CINXE.COM
Search results for: multi-locus
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: multi-locus</title> <meta name="description" content="Search results for: multi-locus"> <meta name="keywords" content="multi-locus"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="multi-locus" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="multi-locus"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 11</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: multi-locus</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Comparison of the Isolation Rates and Characteristics of Salmonella Isolated from Antibiotic-Free and Conventional Chicken Meat Samples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jin-Hyeong%20Park">Jin-Hyeong Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong-Seok%20Kim"> Hong-Seok Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Hyeok%20Yim"> Jin-Hyeok Yim</a>, <a href="https://publications.waset.org/abstracts/search?q=Young-Ji%20Kim"> Young-Ji Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Hyeon%20Kim"> Dong-Hyeon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung-Whan%20Chon"> Jung-Whan Chon</a>, <a href="https://publications.waset.org/abstracts/search?q=Kun-Ho%20Seo"> Kun-Ho Seo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Salmonella contamination in chicken samples can cause major health problems in humans. However, not only the effects of antibiotic treatment during growth but also the impacts of poultry slaughter line on the prevalence of Salmonella in final chicken meat sold to consumers are unknown. In this study, we compared the isolation rates and antimicrobial resistance of Salmonella between antibiotic-free, conventional, conventional Korean native retail chicken meat samples and clonal divergence of Salmonella isolates by multilocus sequence typing. In addition, the distribution of extended-spectrum β-lactamase (ESBL) genes in ESBL-producing Salmonella isolates was analyzed. A total of 72 retail chicken meat samples (n = 24 antibiotic-free broiler [AFB] chickens, n = 24 conventional broiler [CB] chickens, and n = 24 conventional Korean native [CK] chickens) were collected from local retail markets in Seoul, South Korea. The isolation rates of Salmonella were 66.6% in AFB chickens, 45.8% in CB chickens, and 25% in CK chickens. By analyzing the minimum inhibitory concentrations of β -lactam antibiotics with the disc-diffusion test, we found that 81.2% of Salmonella isolates from AFB chickens, 63.6% of isolates from CB chickens, and 50% of isolates from CK chickens were ESBL producers; all ESBL-positive isolates had the CTX-M-15 genotype. Interestingly, all ESBL-producing Salmonella were revealed as ST16 by multilocus sequence typing. In addition, all CTX-M-15-positive isolates had the genetic platform of blaCTX-M gene (IS26-ISEcp1-blaCTX-M-15-IS903), to the best of our knowledge, this is the first report in Salmonella around the world. The Salmonella ST33 strain (S. Hadar) isolated in this study has never been reported in South Korea. In conclusion, our findings showed that antibiotic-free retail chicken meat products were also largely contaminated with ESBL-producing Salmonella and that their ESBL genes and genetic platforms were the same as those isolated from conventional retail chicken meat products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibiotic-free%20poultry" title="antibiotic-free poultry">antibiotic-free poultry</a>, <a href="https://publications.waset.org/abstracts/search?q=conventional%20poultry" title=" conventional poultry"> conventional poultry</a>, <a href="https://publications.waset.org/abstracts/search?q=multilocus%20sequence%20typing" title=" multilocus sequence typing"> multilocus sequence typing</a>, <a href="https://publications.waset.org/abstracts/search?q=extended-spectrum%20%CE%B2-lactamase" title=" extended-spectrum β-lactamase"> extended-spectrum β-lactamase</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20resistance" title=" antimicrobial resistance"> antimicrobial resistance</a> </p> <a href="https://publications.waset.org/abstracts/67494/comparison-of-the-isolation-rates-and-characteristics-of-salmonella-isolated-from-antibiotic-free-and-conventional-chicken-meat-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Phylogenetic Analysis of Klebsiella Species from Clinical Specimens from Nelson Mandela Academic Hospital in Mthatha, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Vasaikar">Sandeep Vasaikar</a>, <a href="https://publications.waset.org/abstracts/search?q=Lary%20Obi"> Lary Obi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rapid and discriminative genotyping methods are useful for determining the clonality of the isolates in nosocomial or household outbreaks. Multilocus sequence typing (MLST) is a nucleotide sequence-based approach for characterising bacterial isolates. The genetic diversity and the clinical relevance of the drug-resistant Klebsiella isolates from Mthatha are largely unknown. For this reason, prospective, experimental study of the molecular epidemiology of Klebsiella isolates from patients being treated in Mthatha over a three-year period was analysed. Methodology: PCR amplification and sequencing of the drug-resistance-associated genes, and multilocus sequence typing (MLST) using 7 housekeeping genes mdh, pgi, infB, FusAR, phoE, gapA and rpoB were conducted. A total of 32 isolates were analysed. Results: The percentages of multidrug-resistant (MDR), extensively drug-resistance (XDR) and pandrug-resistant (PDR) isolates were; MDR 65.6 % (21) and XDR and PDR with 0 % each. In this study, K. pneumoniae was 19/32 (59.4 %). MLST results showed 22 sequence types (STs) were identified, which were further separated by Maximum Parsimony into 10 clonal complexes and 12 singletons. The most dominant group was Klebsiella pneumoniae with 23/32 (71.8 %) isolates, Klebsiella oxytoca as a second group with 2/32 (6.25 %) isolates, and a single (3.1 %) K. varricola as a third group while 6 isolates were of unknown sequences. Conclusions/significance: A phylogenetic analysis of the concatenated sequences of the 7 housekeeping genes showed that strains of K. pneumoniae form a distinct lineage within the genus Klebsiella, with K. oxytoca and K. varricola its nearest phylogenetic neighbours. With the analysis of 7 genes were determined 1 K. variicola, which was mistakenly identified as K. pneumoniae by phenotypic methods. Two misidentifications of K. oxytoca were found when phenotypic methods were used. No significant differences were observed between ESBL blaCTX-M, blaTEM and blaSHV groups in the distribution of Sequence types (STs) or Clonal complexes (CCs). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phylogenetic%20analysis" title="phylogenetic analysis">phylogenetic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogeny" title=" phylogeny"> phylogeny</a>, <a href="https://publications.waset.org/abstracts/search?q=klebsiella%20phylogenetic" title=" klebsiella phylogenetic"> klebsiella phylogenetic</a>, <a href="https://publications.waset.org/abstracts/search?q=klebsiella" title=" klebsiella"> klebsiella</a> </p> <a href="https://publications.waset.org/abstracts/66402/phylogenetic-analysis-of-klebsiella-species-from-clinical-specimens-from-nelson-mandela-academic-hospital-in-mthatha-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66402.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Genetic Diversity Analysis in Ecological Populations of Persian Walnut</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Sheidai">Masoud Sheidai</a>, <a href="https://publications.waset.org/abstracts/search?q=Fahimeh%20Koohdar"> Fahimeh Koohdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hashem%20Sharifi"> Hashem Sharifi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Juglans regia (L.) commonly known as Persian walnut of the genus Juglans L. (Juglandaceae) is one of the most important cultivated plant species due to its high-quality wood and edible nuts. The genetic diversity analysis is essential for conservation and management of tree species. Persian walnut is native from South-Eastern Europe to North-Western China through Tibet, Nepal, Northern India, Pakistan, and Iran. The species like Persian walnut, which has a wide range of geographical distribution, should harbor extensive genetic variability to adapt to environmental fluctuations they face. We aimed to study the population genetic structure of seven Persian walnut populations including three wild and four cultivated populations by using ISSR (Inter simple sequence repeats) and SRAP (Sequence related amplified polymorphism) molecular markers. We also aimed to compare the genetic variability revealed by ISSR neutral multilocus marker and rDNA ITS sequences. The studied populations differed in morphological features as the samples in each population were clustered together and were separate from the other populations. Three wild populations studied were placed close to each other. The mantel test after 5000 times permutation performed between geographical distance and morphological distance in Persian walnut populations produced significant correlation (r = 0.48, P = 0.002). Therefore, as the populations become farther apart, they become more divergent in morphological features. ISSR analysis produced 47 bands/ loci, while we obtained 15 SRAP bands. Gst and other differentiation statistics determined for these loci revealed that most of the ISSR and SRAP loci have very good discrimination power and can differentiate the studied populations. AMOVA performed for these loci produced a significant difference (< 0.05) supporting the above-said result. AMOVA produced significant genetic difference based on ISSR data among the studied populations (PhiPT = 0.52, P = 0.001). AMOVA revealed that 53% of the total variability is due to among population genetic difference, while 47% is due to within population genetic variability. The results showed that both multilocus molecular markers and ITS sequences can differentiate Persian walnut populations. The studied populations differed genetically and showed isolation by distance (IBD). ITS sequence based MP and Bayesian phylogenetic trees revealed that Iranian walnut cultivars form a distinct clade separated from the cultivars studied from elsewhere. Almost all clades obtained have high bootstrap value. The results indicated that a combination of multilpcus and sequencing molecular markers can be used in genetic differentiation of Persian walnut. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20diversity" title="genetic diversity">genetic diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=population" title=" population"> population</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20markers" title=" molecular markers"> molecular markers</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20difference" title=" genetic difference"> genetic difference</a> </p> <a href="https://publications.waset.org/abstracts/97640/genetic-diversity-analysis-in-ecological-populations-of-persian-walnut" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Multilocus Phylogenetic Approach Reveals Informative DNA Barcodes for Studying Evolution and Taxonomy of Fusarium Fungi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexander%20A.%20Stakheev">Alexander A. Stakheev</a>, <a href="https://publications.waset.org/abstracts/search?q=Larisa%20V.%20Samokhvalova"> Larisa V. Samokhvalova</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergey%20K.%20Zavriev"> Sergey K. Zavriev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fusarium fungi are among the most devastating plant pathogens distributed all over the world. Significant reduction of grain yield and quality caused by Fusarium leads to multi-billion dollar annual losses to the world agricultural production. These organisms can also cause infections in immunocompromised persons and produce the wide range of mycotoxins, such as trichothecenes, fumonisins, and zearalenone, which are hazardous to human and animal health. Identification of Fusarium fungi based on the morphology of spores and spore-forming structures, colony color and appearance on specific culture media is often very complicated due to the high similarity of these features for closely related species. Modern Fusarium taxonomy increasingly uses data of crossing experiments (biological species concept) and genetic polymorphism analysis (phylogenetic species concept). A number of novel Fusarium sibling species has been established using DNA barcoding techniques. Species recognition is best made with the combined phylogeny of intron-rich protein coding genes and ribosomal DNA sequences. However, the internal transcribed spacer of (ITS), which is considered to be universal DNA barcode for Fungi, is not suitable for genus Fusarium, because of its insufficient variability between closely related species and the presence of non-orthologous copies in the genome. Nowadays, the translation elongation factor 1 alpha (TEF1α) gene is the “gold standard” of Fusarium taxonomy, but the search for novel informative markers is still needed. In this study, we used two novel DNA markers, frataxin (FXN) and heat shock protein 90 (HSP90) to discover phylogenetic relationships between Fusarium species. Multilocus phylogenetic analysis based on partial sequences of TEF1α, FXN, HSP90, as well as intergenic spacer of ribosomal DNA (IGS), beta-tubulin (β-TUB) and phosphate permease (PHO) genes has been conducted for 120 isolates of 19 Fusarium species from different climatic zones of Russia and neighboring countries using maximum likelihood (ML) and maximum parsimony (MP) algorithms. Our analyses revealed that FXN and HSP90 genes could be considered as informative phylogenetic markers, suitable for evolutionary and taxonomic studies of Fusarium genus. It has been shown that PHO gene possesses more variable (22 %) and parsimony informative (19 %) characters than other markers, including TEF1α (12 % and 9 %, correspondingly) when used for elucidating phylogenetic relationships between F. avenaceum and its closest relatives – F. tricinctum, F. acuminatum, F. torulosum. Application of novel DNA barcodes confirmed the fact that F. arthrosporioides do not represent a separate species but only a subspecies of F. avenaceum. Phylogeny based on partial PHO and FXN sequences revealed the presence of separate cluster of four F. avenaceum strains which were closer to F. torulosum than to major F. avenaceum clade. The strain F-846 from Moldova, morphologically identified as F. poae, formed a separate lineage in all the constructed dendrograms, and could potentially be considered as a separate species, but more information is needed to confirm this conclusion. Variable sites in PHO sequences were used for the first-time development of specific qPCR-based diagnostic assays for F. acuminatum and F. torulosum. This work was supported by Russian Foundation for Basic Research (grant № 15-29-02527). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA%20barcode" title="DNA barcode">DNA barcode</a>, <a href="https://publications.waset.org/abstracts/search?q=fusarium" title=" fusarium"> fusarium</a>, <a href="https://publications.waset.org/abstracts/search?q=identification" title=" identification"> identification</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogenetics" title=" phylogenetics"> phylogenetics</a>, <a href="https://publications.waset.org/abstracts/search?q=taxonomy" title=" taxonomy"> taxonomy</a> </p> <a href="https://publications.waset.org/abstracts/60350/multilocus-phylogenetic-approach-reveals-informative-dna-barcodes-for-studying-evolution-and-taxonomy-of-fusarium-fungi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Detection of Brackish Water Biological Fingerprints in Potable Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Mohammad">Abdullah Mohammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Alshemali"> Abdullah Alshemali</a>, <a href="https://publications.waset.org/abstracts/search?q=Esmaeil%20Alsaleh"> Esmaeil Alsaleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The chemical composition of desalinated water is modified to make it more acceptable to the end-user. Sometimes, this modification is approached by mixing with brackish water that is known to contain a variety of minerals. Expectedly, besides minerals, brackish water indigenous bacterial communities access the final mixture hence reaching the end consumer. The current project examined the safety of using brackish water as an ingredient in potable water. Pseudomonas aeruginosa strains were detected in potable and brackish water samples collected from storage facilities in residential areas as well as from main water distribution and storage tanks. The application of molecular and biochemical fingerprinting methods, including phylogeny, RFLP (restriction fragment length polymorphism), MLST (multilocus sequence typing) and substrate specificity testing, suggested that the potable water P. aeruginosa strains were most probably originated from brackish water. Additionally, all the sixty-four isolates showed multi-drug resistance (MDR) phenotype and harboured the three genes responsible for biofilm formation. These virulence factors represent serious health hazards compelling the scientific community to revise the WHO (World Health Organization) and USEP (US Environmental Protection Agency) A potable water quality guidelines, particularly those related to the types of bacterial genera that evade the current water quality guidelines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=potable%20water" title="potable water">potable water</a>, <a href="https://publications.waset.org/abstracts/search?q=brackish%20water" title=" brackish water"> brackish water</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudomonas%20aeroginosa" title=" pseudomonas aeroginosa"> pseudomonas aeroginosa</a>, <a href="https://publications.waset.org/abstracts/search?q=multidrug%20resistance" title=" multidrug resistance"> multidrug resistance</a> </p> <a href="https://publications.waset.org/abstracts/151234/detection-of-brackish-water-biological-fingerprints-in-potable-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Staphylococcus argenteus: An Emerging Subclinical Bovine Mastitis Pathogen in Thailand </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natapol%20Pumipuntu">Natapol Pumipuntu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Staphylococcus argenteus is the emerging species of S. aureus complex. It was generally misidentified as S. aureus by standard techniques and their features. S. argenteus is possibly emerging in both humans and animals, as well as increasing worldwide distribution. The objective of this study was to differentiate and identify S. argenteus from S. aureus, which has been collected and isolated from milk samples of subclinical bovine mastitis cases in Maha Sarakham province, Northeastern of Thailand. Twenty-one isolates of S. aureus, which confirmed by conventional methods and immune-agglutination method were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and multilocus sequence typing (MLST). The result from MALDI-TOF MS and MLST showed 6 from 42 isolates were confirmed as S. argenteus, and 36 isolates were S. aureus, respectively. This study indicated that the identification and classification method by using MALDI-TOF MS and MLST could accurately differentiate the emerging species, S. argenteus, from S. aureus complex which usually misdiagnosed. In addition, the identification of S. argenteus seems to be very limited despite the fact that it may be the important causative pathogen in bovine mastitis as well as pathogenic bacteria in food and milk. Therefore, it is very necessary for both bovine medicine and veterinary public health to emphasize and recognize this bacterial pathogen as the emerging disease of Staphylococcal bacteria and need further study about S. argenteus infection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Staphylococcus%20argenteus" title="Staphylococcus argenteus">Staphylococcus argenteus</a>, <a href="https://publications.waset.org/abstracts/search?q=subclinical%20bovine%20mastitis" title=" subclinical bovine mastitis"> subclinical bovine mastitis</a>, <a href="https://publications.waset.org/abstracts/search?q=Staphylococcus%20aureus%20complex" title=" Staphylococcus aureus complex"> Staphylococcus aureus complex</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20spectrometry" title=" mass spectrometry"> mass spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=MLST" title=" MLST"> MLST</a> </p> <a href="https://publications.waset.org/abstracts/108179/staphylococcus-argenteus-an-emerging-subclinical-bovine-mastitis-pathogen-in-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Stenotrophomonas maltophilia: The Major Carbapenem Resistance Bacteria from Waste Water Treatment Plant of Pig Farm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Young-Ji%20Kim">Young-Ji Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Hyeong%20Park"> Jin-Hyeong Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong-Seok%20Kim"> Hong-Seok Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung-Whan%20Chon"> Jung-Whan Chon</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwang-Yeop%20Kim"> Kwang-Yeop Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Hyeon%20Kim"> Dong-Hyeon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Il-Byeong%20Kang"> Il-Byeong Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Da-Na%20Jeong"> Da-Na Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Hyeok%20Yim"> Jin-Hyeok Yim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ho-Seok%20Jang"> Ho-Seok Jang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwang-Young%20Song"> Kwang-Young Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Kun-Ho%20Seo"> Kun-Ho Seo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stenotrophomonas maltophilia is one of the emerging opportunistic pathogens, and also known to have extensive drug resistance intrinsically including carbepenems which is last resort for most serious infections. One possible way for S. maltophilia to infect human is via wastewater treatment plant (WWTP). In the period between October 2016 and February 2017, effluent samples of WWTP from 3 different pig farms were collected once a month and screened for isolation of S. maltophilia. Total 16 strains of S. maltophilia were isolated and, the antibiotic susceptibility phenotypes were determined by Vitek 2 system for 16 antibiotics, ampicillin (AMP), amoxicillin/clavulanic acid (AMC), piperacillin/tazobactam (TZP), cefazolin (CZ), cefoxitin (FOX), cefotaxime (CTX), ceftazidime (CAZ), cefepime (FEP), aztreonam (AZT), ertapenem (ETP), imipenem (IMP), amikacin (AK), gentamicin (GN), ciprofloxacin (CIP), tigecycline (TGC) and trimethoprim/sulfamethoxazole (SXT). All isolates showed high resistance to AMP (100%), CZ (100%), FOX (100%), CTX (100%), CAZ (100%), FEP (94%), AZT (100%), ETP (100%), IMP (100%), AK (100%), GN (100%) whereas were susceptible to CIP (0%), TGC (0%), SXT (6%). All strains harbored at least one of the antibiotic resistance determinant such as spgM, rmlA, and rpfF. Some isolates had similar MLST (multilocus sequence typing) types with clinical isolates, suggesting WWTP could have potential role in the transmission of S. maltophilia to aquatic environment and, possibly, to humans. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stenotrophomonas%20maltophilia" title="Stenotrophomonas maltophilia">Stenotrophomonas maltophilia</a>, <a href="https://publications.waset.org/abstracts/search?q=Carbapenem%20resistance" title=" Carbapenem resistance"> Carbapenem resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water%20treatment%20plant" title=" waste water treatment plant"> waste water treatment plant</a>, <a href="https://publications.waset.org/abstracts/search?q=pig%20farm" title=" pig farm"> pig farm</a> </p> <a href="https://publications.waset.org/abstracts/67492/stenotrophomonas-maltophilia-the-major-carbapenem-resistance-bacteria-from-waste-water-treatment-plant-of-pig-farm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Genetic Diversity and Molecular Basis of Carbapenem Resistance in Acinetobacter Baumannii Isolates from Cattle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minhas%20Alam">Minhas Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Hidayat%20Rasool"> Muhammad Hidayat Rasool</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsin%20Khurshid"> Mohsin Khurshid</a>, <a href="https://publications.waset.org/abstracts/search?q=Bilal%20Aslam"> Bilal Aslam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acinetobacter baumannii is a notorious bacterial pathogen that is an emerging nightmare in clinical settings and is mainly involved in severe nosocomial infections. However, the data related to carbapenem-resistant A. baumannii (CRAB) from veterinary settings is limited, especially in developing countries like Pakistan. To investigate the genetic diversity and molecular basis of carbapenem resistance in Acinetobacter baumannii isolates from Cattle, a total of 1960 samples were collected from cattle from Punjab, Pakistan. The isolates were analyzed by routine microbiological procedures and confirmed by polymerase chain reaction (PCR). The isolates were further screened for antimicrobial susceptibility and the presence of multiple antimicrobial-resistant determinants by PCR. Multilocus sequence typing (MLST) was performed. The results of the current study revealed that the overall prevalence of A. baumannii in cattle was 3.28% (65/1980). Among cattle 27.7% (18/65) were found CRAB strains. The CRAB isolates harbor class D β- lactamases genes, e-g, blaOXA-23 and blaOXA-51, 94.4% (17/18). CRAB isolates carry class B β- lactamases gene blaIMP, and only one isolate carries the blaNDM-1 gene. The MLST results of CRAB isolates from cattle demonstrated 5 STs and one new ST. The commonly found sequence types in CRAB isolates were ST2 (n=10, 55.5%), followed by ST642 (n=5, 27.8%) and ST600 & ST889 (n=1, 5.55%). The presence of CRAB isolates in cattle indicates an alarming situation in Punjab, Pakistan. Immediate control measures should be taken to stop the transmission of CRAB isolates within cattle, to the environment, and to clinical settings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acinetobacter%20baumannii" title="acinetobacter baumannii">acinetobacter baumannii</a>, <a href="https://publications.waset.org/abstracts/search?q=carbapenemases" title=" carbapenemases"> carbapenemases</a>, <a href="https://publications.waset.org/abstracts/search?q=veterinary" title=" veterinary"> veterinary</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20resistance" title=" drug resistance"> drug resistance</a> </p> <a href="https://publications.waset.org/abstracts/184131/genetic-diversity-and-molecular-basis-of-carbapenem-resistance-in-acinetobacter-baumannii-isolates-from-cattle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">56</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Molecular Identification and Genotyping of Human Brucella Strains Isolated in Kuwait</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abu%20Salim%20Mustafa">Abu Salim Mustafa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brucellosis is a zoonotic disease endemic in Kuwait. Human brucellosis can be caused by several Brucella species with Brucella melitensis causing the most severe and Brucella abortus the least severe disease. Furthermore, relapses are common after successful chemotherapy of patients. The classical biochemical methods of culture and serology for identification of Brucellae provide information about the species and serotypes only. However, to differentiate between relapse and reinfection/epidemiological investigations, the identification of genotypes using molecular methods is essential. In this study, four molecular methods [16S rRNA gene sequencing, real-time PCR, enterobacterial repetitive intergenic consensus (ERIC)-PCR and multilocus variable-number tandem-repeat analysis (MLVA)-16] were evaluated for the identification and typing of 75 strains of Brucella isolated in Kuwait. The 16S rRNA gene sequencing suggested that all the strains were B. melitensis and real-time PCR confirmed their species identity as B. melitensis. The ERIC-PCR band profiles produced a dendrogram of 75 branches suggesting each strain to be of a unique type. The cluster classification, based on ~ 80% similarity, divided all the ERIC genotypes into two clusters, A and B. Cluster A consisted of 9 ERIC genotypes (A1-A9) corresponding to 9 individual strains. Cluster B comprised of 13 ERIC genotypes (B1-B13) with B5 forming the largest cluster of 51 strains. MLVA-16 identified all isolates as B. melitensis and divided them into 71 MLVA-types. The cluster analysis of MLVA-16-types suggested that most of the strains in Kuwait originated from the East Mediterranean Region, a few from the African group and one new genotype closely matched with the West Mediterranean region. In conclusion, this work demonstrates that B. melitensis, the most pathogenic species of Brucella, is prevalent in Kuwait. Furthermore, MLVA-16 is the best molecular method, which can identify the Brucella species and genotypes as well as determine their origin in the global context. Supported by Kuwait University Research Sector grants MI04/15 and SRUL02/13. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brucella" title="Brucella">Brucella</a>, <a href="https://publications.waset.org/abstracts/search?q=ERIC-PCR" title=" ERIC-PCR"> ERIC-PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=MLVA-16" title=" MLVA-16"> MLVA-16</a>, <a href="https://publications.waset.org/abstracts/search?q=RT-PCR" title=" RT-PCR"> RT-PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=16S%20rRNA%20gene%20sequencing" title=" 16S rRNA gene sequencing"> 16S rRNA gene sequencing</a> </p> <a href="https://publications.waset.org/abstracts/56928/molecular-identification-and-genotyping-of-human-brucella-strains-isolated-in-kuwait" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56928.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Characterization of Mycoplasma Pneumoniae Causing Exacerbation of Asthma: A Prototypical Finding from Sri Lanka</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lakmini%20Wijesooriya">Lakmini Wijesooriya</a>, <a href="https://publications.waset.org/abstracts/search?q=Vicki%20Chalker"> Vicki Chalker</a>, <a href="https://publications.waset.org/abstracts/search?q=Jessica%20Day"> Jessica Day</a>, <a href="https://publications.waset.org/abstracts/search?q=Priyantha%20Perera"> Priyantha Perera</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20P.%20Sunil-Chandra"> N. P. Sunil-Chandra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> M. pneumoniae has been identified as an etiology for exacerbation of asthma (EQA), although viruses play a major role in EOA. M. pneumoniae infection is treated empirically with macrolides, and its antibiotic sensitivity is not detected routinely. Characterization of the organism by genotyping and determination of macrolide resistance is important epidemiologically as it guides the empiric antibiotic treatment. To date, there is no such characterization of M. pneumoniae performed in Sri Lanka. The present study describes the characterization of M. pneumoniae detected from a child with EOA following a screening of 100 children with EOA. Of the hundred children with EOA, M. pneumoniae was identified only in one child by Real-Time polymerase chain reaction (PCR) test for identifying the community-acquired respiratory distress syndrome (CARDS) toxin nucleotide sequences. The M. pneumoniae identified from this patient underwent detection of macrolide resistance via conventional PCR, amplifying and sequencing the region of the 23S rDNA gene that contains single nucleotide polymorphisms that confer resistance. Genotyping of the isolate was performed via nested Multilocus Sequence Typing (MLST) in which eight (8) housekeeping genes (ppa, pgm, gyrB, gmk, glyA, atpA, arcC, and adk) were amplified via nested PCR followed by gene sequencing and analysis. As per MLST analysis, the M. pneumoniae was identified as sequence type 14 (ST14), and no mutations that confer resistance were detected. Resistance to macrolides in M. pneumoniae is an increasing problem globally. Establishing surveillance systems is the key to informing local prescriptions. In the absence of local surveillance data, antibiotics are started empirically. If the relevant microbiological samples are not obtained before antibiotic therapy, as in most occasions in children, the course of antibiotic is completed without a microbiological diagnosis. This happens more frequently in therapy for M. pneumoniae which is treated with a macrolide in most patients. Hence, it is important to understand the macrolide sensitivity of M. pneumoniae in the setting. The M. pneumoniae detected in the present study was macrolide sensitive. Further studies are needed to examine a larger dataset in Sri Lanka to determine macrolide resistance levels to inform the use of macrolides in children with EOA. The MLST type varies in different geographical settings, and it also provides a clue to the existence of macrolide resistance. The present study enhances the database of the global distribution of different genotypes of M. pneumoniae as this is the first such characterization performed with the increased number of samples to determine macrolide resistance level in Sri Lanka. M. pneumoniae detected from a child with exacerbation of asthma in Sri Lanka was characterized as ST14 by MLST and no mutations that confer resistance were detected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mycoplasma%20pneumoniae" title="mycoplasma pneumoniae">mycoplasma pneumoniae</a>, <a href="https://publications.waset.org/abstracts/search?q=Sri%20Lanka" title=" Sri Lanka"> Sri Lanka</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=macrolide%20resistance" title=" macrolide resistance"> macrolide resistance</a> </p> <a href="https://publications.waset.org/abstracts/146848/characterization-of-mycoplasma-pneumoniae-causing-exacerbation-of-asthma-a-prototypical-finding-from-sri-lanka" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Complete Genome Sequence Analysis of Pasteurella multocida Subspecies multocida Serotype A Strain PMTB2.1</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shagufta%20Jabeen">Shagufta Jabeen</a>, <a href="https://publications.waset.org/abstracts/search?q=Faez%20J.%20Firdaus%20Abdullah"> Faez J. Firdaus Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Zunita%20Zakaria"> Zunita Zakaria</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurulfiza%20M.%20Isa"> Nurulfiza M. Isa</a>, <a href="https://publications.waset.org/abstracts/search?q=Yung%20C.%20Tan"> Yung C. Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Wai%20Y.%20Yee"> Wai Y. Yee</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20R.%20Omar"> Abdul R. Omar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pasteurella multocida (PM) is an important veterinary opportunistic pathogen particularly associated with septicemic pasteurellosis, pneumonic pasteurellosis and hemorrhagic septicemia in cattle and buffaloes. P. multocida serotype A has been reported to cause fatal pneumonia and septicemia. Pasteurella multocida subspecies multocida of serotype A Malaysian isolate PMTB2.1 was first isolated from buffaloes died of septicemia. In this study, the genome of P. multocida strain PMTB2.1 was sequenced using third-generation sequencing technology, PacBio RS2 system and analyzed bioinformatically via de novo analysis followed by in-depth analysis based on comparative genomics. Bioinformatics analysis based on de novo assembly of PacBio raw reads generated 3 contigs followed by gap filling of aligned contigs with PCR sequencing, generated a single contiguous circular chromosome with a genomic size of 2,315,138 bp and a GC content of approximately 40.32% (Accession number CP007205). The PMTB2.1 genome comprised of 2,176 protein-coding sequences, 6 rRNA operons and 56 tRNA and 4 ncRNAs sequences. The comparative genome sequence analysis of PMTB2.1 with nine complete genomes which include Actinobacillus pleuropneumoniae, Haemophilus parasuis, Escherichia coli and five P. multocida complete genome sequences including, PM70, PM36950, PMHN06, PM3480, PMHB01 and PMTB2.1 was carried out based on OrthoMCL analysis and Venn diagram. The analysis showed that 282 CDs (13%) are unique to PMTB2.1and 1,125 CDs with orthologs in all. This reflects overall close relationship of these bacteria and supports the classification in the Gamma subdivision of the Proteobacteria. In addition, genomic distance analysis among all nine genomes indicated that PMTB2.1 is closely related with other five Pasteurella species with genomic distance less than 0.13. Synteny analysis shows subtle differences in genetic structures among different P.multocida indicating the dynamics of frequent gene transfer events among different P. multocida strains. However, PM3480 and PM70 exhibited exceptionally large structural variation since they were swine and chicken isolates. Furthermore, genomic structure of PMTB2.1 is more resembling that of PM36950 with a genomic size difference of approximately 34,380 kb (smaller than PM36950) and strain-specific Integrative and Conjugative Elements (ICE) which was found only in PM36950 is absent in PMTB2.1. Meanwhile, two intact prophages sequences of approximately 62 kb were found to be present only in PMTB2.1. One of phage is similar to transposable phage SfMu. The phylogenomic tree was constructed and rooted with E. coli, A. pleuropneumoniae and H. parasuis based on OrthoMCL analysis. The genomes of P. multocida strain PMTB2.1 were clustered with bovine isolates of P. multocida strain PM36950 and PMHB01 and were separated from avian isolate PM70 and swine isolates PM3480 and PMHN06 and are distant from Actinobacillus and Haemophilus. Previous studies based on Single Nucleotide Polymorphism (SNPs) and Multilocus Sequence Typing (MLST) unable to show a clear phylogenetic relatedness between Pasteurella multocida and the different host. In conclusion, this study has provided insight on the genomic structure of PMTB2.1 in terms of potential genes that can function as virulence factors for future study in elucidating the mechanisms behind the ability of the bacteria in causing diseases in susceptible animals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=comparative%20genomics" title="comparative genomics">comparative genomics</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20sequencing" title=" DNA sequencing"> DNA sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=phage" title=" phage"> phage</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogenomics" title=" phylogenomics"> phylogenomics</a> </p> <a href="https://publications.waset.org/abstracts/81349/complete-genome-sequence-analysis-of-pasteurella-multocida-subspecies-multocida-serotype-a-strain-pmtb21" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81349.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>