Herschel-Bulkley fluid flow through tubes of small diameters is studied. It is assumed that the core region consists of Herschel-Bulkley fluid and Newtonian fluid in the peripheral region. The analytical solutions for velocity, flow flux, effective viscosity, core hematocrit and mean hematocrit have been derived and the effects of various relevant parameters on these flow variables have been studied. It has been observed that the effective viscosity and mean hematocrit increase with yield stress, power-law index, hematocrit and tube radius. Further, the core hematocrit decreases with hematocrit and tube radius. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=two-layered%20model" title="two-layered model">two-layered model</a>, <a href="https://publications.waset.org/abstracts/search?q=non-Newtonian%20fluid" title=" non-Newtonian fluid"> non-Newtonian fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=hematocrit" title=" hematocrit"> hematocrit</a>, <a href="https://publications.waset.org/abstracts/search?q=Fahraeus-Lindqvist%20effect" title=" Fahraeus-Lindqvist effect"> Fahraeus-Lindqvist effect</a>, <a href="https://publications.waset.org/abstracts/search?q=plug%20flow" title=" plug flow"> plug flow</a> </p> <a href="https://publications.waset.org/abstracts/18820/herschel-bulkley-fluid-flow-through-narrow-tubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2167</span> Soret-Driven Convection in a Binary Fluid with Coriolis Force</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20H.%20Z.%20Abidin">N. H. Z. Abidin</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20F.%20M.%20Mokhtar"> N. F. M. Mokhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20A.%20Gani"> S. S. A. Gani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of diffusion of the thermal or known as Soret effect in a heated Binary fluid model with Coriolis force is investigated theoretically. The linear stability analysis is used, and the eigenvalue is obtained using the Galerkin method. The impact of the Soret and Coriolis force on the onset of stationary convection in a system is analysed with respect to various Binary fluid parameters and presented graphically. It is found that an increase of the Soret values, destabilize the Binary fluid layer system. However, elevating the values of the Coriolis force helps to lag the onset of convection in a system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benard%20convection" title="Benard convection">Benard convection</a>, <a href="https://publications.waset.org/abstracts/search?q=binary%20fluid" title=" binary fluid"> binary fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=Coriolis" title=" Coriolis"> Coriolis</a>, <a href="https://publications.waset.org/abstracts/search?q=Soret" title=" Soret "> Soret </a> </p> <a href="https://publications.waset.org/abstracts/68076/soret-driven-convection-in-a-binary-fluid-with-coriolis-force" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68076.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2166</span> Introduction of the Fluid-Structure Coupling into the Force Analysis Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oc%C3%A9ane%20Grosset">Océane Grosset</a>, <a href="https://publications.waset.org/abstracts/search?q=Charles%20P%C3%A9zerat"> Charles Pézerat</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Hugh%20Thomas"> Jean-Hugh Thomas</a>, <a href="https://publications.waset.org/abstracts/search?q=Fr%C3%A9d%C3%A9ric%20Ablitzer"> Frédéric Ablitzer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a method to take into account the fluid-structure coupling into an inverse method, the Force Analysis Technique (FAT). The FAT method, also called RIFF method (Filtered Windowed Inverse Resolution), allows to identify the force distribution from local vibration field. In order to only identify the external force applied on a structure, it is necessary to quantify the fluid-structure coupling, especially in naval application, where the fluid is heavy. This method can be decomposed in two parts, the first one consists in identifying the fluid-structure coupling and the second one to introduced it in the FAT method to reconstruct the external force. Results of simulations on a plate coupled with a cavity filled with water are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aeroacoustics" title="aeroacoustics">aeroacoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid-structure%20coupling" title=" fluid-structure coupling"> fluid-structure coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20methods" title=" inverse methods"> inverse methods</a>, <a href="https://publications.waset.org/abstracts/search?q=naval" title=" naval"> naval</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20flow" title=" turbulent flow"> turbulent flow</a> </p> <a href="https://publications.waset.org/abstracts/58380/introduction-of-the-fluid-structure-coupling-into-the-force-analysis-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58380.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2165</span> Exploring Unexplored Horizons: Advanced Fluid Mechanics Solutions for Sustainable Energy Technologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elvira%20S.%20Castillo">Elvira S. Castillo</a>, <a href="https://publications.waset.org/abstracts/search?q=Surupa%20Shaw"> Surupa Shaw</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper explores advanced applications of fluid mechanics in the context of sustainable energy. By examining the integration of fluid dynamics with renewable energy technologies, the research uncovers previously underutilized strategies for improving efficiency. Through theoretical analyses, the study demonstrates how fluid mechanics can be harnessed to optimize renewable energy systems. The findings contribute to expanding knowledge in sustainable energy by offering practical insights and methodologies for future research and technological advancements to address global energy challenges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluid%20mechanics" title="fluid mechanics">fluid mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20energy" title=" sustainable energy"> sustainable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20energy" title=" green energy"> green energy</a> </p> <a href="https://publications.waset.org/abstracts/185372/exploring-unexplored-horizons-advanced-fluid-mechanics-solutions-for-sustainable-energy-technologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">50</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2164</span> Vibration Analysis of Pendulum in a Viscous Fluid by Analytical Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arash%20Jafari">Arash Jafari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Taghaddosi"> Mehdi Taghaddosi</a>, <a href="https://publications.waset.org/abstracts/search?q=Azin%20Parvin"> Azin Parvin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a vibrational differential equation governing on swinging single-degree-of-freedom pendulum in a viscous fluid has been investigated. The damping process is characterized according to two different regimes: at first, damping in stationary viscous fluid, in the second, damping in flowing viscous fluid with constant velocity. Our purpose is to enhance the ability of solving the mentioned nonlinear differential equation with a simple and innovative approach. Comparisons are made between new method and Numerical Method (rkf45). The results show that this method is very effective and simple and can be applied for other nonlinear problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oscillating%20systems" title="oscillating systems">oscillating systems</a>, <a href="https://publications.waset.org/abstracts/search?q=angular%20frequency%20and%20damping%20ratio" title=" angular frequency and damping ratio"> angular frequency and damping ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=pendulum%20at%20fluid" title=" pendulum at fluid"> pendulum at fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=locus%20of%20maximum" title=" locus of maximum"> locus of maximum</a> </p> <a href="https://publications.waset.org/abstracts/58354/vibration-analysis-of-pendulum-in-a-viscous-fluid-by-analytical-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2163</span> Spillage Prediction Using Fluid-Structure Interaction Simulation with Coupled Eulerian-Lagrangian Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Soni">Ravi Soni</a>, <a href="https://publications.waset.org/abstracts/search?q=Irfan%20Pathan"> Irfan Pathan</a>, <a href="https://publications.waset.org/abstracts/search?q=Manish%20Pande"> Manish Pande</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current product development process needs simultaneous consideration of different physics. The performance of the product needs to be considered under both structural and fluid loads. Examples include ducts and valves where structural behavior affects fluid motion and vice versa. Simulation of fluid-structure interaction involves modeling interaction between moving components and the fluid flow. In these scenarios, it is difficult to calculate the damping provided by fluid flow because of dynamic motions of components and the transient nature of the flow. Abaqus Explicit offers general capabilities for modeling fluid-structure interaction with the Coupled Eulerian-Lagrangian (CEL) method. The Coupled Eulerian-Lagrangian technique has been used to simulate fluid spillage through fuel valves during dynamic closure events. The technique to simulate pressure drops across Eulerian domains has been developed using stagnation pressure. Also, the fluid flow is calculated considering material flow through elements at the outlet section of the valves. The methodology has been verified on Eaton products and shows a good correlation with the test results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Coupled%20Eulerian-Lagrangian%20Technique" title="Coupled Eulerian-Lagrangian Technique">Coupled Eulerian-Lagrangian Technique</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20structure%20interaction" title=" fluid structure interaction"> fluid structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=spillage%20prediction" title=" spillage prediction"> spillage prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=stagnation%20pressure" title=" stagnation pressure"> stagnation pressure</a> </p> <a href="https://publications.waset.org/abstracts/56823/spillage-prediction-using-fluid-structure-interaction-simulation-with-coupled-eulerian-lagrangian-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2162</span> Magnetohydrodynamic Couette Flow of Fractional Burger’s Fluid in an Annulus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sani%20Isa">Sani Isa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Musa"> Ali Musa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Burgers’ fluid with a fractional derivatives model in an annulus was analyzed. Combining appropriately the basic equations, with the fractionalized fractional Burger’s fluid model allow us to determine the velocity field, temperature and shear stress. The governing partial differential equation was solved using the combine Laplace transformation method and Riemann sum approximation to give velocity field, temperature and shear stress on the fluid flow. The influence of various parameters like fractional parameters, relaxation time and retardation time, are drawn. The results obtained are simulated using Mathcad software and presented graphically. From the graphical results, we observed that the relaxation time and time helps the flow pattern, on the other hand, other material constants resist the fluid flow while fractional parameters effect on fluid flow is opposite to each other. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sani%20isa" title="sani isa">sani isa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20musaburger%E2%80%99s%20fluid" title=" Ali musaburger’s fluid"> Ali musaburger’s fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=Laplace%20transform" title=" Laplace transform"> Laplace transform</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20derivatives" title=" fractional derivatives"> fractional derivatives</a>, <a href="https://publications.waset.org/abstracts/search?q=annulus" title=" annulus"> annulus</a> </p> <a href="https://publications.waset.org/abstracts/190150/magnetohydrodynamic-couette-flow-of-fractional-burgers-fluid-in-an-annulus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190150.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">24</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2161</span> Numerical Investigation of Pressure and Velocity Field Contours of Dynamics of Drop Formation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pardeep%20Bishnoi">Pardeep Bishnoi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mayank%20Srivastava"> Mayank Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Mrityunjay%20Kumar%20Sinha"> Mrityunjay Kumar Sinha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article represents the numerical investigation of the pressure and velocity field variation of the dynamics of pendant drop formation through a capillary tube. Numerical simulations are executed using volume of fluid (VOF) method in the computational fluid dynamics (CFD). In this problem, Non Newtonian fluid is considered as dispersed fluid whereas air is considered as a continuous fluid. Pressure contours at various time steps expose that pressure varies nearly hydrostatically at each step of the dynamics of drop formation. A result also shows the pressure variation of the liquid droplet during free fall in the computational domain. The evacuation of the fluid from the necking region is also shown by the contour of the velocity field. The role of surface tension in the Pressure contour of the dynamics of drop formation is also studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pressure%20contour" title="pressure contour">pressure contour</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20tension" title=" surface tension"> surface tension</a>, <a href="https://publications.waset.org/abstracts/search?q=volume%20of%20fluid" title=" volume of fluid"> volume of fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20field" title=" velocity field"> velocity field</a> </p> <a href="https://publications.waset.org/abstracts/56670/numerical-investigation-of-pressure-and-velocity-field-contours-of-dynamics-of-drop-formation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2160</span> Computational Fluid Dynamics Simulation and Comparison of Flow through Mechanical Heart Valve Using Newtonian and Non-Newtonian Fluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20%C5%A0ediv%C3%BD">D. Šedivý</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Fialov%C3%A1"> S. Fialová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main purpose of this study is to show differences between the numerical solution of the flow through the artificial heart valve using Newtonian or non-Newtonian fluid. The simulation was carried out by a commercial computational fluid dynamics (CFD) package based on finite-volume method. An aortic bileaflet heart valve (Sorin Bicarbon) was used as a pattern for model of real heart valve replacement. Computed tomography (CT) was used to gain the accurate parameters of the valve. Data from CT were transferred in the commercial 3D designer, where the model for CFD was made. Carreau rheology model was applied as non-Newtonian fluid. Physiological data of cardiac cycle were used as boundary conditions. Outputs were taken the leaflets excursion from opening to closure and the fluid dynamics through the valve. This study also includes experimental measurement of pressure fields in ambience of valve for verification numerical outputs. Results put in evidence a favorable comparison between the computational solutions of flow through the mechanical heart valve using Newtonian and non-Newtonian fluid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20modeling" title="computational modeling">computational modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20mesh" title=" dynamic mesh"> dynamic mesh</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20heart%20valve" title=" mechanical heart valve"> mechanical heart valve</a>, <a href="https://publications.waset.org/abstracts/search?q=non-Newtonian%20fluid" title=" non-Newtonian fluid"> non-Newtonian fluid</a> </p> <a href="https://publications.waset.org/abstracts/70433/computational-fluid-dynamics-simulation-and-comparison-of-flow-through-mechanical-heart-valve-using-newtonian-and-non-newtonian-fluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2159</span> Estimation of Damping Force of Double Ended Shear Mode Magnetorheological Damper Using Computational Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gurubasavaraju%20T.%20M.">Gurubasavaraju T. M.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The magnetorheological (MR) damper could provide variable damping force with respect to the different input magnetic field. The damping force could be estimated through computational analysis using finite element and computational fluid dynamics analysis. The double-ended damper operates without changing the total volume of fluid. In this paper, damping force of double ended damper under different magnetic field is computed. Initially, the magneto-statics analysis carried out to evaluate the magnetic flux density across the fluid flow gap. The respective change in the rheology of the MR fluid is computed by using the experimentally fitted polynomial equation of shear stress versus magnetic field plot of MR fluid. The obtained values are substituted in the Herschel Buckley model to express the non-Newtonian behavior of MR fluid. Later, using computational fluid dynamic (CFD) analysis damping characteristics in terms of force versus velocity and force versus displacement for the respective magnetic field is estimated. The purpose of the present approach is to characterize the preliminary designed MR damper before fabricating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MR%20fluid" title="MR fluid">MR fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20ended%20MR%20damper" title=" double ended MR damper"> double ended MR damper</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=FEA" title=" FEA "> FEA </a> </p> <a href="https://publications.waset.org/abstracts/98450/estimation-of-damping-force-of-double-ended-shear-mode-magnetorheological-damper-using-computational-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98450.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2158</span> Comparison Analysis of CFD Turbulence Fluid Numerical Study for Quick Coupling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=JoonHo%20Lee">JoonHo Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=KyoJin%20An"> KyoJin An</a>, <a href="https://publications.waset.org/abstracts/search?q=JunSu%20Kim"> JunSu Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Young-Chul%20Park"> Young-Chul Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the fluid flow characteristics and performance numerical study through CFD model of the Non-split quick coupling for flow control in hydraulic system equipment for the aerospace business group focused to predict. In this study, we considered turbulence models for the application of Computational Fluid Dynamics for the CFD model of the Non-split Quick Coupling for aerospace business. In addition to this, the adequacy of the CFD model were verified by comparing with standard value. Based on this analysis, accurate the fluid flow characteristics can be predicted. It is, therefore, the design of the fluid flow characteristic contribute the reliability for the Quick Coupling which is required in industries on the basis of research results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=quick%20coupling" title=" quick coupling"> quick coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence" title=" turbulence"> turbulence</a> </p> <a href="https://publications.waset.org/abstracts/31538/comparison-analysis-of-cfd-turbulence-fluid-numerical-study-for-quick-coupling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2157</span> Coupling Concept of Two Parallel Research Codes for Two and Three Dimensional Fluid Structure Interaction Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luciano%20Garelli">Luciano Garelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Marco%20Schauer"> Marco Schauer</a>, <a href="https://publications.waset.org/abstracts/search?q=Jorge%20D%E2%80%99Elia"> Jorge D’Elia</a>, <a href="https://publications.waset.org/abstracts/search?q=Mario%20A.%20Storti"> Mario A. Storti</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabine%20C.%20Langer"> Sabine C. Langer </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discuss a coupling strategy of two different software packages to provide fluid structure interaction (FSI) analysis. The basic idea is to combine the advantages of the two codes to create a powerful FSI solver for two and three dimensional analysis. The fluid part is computed by a program called PETSc-FEM, a software developed at Centro de Investigación de Métodos Computacionales (CIMEC). The structural part of the coupled process is computed by the research code elementary Parallel Solver (elPaSo) of the Technische Universität Braunschweig, Institut für Konstruktionstechnik (IK). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics%20%28CFD%29" title="computational fluid dynamics (CFD)">computational fluid dynamics (CFD)</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20structure%20interaction%20%28FSI%29" title=" fluid structure interaction (FSI)"> fluid structure interaction (FSI)</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method%20%28FEM%29" title=" finite element method (FEM)"> finite element method (FEM)</a>, <a href="https://publications.waset.org/abstracts/search?q=software" title=" software"> software</a> </p> <a href="https://publications.waset.org/abstracts/8546/coupling-concept-of-two-parallel-research-codes-for-two-and-three-dimensional-fluid-structure-interaction-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">553</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2156</span> Seasonal Heat Stress Effect on Cholesterol, Estradiol and Progesterone during Follicular Development in Egyptian Buffalo</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Heba%20F.%20Hozyen">Heba F. Hozyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Hodallah%20H.%20Ahmed"> Hodallah H. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20I.%20A.%20Shalaby"> S. I. A. Shalaby</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20E.%20S.%20Essawy"> G. E. S. Essawy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biochemical and hormonal changes that occur in both follicular fluid and blood are involved in the control of ovarian physiology. The present study was conducted on follicular fluid and serum samples obtained from 708 buffaloes. Samples were examined for estradiol, progesterone, and cholesterol concentrations in relation to seasonal changes, ovarian follicular size, and stage of estrous cycle. The obtained results revealed that follicular fluid and serum levels of estradiol, progesterone, and cholesterol were significantly lower during summer and autumn when compared to winter and spring seasons. With the increase in follicular size, the follicular fluid levels of progesterone and cholesterol were significantly decreased, while estradiol levels were significantly increased. Estradiol and progesterone levels were significantly higher in follicular fluid than blood, while cholesterol was significantly lower in follicular fluid than serum. In conclusion, the current study threw a light on the hormonal changes in the follicular fluid and blood under the effect of heat stress which could be related to the low fertility of buffalo in the summer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buffalo" title="buffalo">buffalo</a>, <a href="https://publications.waset.org/abstracts/search?q=follicular%20fluid" title=" follicular fluid"> follicular fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=folliculogenesis" title=" folliculogenesis"> folliculogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=seasonal%20changes" title=" seasonal changes"> seasonal changes</a>, <a href="https://publications.waset.org/abstracts/search?q=steroids" title=" steroids"> steroids</a> </p> <a href="https://publications.waset.org/abstracts/37224/seasonal-heat-stress-effect-on-cholesterol-estradiol-and-progesterone-during-follicular-development-in-egyptian-buffalo" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">510</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2155</span> Hydrodynamic Analysis with Heat Transfer in Solid Gas Fluidized Bed Reactor for Solar Thermal Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sam%20Rasoulzadeh">Sam Rasoulzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Atefeh%20Mousavi"> Atefeh Mousavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fluidized bed reactors are known as highly exothermic and endothermic according to uniformity in temperature as a safe and effective mean for catalytic reactors. In these reactors, a wide range of catalyst particles can be used and by using a continuous operation proceed to produce in succession. Providing optimal conditions for the operation of these types of reactors will prevent the exorbitant costs necessary to carry out laboratory work. In this regard, a hydrodynamic analysis was carried out with heat transfer in the solid-gas fluidized bed reactor for solar thermal applications. The results showed that in the fluid flow the input of the reactor has a lower temperature than the outlet, and when the fluid is passing from the reactor, the heat transfer happens between cylinder and solar panel and fluid. It increases the fluid temperature in the outlet pump and also the kinetic energy of the fluid has been raised in the outlet areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20reactor" title=" solar reactor"> solar reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=fluidized%20bed%20reactor" title=" fluidized bed reactor"> fluidized bed reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a> </p> <a href="https://publications.waset.org/abstracts/100498/hydrodynamic-analysis-with-heat-transfer-in-solid-gas-fluidized-bed-reactor-for-solar-thermal-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2154</span> Effect of Channel Variation of Two-Dimensional Water Tunnel to Study Fluid Dynamics Phenomenon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rizka%20Yunita">Rizka Yunita</a>, <a href="https://publications.waset.org/abstracts/search?q=Mas%20Aji%20Rizki%20Wijayanto"> Mas Aji Rizki Wijayanto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Computational fluid dynamics (CFD) is the solution to explain how fluid dynamics behavior. In this work, we obtain the effect of channel width of two-dimensional fluid visualization. Using a horizontal water tunnel and flowing soap film, we got a visualization of continuous film that can be observe a graphical overview of the flow that occurs on a space or field in which the fluid flow. The horizontal water tunnel we used, divided into three parts, expansion area, parallel area that used to test the data, and contraction area. The width of channel is the boundary of parallel area with the originally width of 7.2 cm, and the variation of channel width we observed is about 1 cm and its times. To compute the velocity, vortex shedding, and other physical parameters of fluid, we used the cyclinder circular as an obstacle to create a von Karman vortex in fluid and analyzed that phenomenon by using Particle Imaging Velocimetry (PIV) method and comparing Reynolds number and Strouhal number from the visualization we got. More than width the channel, the film is more turbulent and have a separation zones that occurs of uncontinuous flowing fluid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flow%20visualization" title="flow visualization">flow visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=width%20of%20channel" title=" width of channel"> width of channel</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex" title=" vortex"> vortex</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20number" title=" Reynolds number"> Reynolds number</a>, <a href="https://publications.waset.org/abstracts/search?q=Strouhal%20number" title=" Strouhal number"> Strouhal number</a> </p> <a href="https://publications.waset.org/abstracts/22435/effect-of-channel-variation-of-two-dimensional-water-tunnel-to-study-fluid-dynamics-phenomenon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2153</span> On the Strong Solutions of the Nonlinear Viscous Rotating Stratified Fluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Giniatoulline">A. Giniatoulline</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A nonlinear model of the mathematical fluid dynamics which describes the motion of an incompressible viscous rotating fluid in a homogeneous gravitational field is considered. The model is a generalization of the known Navier-Stokes system with the addition of the Coriolis parameter and the equations for changeable density. An explicit algorithm for the solution is constructed, and the proof of the existence and uniqueness theorems for the strong solution of the nonlinear problem is given. For the linear case, the localization and the structure of the spectrum of inner waves are also investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Galerkin%20method" title="Galerkin method">Galerkin method</a>, <a href="https://publications.waset.org/abstracts/search?q=Navier-Stokes%20equations" title=" Navier-Stokes equations"> Navier-Stokes equations</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20partial%20differential%20equations" title=" nonlinear partial differential equations"> nonlinear partial differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=Sobolev%20spaces" title=" Sobolev spaces"> Sobolev spaces</a>, <a href="https://publications.waset.org/abstracts/search?q=stratified%20fluid" title=" stratified fluid"> stratified fluid</a> </p> <a href="https://publications.waset.org/abstracts/52024/on-the-strong-solutions-of-the-nonlinear-viscous-rotating-stratified-fluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2152</span> Mathematical Properties of the Viscous Rotating Stratified Fluid Counting with Salinity and Heat Transfer in a Layer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Giniatoulline">A. Giniatoulline</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A model of the mathematical fluid dynamics which describes the motion of a three-dimensional viscous rotating fluid in a homogeneous gravitational field with the consideration of the salinity and heat transfer is considered in a vertical finite layer. The model is a generalization of the linearized Navier-Stokes system with the addition of the Coriolis parameter and the equations for changeable density, salinity, and heat transfer. An explicit solution is constructed and the proof of the existence and uniqueness theorems is given. The localization and the structure of the spectrum of inner waves is also investigated. The results may be used, in particular, for constructing stable numerical algorithms for solutions of the considered models of fluid dynamics of the Atmosphere and the Ocean. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fourier%20transform" title="Fourier transform">Fourier transform</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20solutions" title=" generalized solutions"> generalized solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=Navier-Stokes%20equations" title=" Navier-Stokes equations"> Navier-Stokes equations</a>, <a href="https://publications.waset.org/abstracts/search?q=stratified%20fluid" title=" stratified fluid"> stratified fluid</a> </p> <a href="https://publications.waset.org/abstracts/75712/mathematical-properties-of-the-viscous-rotating-stratified-fluid-counting-with-salinity-and-heat-transfer-in-a-layer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75712.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2151</span> Entropy Generation of Unsteady Reactive Hydromagnetic Generalized Couette Fluid Flow of a Two-Step Exothermic Chemical Reaction Through a Channel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rasaq%20Kareem">Rasaq Kareem</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacob%20Gbadeyan"> Jacob Gbadeyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, analysis of the entropy generation of an unsteady reactive hydromagnetic generalized couette fluid flow of a two-step exothermic chemical reaction through a channel with isothermal wall temperature under the influence of different chemical kinetics namely: Sensitized, Arrhenius and Bimolecular kinetics was investigated. The modelled nonlinear dimensionless equations governing the fluid flow were simplified and solved using the combined Laplace Differential Transform Method (LDTM). The effects of fluid parameters associated with the problem on the fluid temperature, entropy generation rate and Bejan number were discussed and presented through graphs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=couette" title="couette">couette</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy" title=" entropy"> entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=exothermic" title=" exothermic"> exothermic</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteady" title=" unsteady"> unsteady</a> </p> <a href="https://publications.waset.org/abstracts/26394/entropy-generation-of-unsteady-reactive-hydromagnetic-generalized-couette-fluid-flow-of-a-two-step-exothermic-chemical-reaction-through-a-channel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26394.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2150</span> Magnetohydrodynamic (MHD) Effects on Micropolar-Newtonian Fluid Flow through a Composite Porous Channel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Satya%20Deo">Satya Deo</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepak%20Kumar%20Maurya"> Deepak Kumar Maurya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study investigates the ow of a Newtonian fluid sandwiched between two rectangular porous channels filled with micropolar fluid in the presence of a uniform magnetic field applied in a direction perpendicular to that of the fluid motion. The governing equations of micropolar fluid are modified by Nowacki's approach. For respective porous channels, expressions for velocity vectors, microrotations, stresses (shear and couple) are obtained analytically. Continuity of velocities, continuities of micro rotations and continuity of stresses are used at the porous interfaces; conditions of no-slip and no spin are applied at the impervious boundaries of the composite channel. Numerical values of flow rate, wall shear stresses and couple stresses at the porous interfaces are calculated for different values of various parameters. Graphs of the ow rate and fluid velocity are plotted and their behaviors are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=couple%20stress" title="couple stress">couple stress</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20rate" title=" flow rate"> flow rate</a>, <a href="https://publications.waset.org/abstracts/search?q=Hartmann%20number" title=" Hartmann number"> Hartmann number</a>, <a href="https://publications.waset.org/abstracts/search?q=micropolar%20fluids" title=" micropolar fluids"> micropolar fluids</a> </p> <a href="https://publications.waset.org/abstracts/130440/magnetohydrodynamic-mhd-effects-on-micropolar-newtonian-fluid-flow-through-a-composite-porous-channel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130440.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2149</span> Numerical Study of Sloshing in a Flexible Tank</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wissem%20Tighidet">Wissem Tighidet</a>, <a href="https://publications.waset.org/abstracts/search?q=Fa%C3%AF%C3%A7al%20Na%C3%AFt%20Bouda"> Faïçal Naït Bouda</a>, <a href="https://publications.waset.org/abstracts/search?q=Moussa%20Allouche"> Moussa Allouche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The numerical study of the Fluid-Structure Interaction (FSI) in a partially filled flexible tank submitted to a horizontal harmonic excitation motion. It is investigated by using two-way Fluid-Structure Interaction (FSI) in a flexible tank by Coupling between the Transient Structural (Mechanical) and Fluid Flow (Fluent) in ANSYS-Workbench Student version. The Arbitrary Lagrangian-Eulerian (ALE) formulation is adopted to solve with the finite volume method, the Navier-Stokes equations in two phases in a moving domain. The Volume of Fluid (VOF) method is applied to track the free surface. However, the equations of the dynamics of the structure are solved with the finite element method assuming a linear elastic behavior. To conclude, the Fluid-Structure Interaction (IFS) has a vital role in the analysis of the dynamic behavior of the rectangular tank. The results indicate that the flexibility of the tank walls has a significant impact on the amplitude of tank sloshing and the deformation of the free surface as well as the effect of liquid sloshing on wall deformation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arbitrary%20lagrangian-eulerian" title="arbitrary lagrangian-eulerian">arbitrary lagrangian-eulerian</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid-structure%20interaction" title=" fluid-structure interaction"> fluid-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=sloshing" title=" sloshing"> sloshing</a>, <a href="https://publications.waset.org/abstracts/search?q=volume%20of%20fluid" title=" volume of fluid"> volume of fluid</a> </p> <a href="https://publications.waset.org/abstracts/161070/numerical-study-of-sloshing-in-a-flexible-tank" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2148</span> Effect of Magnetic Field on Unsteady MHD Poiseuille Flow of a Third Grade Fluid Under Exponential Decaying Pressure Gradient with Ohmic Heating</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20W.%20Lawal">O. W. Lawal</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20O.%20Ahmed"> L. O. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20K.%20Ali"> Y. K. Ali </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The unsteady MHD Poiseuille flow of a third grade fluid between two parallel horizontal nonconducting porous plates is studied with heat transfer. The two plates are fixed but maintained at different constant temperature with the Joule and viscous dissipation taken into consideration. The fluid motion is produced by a sudden uniform exponential decaying pressure gradient and external uniform magnetic field that is perpendicular to the plates. The momentum and energy equations governing the flow are solved numerically using Maple program. The effects of magnetic field and third grade fluid parameters on velocity and temperature profile are examined through several graphs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exponential%20decaying%20pressure%20gradient" title="exponential decaying pressure gradient">exponential decaying pressure gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=MHD%20flow" title=" MHD flow"> MHD flow</a>, <a href="https://publications.waset.org/abstracts/search?q=Poiseuille%20flow" title=" Poiseuille flow"> Poiseuille flow</a>, <a href="https://publications.waset.org/abstracts/search?q=third%20grade%20fluid" title=" third grade fluid"> third grade fluid</a> </p> <a href="https://publications.waset.org/abstracts/30709/effect-of-magnetic-field-on-unsteady-mhd-poiseuille-flow-of-a-third-grade-fluid-under-exponential-decaying-pressure-gradient-with-ohmic-heating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2147</span> Multi-Fidelity Fluid-Structure Interaction Analysis of a Membrane Wing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Saeedi">M. Saeedi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Wuchner"> R. Wuchner</a>, <a href="https://publications.waset.org/abstracts/search?q=K.-U.%20Bletzinger"> K.-U. Bletzinger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to study the aerodynamic performance of a semi-flexible membrane wing, Fluid-Structure Interaction simulations have been performed. The fluid problem has been modeled using two different approaches which are the numerical solution of the Navier-Stokes equations and the vortex panel method. Nonlinear analysis of the structural problem is performed using the Finite Element Method. Comparison between the two fluid solvers has been made. Aerodynamic performance of the wing is discussed regarding its lift and drag coefficients and they are compared with those of the equivalent rigid wing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=FSI" title=" FSI"> FSI</a>, <a href="https://publications.waset.org/abstracts/search?q=Membrane%20wing" title=" Membrane wing"> Membrane wing</a>, <a href="https://publications.waset.org/abstracts/search?q=Vortex%20panel%20method" title=" Vortex panel method"> Vortex panel method</a> </p> <a href="https://publications.waset.org/abstracts/17424/multi-fidelity-fluid-structure-interaction-analysis-of-a-membrane-wing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17424.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">486</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2146</span> Numerical Investigation of Cavitation on Different Venturi Shapes by Computational Fluid Dynamics </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sedat%20Yayla">Sedat Yayla</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Oruc"> Mehmet Oruc</a>, <a href="https://publications.waset.org/abstracts/search?q=Shakhwan%20Yaseen"> Shakhwan Yaseen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cavitation phenomena might rigorously impair machine parts such as pumps, propellers and impellers or devices as the pressure in the fluid declines under the liquid's saturation pressure. To evaluate the influence of cavitation, in this research two-dimensional computational fluid dynamics (CFD) venturi models with variety of inlet pressure values, throat lengths and vapor fluid contents were applied. In this research three different vapor contents (0%, 5% 10%), four inlet pressures (2, 4, 6, 8 and 10 atm) and two venturi models were employed at different throat lengths ( 5, 10, 15 and 20 mm) for discovering the impact of each parameter on the cavitation number. It is uncovered that there is a positive correlation between pressure inlet and vapor fluid content and cavitation number. Furthermore, it is unveiled that velocity remains almost constant at the inlet pressures of 6, 8,10atm, nevertheless increasing the length of throat results in the substantial escalation in the velocity of the throat at inlet pressures of 2 and 4 atm. Furthermore, velocity and cavitation number were negatively correlated. The results of the cavitation number varied between 0.092 and 0.495 depending upon the velocity values of the throat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cavitation%20number" title="cavitation number">cavitation number</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=mixture%20of%20fluid" title=" mixture of fluid"> mixture of fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=two-phase%20flow" title=" two-phase flow"> two-phase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20of%20throat" title=" velocity of throat"> velocity of throat</a> </p> <a href="https://publications.waset.org/abstracts/74888/numerical-investigation-of-cavitation-on-different-venturi-shapes-by-computational-fluid-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74888.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2145</span> A Numerical Study of Force-Based Boundary Conditions in Multiparticle Collision Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arturo%20Ayala-Hernandez">Arturo Ayala-Hernandez</a>, <a href="https://publications.waset.org/abstracts/search?q=Humberto%20Hijar"> Humberto Hijar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We propose a new alternative method for imposing fluid-solid boundary conditions in simulations of Multiparticle Collision Dynamics. Our method is based on the introduction of an explicit potential force acting between the fluid particles and a surface representing a solid boundary. We show that our method can be used in simulations of plane Poiseuille flows. Important quantities characterizing the flow and the fluid-solid interaction like the slip coefficient at the solid boundary and the effective viscosity of the fluid, are measured in terms of the set of independent parameters defining the numerical implementation. We find that our method can be used to simulate the correct hydrodynamic flow within a wide range of values of these parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Multiparticle%20Collision%20Dynamics" title="Multiparticle Collision Dynamics">Multiparticle Collision Dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid-solid" title=" fluid-solid"> fluid-solid</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20conditions" title=" boundary conditions"> boundary conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics" title=" molecular dynamics"> molecular dynamics</a> </p> <a href="https://publications.waset.org/abstracts/17569/a-numerical-study-of-force-based-boundary-conditions-in-multiparticle-collision-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">538</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2144</span> The Fluid Limit of the Critical Processor Sharing Tandem Queue</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amal%20Ezzidani">Amal Ezzidani</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelghani%20Ben%20Tahar"> Abdelghani Ben Tahar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Hanini"> Mohamed Hanini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A sequence of finite tandem queue is considered for this study. Each one has a single server, which operates under the egalitarian processor sharing discipline. External customers arrive at each queue according to a renewal input process and having a general service times distribution. Upon completing service, customers leave the current queue and enter to the next. Under mild assumptions, including critical data, we prove the existence and the uniqueness of the fluid solution. For asymptotic behavior, we provide necessary and sufficient conditions for the invariant state and the convergence to this invariant state. In the end, we establish the convergence of a correctly normalized state process to a fluid limit characterized by a system of algebraic and integral equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluid%20limit" title="fluid limit">fluid limit</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20model" title=" fluid model"> fluid model</a>, <a href="https://publications.waset.org/abstracts/search?q=measure%20valued%20process" title=" measure valued process"> measure valued process</a>, <a href="https://publications.waset.org/abstracts/search?q=processor%20sharing" title=" processor sharing"> processor sharing</a>, <a href="https://publications.waset.org/abstracts/search?q=tandem%20queue" title=" tandem queue"> tandem queue</a> </p> <a href="https://publications.waset.org/abstracts/130452/the-fluid-limit-of-the-critical-processor-sharing-tandem-queue" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130452.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2143</span> Fluid Inclusions Analysis of Fluorite from the Hammam Jedidi District, North-Eastern Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miladi%20Yasmine">Miladi Yasmine</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouhlel%20Salah"> Bouhlel Salah</a>, <a href="https://publications.waset.org/abstracts/search?q=Garnit%20Hechmi"> Garnit Hechmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrothermal vein-type deposits of the Hammam Jedidi F-Ba(Pb-Zn-Cu) are hosted in Lower Jurassic, Cretaceous and Tertiary series, and located near a very important structural lineament (NE-SW) corresponding to the Hammam Jedidi Fault in the Tunisian Dorsale. The circulation of the ore forming fluid is triggered by a regional tectonic compressive phase which occurred during the miocène time. Mineralization occurs as stratabound and vein-type orebodies adjacent to the Triassic salt diapirs and within fault in Jurassic limestone. Fluid inclusions data show that two distinct fluids were involved in the mineralisation deposition: a warmer saline fluid (180°C, 20 wt % NaCl equivalent) and cooler less saline fluid (126°C, 5wt%NaCl equivalent). The contrasting salinities and halogen ratios suggest that this two fluid derived from one of the brine originated after the dissolution of halite as suggested by its high salinity. The other end member, as indicated by the low Cl/Br ratios, acquired its low salinity by dilution of Br enriched evaporated seawater. These results are compatible with Mississippi-Valley- type mineralization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jebel%20Oust" title="Jebel Oust">Jebel Oust</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20inclusions" title=" fluid inclusions"> fluid inclusions</a>, <a href="https://publications.waset.org/abstracts/search?q=North%20Eastern%20Tunisia" title=" North Eastern Tunisia"> North Eastern Tunisia</a>, <a href="https://publications.waset.org/abstracts/search?q=mineralization" title=" mineralization"> mineralization</a> </p> <a href="https://publications.waset.org/abstracts/65896/fluid-inclusions-analysis-of-fluorite-from-the-hammam-jedidi-district-north-eastern-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2142</span> The Nature of Mineralizing Fluids in the Hammam Zriba Deposit (F-Ba-Sr-Pb-Zn) in North-eastern Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miladi%20Yasmine">Miladi Yasmine</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouhlel%20Salah"> Bouhlel Salah</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Banks"> David Banks</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Hammam Zriba (F-Ba-Sr-Pb-Zn) ore deposits of the Zaghouan district are located in northeast Tunisia, 60 Km south of Tunis. The host rocks belong to the Ressas Formation (Tithonian age) and lower Cretaceous layers. Mineralization occurs as stratiform replacement heaps and lenses. The mineral assemblage is composed of fluorite, barite, sphalerite, and galena. Primary fluid inclusions in sphalerite have homogenization temperatures ranging from 83 to 140°C, final melting temperature range from −18 to −7.0, corresponding to salinities of 5 to 21 wt % NaCl equivalent. Fluid inclusions in fluorite homogenize to the liquid phase between 132 and 178°C. Final ice melting temperatures range from −25 to −6.8 °C, corresponding to salinities between 17 and 24 wt% NaCl Equivalent. The LA-ICP-MS analyses of the fluid inclusions in fluorite show that these fluids are dominated by Na>Ca>K>Mg, with the concentration of Fe being equivalent to that of Mg. Microthermometric analyses of the fluid inclusions observed in fluorite and sphalerite show that two distinct fluids were involved in the mineralization deposition: a warmer saline fluid (132-178°C, 17-24 wt % NaCl equivalent) and cooler saline fluid (83°C-140, 5-21 wt %NaCl equivalent). The ore fluid result from highly saline and Na-Ca dominated with lower Mg concentrations come from the leaching of the dolomitic host rocks by the fluids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hammam%20Zriba" title="Hammam Zriba ">Hammam Zriba </a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20inclusions" title=" fluid inclusions"> fluid inclusions</a>, <a href="https://publications.waset.org/abstracts/search?q=LA-ICP-MS" title=" LA-ICP-MS"> LA-ICP-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaghouan%20district" title=" Zaghouan district"> Zaghouan district</a> </p> <a href="https://publications.waset.org/abstracts/149849/the-nature-of-mineralizing-fluids-in-the-hammam-zriba-deposit-f-ba-sr-pb-zn-in-north-eastern-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2141</span> Validation of a Questionnaire to Measure Fluid Experience in Practical Shooting and Its Relationship with Sports Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nelson%20Lay">Nelson Lay</a>, <a href="https://publications.waset.org/abstracts/search?q=Felipe%20Vallejo"> Felipe Vallejo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to determine the psychometric properties of a questionnaire to measure Fluid Experience in the practical sport shooting. Also, associate this variable with the performance levels of a group of athletes who are competitors in the discipline. The study included the participation of 18 shooters belonging to sports shooting clubs. Initially semi-structured interviews were conducted to observe the manifestation of the dimensions of the Fluid Experience. Based on these interviews, a self-report sheet was elaborated (feedback sheet). Then, through a correlational design, the association between the elaborated Fluid Experience Psychometric Questionnaire, the score assigned to the responses of the feedback sheet and the scores of the round of shots made by the participants was evaluated. The data were collected, on two different occasions, which implied a variation in the score of the Fluid Experience Questionnaire for each subject in both executions. The results showed a positive association between variations in sports performance and those of the Fluid Experience level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flow%20psychology" title="flow psychology">flow psychology</a>, <a href="https://publications.waset.org/abstracts/search?q=sports%20psychology" title=" sports psychology"> sports psychology</a>, <a href="https://publications.waset.org/abstracts/search?q=states%20of%20conscience" title=" states of conscience"> states of conscience</a>, <a href="https://publications.waset.org/abstracts/search?q=sports%20performance" title=" sports performance"> sports performance</a> </p> <a href="https://publications.waset.org/abstracts/88529/validation-of-a-questionnaire-to-measure-fluid-experience-in-practical-shooting-and-its-relationship-with-sports-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2140</span> Effect of Sedimentation on Torque Transmission in the Larger Radius Magnetorheological Clutch</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manish%20Kumar%20Thakur">Manish Kumar Thakur</a>, <a href="https://publications.waset.org/abstracts/search?q=Chiranjit%20Sarkar"> Chiranjit Sarkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sedimentation of magnetorheological (MR) fluid affects its working. MR fluid is a smart fluid that has unique qualities such as quick responsiveness and easy controllability. It is used in the MR damper, MR brake, and MR clutch. In this work effect of sedimentation on torque transmission in the shear mode operated MR clutch is investigated. A test rig is developed to test the impact of sedimentation on torque transmission in the MR clutch. Torque transmission capability of MR clutch has been measured under two conditions to confirm the result of sedimentation. The first experiment is done just after filling and the other after one week. It has been observed that transmission torque is decreased after sedimentation. Hence sedimentation affects the working of the MR clutch. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clutch" title="clutch">clutch</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetorheological%20fluid" title=" magnetorheological fluid"> magnetorheological fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=sedimentation" title=" sedimentation"> sedimentation</a>, <a href="https://publications.waset.org/abstracts/search?q=torque" title=" torque"> torque</a> </p> <a href="https://publications.waset.org/abstracts/133283/effect-of-sedimentation-on-torque-transmission-in-the-larger-radius-magnetorheological-clutch" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fluid&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fluid&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fluid&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fluid&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fluid&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fluid&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fluid&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fluid&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fluid&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fluid&amp;page=72">72</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fluid&amp;page=73">73</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fluid&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10