CINXE.COM

Search results for: particle size analysis

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: particle size analysis</title> <meta name="description" content="Search results for: particle size analysis"> <meta name="keywords" content="particle size analysis"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="particle size analysis" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="particle size analysis"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 32309</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: particle size analysis</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32309</span> The Creep Analysis of a Varying Thickness on a Rotating Composite Disk with Different Particle Size by Using Sherby’s Law</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rupinder%20Kaur">Rupinder Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Harjot%20Kaur"> Harjot Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this paper is to present the study of the effect of varying thickness on rotating composite disks made from Al-SiC_P having different particle sizes. Mathematical modeling is used to calculate the effect of varying thickness with different particle sizes on rotating composite disks in radial as well as tangential directions with thermal gradients. In comparison to various particle sizes with varied thicknesses, long-term deformation occurs. The results are displayed visually, demonstrating how creep deformation decreases with changing particle size and thickness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=creep" title="creep">creep</a>, <a href="https://publications.waset.org/abstracts/search?q=varying%20thickness" title=" varying thickness"> varying thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size" title=" particle size"> particle size</a>, <a href="https://publications.waset.org/abstracts/search?q=stresses%20and%20strain%20rates" title=" stresses and strain rates"> stresses and strain rates</a> </p> <a href="https://publications.waset.org/abstracts/173915/the-creep-analysis-of-a-varying-thickness-on-a-rotating-composite-disk-with-different-particle-size-by-using-sherbys-law" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173915.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32308</span> Influence of Processing Parameters on the Reliability of Sieving as a Particle Size Distribution Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eseldin%20Keleb">Eseldin Keleb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the pharmaceutical industry particle size distribution is an important parameter for the characterization of pharmaceutical powders. The powder flowability, reactivity and compatibility, which have a decisive impact on the final product, are determined by particle size and size distribution. Therefore, the aim of this study was to evaluate the influence of processing parameters on the particle size distribution measurements. Different Size fractions of α-lactose monohydrate and 5% polyvinylpyrrolidone were prepared by wet granulation and were used for the preparation of samples. The influence of sieve load (50, 100, 150, 200, 250, 300, and 350 g), processing time (5, 10, and 15 min), sample size ratios (high percentage of small and large particles), type of disturbances (vibration and shaking) and process reproducibility have been investigated. Results obtained showed that a sieve load of 50 g produce the best separation, a further increase in sample weight resulted in incomplete separation even after the extension of the processing time for 15 min. Performing sieving using vibration was rapider and more efficient than shaking. Meanwhile between day reproducibility showed that particle size distribution measurements are reproducible. However, for samples containing 70% fines or 70% large particles, which processed at optimized parameters, the incomplete separation was always observed. These results indicated that sieving reliability is highly influenced by the particle size distribution of the sample and care must be taken for samples with particle size distribution skewness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sieving" title="sieving">sieving</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size%20distribution" title=" particle size distribution"> particle size distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=processing%20parameters" title=" processing parameters"> processing parameters</a> </p> <a href="https://publications.waset.org/abstracts/2100/influence-of-processing-parameters-on-the-reliability-of-sieving-as-a-particle-size-distribution-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2100.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">613</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32307</span> Effects of Particle Size Distribution on Mechanical Strength and Physical Properties in Engineered Quartz Stone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esra%20Arici">Esra Arici</a>, <a href="https://publications.waset.org/abstracts/search?q=Duygu%20Olmez"> Duygu Olmez</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Ozkan"> Murat Ozkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurcan%20Topcu"> Nurcan Topcu</a>, <a href="https://publications.waset.org/abstracts/search?q=Furkan%20Capraz"> Furkan Capraz</a>, <a href="https://publications.waset.org/abstracts/search?q=Gokhan%20Deniz"> Gokhan Deniz</a>, <a href="https://publications.waset.org/abstracts/search?q=Arman%20Altinyay"> Arman Altinyay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Engineered quartz stone is a composite material comprising approximately 90 wt.% fine quartz aggregate with a variety of particle size ranges and `10 wt.% unsaturated polyester resin (UPR). In this study, the objective is to investigate the influence of particle size distribution on mechanical strength and physical properties of the engineered stone slabs. For this purpose, granular quartz with two particle size ranges of 63-200 µm and 100-300 µm were used individually and mixed with a difference in ratios of mixing. The void volume of each granular packing was measured in order to define the amount of filler; quartz powder with the size of less than 38 µm, and UPR required filling inter-particle spaces. Test slabs were prepared using vibration-compression under vacuum. The study reports that both impact strength and flexural strength of samples increased as the mix ratio of the particle size range of 63-200 µm increased. On the other hand, the values of water absorption rate, apparent density and abrasion resistance were not affected by the particle size distribution owing to vacuum compaction. It is found that increasing the mix ratio of the particle size range of 63-200 µm caused the higher porosity. This led to increasing in the amount of the binder paste needed. It is also observed that homogeneity in the slabs was improved with the particle size range of 63-200 µm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=engineered%20quartz%20stone" title="engineered quartz stone">engineered quartz stone</a>, <a href="https://publications.waset.org/abstracts/search?q=fine%20quartz%20aggregate" title=" fine quartz aggregate"> fine quartz aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=granular%20packing" title=" granular packing"> granular packing</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20strength" title=" mechanical strength"> mechanical strength</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size%20distribution" title=" particle size distribution"> particle size distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20properties." title=" physical properties."> physical properties.</a> </p> <a href="https://publications.waset.org/abstracts/110565/effects-of-particle-size-distribution-on-mechanical-strength-and-physical-properties-in-engineered-quartz-stone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32306</span> Particle Size Analysis of Itagunmodi Southwestern Nigeria Alluvial Gold Ore Sample by Gaudin Schumann Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olaniyi%20Awe">Olaniyi Awe</a>, <a href="https://publications.waset.org/abstracts/search?q=Adelana%20R.%20Adetunji"> Adelana R. Adetunji</a>, <a href="https://publications.waset.org/abstracts/search?q=Abraham%20Adeleke"> Abraham Adeleke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mining of alluvial gold ore by artisanal miners has been going on for decades at Itagunmodi, Southwestern Nigeria. In order to optimize the traditional panning gravity separation method commonly used in the area, a mineral particle size analysis study is critical. This study analyzed alluvial gold ore samples collected at identified five different locations in the area with a view to determine the ore particle size distributions. 500g measured of as-received alluvial gold ore sample was introduced into the uppermost sieve of an electrical sieve shaker consisting of sieves arranged in the order of decreasing nominal apertures of 5600μm, 3350μm, 2800μm, 355μm, 250μm, 125μm and 90μm, and operated for 20 minutes. The amount of material retained on each sieve was measured and tabulated for analysis. A screen analysis graph using the Gaudin Schuman method was drawn for each of the screen tests on the alluvial samples. The study showed that the percentages of fine particle size -125+90 μm fraction were 45.00%, 36.00%, 39.60%, 43.00% and 36.80% for the selected samples. These primary ore characteristic results provide reference data for the alluvial gold ore processing method selection, process performance measurement and optimization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alluvial%20gold%20ore" title="alluvial gold ore">alluvial gold ore</a>, <a href="https://publications.waset.org/abstracts/search?q=sieve%20shaker" title=" sieve shaker"> sieve shaker</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size" title=" particle size"> particle size</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaudin%20Schumann" title=" Gaudin Schumann"> Gaudin Schumann</a> </p> <a href="https://publications.waset.org/abstracts/186840/particle-size-analysis-of-itagunmodi-southwestern-nigeria-alluvial-gold-ore-sample-by-gaudin-schumann-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186840.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32305</span> Modeling of Polyethylene Particle Size Distribution in Fluidized Bed Reactors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Marandi">R. Marandi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Shahrir"> H. Shahrir</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Nejad%20Ghaffar%20Borhani"> T. Nejad Ghaffar Borhani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kamaruddin"> M. Kamaruddin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, a steady state population balance model was developed to predict the polymer particle size distribution (PSD) in ethylene gas phase fluidized bed olefin polymerization reactors. The multilayer polymeric flow model (MPFM) was used to calculate the growth rate of a single polymer particle under intra-heat and mass transfer resistance. The industrial plant data were used to calculate the growth rate of polymer particle and the polymer PSD. Numerical simulations carried out to describe the influence of effective monomer diffusion coefficient, polymerization rate and initial catalyst size on the catalyst particle growth and final polymer PSD. The results present that the intra-heat and mass limitation is important for the ethylene polymerization, the growth rate of particle and the polymer PSD in the fluidized bed reactor. The effect of the agglomeration on the PSD is also considered. The result presents that the polymer particle size distribution becomes broader as the agglomeration exits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=population%20balance" title="population balance">population balance</a>, <a href="https://publications.waset.org/abstracts/search?q=olefin%20polymerization" title=" olefin polymerization"> olefin polymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=fluidized%20bed%20reactor" title=" fluidized bed reactor"> fluidized bed reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size%20distribution" title=" particle size distribution"> particle size distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=agglomeration" title=" agglomeration"> agglomeration</a> </p> <a href="https://publications.waset.org/abstracts/35596/modeling-of-polyethylene-particle-size-distribution-in-fluidized-bed-reactors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32304</span> Self-Assembled Tin Particles Made by Plasma-Induced Dewetting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Han%20Joo%20Choe">Han Joo Choe</a>, <a href="https://publications.waset.org/abstracts/search?q=Soon-Ho%20Kwon"> Soon-Ho Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung-Joong%20Lee"> Jung-Joong Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tin particles of various size and distribution were self-assembled by plasma treating tin film deposited on silicon oxide substrates. Plasma treatment was conducted using an inductively coupled plasma (ICP) source. A range of ICP power and topographic templated substrates were evaluated to observe changes in particle size and particle distribution. Scanning electron microscopy images of the particles were analyzed using computer software. The evolution of tin film dewetting into particles initiated from the hole nucleation in grain boundaries. Increasing ICP power during plasma treatment produced larger number of particles per area and smaller particle size and particle-size distribution. Topographic templates were also effective in positioning and controlling the size of the particles. By combining the effects of ICP power and topographic templates, particles of similar size and well-ordered distribution were obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dewetting" title="dewetting">dewetting</a>, <a href="https://publications.waset.org/abstracts/search?q=particles" title=" particles"> particles</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma" title=" plasma"> plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=tin" title=" tin "> tin </a> </p> <a href="https://publications.waset.org/abstracts/39207/self-assembled-tin-particles-made-by-plasma-induced-dewetting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39207.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32303</span> Towards a Rigorous Analysis for a Supercritical Particulate Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yousef%20Bakhbakhi">Yousef Bakhbakhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Crystallization with supercritical fluids (SCFs), as a developed technology to produce particles of micron and sub-micron size with narrow size distribution, has found appreciable importance as an environmentally friendly technology. Particle synthesis using SCFs can be achieved employing a number of special processes involving solvent and antisolvent mechanisms. In this study, the compressed antisolvent (PCA) process is utilized as a model to analyze the theoretical complexity of crystallization with supercritical fluids. The population balance approach has proven to be an effectual technique to simulate and predict the particle size and size distribution. The nucleation and growth mechanisms of the particles formation in the PCA process is investigated using the population balance equation, which describes the evolution of the particle through coalescence and breakup levels with time. The employed mathematical population balance model contains a set of the partial differential equation with algebraic constraints, which demands a rigorous numerical approach. The combined Collocation and Galerkin finite element method are proposed as a high-resolution technique to solve the dynamics of the PCA process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=particle%20formation" title="particle formation">particle formation</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size%20and%20size%20distribution" title=" particle size and size distribution"> particle size and size distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=PCA" title=" PCA"> PCA</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20carbon%20dioxide" title=" supercritical carbon dioxide"> supercritical carbon dioxide</a> </p> <a href="https://publications.waset.org/abstracts/89209/towards-a-rigorous-analysis-for-a-supercritical-particulate-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32302</span> Advanced Particle Characterisation of Suspended Sediment in the Danube River Using Automated Imaging and Laser Diffraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fl%C3%B3ra%20Pom%C3%A1zi">Flóra Pomázi</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C3%A1ndor%20Baranya"> Sándor Baranya</a>, <a href="https://publications.waset.org/abstracts/search?q=Zolt%C3%A1n%20Szalai"> Zoltán Szalai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A harmonized monitoring of the suspended sediment transport along such a large river as the world’s most international river, the Danube River, is a rather challenging task. The traditional monitoring method in Hungary is obsolete but using indirect measurement devices and techniques like optical backscatter sensors (OBS), laser diffraction or acoustic backscatter sensors (ABS) could provide a fast and efficient alternative option of direct methods. However, these methods are strongly sensitive to the particle characteristics (i.e. particle shape, particle size and mineral composition). The current method does not provide sufficient information about particle size distribution, mineral analysis is rarely done, and the shape of the suspended sediment particles have not been examined yet. The aims of the study are (1) to determine the particle characterisation of suspended sediment in the Danube River using advanced particle characterisation methods as laser diffraction and automated imaging, and (2) to perform a sensitivity analysis of the indirect methods in order to determine the impact of suspended particle characteristics. The particle size distribution is determined by laser diffraction. The particle shape and mineral composition analysis is done by the Morphologi G3ID image analyser. The investigated indirect measurement devices are the LISST-Portable|XR, the LISST-ABS (Sequoia Inc.) and the Rio Grande 1200 kHz ADCP (Teledyne Marine). The major findings of this study are (1) the statistical shape of the suspended sediment particle - this is the first research in this context, (2) the actualised particle size distribution – that can be compared to historical information, so that the morphological changes can be tracked, (3) the actual mineral composition of the suspended sediment in the Danube River, and (4) the reliability of the tested indirect methods has been increased – based on the results of the sensitivity analysis and the previous findings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advanced%20particle%20characterisation" title="advanced particle characterisation">advanced particle characterisation</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20imaging" title=" automated imaging"> automated imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=indirect%20methods" title=" indirect methods"> indirect methods</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20diffraction" title=" laser diffraction"> laser diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20composition" title=" mineral composition"> mineral composition</a>, <a href="https://publications.waset.org/abstracts/search?q=suspended%20sediment" title=" suspended sediment"> suspended sediment</a> </p> <a href="https://publications.waset.org/abstracts/118731/advanced-particle-characterisation-of-suspended-sediment-in-the-danube-river-using-automated-imaging-and-laser-diffraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32301</span> A Numerical and Experimental Study on Fast Pyrolysis of Single Wood Particle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Rezaei">Hamid Rezaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaotao%20Bi"> Xiaotao Bi</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Jim%20Lim"> C. Jim Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Anthony%20Lau"> Anthony Lau</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahab%20Sokhansanj"> Shahab Sokhansanj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A one-dimensional heat transfer model coupled with the kinetic information has been used to predict the overall pyrolysis mass loss of a single wood particle. The kinetic parameters were determined experimentally and the regime and characteristics of the conversion were evaluated in terms of the particle size and reactor temperature. The order of overall mass loss changed from n=1 at temperatures lower than 350 °C to n=0.5 at temperatures higher that 350 °C. Conversion time analysis showed that particles larger than 0.5 mm were controlled by internal thermal resistances. The valid range of particle size to use the simplified lumped model depends on the fluid temperature around the particles. The critical particle size was 0.6-0.7 mm for the fluid temperature of 500 °C and 0.9-1.0 mm for the fluid temperature of 100 °C. Experimental pyrolysis of moist particles did not show distinct drying and pyrolysis stages. The process was divided into two hypothetical drying and pyrolysis dominated zones and empirical correlations are developed to predict the rate of mass loss in each zone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pyrolysis" title="pyrolysis">pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=model" title=" model"> model</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20particle" title=" single particle"> single particle</a> </p> <a href="https://publications.waset.org/abstracts/57465/a-numerical-and-experimental-study-on-fast-pyrolysis-of-single-wood-particle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57465.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32300</span> Effect of Particle Size on Alkali-Activation of Slag</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Petrakis">E. Petrakis</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Karmali"> V. Karmali</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Komnitsas"> K. Komnitsas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study grinding experiments were performed in a laboratory ball mill using Polish ferronickel slag in order to study the effect of the particle size on alkali activation and the properties of the produced alkali activated materials (AAMs). In this regard, the particle size distribution and the specific surface area of the grinding products in relation to grinding time were assessed. The experimental results show that products with high compressive strength, e.g. higher than 60 MPa, can be produced when the slag median size decreased from 39.9 &mu;m to 11.9 &mu;m. Also, finer fractions are characterized by higher reactivity and result in the production of AAMs with lower porosity and better mechanical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkali%20activation" title="alkali activation">alkali activation</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=grinding%20time" title=" grinding time"> grinding time</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size%20distribution" title=" particle size distribution"> particle size distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=slag" title=" slag"> slag</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20integrity" title=" structural integrity"> structural integrity</a> </p> <a href="https://publications.waset.org/abstracts/103046/effect-of-particle-size-on-alkali-activation-of-slag" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32299</span> Particle Size Effect on Shear Strength of Granular Materials in Direct Shear Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Alias">R. Alias</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kasa"> A. Kasa</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Taha"> M. R. Taha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of particle size on shear strength of granular materials are investigated using direct shear tests. Small direct shear test (60 mm by 60 mm by 24 mm deep) were conducted for particles passing the sieves with opening size of 2.36 mm. Meanwhile, particles passing the standard 20 mm sieves were tested using large direct shear test (300 mm by 300 mm by 200 mm deep). The large direct shear tests and the small direct shear tests carried out using the same shearing rate of 0.09 mm/min and similar normal stresses of 100, 200, and 300 kPa. The results show that the peak and residual shear strength decreases as particle size increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=particle%20size" title="particle size">particle size</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=granular%20material" title=" granular material"> granular material</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20shear%20test" title=" direct shear test"> direct shear test</a> </p> <a href="https://publications.waset.org/abstracts/16566/particle-size-effect-on-shear-strength-of-granular-materials-in-direct-shear-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">489</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32298</span> Preparation and Characterization of Diclofenac Sodium Loaded Solid Lipid Nanoparticle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oktavia%20Eka%20Puspita">Oktavia Eka Puspita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The possibility of using Solid Lipid Nanoparticles (SLN) for topical use is an interesting feature concerning this system has occlusive properties on the skin surface therefore enhance the penetration of drugs through the stratum corneum by increased hydration. This advantage can be used to enhance the drug penetration of topical delivery such as Diclofenac sodium for the relief of signs and symptoms of osteoarthritis, rheumatoid arthritis and ankylosing spondylitis. The purpose of this study was focused on the preparation and physical characterization of Diclofenac sodium loaded SLN (D-SLN). D loaded SLN were prepared by hot homogenization followed by ultrasonication technique. Since the occlusion factor of SLN is related to its particle size the formulation of D-SLN in present study two formulations different in its surfactant contents were prepared to investigate the difference of the particle size resulted. Surfactants selected for preparation of formulation A (FA) were lecithin soya and Tween 80 whereas formulation B (FB) were lecithin soya, Tween 80, and Sodium Lauryl Sulphate. D-SLN were characterized for particle size and distribution, polydispersity index (PI), zeta potential using Beckman-Coulter Delsa™ Nano. Overall, the particle size obtained from FA was larger than FB. FA has 90% of the particles were above 1000 nm, while FB has 90% were below 100 nm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solid%20lipid%20nanoparticles" title="solid lipid nanoparticles">solid lipid nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20homogenization%20technique" title=" hot homogenization technique"> hot homogenization technique</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size%20analysis" title=" particle size analysis"> particle size analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=topical%20administration" title=" topical administration"> topical administration</a> </p> <a href="https://publications.waset.org/abstracts/16904/preparation-and-characterization-of-diclofenac-sodium-loaded-solid-lipid-nanoparticle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16904.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">500</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32297</span> A Simplified, Fabrication-Friendly Acoustophoretic Model for Size Sensitive Particle Sorting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Karamzadeh">V. Karamzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Adhvaryu"> J. Adhvaryu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Chandrasekaran"> A. Chandrasekaran</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Packirisamy"> M. Packirisamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Bulk Acoustic Wave (BAW) microfluidics, the throughput of particle sorting is dependent on the complex interplay between the geometric configuration of the channel, the size of the particles, and the properties of the fluid medium, which therefore calls for a detailed modeling and understanding of the fluid-particle interaction dynamics under an acoustic field, prior to designing the system. In this work, we propose a simplified Bulk acoustophoretic system that can be used for size dependent particle sorting. A Finite Element Method (FEM) based analytical model has been developed to study the dependence of particle sizes on channel parameters, and the sorting efficiency in a given fluid medium. Based on the results, the microfluidic system has been designed to take into account all the variables involved with the underlying physics, and has been fabricated using an additive manufacturing technique employing a commercial 3D printer, to generate a simple, cost-effective system that can be used for size sensitive particle sorting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20microfluidic%20chip" title=" 3D microfluidic chip"> 3D microfluidic chip</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustophoresis" title=" acoustophoresis"> acoustophoresis</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20separation" title=" cell separation"> cell separation</a>, <a href="https://publications.waset.org/abstracts/search?q=MEMS%20%28Microelectromechanical%20Systems%29" title=" MEMS (Microelectromechanical Systems)"> MEMS (Microelectromechanical Systems)</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title=" microfluidics"> microfluidics</a> </p> <a href="https://publications.waset.org/abstracts/83336/a-simplified-fabrication-friendly-acoustophoretic-model-for-size-sensitive-particle-sorting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32296</span> The Experimental Study on Reducing and Carbonizing Titanium-Containing Slag by Iron-Containing Coke</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yadong%20Liu">Yadong Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The experimental study on reduction carbonization of coke containing iron respectively with the particle size of <0.3mm, 0.3-0.6mm and 0.6-0.9mm and synthetic sea sand ore smelting reduction titanium-bearing slag as material were studied under the conditions of holding 6h at most at 1500℃. The effects of coke containing iron particle size and heat preservation time on the formation of TiC and the size of TiC crystal were studied by XRD, SEM and EDS. The results show that it is not good for the formation, concentration and growth of TiC crystal when the particle size of coke containing iron is too small or too large. The suitable particle size is 0.3~0.6mm. The heat preservation time of 2h basically ensures that all the component TiO2 in the slag are reduced and carbonized and converted to TiC. The size of TiC crystal will increase with the prolongation of heat preservation time. The thickness of the TiC layer can reach 20μm when the heat preservation time is 6h. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coke%20containing%20iron" title="coke containing iron">coke containing iron</a>, <a href="https://publications.waset.org/abstracts/search?q=formation%20and%20concentration%20and%20growth%20of%20TiC" title=" formation and concentration and growth of TiC"> formation and concentration and growth of TiC</a>, <a href="https://publications.waset.org/abstracts/search?q=reduction%20and%20carbonization" title=" reduction and carbonization"> reduction and carbonization</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium-bearing%20slag" title=" titanium-bearing slag"> titanium-bearing slag</a> </p> <a href="https://publications.waset.org/abstracts/105177/the-experimental-study-on-reducing-and-carbonizing-titanium-containing-slag-by-iron-containing-coke" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105177.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32295</span> Analysis of Dust Particles in Snow Cover in the Surroundings of the City of Ostrava: Particle Size Distribution, Zeta Potential and Heavy Metal Content</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roman%20Marsalek">Roman Marsalek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, snow samples containing dust particles from several sampling points around the city of Ostrava were analyzed. The pH values of sampled snow were measured and solid particles analyzed. Particle size, zeta potential and content of selected heavy metals were determined in solid particles. The pH values of most samples lay in the slightly acid region. Mean values of particle size ranged from 290.5 to 620.5 nm. Zeta potential values varied between -5 and -26.5 mV. The following heavy metal concentration ranges were found: copper 0.08-0.75 mg/g, lead 0.05-0.9 mg/g, manganese 0.45-5.9 mg/g and iron 25.7-280.46 mg/g. The highest values of copper and lead were found in the vicinity of busy crossroads, and on the contrary, the highest levels of manganese and iron were detected close to a large steelworks. The proportion between pH values, zeta potentials, particle sizes and heavy metal contents was established. Zeta potential decreased with rising pH values and, simultaneously, heavy metal content in solid particles increased. At the same time, higher metal content corresponded to lower particle size. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dust" title="dust">dust</a>, <a href="https://publications.waset.org/abstracts/search?q=snow" title=" snow"> snow</a>, <a href="https://publications.waset.org/abstracts/search?q=zeta%20potential" title=" zeta potential"> zeta potential</a>, <a href="https://publications.waset.org/abstracts/search?q=particles%20size%20distribution" title=" particles size distribution"> particles size distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a> </p> <a href="https://publications.waset.org/abstracts/12754/analysis-of-dust-particles-in-snow-cover-in-the-surroundings-of-the-city-of-ostrava-particle-size-distribution-zeta-potential-and-heavy-metal-content" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12754.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32294</span> Estimation of Particle Size Distribution Using Magnetization Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Navneet%20Kaur">Navneet Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20D.%20Tiwari"> S. D. Tiwari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetic nanoparticles possess fascinating properties which make their behavior unique in comparison to corresponding bulk materials. Superparamagnetism is one such interesting phenomenon exhibited only by small particles of magnetic materials. In this state, the thermal energy of particles become more than their magnetic anisotropy energy, and so particle magnetic moment vectors fluctuate between states of minimum energy. This situation is similar to paramagnetism of non-interacting ions and termed as superparamagnetism. The magnetization of such systems has been described by Langevin function. But, the estimated fit parameters, in this case, are found to be unphysical. It is due to non-consideration of particle size distribution. In this work, analysis of magnetization data on NiO nanoparticles is presented considering the effect of particle size distribution. Nanoparticles of NiO of two different sizes are prepared by heating freshly synthesized Ni(OH)₂ at different temperatures. Room temperature X-ray diffraction patterns confirm the formation of single phase of NiO. The diffraction lines are seen to be quite broad indicating the nanocrystalline nature of the samples. The average crystallite size are estimated to be about 6 and 8 nm. The samples are also characterized by transmission electron microscope. Magnetization of both sample is measured as function of temperature and applied magnetic field. Zero field cooled and field cooled magnetization are measured as a function of temperature to determine the bifurcation temperature. The magnetization is also measured at several temperatures in superparamagnetic region. The data are fitted to an appropriate expression considering a distribution in particle size following a least square fit procedure. The computer codes are written in PYTHON. The presented analysis is found to be very useful for estimating the particle size distribution present in the samples. The estimated distributions are compared with those determined from transmission electron micrographs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anisotropy" title="anisotropy">anisotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetization" title=" magnetization"> magnetization</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=superparamagnetism" title=" superparamagnetism"> superparamagnetism</a> </p> <a href="https://publications.waset.org/abstracts/100769/estimation-of-particle-size-distribution-using-magnetization-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32293</span> Formulation of Famotidine Solid Lipid Nanoparticles (SLN): Preparation, Evaluation and Release Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rachmat%20Mauludin">Rachmat Mauludin</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurmazidah"> Nurmazidah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and purpose: Famotidine is an H2 receptor blocker. Absorption orally is rapid enough, but famotidine can be degraded by stomach acid causing dose reduction until 35.8% after 50 minutes. This drug also undergoes first-pass metabolism which reduced its bio availability only until 40-50%. To overcome these problems, Solid Lipid Nano particles (SLNs) as alternative delivery systems can be formulated. SLNs is a lipid-based drug delivery technology with 50-1000 nm particle size, where the drug incorporated into the bio compatible lipids and the lipid particles are stabilized using appropriate stabilizers. When the particle size is 200 nm or below, lipid containing famotidine can be absorbed through the lymphatic vessels to the subclavian vein, so first-pass metabolism can be avoided. Method: Famotidine SLNs with various compositions of stabilizer was prepared using a high-speed homogenization and sonication method. Then, the particle size distribution, zeta potential, entrapment efficiency, particle morphology and in vitro release profiles were evaluated. Optimization of sonication time also carried out. Result: Particle size of SLN by Particle Size Analyzer was in range 114.6 up to 455.267 nm. Ultrasonicated SLNs within 5 minutes generated smaller particle size than SLNs which was ultrasonicated for 10 and 15 minutes. Entrapment efficiency of SLNs were 74.17 up to 79.45%. Particle morphology of the SLNs was spherical and distributed individually. Release study of Famotidine revealed that in acid medium, 28.89 up to 80.55% of famotidine could be released after 2 hours. Nevertheless in basic medium, famotidine was released 40.5 up to 86.88% in the same period. Conclusion: The best formula was SLNs which stabilized by 4% Poloxamer 188 and 1 % Span 20, that had particle size 114.6 nm in diameter, 77.14% famotidine entrapped, and the particle morphology was spherical and distributed individually. SLNs with the best drug release profile was SLNs which stabilized by 4% Eudragit L 100-55 and 1% Tween 80 which had released 36.34 % in pH 1.2 solution, and 74.13% in pH 7.4 solution after 2 hours. The optimum sonication time was 5 minutes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=famotodine" title="famotodine">famotodine</a>, <a href="https://publications.waset.org/abstracts/search?q=SLN" title=" SLN"> SLN</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20speed%20homogenization" title=" high speed homogenization"> high speed homogenization</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size" title=" particle size"> particle size</a>, <a href="https://publications.waset.org/abstracts/search?q=release%20study" title=" release study"> release study</a> </p> <a href="https://publications.waset.org/abstracts/20331/formulation-of-famotidine-solid-lipid-nanoparticles-sln-preparation-evaluation-and-release-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">860</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32292</span> Influence of the Compression Force and Powder Particle Size on Some Physical Properties of Date (Phoenix dactylifera) Tablets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djemaa%20Megdoud">Djemaa Megdoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Messaoud%20Boudaa"> Messaoud Boudaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Ouamrane"> Fatima Ouamrane</a>, <a href="https://publications.waset.org/abstracts/search?q=Salem%20Benamara"> Salem Benamara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the compression of date (Phoenix dactylifera L.) fruit powders (DP) to obtain date tablets (DT) has been suggested as a promising form of valorization of non commercial valuable date fruit (DF) varieties. To further improve and characterize DT, the present study aims to investigate the influence of the DP particle size and compression force on some physical properties of DT. The results show that independently of particle size, the hardness (y) of tablets increases with the increase of the compression force (x) following a logarithmic law (y = a ln (bx) where a and b are the constants of model). Further, a full factorial design (FFD) at two levels, applied to investigate the erosion %, reveals that the effects of time and particle size are the same in absolute value and they are beyond the effect of the compression. Regarding the disintegration time, the obtained results also by means of a FFD show that the effect of the compression force exceeds 4 times that of the DP particle size. As final stage, the color parameters in the CIELab system of DT immediately after their obtaining are differently influenced by the size of the initial powder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=powder" title="powder">powder</a>, <a href="https://publications.waset.org/abstracts/search?q=tablets" title=" tablets"> tablets</a>, <a href="https://publications.waset.org/abstracts/search?q=date%20%28Phoenix%20dactylifera%20L.%29" title=" date (Phoenix dactylifera L.)"> date (Phoenix dactylifera L.)</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion" title=" erosion"> erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=disintegration%20time" title=" disintegration time"> disintegration time</a>, <a href="https://publications.waset.org/abstracts/search?q=color" title=" color"> color</a> </p> <a href="https://publications.waset.org/abstracts/16986/influence-of-the-compression-force-and-powder-particle-size-on-some-physical-properties-of-date-phoenix-dactylifera-tablets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32291</span> Modeling of Particle Reduction and Volatile Compounds Profile during Chocolate Conching by Electronic Nose and Genetic Programming (GP) Based System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juzhong%20Tan">Juzhong Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20Kerr"> William Kerr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conching is one critical procedure in chocolate processing, where special flavors are developed, and smooth mouse feel the texture of the chocolate is developed due to particle size reduction of cocoa mass and other additives. Therefore, determination of the particle size and volatile compounds profile of cocoa bean is important for chocolate manufacturers to ensure the quality of chocolate products. Currently, precise particle size measurement is usually done by laser scattering which is expensive and inaccessible to small/medium size chocolate manufacturers. Also, some other alternatives, such as micrometer and microscopy, can’t provide good measurements and provide little information. Volatile compounds analysis of cocoa during conching, has similar problems due to its high cost and limited accessibility. In this study, a self-made electronic nose system consists of gas sensors (TGS 800 and 2000 series) was inserted to a conching machine and was used to monitoring the volatile compound profile of chocolate during the conching. A model correlated volatile compounds profiles along with factors including the content of cocoa, sugar, and the temperature during the conching to particle size of chocolate particles by genetic programming was established. The model was used to predict the particle size reduction of chocolates with different cocoa mass to sugar ratio (1:2, 1:1, 1.5:1, 2:1) at 8 conching time (15min, 30min, 1h, 1.5h, 2h, 4h, 8h, and 24h). And the predictions were compared to laser scattering measurements of the same chocolate samples. 91.3% of the predictions were within the range of later scatting measurement ± 5% deviation. 99.3% were within the range of later scatting measurement ± 10% deviation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cocoa%20bean" title="cocoa bean">cocoa bean</a>, <a href="https://publications.waset.org/abstracts/search?q=conching" title=" conching"> conching</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20nose" title=" electronic nose"> electronic nose</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20programming" title=" genetic programming"> genetic programming</a> </p> <a href="https://publications.waset.org/abstracts/60043/modeling-of-particle-reduction-and-volatile-compounds-profile-during-chocolate-conching-by-electronic-nose-and-genetic-programming-gp-based-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60043.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32290</span> Growth Performance and Critical Supersaturation of Heterogeneous Condensation for High Concentration of Insoluble Sub-Micron Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jie%20Yin">Jie Yin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Zhang"> Jun Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Measuring the growth performance and critical supersaturation of particle group have a high reference value for constructing a supersaturated water vapor environment that can improve the removal efficiency of the high-concentration particle group. The critical supersaturation and the variation of the growth performance with supersaturation for high-concentration particles were measured by a flow cloud chamber. Findings suggest that the influence of particle concentration on the growth performance will reduce with the increase of supersaturation. Reducing residence time and increasing particle concentration have similar effects on the growth performance of the high-concentration particle group. Increasing particle concentration and shortening residence time will increase the critical supersaturation of the particle group. The critical supersaturation required to activate a high-concentration particle group is lower than that of the single-particle when the minimum particle size in the particle group is the same as that of a single particle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sub-micron%20particles" title="sub-micron particles">sub-micron particles</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20condensation" title=" heterogeneous condensation"> heterogeneous condensation</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20supersaturation" title=" critical supersaturation"> critical supersaturation</a>, <a href="https://publications.waset.org/abstracts/search?q=nucleation" title=" nucleation"> nucleation</a> </p> <a href="https://publications.waset.org/abstracts/147194/growth-performance-and-critical-supersaturation-of-heterogeneous-condensation-for-high-concentration-of-insoluble-sub-micron-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32289</span> The Study on Treatment Technology of Fused Carbonized Blast Furnace Slag</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiaxu%20Huang">Jiaxu Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The melt carbonized blast furnace slag containing TiC was produced by carbothermal reduction of high titanium blast furnace slag. The treatment technology of melt carbonized blast furnace slag with TiC as raw material was studied, including the influence of different cooling methods, crushing atmosphere and sieving particle size on the target product TiC in the slag. The results show that air-cooling and water-cooling have little effect on TiC content of molten carbide blast furnace slag, and have great effect on crystal structure and grain size. TiC content in slag is different when carbide blast furnace slag is crushed in argon atmosphere and air atmosphere. After screening, the difference of TiC content of carbide blast furnace slag with different particle size distribution is obvious. The average TiC content of 100-400 mesh carbide blast furnace slag is 14%. And the average TiC content of carbide blast furnace slag with particle size less than 400 mesh is 10.5%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crushing%20atmosphere" title="crushing atmosphere">crushing atmosphere</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20methods" title=" cooling methods"> cooling methods</a>, <a href="https://publications.waset.org/abstracts/search?q=sieving%20particle%20size" title=" sieving particle size"> sieving particle size</a>, <a href="https://publications.waset.org/abstracts/search?q=TiC" title=" TiC"> TiC</a> </p> <a href="https://publications.waset.org/abstracts/108634/the-study-on-treatment-technology-of-fused-carbonized-blast-furnace-slag" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32288</span> Synthesis, Structural and Magnetic Properties of CdFe2O4 Ferrite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Justice%20Zakhele%20Msomi">Justice Zakhele Msomi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanoparticles of CdFe2O4 with particle size of about 10 nm have been synthesized by high energy ball milling and co-precipitation processes. The synthesis route appears to have some effects on the properties. The compounds have been characterized by X-ray diffraction, Fourier Transform Infrared (FTIR), transmission electron microscopy (TEM), Mössbauer and magnetization measurements. The XRD pattern of CdFe2O4 provides information about single-phase formation of spinel structure with cubic symmetry. The FTIR measurements between 400 and 4000 cm-1 indicate intrinsic cation vibration of the spinel structure. The Mössbauer spectra were recorded at 4 K and 300 K. The hyperfine fields appear to be highly sensitive on particle size. The evolution of the properties as a function of particle size is also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ferrite" title="ferrite">ferrite</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetization" title=" magnetization"> magnetization</a>, <a href="https://publications.waset.org/abstracts/search?q=M%C3%B6ssbauer" title=" Mössbauer "> Mössbauer </a> </p> <a href="https://publications.waset.org/abstracts/35798/synthesis-structural-and-magnetic-properties-of-cdfe2o4-ferrite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35798.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32287</span> Bio Ethanol Production From the Co-Mixture of Jatropha Carcus L. Kernel Cake and Rice Straw</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Felix%20U.%20Asoiro">Felix U. Asoiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20I.%20Eleazar"> Daniel I. Eleazar</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20O.%20Offor"> Peter O. Offor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a result of increasing energy demands, research in bioethanol has increased in recent years all through the world, in abide to partially or totally replace renewable energy supplies. The first and third generation feedstocks used for biofuel production have fundamental drawbacks. Waste rice straw and cake from second generation feedstock like Jatropha curcas l. kernel (JC) is seen as non-food feedstock and promising candidates for the industrial production of bioethanol. In this study, JC and rice husk (RH) wastes were characterized for proximate composition. Bioethanol was produced from the residual polysaccharides present in rice husk (RH) and Jatropha seed cake by sequential hydrolytic and fermentative processes at varying mixing proportions (50 g JC/50 g RH, 100 g JC/10 g RH, 100 g JC/20 g RH, 100 g JC/50 g RH, 100 g JC/100 g RH, 100 g JC/200 g RH and 200 g JC/100 g RH) and particle sizes (0.25, 0.5 and 1.00 mm). Mixing proportions and particle size significantly affected both bioethanol yield and some bioethanol properties. Bioethanol yield (%) increased with an increase in particle size. The highest bioethanol (8.67%) was produced at a mixing proportion of 100 g JC/50g RH at 0.25 mm particle size. The bioethanol had the lowest values of specific gravity and density of 1.25 and 0.92 g cm-3 and the highest values of 1.57 and 0.97 g cm-3 respectively. The highest values of viscosity (4.64 cSt) were obtained with 200 g JC/100 g RH, at 1.00 mm particle size. The maximum flash point and cloud point values were 139.9 oC and 23.7oC (100 g JC/200 g RH) at 1 mm and 0.5 mm particle sizes respectively. The maximum pour point value recorded was 3.85oC (100 g JC/50 g RH) at 1 mm particle size. The paper concludes that bioethanol can be recovered from JC and RH wastes. JC and RH blending proportions as well as particle sizes are important factors in bioethanol production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioethanol" title="bioethanol">bioethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrolysis" title=" hydrolysis"> hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Jatropha%20curcas%20l.%20kernel" title=" Jatropha curcas l. kernel"> Jatropha curcas l. kernel</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20husk" title=" rice husk"> rice husk</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=proximate%20composition" title=" proximate composition"> proximate composition</a> </p> <a href="https://publications.waset.org/abstracts/151621/bio-ethanol-production-from-the-co-mixture-of-jatropha-carcus-l-kernel-cake-and-rice-straw" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32286</span> Effect of Bi-Dispersity on Particle Clustering in Sedimentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Abbas%20Zaidi">Ali Abbas Zaidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In free settling or sedimentation, particles form clusters at high Reynolds number and dilute suspensions. It is due to the entrapment of particles in the wakes of upstream particles. In this paper, the effect of bi-dispersity of settling particles on particle clustering is investigated using particle-resolved direct numerical simulation. Immersed boundary method is used for particle fluid interactions and discrete element method is used for particle-particle interactions. The solid volume fraction used in the simulation is 1% and the Reynolds number based on Sauter mean diameter is 350. Both solid volume fraction and Reynolds number lie in the clustering regime of sedimentation. In simulations, the particle diameter ratio (i.e. diameter of larger particle to smaller particle (d₁/d₂)) is varied from 2:1, 3:1 and 4:1. For each case of particle diameter ratio, solid volume fraction for each particle size (φ₁/φ₂) is varied from 1:1, 1:2 and 2:1. For comparison, simulations are also performed for monodisperse particles. For studying particles clustering, radial distribution function and instantaneous location of particles in the computational domain are studied. It is observed that the degree of particle clustering decreases with the increase in the bi-dispersity of settling particles. The smallest degree of particle clustering or dispersion of particles is observed for particles with d₁/d₂ equal to 4:1 and φ₁/φ₂ equal to 1:2. Simulations showed that the reduction in particle clustering by increasing bi-dispersity is due to the difference in settling velocity of particles. Particles with larger size settle faster and knockout the smaller particles from clustered regions of particles in the computational domain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dispersion%20in%20bi-disperse%20settling%20particles" title="dispersion in bi-disperse settling particles">dispersion in bi-disperse settling particles</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20microstructures%20in%20bi-disperse%20suspensions" title=" particle microstructures in bi-disperse suspensions"> particle microstructures in bi-disperse suspensions</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20resolved%20direct%20numerical%20simulations" title=" particle resolved direct numerical simulations"> particle resolved direct numerical simulations</a>, <a href="https://publications.waset.org/abstracts/search?q=settling%20of%20bi-disperse%20particles" title=" settling of bi-disperse particles"> settling of bi-disperse particles</a> </p> <a href="https://publications.waset.org/abstracts/86250/effect-of-bi-dispersity-on-particle-clustering-in-sedimentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32285</span> The Influence of the Form of Grain on the Mechanical Behaviour of Sand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Boualem%20Salah">Mohamed Boualem Salah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The size and shape of soil particles reflect the formation history of the grains. In turn, the macro scale behavior of the soil mass results from particle level interactions which are affected by particle shape. Sphericity, roundness and smoothness characterize different scales associated to particle shape. New experimental data and data from previously published studies are gathered into two databases to explore the effects of particle shape on packing as well as small and large-strain properties of sandy soils. Data analysis shows that increased particle irregularity (angularity and/or eccentricity) leads to: an increase in emax and emin, a decrease in stiffness yet with increased sensitivity to the state of stress, an increase in compressibility under zero-lateral strain loading, and an increase in critical state friction angle φcs and intercept Γ with a weak effect on slope λ. Therefore, particle shape emerges as a significant soil index property that needs to be properly characterized and documented, particularly in clean sands and gravels. The systematic assessment of particle shape will lead to a better understanding of sand behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=angularity" title="angularity">angularity</a>, <a href="https://publications.waset.org/abstracts/search?q=eccentricity" title=" eccentricity"> eccentricity</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20%20particle" title=" shape particle"> shape particle</a>, <a href="https://publications.waset.org/abstracts/search?q=behavior%20of%20soil" title=" behavior of soil"> behavior of soil</a> </p> <a href="https://publications.waset.org/abstracts/17611/the-influence-of-the-form-of-grain-on-the-mechanical-behaviour-of-sand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32284</span> Foaming and Structuring Properties of Chickpea Cooking Water (Aquafaba): Effect of Ingredient Added and Their Particle Size</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carola%20Cappa">Carola Cappa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chickpea cooking water (known as aquafaba, AF) is a “waste” product having interesting technological properties exploitable for sustainable plant-based food applications that can encounter a larger consumers demand. Different process conditions to obtain AF were defined; the addition of hydrocolloid (i.e., guar gum) and lactic acid to improve the techno-functionalities of aquafaba was explored, and the effects of these ingredients on the foaming properties and the quality of plant-based target confectionery products were investigated. Meringues having a solid foam structure and a simple formulation (i.e., foaming agent and sugar) and chocolate mousse were chosen as target foods. The effects of the sugar particle size reduction on the empirical and fundamental rheological properties of the foaming agent and of the mousse were evaluated. The treatment did not significantly change the viscosity of the system, while the overrun and foam stability were affected by sugar particle size, and mousse with coarse sugar was characterized by a higher consistency, confirming the importance of the particle size of the ingredients on the texture of the final product. This study proved that AF, a recycled “waste” product, possesses interesting techno-functionalities properties further enhanced by adding lactic acid and modulable according to ingredient particle size; these AF results are useable for plant-based food applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=foaming%20properties" title="foaming properties">foaming properties</a>, <a href="https://publications.waset.org/abstracts/search?q=foam%20stability" title=" foam stability"> foam stability</a>, <a href="https://publications.waset.org/abstracts/search?q=foam%20texture" title=" foam texture"> foam texture</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size" title=" particle size"> particle size</a>, <a href="https://publications.waset.org/abstracts/search?q=acidification" title=" acidification"> acidification</a>, <a href="https://publications.waset.org/abstracts/search?q=aquafaba" title=" aquafaba"> aquafaba</a> </p> <a href="https://publications.waset.org/abstracts/163109/foaming-and-structuring-properties-of-chickpea-cooking-water-aquafaba-effect-of-ingredient-added-and-their-particle-size" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32283</span> Particle Size Dependent Magnetic Properties of CuFe2O4 Spinel Ferrite Nanoparticles Synthesized by Starch-Assisted Sol-Gel Auto-Combustion Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Yadav">R. S. Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Havlica"> J. Havlica</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Ku%C5%99itka"> I. Kuřitka</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Kozakova"> Z. Kozakova</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Masilko"> J. Masilko</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Kalina"> L. Kalina</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hajd%C3%BAchov%C3%A1"> M. Hajdúchová</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Enev"> V. Enev</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Wasserbauer"> J. Wasserbauer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, copper ferrite CuFe2O4 spinel ferrite nanoparticles with different particle size at different annealing temperature were synthesized using the starch-assisted sol-gel auto-combustion method. The synthesized nanoparticles were characterized by conventional powder X-ray diffraction (XRD) spectroscopy, Raman Spectroscopy, Fourier Transform Infrared Spectroscopy, Field-Emission Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy, and Vibrating Sample Magnetometer. The XRD patterns confirmed the formation of CuFe2O4 spinel ferrite nanoparticles. Field-Emission Scanning Electron Microscopy revealed that particles are of spherical morphology with particle size 5-20 nm at lower annealing temperature. An infrared spectroscopy study showed the presence of two principal absorption bands in the frequency range around 530 cm-1 (ν1) and around 360 cm-1 (ν2); which indicate the presence of tetrahedral and octahedral group complexes, respectively, within the spinel ferrite nanoparticles. Raman spectroscopy study also indicated the change in octahedral and tetrahedral site related Raman modes in copper ferrite nanoparticles with change of particle size. This change in magnetic behavior with change of particle size of CuFe2O4 nanoparticles was also observed. The change in magnetic properties with change of particle size is due to cation redistribution, which was confirmed by X-Ray photoelectron study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper%20ferrite" title="copper ferrite">copper ferrite</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20property" title=" magnetic property"> magnetic property</a>, <a href="https://publications.waset.org/abstracts/search?q=CuFe2O4" title=" CuFe2O4"> CuFe2O4</a> </p> <a href="https://publications.waset.org/abstracts/19923/particle-size-dependent-magnetic-properties-of-cufe2o4-spinel-ferrite-nanoparticles-synthesized-by-starch-assisted-sol-gel-auto-combustion-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32282</span> Synthesis and Characterization of LiCoO2 Cathode Material by Sol-Gel Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nur%20Azilina%20Abdul%20Aziz">Nur Azilina Abdul Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Tuti%20Katrina%20Abdullah"> Tuti Katrina Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Azmin%20Mohamad"> Ahmad Azmin Mohamad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lithium-transition metals and some of their oxides, such as LiCoO2, LiMn2O2, LiFePO4, and LiNiO2 have been used as cathode materials in high performance lithium-ion rechargeable batteries. Among the cathode materials, LiCoO2 has potential to been widely used as a lithium-ion battery because of its layered crystalline structure, good capacity, high cell voltage, high specific energy density, high power rate, low self-discharge, and excellent cycle life. This cathode material has been widely used in commercial lithium-ion batteries due to its low irreversible capacity loss and good cycling performance. However, there are several problems that interfere with the production of material that has good electrochemical properties, including the crystallinity, the average particle size and particle size distribution. In recent years, synthesis of nanoparticles has been intensively investigated. Powders prepared by the traditional solid-state reaction have a large particle size and broad size distribution. On the other hand, solution method can reduce the particle size to nanometer range and control the particle size distribution. In this study, LiCoO2 was synthesized using the sol–gel preparation method, which Lithium acetate and Cobalt acetate were used as reactants. The stoichiometric amounts of the reactants were dissolved in deionized water. The solutions were stirred for 30 hours using magnetic stirrer, followed by heating at 80°C under vigorous stirring until a viscous gel was formed. The as-formed gel was calcined at 700°C for 7 h under a room atmosphere. The structural and morphological analysis of LiCoO2 was characterized using X-ray diffraction and Scanning electron microscopy. The diffraction pattern of material can be indexed based on the α-NaFeO2 structure. The clear splitting of the hexagonal doublet of (006)/(102) and (108)/(110) in this patterns indicates materials are formed in a well-ordered hexagonal structure. No impurity phase can be seen in this range probably due to the homogeneous mixing of the cations in the precursor. Furthermore, SEM micrograph of the LiCoO2 shows the particle size distribution is almost uniform while particle size is between 0.3-0.5 microns. In conclusion, LiCoO2 powder was successfully synthesized using the sol–gel method. LiCoO2 showed a hexagonal crystal structure. The sample has been prepared clearly indicate the pure phase of LiCoO2. Meanwhile, the morphology of the sample showed that the particle size and size distribution of particles is almost uniform. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cathode%20material" title="cathode material">cathode material</a>, <a href="https://publications.waset.org/abstracts/search?q=LiCoO2" title=" LiCoO2"> LiCoO2</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium-ion%20rechargeable%20batteries" title=" lithium-ion rechargeable batteries"> lithium-ion rechargeable batteries</a>, <a href="https://publications.waset.org/abstracts/search?q=Sol-Gel%20method" title=" Sol-Gel method"> Sol-Gel method</a> </p> <a href="https://publications.waset.org/abstracts/32907/synthesis-and-characterization-of-licoo2-cathode-material-by-sol-gel-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32907.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32281</span> Particle Deflection in a PDMS Microchannel Caused by a Plane Travelling Surface Acoustic Wave</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Florian%20Keipert">Florian Keipert</a>, <a href="https://publications.waset.org/abstracts/search?q=Hagen%20Schmitd"> Hagen Schmitd</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The size selective separation of different species in a microfluidic system is an actual task in biological or medical research. Former works dealt with the utilisation of the acoustic radiation force (ARF) caused by a plane travelling Surface Acoustic Wave (tSAW). In literature the ARF is described by a dimensionless parameter κ, depending on the wavelength and the particle diameter. To our knowledge research was done for values 0.2 < κ < 5.8 showing that the ARF is dominating the acoustic streaming force (ASF) for κ > 1.2. As a consequence the particle separation is limited by κ. In addition the dependence on the electrical power level was examined but only for κ > 1 pointing out an increased particle deflection for higher electrical power levels. Nevertheless a detailed study on the ASF and ARF especially for κ < 1 is still missing. In our setup we used a tSAW with a wavelength λ = 90 µm and 3 µm PS particles corresponding to κ = 0.3. Herewith the influence of the applied electrical power level on the particle deflection in a polydimethylsiloxan micro channel was investigated. Our results show an increased particle deflection for an increased electrical power level, which coincides with the reported results for κ > 1. Therefore particle separation is in contrast to literature also possible for lower κ values. Thereby the experimental setup can be generally simplified by a coordinated electrical power level for the specific particle size. Furthermore this raises the question of whether this particle deflection is caused only by the ARF as adopted so far or by the ASF or the sum of both forces. To investigate this fact a 0% - 24% saline solution was used and thus the mismatch between the compressibility of the PS particle and the working fluid could be changed. Therefore it is possible to change the relative strength between ARF and ASF and consequently the particle deflection. We observed a decreasing in the particle deflection for an increased NaCl content up to a 12% saline solution and subsequently an increasing of the particle deflection. Our observation could be explained by the acoustic contrast factor Φ, which depends on the compressibility mismatch. The compressibility of water is increased by the NaCl and the range of a 0% - 24% saline solution covers the PS particle compressibility. Hence the particle deflection reaches a minimum value for the accordance between compressibility of PS particle and saline solution. This minimum value can be estimated as the particle deflection only caused by the ASF. Knowing the particle deflection due to the ASF the particle deflection caused by the ARF can be calculated and thus finally the relation between both forces. Concluding, the particle deflection and therefore the size selective particle separation generated by a tSAW can be achieved for values κ < 1, simplifying actual setups by adjusting the electrical power level. Beyond we studied for the first time the relative strength between ARF and ASF to characterise the particle deflection in a microchannel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ARF" title="ARF">ARF</a>, <a href="https://publications.waset.org/abstracts/search?q=ASF" title=" ASF"> ASF</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20separation" title=" particle separation"> particle separation</a>, <a href="https://publications.waset.org/abstracts/search?q=saline%20solution" title=" saline solution"> saline solution</a>, <a href="https://publications.waset.org/abstracts/search?q=tSAW" title=" tSAW"> tSAW</a> </p> <a href="https://publications.waset.org/abstracts/43574/particle-deflection-in-a-pdms-microchannel-caused-by-a-plane-travelling-surface-acoustic-wave" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32280</span> The Grain Size Distribution of Sandy Soils in Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Massoud%20Farag%20Abouklaish">Massoud Farag Abouklaish</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main aim of the present study is to investigate and classify the particle size distribution of sandy soils in Libya. More than fifty soil samples collected from many regions in North, West and South of Libya. Laboratory sieve analysis tests performed on disturbed soil samples to determine grain size distribution. As well as to provide an indicator of general engineering behavior and good understanding, test results are presented and analysed. In addition, conclusions, recommendations are made. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Libya" title="Libya">Libya</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20size" title=" grain size"> grain size</a>, <a href="https://publications.waset.org/abstracts/search?q=sandy%20soils" title=" sandy soils"> sandy soils</a>, <a href="https://publications.waset.org/abstracts/search?q=sieve%20analysis%20tests" title=" sieve analysis tests"> sieve analysis tests</a> </p> <a href="https://publications.waset.org/abstracts/21269/the-grain-size-distribution-of-sandy-soils-in-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21269.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">614</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=particle%20size%20analysis&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=particle%20size%20analysis&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=particle%20size%20analysis&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=particle%20size%20analysis&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=particle%20size%20analysis&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=particle%20size%20analysis&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=particle%20size%20analysis&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=particle%20size%20analysis&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=particle%20size%20analysis&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=particle%20size%20analysis&amp;page=1076">1076</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=particle%20size%20analysis&amp;page=1077">1077</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=particle%20size%20analysis&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10