CINXE.COM
Publications | Materials and Metallurgical Engineering
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Publications | Materials and Metallurgical Engineering</title> <meta name="description" content="Publications | Materials and Metallurgical Engineering"> <meta name="keywords" content="Publications | Materials and Metallurgical Engineering"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value=""> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1023</div> </div> </div> </div> <div class="mt-3 text-center"> <h1 class="mb-1" style="font-size:1.2rem;">World Academy of Science, Engineering and Technology</h1> <h2 class="mb-1" style="font-size:1.1rem;">[Materials and Metallurgical Engineering]</h2> <h3 class="mb-1" style="font-size:1rem;">Online ISSN : 1307-6892</h3> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1023</span> Structural and Optical Properties of Silver Sulfide-Reduced Graphene Oxide Nanocomposite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Oyugi%20Ngure%20Robert">Oyugi Ngure Robert</a>, <a href="https://publications.waset.org/search?q=Tabitha%20A.%20Amollo"> Tabitha A. Amollo</a>, <a href="https://publications.waset.org/search?q=Kallen%20Mulilo%20Nalyanya"> Kallen Mulilo Nalyanya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Nanomaterials have attracted significant attention in research because of their exemplary properties, making them suitable for diverse applications. This paper reports the successful synthesis as well as the structural and optical properties of silver sulfide-reduced graphene oxide (Ag2S-rGO) nanocomposite. The nanocomposite was synthesized by the chemical reduction method. Scanning electron microscopy (SEM) showed that the reduced graphene oxide (rGO) sheets were intercalated within the Ag2S nanoparticles during the chemical reduction process. The SEM images also showed that Ag2S had the shape of nanowires. Further, SEM energy dispersive X-ray (SEM EDX) showed that Ag2S-rGO is mainly composed of C, Ag, O, and S. X-ray diffraction analysis manifested a high crystallinity for the nanowire-shaped Ag2S nanoparticles with a d-spacing ranging between 1.0 Å and 5.2 Å. Thermal gravimetric analysis (TGA) showed that rGO enhances the thermal stability of the nanocomposite. Ag2S-rGO nanocomposite exhibited strong optical absorption in the UV region. The formed nanocomposite is dispersible in polar and non-polar solvents, qualifying it for solution-based device processing. Thus, the surface plasmon resonance effect associated with metallic nanoparticles, strong optical absorption, thermal stability crystallinity and hydrophilicity of the nanocomposite suits it for solar energy conversion applications.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Silver%20sulfide" title="Silver sulfide">Silver sulfide</a>, <a href="https://publications.waset.org/search?q=reduced%20graphene%20oxide" title=" reduced graphene oxide"> reduced graphene oxide</a>, <a href="https://publications.waset.org/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/search?q=structural%20properties" title=" structural properties"> structural properties</a>, <a href="https://publications.waset.org/search?q=optical%20properties." title=" optical properties."> optical properties.</a> </p> <a href="https://publications.waset.org/10013862/structural-and-optical-properties-of-silver-sulfide-reduced-graphene-oxide-nanocomposite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013862/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013862/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013862/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013862/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013862/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013862/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013862/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013862/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013862/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013862/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">35</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1022</span> Modeling of Nitrogen Solubility in Stainless Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Saeed%20Ghali">Saeed Ghali</a>, <a href="https://publications.waset.org/search?q=Hoda%20El-Faramawy"> Hoda El-Faramawy</a>, <a href="https://publications.waset.org/search?q=Mamdouh%20Eissa"> Mamdouh Eissa</a>, <a href="https://publications.waset.org/search?q=Michael%20Mishreky"> Michael Mishreky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Scale-resistant austenitic stainless steel, X45CrNiW 18-9, has been developed, and modified steels produced through partial and total nickel replacement by nitrogen. These modified steels were produced in a 10 kg induction furnace under different nitrogen pressures and were cast into ingots. The produced modified stainless steels were forged, followed by air cooling. The phases of modified stainless steels have been investigated using the Schaeffler diagram, dilatometer, and microstructure observations. Both partial and total replacements of nickel using 0.33-0.50% nitrogen are effective in producing fully austenitic stainless steels. The nitrogen contents were determined and compared with those calculated using the Institute of Metal Science (IMS) equation. The results showed great deviations between the actual nitrogen contents and predicted values through IMS equation. So, an equation has been derived based on chemical composition, pressure, and temperature at 1600 oC: [N%] = 0.0078 + 0.0406*X, where X is a function of chemical composition and nitrogen pressure. The derived equation has been used to calculate the nitrogen content of different steels using published data. The results reveal the difficulty of deriving a general equation for the prediction of nitrogen content covering different steel compositions. So, it is necessary to use a narrow composition range. </p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Solubility" title="Solubility">Solubility</a>, <a href="https://publications.waset.org/search?q=nitrogen" title=" nitrogen"> nitrogen</a>, <a href="https://publications.waset.org/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a>, <a href="https://publications.waset.org/search?q=Schaeffler." title=" Schaeffler."> Schaeffler.</a> </p> <a href="https://publications.waset.org/10013774/modeling-of-nitrogen-solubility-in-stainless-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013774/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013774/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013774/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013774/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013774/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013774/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013774/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013774/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013774/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013774/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1021</span> High Quality Colored Wind Chimes by Anodization on Aluminum Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Chia-Chih%20Wei">Chia-Chih Wei</a>, <a href="https://publications.waset.org/search?q=Yun-Qi%20Li"> Yun-Qi Li</a>, <a href="https://publications.waset.org/search?q=Ssu-Ying%20Chen"> Ssu-Ying Chen</a>, <a href="https://publications.waset.org/search?q=Hsuan-Jung%20Chen"> Hsuan-Jung Chen</a>, <a href="https://publications.waset.org/search?q=Hsi-Wen%20Yang"> Hsi-Wen Yang</a>, <a href="https://publications.waset.org/search?q=Chih-Yuan%20Chen"> Chih-Yuan Chen</a>, <a href="https://publications.waset.org/search?q=Chien-Chon%20Chen"> Chien-Chon Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, we used a high-quality anodization technique to make a colored wind chime with a nano-tube structure anodic film, which controls the length-to-diameter ratio of an aluminum rod and controls the oxide film structure on the surface of the aluminum rod by an anodizing method. The research experiment used hard anodization to grow a controllable thickness of anodic film on an aluminum alloy surface. The hard anodization film has high hardness, high insulation, high-temperature resistance, good corrosion resistance, colors, and mass production properties that can be further applied to transportation, electronic products, biomedical fields, or energy industry applications. This study also provides in-depth research and a detailed discussion of the related process of aluminum alloy surface hard anodizing, including pre-anodization, anodization, and post-anodization. The experiment parameters of anodization include using a mixed acid solution of sulfuric acid and oxalic acid as an anodization electrolyte and controlling the temperature, time, current density, and final voltage to obtain the anodic film. In the results of the experiments, the properties of the anodic film, including thickness, hardness, insulation, and corrosion characteristics, the microstructure of the anode film were measured, and the hard anodization efficiency was calculated. Thereby it can obtain different transmission speeds of sound in the aluminum rod. And, different audio sounds can present on the aluminum rod. Another feature of the present experiment result is the use of the anodizing method and dyeing method, laser engraving patterning and electrophoresis method to make good-quality colored aluminum wind chimes.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Anodization" title="Anodization">Anodization</a>, <a href="https://publications.waset.org/search?q=aluminum" title=" aluminum"> aluminum</a>, <a href="https://publications.waset.org/search?q=wind%20chime" title=" wind chime"> wind chime</a>, <a href="https://publications.waset.org/search?q=nano-tube." title=" nano-tube."> nano-tube.</a> </p> <a href="https://publications.waset.org/10013698/high-quality-colored-wind-chimes-by-anodization-on-aluminum-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013698/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013698/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013698/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013698/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013698/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013698/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013698/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013698/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013698/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013698/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013698.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1020</span> Investigating the Viability of Small-Scale Rapid Alloy Prototyping of Interstitial Free Steels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Talal%20S.%20Abdullah">Talal S. Abdullah</a>, <a href="https://publications.waset.org/search?q=Shahin%20Mehraban"> Shahin Mehraban</a>, <a href="https://publications.waset.org/search?q=Geraint%20Lodwig"> Geraint Lodwig</a>, <a href="https://publications.waset.org/search?q=Nicholas%20P.%20Lavery"> Nicholas P. Lavery</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The defining property of Interstitial Free (IF) steels is formability, comprehensively measured using the Lankford coefficient (r-value) on uniaxial tensile test data. The contributing factors supporting this feature are grain size, orientation, and elemental additions. The processes that effectively modulate these factors are the casting procedure, hot rolling, and heat treatment. An existing methodology is well-practised in the steel industry; however, large-scale production and experimentation consume significant proportions of time, money, and material. Introducing small-scale rapid alloy prototyping (RAP) as an alternative process would considerably reduce the drawbacks relative to standard practices. The aim is to finetune the existing fundamental procedures implemented in the industrial plant to adapt to the RAP route. IF material is remelted in the 80-gram coil induction melting (CIM) glovebox. To birth small grains, maximum deformation must be induced onto the cast material during the hot rolling process. The rolled strip must then satisfy the polycrystalline behaviour of the bulk material by displaying a resemblance in microstructure, hardness, and formability to that of the literature and actual plant steel. A successful outcome of this work is that small-scale RAP can achieve target compositions with similar microstructures and statistically consistent mechanical properties which complements and accelerates the development of novel steel grades.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Interstitial%20free" title="Interstitial free">Interstitial free</a>, <a href="https://publications.waset.org/search?q=miniaturized%20tensile%20specimen" title=" miniaturized tensile specimen"> miniaturized tensile specimen</a>, <a href="https://publications.waset.org/search?q=plastic%20anisotropy" title=" plastic anisotropy"> plastic anisotropy</a>, <a href="https://publications.waset.org/search?q=rapid%20alloy%20prototyping." title=" rapid alloy prototyping."> rapid alloy prototyping.</a> </p> <a href="https://publications.waset.org/10013554/investigating-the-viability-of-small-scale-rapid-alloy-prototyping-of-interstitial-free-steels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013554/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013554/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013554/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013554/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013554/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013554/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013554/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013554/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013554/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013554/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013554.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1019</span> Fatigue Behavior of Dissimilar Welded Monel400 and SS316 by FSW</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Aboozar%20Aghaei">Aboozar Aghaei</a>, <a href="https://publications.waset.org/search?q=Kamran%20Dehghani"> Kamran Dehghani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In the present work, the dissimilar Monel400 and SS316 were joined by Friction Stir Welding (FSW). The applied rotating speed was 400 rpm, whereas the traverse speed varied between 50 and 150 mm/min. At a constant rotating speed, the sound welds were obtained at the welding speeds of 50 mm/min and 100 mm/min. However, a groove-like defect was formed when the welding speed exceeded 100 mm/min. The mechanical properties of the joints were evaluated using tensile and fatigue tests. The fatigue strength of dissimilar FSWed specimens was higher than that of both Monel400 and SS316. To study the failure behavior of FSWed specimens, the fracture surfaces were analyzed using a Scanning Electron Microscope (SEM). The failure analysis indicates that different mechanisms may contribute to the fracture of welds. This was attributed to the dissimilar characteristics of dissimilar materials exhibiting different failure behaviors.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Frictions%20stir%20welding" title="Frictions stir welding">Frictions stir welding</a>, <a href="https://publications.waset.org/search?q=FSW" title=" FSW"> FSW</a>, <a href="https://publications.waset.org/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a>, <a href="https://publications.waset.org/search?q=Monel400" title=" Monel400"> Monel400</a>, <a href="https://publications.waset.org/search?q=mechanical%20properties." title=" mechanical properties."> mechanical properties.</a> </p> <a href="https://publications.waset.org/10013516/fatigue-behavior-of-dissimilar-welded-monel400-and-ss316-by-fsw" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013516/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013516/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013516/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013516/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013516/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013516/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013516/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013516/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013516/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013516/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013516.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1018</span> Application of Voltammetry to Study Corrosion of Steel Buried in Unsaturated Soil in the Presence of Cathodic Protection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mandlenkosi%20George%20Robert%20Mahlobo">Mandlenkosi George Robert Mahlobo</a>, <a href="https://publications.waset.org/search?q=Peter%20Apata%20Olubambi"> Peter Apata Olubambi</a>, <a href="https://publications.waset.org/search?q=Philippe%20Refait"> Philippe Refait</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The aim of this study was to use voltammetry as a method to understand the behavior of steel in unsaturated soil in the presence of cathodic protection (CP). Three carbon steel coupons were buried in artificial soil wetted at 65-70% of saturation for 37 days. All three coupons were left at open circuit potential (OCP) for the first seven days in the unsaturated soil before CP which was only applied on two of the three coupons at the protection potential -0.8 V vs. Cu/CuSO4 for the remaining 30 days of the experiment. Voltammetry was performed weekly on the coupon without CP while electrochemical impedance spectroscopy (EIS) was performed daily to monitor and correct the applied CP potential from ohmic drop. Voltammetry was finally performed the last day on the coupons under CP. All the voltammograms were modeled with mathematical equations in order to compute the electrochemical parameters and subsequently deduce the corrosion rate of the steel coupons. For the coupon without CP, the corrosion rate was determined at 300 µm/y. For the coupons under CP, the residual corrosion rate under CP was estimated at 12 µm/y while the corrosion rate of the coupons, after interruption of CP, was estimated at 25 µm/y. This showed that CP was efficient due to two effects: a direct effect, from the decreased potential, and an induced effect, associated with the increased interfacial pH that promoted the formation of a protective layer on the steel surface.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Carbon%20steel" title="Carbon steel">Carbon steel</a>, <a href="https://publications.waset.org/search?q=cathodic%20protection" title=" cathodic protection"> cathodic protection</a>, <a href="https://publications.waset.org/search?q=voltammetry" title=" voltammetry"> voltammetry</a>, <a href="https://publications.waset.org/search?q=unsaturated%20soil" title=" unsaturated soil"> unsaturated soil</a>, <a href="https://publications.waset.org/search?q=Raman%20spectroscopy." title=" Raman spectroscopy."> Raman spectroscopy.</a> </p> <a href="https://publications.waset.org/10013513/application-of-voltammetry-to-study-corrosion-of-steel-buried-in-unsaturated-soil-in-the-presence-of-cathodic-protection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013513/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013513/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013513/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013513/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013513/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013513/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013513/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013513/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013513/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013513/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013513.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1017</span> Iron Recovery from Red Mud as Zero-Valent Iron Metal Powder Using Direct Electrochemical Reduction Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Franky%20Michael%20Hamonangan%20Siagian">Franky Michael Hamonangan Siagian</a>, <a href="https://publications.waset.org/search?q=Affan%20Maulana"> Affan Maulana</a>, <a href="https://publications.waset.org/search?q=Himawan%20Tri%20Bayu%20Murti%20Petrus"> Himawan Tri Bayu Murti Petrus</a>, <a href="https://publications.waset.org/search?q=Panut%20Mulyono"> Panut Mulyono</a>, <a href="https://publications.waset.org/search?q=Widi%20Astuti"> Widi Astuti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this study, the feasibility of the direct electrowinning method was used to produce zero-valent iron from red mud. The red mud sample came from the Tayan mine, Indonesia, which contains high hematite (Fe2O3). Before electrolysis, the samples were characterized by various analytical techniques (ICP-AES, SEM, XRD) to determine their chemical composition and mineralogy. The direct electrowinning method of red mud suspended in NaOH was introduced at low temperatures ranging from 30-110 °C. Current density and temperature variations were carried out to determine the optimum operation of the direct electrowinning process. Cathode deposits and residues in electrochemical cells were analyzed using XRD, XRF, and SEM to determine the chemical composition and current recovery. The low-temperature electrolysis current efficiency on Redmud can reach 11.8% recovery at a current density of 796 A/m². The moderate performance of the process was investigated with red mud, which was attributed to the troublesome adsorption of red mud particles on the cathode, making the reduction far less efficient than that with hematite.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Alumina" title="Alumina">Alumina</a>, <a href="https://publications.waset.org/search?q=electrochemical%20reduction" title=" electrochemical reduction"> electrochemical reduction</a>, <a href="https://publications.waset.org/search?q=iron%20production" title=" iron production"> iron production</a>, <a href="https://publications.waset.org/search?q=red%20mud." title=" red mud."> red mud.</a> </p> <a href="https://publications.waset.org/10013448/iron-recovery-from-red-mud-as-zero-valent-iron-metal-powder-using-direct-electrochemical-reduction-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013448/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013448/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013448/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013448/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013448/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013448/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013448/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013448/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013448/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013448/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013448.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1016</span> Control of Building Ventilation with CO2 Gas Sensors Based on Doped Magnesium Ferrite Nanoparticles for the Development of Construction and Infrastructure Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Maryam%20Kiani">Maryam Kiani</a>, <a href="https://publications.waset.org/search?q=Abdul%20Basit%20Kiani"> Abdul Basit Kiani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>To develop construction and infrastructure industry, sensors are highly desired to control building ventilation. Zinc doped magnesium ferrite nanoparticles (Z@MFO) (Zn = 0.0, 0.2, 0.3, 0.4) were prepared in this paper. Structural analyses confirmed the formation of spinel cubic nanostructures. X-Ray diffraction (XRD) data represent high reactive surface area due to small average particle size about 15 nm, which efficiently influences the gas sensing mechanism. The gas sensing property of Z@MFO for several gases was obtained by measuring the resistance as a function of different factors, such as composition and response time in air and in presence of gas. The sensitivity of spinel ferrite to CO2 at room temperature has been compared. The Z@MFO nano-structure exhibited high sensitivity represented good response time of (~1 min) to CO2, demonstrated that the material can be used in the field of gas sensors with high sensitivity and good selectivity at room temperature to control building ventilation. CO2 gas sensors play a vital role in ensuring the safety, comfort, and sustainability of modern building environments.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=MgFe2O4%20nanoparticles" title="MgFe2O4 nanoparticles">MgFe2O4 nanoparticles</a>, <a href="https://publications.waset.org/search?q=synthesis" title=" synthesis"> synthesis</a>, <a href="https://publications.waset.org/search?q=gas%20sensing%20properties" title=" gas sensing properties"> gas sensing properties</a>, <a href="https://publications.waset.org/search?q=X%20ray%20differentiation." title=" X ray differentiation."> X ray differentiation.</a> </p> <a href="https://publications.waset.org/10013407/control-of-building-ventilation-with-co2-gas-sensors-based-on-doped-magnesium-ferrite-nanoparticles-for-the-development-of-construction-and-infrastructure-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013407/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013407/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013407/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013407/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013407/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013407/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013407/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013407/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013407/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013407/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1015</span> Structural and Optical Properties of CdSiP2 and CdSiAs2 Nonlinear Optical Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=N.%20N.%20Omehe">N. N. Omehe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>CdSiP2 and CdsiAs2 are nonlinear optical materials for near and mid-infrared applications. Density functional theory has been applied to study the structure, band gap, and optical properties of these materials. The pseudopotential method was used in the form of projector augmented wave (PAW) and norm-conserving, the band structure calculations yielded a band gap of 1.55 eV and 0.88 eV for CdSiP2 and CdsiAs2 respectively. The values of ε1(ω) from the doelectric function calculations are 15 and 14.9 CdSiP2 and CdsiAs2 respectively.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Band%20structure" title="Band structure">Band structure</a>, <a href="https://publications.waset.org/search?q=chalcopyrite" title=" chalcopyrite"> chalcopyrite</a>, <a href="https://publications.waset.org/search?q=near-infrared%20materials" title=" near-infrared materials"> near-infrared materials</a>, <a href="https://publications.waset.org/search?q=mid-infrared%20materials" title=" mid-infrared materials"> mid-infrared materials</a>, <a href="https://publications.waset.org/search?q=nonlinear%20material" title=" nonlinear material"> nonlinear material</a>, <a href="https://publications.waset.org/search?q=optical%20properties." title=" optical properties."> optical properties.</a> </p> <a href="https://publications.waset.org/10013282/structural-and-optical-properties-of-cdsip2-and-cdsias2-nonlinear-optical-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013282/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013282/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013282/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013282/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013282/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013282/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013282/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013282/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013282/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013282/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1014</span> Assets Integrity Management in Oil and Gas Production Facilities Through Corrosion Mitigation and Inspection Strategy: A Case Study of Sarir Oilfield</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Iftikhar%20Ahmad">Iftikhar Ahmad</a>, <a href="https://publications.waset.org/search?q=Youssef%20Elkezza"> Youssef Elkezza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Sarir oilfield is in North Africa. It has facilities of oil and gas production. The assets of the Sarir oilfield can be divided into five following categories, namely: (i) Well bore and wellheads; (ii) Vessels such as separators, desalters, and gas processing facilities; (iii) Pipelines including all flow lines, trunk lines, and shipping lines; (iv) storage tanks; (v) Other assets such as turbines and compressors, etc. The nature of the petroleum industry recognizes the potential human, environmental and financial consequences that can result from failing to maintain the integrity of wellheads, vessels, tanks, pipelines, and other assets. The importance of effective asset integrity management increases as the industry infrastructure continues to age. The primary objective of assets integrity management (AIM) is to maintain assets in a fit-for-service condition while extending their remaining life in the most reliable, safe, and cost-effective manner. Corrosion management is one of the important aspects of successful asset integrity management. It covers corrosion mitigation, monitoring, inspection, and risk evaluation. External corrosion on pipelines, well bores, buried assets, and bottoms of tanks is controlled with a combination of coatings by cathodic protection, while the external corrosion on surface equipment, wellheads, and storage tanks is controlled by coatings. The periodic cleaning of the pipeline by pigging helps in the prevention of internal corrosion. Further, internal corrosion of pipelines is prevented by chemical treatment and controlled operations. This paper describes the integrity management system used in the Sarir oil field for its oil and gas production facilities based on standard practices of corrosion mitigation and inspection.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Assets%20integrity%20management" title="Assets integrity management">Assets integrity management</a>, <a href="https://publications.waset.org/search?q=corrosion%20prevention%20in%20oilfield%20assets" title=" corrosion prevention in oilfield assets"> corrosion prevention in oilfield assets</a>, <a href="https://publications.waset.org/search?q=corrosion%20management%20in%20oilfield" title=" corrosion management in oilfield"> corrosion management in oilfield</a>, <a href="https://publications.waset.org/search?q=corrosion%20prevention%20and%20inspection%20activities." title=" corrosion prevention and inspection activities."> corrosion prevention and inspection activities.</a> </p> <a href="https://publications.waset.org/10013280/assets-integrity-management-in-oil-and-gas-production-facilities-through-corrosion-mitigation-and-inspection-strategy-a-case-study-of-sarir-oilfield" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013280/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013280/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013280/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013280/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013280/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013280/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013280/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013280/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013280/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013280/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1013</span> Thermoelectric Properties of Doped Polycrystalline Silicon Film</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Li%20Long">Li Long</a>, <a href="https://publications.waset.org/search?q=Thomas%20Ortlepp"> Thomas Ortlepp</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The transport properties of carriers in polycrystalline silicon film affect the performance of polycrystalline silicon-based devices. They depend strongly on the grain structure, grain boundary trap properties and doping concentration, which in turn are determined by the film deposition and processing conditions. Based on the properties of charge carriers, phonons, grain boundaries and their interactions, the thermoelectric properties of polycrystalline silicon are analyzed with the relaxation time approximation of the Boltzmann transport equation. With this approach, thermal conductivity, electrical conductivity and Seebeck coefficient as a function of grain size, trap properties and doping concentration can be determined. Experiment on heavily doped polycrystalline silicon is carried out and measurement results are compared with the model.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Conductivity" title="Conductivity">Conductivity</a>, <a href="https://publications.waset.org/search?q=polycrystalline%20silicon" title=" polycrystalline silicon"> polycrystalline silicon</a>, <a href="https://publications.waset.org/search?q=relaxation%20time%0D%0Aapproximation" title=" relaxation time approximation"> relaxation time approximation</a>, <a href="https://publications.waset.org/search?q=Seebeck%20coefficient" title=" Seebeck coefficient"> Seebeck coefficient</a>, <a href="https://publications.waset.org/search?q=thermoelectric%20property." title=" thermoelectric property."> thermoelectric property.</a> </p> <a href="https://publications.waset.org/10013257/thermoelectric-properties-of-doped-polycrystalline-silicon-film" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013257/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013257/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013257/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013257/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013257/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013257/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013257/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013257/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013257/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013257/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1012</span> Gassing Tendency of Natural Ester Based Transformer Oils: Low Ethane Generation in Stray Gassing Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Banti%20Sidhiwala">Banti Sidhiwala</a>, <a href="https://publications.waset.org/search?q=T.%20C.%20S.%20M.%20Gupta"> T. C. S. M. Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Mineral oils of naphthenic and paraffinic type are in use as insulating liquids in the transformer applications to protect solid insulation from moisture and ensures effective heat transfer/cooling. The performance of these type of oils have been proven in the field over many decades and the condition monitoring and diagnosis of transformer performance have been successfully monitored through oil properties and dissolved gas analysis methods successfully. Different types of gases can represent various types of faults that may occur due to faulty components or unfavorable operating conditions. A large amount of database has been generated in the industry for dissolved gas analysis in mineral oil-based transformer oils, and various models have been developed to predict faults and analyze data. Additionally, oil specifications and standards have been updated to include stray gassing limits that cover low-temperature faults. This modification has become an effective preventative maintenance tool that can help greatly in understanding the reasons for breakdowns of electrical insulating materials and related components. Natural esters have seen a rise in popularity in recent years due to their "green" credentials. Some of its benefits include biodegradability, a higher fire point, improvement in load capability of transformer and improved solid insulation life than mineral oils. However, the stray gassing test shows that hydrogen and hydrocarbons like methane (CH4) and ethane (C2H6) show very high values which are much higher than the limits of mineral oil standards. Though the standards for these types of esters are yet to be evolved, the higher values of hydrocarbon gases that are available in the market is of concern which might be interpreted as a fault in transformer operation. The current paper focuses on developing a class of natural esters with low levels of stray gassing by American Society for Testing and Materials (ASTM) and International Electric Council (IEC) methods much lower values compared to the natural ester-based products reported in the literature. The experimental results of products are explained.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Biodegradability" title="Biodegradability">Biodegradability</a>, <a href="https://publications.waset.org/search?q=fire%20point" title=" fire point"> fire point</a>, <a href="https://publications.waset.org/search?q=dissolved%20gas%20analysis" title=" dissolved gas analysis"> dissolved gas analysis</a>, <a href="https://publications.waset.org/search?q=natural%20ester" title=" natural ester"> natural ester</a>, <a href="https://publications.waset.org/search?q=stray%20gassing." title=" stray gassing."> stray gassing.</a> </p> <a href="https://publications.waset.org/10013243/gassing-tendency-of-natural-ester-based-transformer-oils-low-ethane-generation-in-stray-gassing-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013243/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013243/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013243/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013243/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013243/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013243/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013243/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013243/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013243/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013243/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013243.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1011</span> Optimization of Thermopile Sensor Performance of Polycrystalline Silicon Film</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Li%20Long">Li Long</a>, <a href="https://publications.waset.org/search?q=Thomas%20Ortlepp"> Thomas Ortlepp</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A theoretical model for the optimization of thermopile sensor performance is developed for thermoelectric-based infrared radiation detection. It is shown that the performance of polycrystalline silicon film thermopile sensor can be optimized according to the thermoelectric quality factor, sensor layer structure factor and sensor layout shape factor. Based on the properties of electrons, phonons, grain boundaries and their interactions, the thermoelectric quality factor of polycrystalline silicon is analyzed with the relaxation time approximation of Boltzmann transport equation. The model includes the effects of grain structure, grain boundary trap properties and doping concentration. The layer structure factor of sensor is analyzed with respect to infrared absorption coefficient. The effect of layout design is characterized with the shape factor, which is calculated for different sensor designs. Double layer polycrystalline silicon thermopile infrared sensors on suspended support membrane have been designed and fabricated with a CMOS-compatible process. The theoretical approach is confirmed with measurement results.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Polycrystalline%20silicon%20film" title="Polycrystalline silicon film">Polycrystalline silicon film</a>, <a href="https://publications.waset.org/search?q=relaxation%20time%0D%0Aapproximation" title=" relaxation time approximation"> relaxation time approximation</a>, <a href="https://publications.waset.org/search?q=specific%20detectivity" title=" specific detectivity"> specific detectivity</a>, <a href="https://publications.waset.org/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/search?q=thermopile%0D%0Ainfrared%20sensor." title=" thermopile infrared sensor."> thermopile infrared sensor.</a> </p> <a href="https://publications.waset.org/10013161/optimization-of-thermopile-sensor-performance-of-polycrystalline-silicon-film" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013161/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013161/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013161/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013161/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013161/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013161/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013161/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013161/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013161/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013161/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013161.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1010</span> A Review on Design and Fabrication of Fuel Fired Crucible Furnace</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Oluwaseyi%20O.%20Taiwo">Oluwaseyi O. Taiwo</a>, <a href="https://publications.waset.org/search?q=Adeolu%20A.%20Adediran"> Adeolu A. Adediran</a>, <a href="https://publications.waset.org/search?q=Abayomi%20A.%20Akinwande"> Abayomi A. Akinwande</a>, <a href="https://publications.waset.org/search?q=Frank%20C.%20Okoyeh"> Frank C. Okoyeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The use of fuel fired crucible furnace is essential in the foundries of developing countries owing to the luxury of electricity. Fuel fired crucible furnace are commonly used in recycling, casting, research and training activities in tertiary institutions, therefore, several attempts are being made to improve the performance and service life of fuel fired crucible. The current study reviews the sequential stages involved in the designs and fabrication of fuel fired crucible furnace which include; design, material selection, modelling and simulation as well as performance evaluation. The study shows that selecting appropriate materials for the different units in the fabrication process is important to the efficiency and service life of fuel fired crucible furnaces. Also, efficiency and performance of fuel fired furnaces are independent of cost of fabrication and their capacity. The importance of modelling and simulation tools in the fabrication process are identified while their non-frequent usage in several works is observed. The need to widen performance evaluations in further studies beyond efficiency determination to give a more detailed assessment of fuel fired crucible furnaces is also observed. </p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Crucible%20furnace" title="Crucible furnace">Crucible furnace</a>, <a href="https://publications.waset.org/search?q=furnace%20design" title=" furnace design"> furnace design</a>, <a href="https://publications.waset.org/search?q=fabrication" title=" fabrication"> fabrication</a>, <a href="https://publications.waset.org/search?q=fuel." title=" fuel."> fuel.</a> </p> <a href="https://publications.waset.org/10013016/a-review-on-design-and-fabrication-of-fuel-fired-crucible-furnace" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013016/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013016/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013016/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013016/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013016/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013016/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013016/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013016/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013016/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013016/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1009</span> Mechanical Properties of D2 Tool Steel Cryogenically Treated Using Controllable Cooling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Rabin">A. Rabin</a>, <a href="https://publications.waset.org/search?q=G.%20Mazor"> G. Mazor</a>, <a href="https://publications.waset.org/search?q=I.%20Ladizhenski"> I. Ladizhenski</a>, <a href="https://publications.waset.org/search?q=R.%20Z.%20Shneck"> R. Z. Shneck</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The hardness and hardenability of AISI D2 cold work tool steel with conventional quenching (CQ), deep cryogenic quenching (DCQ) and rapid deep cryogenic quenching heat treatments caused by temporary porous coating based on magnesium sulfate was investigated. Each of the cooling processes was examined from the perspective of the full process efficiency, heat flux in the austenite-martensite transformation range followed by characterization of the temporary porous layer made of magnesium sulfate using confocal laser scanning microscopy (CLSM), surface and core hardness and hardenability using Vickers hardness technique. The results show that the cooling rate (CR) at the austenite-martensite transformation range has a high influence on the hardness of the studied steel.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=AISI%20D2" title="AISI D2">AISI D2</a>, <a href="https://publications.waset.org/search?q=controllable%20cooling" title=" controllable cooling"> controllable cooling</a>, <a href="https://publications.waset.org/search?q=magnesium%20sulfate%20coating" title=" magnesium sulfate coating"> magnesium sulfate coating</a>, <a href="https://publications.waset.org/search?q=rapid%20cryogenic%20heat%20treatment" title=" rapid cryogenic heat treatment"> rapid cryogenic heat treatment</a>, <a href="https://publications.waset.org/search?q=temporary%20porous%20layer." title=" temporary porous layer."> temporary porous layer.</a> </p> <a href="https://publications.waset.org/10013017/mechanical-properties-of-d2-tool-steel-cryogenically-treated-using-controllable-cooling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013017/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013017/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013017/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013017/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013017/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013017/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013017/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013017/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013017/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013017/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013017.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1008</span> Void-Free Bonding of Si/Ti/Ni Power Integrated Circuit Chips with Direct Bonding Copper Alumina Substrates through Ag3Sn Intermetallic Interlayer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kuan-Yu%20Chiu">Kuan-Yu Chiu</a>, <a href="https://publications.waset.org/search?q=Yin-Hsuan%20Chen"> Yin-Hsuan Chen</a>, <a href="https://publications.waset.org/search?q=Tung-Han%20Chuang"> Tung-Han Chuang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Ti/Ni/Ag/Sn-metallized Si chips were bonded to Ni/Pd/Au-surface finished DBC (Direct Bonding Copper) alumina substrate through the formation of an Ag3Sn intermetallic interlayer by solid–liquid interdiffusion bonding method. The results indicated that the holes and gaps at the bonding interface could be effectively prevented. The intermetallic phases at the bonding interface between the Si/Ti/Ni/Ag/Sn wafer and the DBC substrate were identified as Ag3Sn, Ni3Sn4, and Ni3Sn2. The average bonding strength was about 19.75 MPa, and the maximum bonding strength reached 35.24 MPa.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=BGBM" title="BGBM">BGBM</a>, <a href="https://publications.waset.org/search?q=Backside%20Grinding%20and%20Backside%20Metallization" title=" Backside Grinding and Backside Metallization"> Backside Grinding and Backside Metallization</a>, <a href="https://publications.waset.org/search?q=SLID%20bonding" title=" SLID bonding"> SLID bonding</a>, <a href="https://publications.waset.org/search?q=Solid%E2%80%93liquid%20Interdiffusion%20Bonding" title=" Solid–liquid Interdiffusion Bonding"> Solid–liquid Interdiffusion Bonding</a>, <a href="https://publications.waset.org/search?q=Si%2FTi%2FNi%2FSn" title=" Si/Ti/Ni/Sn"> Si/Ti/Ni/Sn</a>, <a href="https://publications.waset.org/search?q=Si%2FTi%2FNi%2FAg%2FSn" title=" Si/Ti/Ni/Ag/Sn"> Si/Ti/Ni/Ag/Sn</a>, <a href="https://publications.waset.org/search?q=intermetallic%20compound." title=" intermetallic compound."> intermetallic compound.</a> </p> <a href="https://publications.waset.org/10012869/void-free-bonding-of-sitini-power-integrated-circuit-chips-with-direct-bonding-copper-alumina-substrates-through-ag3sn-intermetallic-interlayer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012869/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012869/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012869/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012869/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012869/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012869/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012869/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012869/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012869/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012869/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012869.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1007</span> Comparison and Characterization of Dyneema™ HB-210 and HB-212 for Accelerated UV Aging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Jonmichael%20A.%20Weaver">Jonmichael A. Weaver</a>, <a href="https://publications.waset.org/search?q=David%20A.%20Miller"> David A. Miller</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Ultra High Molecular Weight Polyethylene (UHMWPE) presents several distinct advantages as a material with a high strength to weight ratio, durability, and neutron stability. Understanding the change in the mechanical performance of UHMWPE due to environmental exposure is key to safety for future applications. Dyneema® HB-210, a 15 µm diameter UHMWPE multi-filament fiber laid up in a polyurethane matrix in [0/ 90]2, with a thickness of 0.17 mm is compared to the same fiber and orientation system, HB-212, with a rubber-based matrix under UV aging conditions. UV aging tests according to ASTM-G154 were performed on both HB-210 and HB-212 to interrogate the change in mechanical properties, as measured through dynamic mechanical analysis and imaged using a scanning electron microscope. These results showed a decrease in both the storage modulus and loss modulus of the aged material compared to the unaged, even though the tan δ slightly increased. Material degradation occurred at a higher rate in Dyneema® HB-212 compared to HB-210. The HB-210 was characterized for the effects of 100 hours of UV aging via dynamic mechanical analysis. Scanning electron microscope images were taken of the HB-210 and HB-212 to identify the primary damage mechanisms in the matrix. Embrittlement and matrix spall were the products of prolonged UV exposure and erosion, resulting in decreased mechanical properties.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Composite%20materials" title="Composite materials">Composite materials</a>, <a href="https://publications.waset.org/search?q=material%20characterization" title=" material characterization"> material characterization</a>, <a href="https://publications.waset.org/search?q=UV%20aging" title=" UV aging"> UV aging</a>, <a href="https://publications.waset.org/search?q=UHMWPE." title=" UHMWPE."> UHMWPE.</a> </p> <a href="https://publications.waset.org/10012838/comparison-and-characterization-of-dyneema-hb-210-and-hb-212-for-accelerated-uv-aging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012838/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012838/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012838/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012838/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012838/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012838/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012838/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012838/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012838/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012838/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">682</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1006</span> Development of an Impregnated Diamond Bit with an Improved Rate of Penetration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Tim%20Dunne">Tim Dunne</a>, <a href="https://publications.waset.org/search?q=Weicheng%20Li"> Weicheng Li</a>, <a href="https://publications.waset.org/search?q=Chris%20Cheng"> Chris Cheng</a>, <a href="https://publications.waset.org/search?q=Qi%20Peng"> Qi Peng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Deeper petroleum reservoirs are more challenging to exploit due to the high hardness and abrasive characteristics of the formations. A cutting structure that consists of particulate diamond impregnated in a supporting matrix is found to be effective. Diamond impregnated bits are favored in these applications due to the higher thermal stability of the matrix material. The diamond particles scour or abrade away concentric grooves while the rock formation adjacent to the grooves is fractured and removed. The matrix material supporting the diamond will wear away, leaving the superficial dull diamonds to fall out. The matrix material wear will expose other embedded intact sharp diamonds to continue the operation. Minimizing the erosion effect on the matrix is an important design consideration, as the life of the bit can be extended by preventing early diamond pull-out. A careful balancing of the key parameters, such as diamond concentration, tungsten carbide and metal binder must be considered during development. Described herein is the design of experiment for developing and lab testing 8 unique samples. ASTM B611 wear testing was performed to benchmark the material performance against baseline products, with further scanning electron microscopy and microhardness evaluations. The recipe S5 with diamond 25/35 mesh size, narrow size distribution, high concentration blended with fine tungsten carbide and Co-Cu-Fe-P metal binder has the best performance, which shows 19% improvement in the ASTM B611 wear test compared with the reference material. In the field trial, the rate of penetration (ROP) is measured as 15 m/h, compared to 9.5, 7.8, and 6.8 m/h of other commercial impregnated bits in the same formation. A second round of optimizing recipe S5 for a higher wear resistance is further reported.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Diamond%20containing%20material" title="Diamond containing material">Diamond containing material</a>, <a href="https://publications.waset.org/search?q=grit%20hot%20press%20insert" title=" grit hot press insert"> grit hot press insert</a>, <a href="https://publications.waset.org/search?q=impregnated%20diamond" title=" impregnated diamond"> impregnated diamond</a>, <a href="https://publications.waset.org/search?q=insert" title=" insert"> insert</a>, <a href="https://publications.waset.org/search?q=rate%20of%20penetration" title=" rate of penetration"> rate of penetration</a>, <a href="https://publications.waset.org/search?q=ultrahard%20formation." title=" ultrahard formation."> ultrahard formation.</a> </p> <a href="https://publications.waset.org/10012769/development-of-an-impregnated-diamond-bit-with-an-improved-rate-of-penetration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012769/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012769/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012769/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012769/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012769/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012769/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012769/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012769/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012769/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012769/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1005</span> Characterization of an Almond Shell Composite Based on PHBH</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=J.%20Ivorra-Martinez">J. Ivorra-Martinez</a>, <a href="https://publications.waset.org/search?q=L.%20Quiles-Carrillo"> L. Quiles-Carrillo</a>, <a href="https://publications.waset.org/search?q=J.%20Gomez-Caturla"> J. Gomez-Caturla</a>, <a href="https://publications.waset.org/search?q=T.%20Boronat"> T. Boronat</a>, <a href="https://publications.waset.org/search?q=R.%20Balart"> R. Balart</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The utilization of almond crop by-products to obtain Poly(3-hydroxybutyrat-co-3-hydroxyhexanoat) (PHBH)-based composites was carried out by using an extrusion process followed by an injection to obtain test samples. To improve the properties of the resulting composite, the incorporation of Oligomer Lactic Acid (OLA 8) as a coupling agent and plasticizer was additionally considered. A characterization process was carried out by the measurement of mechanical properties, thermal properties, surface morphology, and water absorption ability. The use of the almond residue allows obtaining composites based on PHBH with a higher environmental interest and lower cost.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Almond%20shell" title="Almond shell">Almond shell</a>, <a href="https://publications.waset.org/search?q=PHBH" title=" PHBH"> PHBH</a>, <a href="https://publications.waset.org/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/search?q=polymer." title=" polymer."> polymer.</a> </p> <a href="https://publications.waset.org/10012742/characterization-of-an-almond-shell-composite-based-on-phbh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012742/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012742/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012742/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012742/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012742/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012742/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012742/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012742/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012742/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012742/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1004</span> Microstructural Evolution of an Interface Region in a Nickel-Based Superalloy Joint Produced by Direct Energy Deposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Ferguson">M. Ferguson</a>, <a href="https://publications.waset.org/search?q=T.%20Konkova"> T. Konkova</a>, <a href="https://publications.waset.org/search?q=I.%20Violatos"> I. Violatos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Microstructure analysis of additively manufactured (AM) materials is an important step in understanding the interrelationship between mechanical properties and materials performance. Literature on the effect of a laser-based AM process parameters on the microstructure in the substrate-deposit interface is limited. The interface region, the adjoining area of substrate and deposit, is characterized by the presence of the fusion zone (FZ) and heat affected zone (HAZ) experiencing rapid thermal gyrations resulting in thermal induced transformations. Inconel 718 was utilized as a work material for both the substrate and deposit. Three blocks of Inconel 718 material were deposited by Direct Energy Deposition (DED) using three different laser powers, 550W, 750W and 950W, respectively. A coupled thermo-mechanical transient approach was utilized to correlate temperature history to the evolution of microstructure. Thermal history of the deposition process was monitored with the thermocouples installed inside the substrate material. Interface region of the blocks were analysed with Optical Microscopy (OM) and Scanning Electron Microscopy (SEM) including electron back-scattered diffraction (EBSD) technique. Laser power was found to influence the dissolution of intermetallic precipitated phases in the substrate and grain growth in the interface region. Microstructure and thermal history data were utilized to draw conclusive comparisons between the investigated process parameters.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Additive%20manufacturing" title="Additive manufacturing">Additive manufacturing</a>, <a href="https://publications.waset.org/search?q=direct%20energy%20deposition" title=" direct energy deposition"> direct energy deposition</a>, <a href="https://publications.waset.org/search?q=electron%20back-scatter%20diffraction" title=" electron back-scatter diffraction"> electron back-scatter diffraction</a>, <a href="https://publications.waset.org/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/search?q=Inconel%20718" title=" Inconel 718"> Inconel 718</a>, <a href="https://publications.waset.org/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/search?q=optical%20microscopy" title=" optical microscopy"> optical microscopy</a>, <a href="https://publications.waset.org/search?q=scanning%20electron%20microscopy" title=" scanning electron microscopy"> scanning electron microscopy</a>, <a href="https://publications.waset.org/search?q=substrate-deposit%20interface%20region." title=" substrate-deposit interface region."> substrate-deposit interface region.</a> </p> <a href="https://publications.waset.org/10012659/microstructural-evolution-of-an-interface-region-in-a-nickel-based-superalloy-joint-produced-by-direct-energy-deposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012659/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012659/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012659/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012659/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012659/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012659/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012659/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012659/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012659/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012659/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012659.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">504</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1003</span> Piezoelectric Bimorph Harvester Based on Different Lead Zirconate Titanate Materials to Enhance Energy Collection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Irene%20Perez-Alfaro">Irene Perez-Alfaro</a>, <a href="https://publications.waset.org/search?q=Nieves%20Murillo"> Nieves Murillo</a>, <a href="https://publications.waset.org/search?q=Carlos%20Bernal"> Carlos Bernal</a>, <a href="https://publications.waset.org/search?q=Daniel%20Gil-Hernandez"> Daniel Gil-Hernandez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Nowadays, the increasing applicability of internet of things (IoT) systems has changed the way that the world around is perceived. The massive interconnection of systems by means of sensing, processing and communication, allows multitude of data to be at our fingertips. In this way, countless advances have been made in different fields such as personal care, predictive maintenance in industry, quality control in production processes, security, and in everything imaginable. However, all these electronic systems have in common the need to be electrically powered. In this context, batteries and wires are the most commonly used solutions, but they are not a definitive solution in some applications, because of the attainability, the serviceability, or the performance requirements. Therefore, the need arises to look for other types of solutions based on energy harvesting and long-life electronics. Energy Harvesting can be defined as the action of capturing energy from the environment and store it for an instantaneous use or later use. Among the materials capable of harvesting energy from the environment, such as thermoelectrics, electromagnetics, photovoltaics or triboelectrics, the most suitable is the piezoelectric material. The phenomenon of piezoelectricity is one of the most powerful sources for energy harvesting, ranging from a few micro wats to hundreds of wats, depending on certain factors such as material type, geometry, excitation frequency, mechanical and electrical configurations, among others. In this research work, an exhaustive study is carried out on how different types of piezoelectric materials and electrical configurations influence the maximum power that a bimorph harvester is able to extract from mechanical vibrations. A series of experiments has been carried out in which the manufactured bimorph specimens are excited under fixed inertial vibrational conditions. In addition, in order to evaluate the dependence of the maximum transferred power, different load resistors are tested. In this way, the pure active power that achieves the maximum power transfer can be approximated. In this paper, we present the design of low-cost energy harvesting solutions based on piezoelectric smart materials with tunable frequency. The results obtained show the differences in energy extraction between the PZT materials studied and their electrical configurations. The aim of this work is to gain a better understanding of the behavior of piezoelectric materials, and the design process of bimorph PZT harvesters to optimize environmental energy extraction.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bimorph%20harvesters" title="Bimorph harvesters">Bimorph harvesters</a>, <a href="https://publications.waset.org/search?q=electrical%20impedance" title=" electrical impedance"> electrical impedance</a>, <a href="https://publications.waset.org/search?q=energy%20harvesting" title=" energy harvesting"> energy harvesting</a>, <a href="https://publications.waset.org/search?q=piezoelectric" title=" piezoelectric"> piezoelectric</a>, <a href="https://publications.waset.org/search?q=smart%20material." title=" smart material."> smart material.</a> </p> <a href="https://publications.waset.org/10012651/piezoelectric-bimorph-harvester-based-on-different-lead-zirconate-titanate-materials-to-enhance-energy-collection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012651/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012651/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012651/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012651/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012651/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012651/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012651/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012651/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012651/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012651/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012651.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1002</span> Tailormade Geometric Properties of Chitosan by Gamma Irradiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=F.%20Elashhab">F. Elashhab</a>, <a href="https://publications.waset.org/search?q=L.%20Sheha"> L. Sheha</a>, <a href="https://publications.waset.org/search?q=R.%20Fawzi%20Elsupikhe"> R. Fawzi Elsupikhe</a>, <a href="https://publications.waset.org/search?q=A.%20E.%20A.%20Youssef"> A. E. A. Youssef</a>, <a href="https://publications.waset.org/search?q=R.%20M.%20Sheltami"> R. M. Sheltami</a>, <a href="https://publications.waset.org/search?q=T.%20Alfazani"> T. Alfazani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Chitosans, CSs, in solution are increasingly used in a range of geometric properties in various academic and industrial sectors, especially in the domain of pharmaceutical and biomedical engineering. In order to provide a tailoring guide of CSs to the applicants, gamma (γ)-irradiation technology and simple viscosity measurements have been used in this study. Accordingly, CS solid discs (0.5 cm thickness and 2.5 cm diameter) were exposed in air to Cobalt-60 (γ)-radiation, at room temperature and constant 50 kGy dose for different periods of exposer time (tγ). Diluted solutions of native and different irradiated CS were then prepared by dissolving 1.25 mg cm-3 of each polymer in 0.1 M NaCl/0.2 M CH3COOH. The single-concentration relative viscosity (ƞr) measurements were employed to obtain their intrinsic viscosity ([ƞ]) values and interrelated parameters, like: the molar mass (Mƞ), hydrodynamic radiuses (RH,ƞ), radius of gyration (RG,ƞ), and second virial coefficient (A2,ƞ) of CSs in the solution. The results show an exponential decrease of ƞr, [ƞ], Mƞ, RH,ƞ and RG,ƞ with increasing tγ. This suggests the influence of random chain-scission of CSs glycosidic bonds, with rate constant kr and kr-1 (lifetime τr ~ 0.017 min-1 and 57.14 min, respectively). The results also show an exponential decrease of A2ƞ with increasing tγ, which can be attributed to the growth of excluded volume effect in CS segments by tγ and, hence, better solution quality. The results are represented in following scaling laws as a tailoring guide to the applicants: RH,ƞ = 6.98 x 10-3 Mr0.65; RG,ƞ = 7.09 x 10-4 Mr0.83; A2,ƞ = 121.03 Mƞ,r-0.19.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Gamma%20irradiation" title="Gamma irradiation">Gamma irradiation</a>, <a href="https://publications.waset.org/search?q=geometric%20properties" title=" geometric properties"> geometric properties</a>, <a href="https://publications.waset.org/search?q=kinetic%0D%0Amodel" title=" kinetic model"> kinetic model</a>, <a href="https://publications.waset.org/search?q=scaling%20laws" title=" scaling laws"> scaling laws</a>, <a href="https://publications.waset.org/search?q=viscosity%20measurement." title=" viscosity measurement."> viscosity measurement.</a> </p> <a href="https://publications.waset.org/10012535/tailormade-geometric-properties-of-chitosan-by-gamma-irradiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012535/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012535/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012535/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012535/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012535/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012535/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012535/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012535/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012535/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012535/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1001</span> Simulation on Influence of Environmental Conditions on Part Distortion in Fused Deposition Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Anto%20Antony%20Samy">Anto Antony Samy</a>, <a href="https://publications.waset.org/search?q=Atefeh%20Golbang"> Atefeh Golbang</a>, <a href="https://publications.waset.org/search?q=Edward%20Archer"> Edward Archer</a>, <a href="https://publications.waset.org/search?q=Alistair%20McIlhagger"> Alistair McIlhagger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Fused Deposition Modelling (FDM) is one of the additive manufacturing techniques that has become highly attractive in the industrial and academic sectors. However, parts fabricated through FDM are highly susceptible to geometrical defects such as warpage, shrinkage, and delamination that can severely affect their function. Among the thermoplastic polymer feedstock for FDM, semi-crystalline polymers are highly prone to part distortion due to polymer crystallization. In this study, the influence of FDM processing conditions such as chamber temperature and print bed temperature on the induced thermal residual stress and resulting warpage are investigated using 3D transient thermal model for a semi-crystalline polymer. The thermo-mechanical properties and the viscoelasticity of the polymer, as well as the crystallization physics which considers the crystallinity of the polymer, are coupled with the evolving temperature gradient of the print model. From the results it was observed that increasing the chamber temperature from 25 °C to 75 °C leads to a decrease of 3.3% residual stress and increase of 0.4% warpage, while decreasing bed temperature from 100 °C to 60 °C resulted in 27% increase in residual stress and a significant rise of 137% in warpage. The simulated warpage data are validated by comparing it with the measured warpage values of the samples using 3D scanning. </p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Finite%20Element%20Analysis" title="Finite Element Analysis">Finite Element Analysis</a>, <a href="https://publications.waset.org/search?q=FEA" title=" FEA"> FEA</a>, <a href="https://publications.waset.org/search?q=Fused%20Deposition%20Modelling" title=" Fused Deposition Modelling"> Fused Deposition Modelling</a>, <a href="https://publications.waset.org/search?q=residual%20stress" title=" residual stress"> residual stress</a>, <a href="https://publications.waset.org/search?q=warpage." title=" warpage."> warpage.</a> </p> <a href="https://publications.waset.org/10012497/simulation-on-influence-of-environmental-conditions-on-part-distortion-in-fused-deposition-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012497/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012497/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012497/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012497/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012497/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012497/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012497/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012497/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012497/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012497/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1000</span> In-situ LDH Formation of Sodium Aluminate Activated Slag</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Tao%20Liu">Tao Liu</a>, <a href="https://publications.waset.org/search?q=Qingliang%20Yu"> Qingliang Yu</a>, <a href="https://publications.waset.org/search?q=H.%20J.%20H.%20Brouwers"> H. J. H. Brouwers</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Among the reaction products in the alkali activated ground granulated blast furnace slag (AAS), the layered double hydroxides (LDHs) have a remarkable capacity of chloride and heavy metal ions absorption. The promotion of LDH phases in the AAS matrix can increase chloride resistance. The objective of this study is that using the different dosages of sodium aluminate to activate slag, consequently, promoting the formation of in-situ LDH. The hydration kinetics of the sodium aluminate activated slag (SAAS) was tested by the isothermal calorimetry. Meanwhile, the reaction products were determined by X-ray diffraction (XRD), thermogravimetric analysis (TGA), and Fourier-transform infrared spectroscopy (FTIR). The sodium hydroxide activated slag is selected as the reference. The results of XRD, TGA, and FTIR showed that the formation of LDH in SAAS is governed by the aluminate dosages.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=ground%20granulated%20blast%20furnace%20slag" title="ground granulated blast furnace slag">ground granulated blast furnace slag</a>, <a href="https://publications.waset.org/search?q=sodium%20aluminate%20activated%20slag" title=" sodium aluminate activated slag"> sodium aluminate activated slag</a>, <a href="https://publications.waset.org/search?q=in-situ%20LDH%20formation" title=" in-situ LDH formation"> in-situ LDH formation</a>, <a href="https://publications.waset.org/search?q=chloride%20absorption" title=" chloride absorption"> chloride absorption</a> </p> <a href="https://publications.waset.org/10012411/in-situ-ldh-formation-of-sodium-aluminate-activated-slag" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012411/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012411/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012411/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012411/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012411/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012411/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012411/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012411/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012411/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012411/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012411.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">999</span> Microstructure and Texture Evolution of Cryo Rolled and Annealed Ductile TaNbHfZrTi Refractory High Entropy Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Veeresham">M. Veeresham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The microstructure and texture evolution of cryo rolled and annealed ductile TaHfNbZrTi refractory high entropy alloy was investigated. To obtain that, the alloy is severely cryo rolled and subsequently annealed for the recrystallization process. The cryo rolled – 90% shows the presence of very fine grains and microstructural heterogeneity. The cryo rolled samples are annealed at a temperature ranging from 800°C to 1400°C, the partial recrystallization is observed at 800°C annealed condition, and at higher annealing temperatures the complete recrystallization process is noticed. The development of ND fiber texture is observed after the annealing.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=refractory%20high%20entropy%20alloy" title="refractory high entropy alloy">refractory high entropy alloy</a>, <a href="https://publications.waset.org/search?q=cryo-rolling" title=" cryo-rolling"> cryo-rolling</a>, <a href="https://publications.waset.org/search?q=annealing" title=" annealing"> annealing</a>, <a href="https://publications.waset.org/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/search?q=texture" title=" texture"> texture</a> </p> <a href="https://publications.waset.org/10012324/microstructure-and-texture-evolution-of-cryo-rolled-and-annealed-ductile-tanbhfzrti-refractory-high-entropy-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012324/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012324/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012324/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012324/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012324/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012324/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012324/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012324/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012324/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012324/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012324.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">504</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">998</span> Titanium Dioxide Modified with Glutathione as Potential Drug Carrier with Reduced Toxic Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Olga%20D%C5%82ugosz">Olga Długosz</a>, <a href="https://publications.waset.org/search?q=Jolanta%20Pulit-Prociak"> Jolanta Pulit-Prociak</a>, <a href="https://publications.waset.org/search?q=Marcin%20Banach"> Marcin Banach</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The paper presents a process to obtain glutathione-modified titanium oxide nanoparticles. The processes were carried out in a microwave radiation field. The influence of the molar ratio of glutathione to titanium oxide and the effect of the fold of NaOH vs. stoichiometric amount on the size of the formed TiO2 nanoparticles was determined. The physicochemical properties of the obtained products were evaluated using dynamic light scattering (DLS), transmission electron microscope- energy-dispersive X-ray spectroscopy (TEM-EDS), low-temperature nitrogen adsorption method (BET), X-Ray Diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) microscopy methods. The size of TiO2 nanoparticles was characterized from 30 nm to 336 nm. The release of titanium ions from the prepared products was evaluated. These studies were carried out using different media in which the powders were incubated for a specific time. These were: water, SBF and Ringer's solution. The release of titanium ions from modified products is weaker compared to unmodified titanium oxide nanoparticles. The reduced release of titanium ions may allow the use of such modified materials as substances in drug delivery systems.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=titanium%20dioxide" title="titanium dioxide">titanium dioxide</a>, <a href="https://publications.waset.org/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/search?q=drug%20carrier" title=" drug carrier"> drug carrier</a>, <a href="https://publications.waset.org/search?q=glutathione" title=" glutathione"> glutathione</a> </p> <a href="https://publications.waset.org/10012283/titanium-dioxide-modified-with-glutathione-as-potential-drug-carrier-with-reduced-toxic-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012283/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012283/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012283/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012283/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012283/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012283/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012283/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012283/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012283/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012283/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">553</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">997</span> Basic Calibration and Normalization Techniques for Time Domain Reflectometry Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Shagufta%20Tabassum">Shagufta Tabassum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The study of dielectric properties in a binary mixture of liquids is very useful to understand the liquid structure, molecular interaction, dynamics, and kinematics of the mixture. Time-domain reflectometry (TDR) is a powerful tool for studying the cooperation and molecular dynamics of the H-bonded system. Here we discuss the basic calibration and normalization procedure for TDR measurements. Our aim is to explain different types of error occur during TDR measurements and how to minimize it.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=time%20domain%20reflectometry%20measurement%20technique" title="time domain reflectometry measurement technique">time domain reflectometry measurement technique</a>, <a href="https://publications.waset.org/search?q=cable%20and%20connector%20loss" title=" cable and connector loss"> cable and connector loss</a>, <a href="https://publications.waset.org/search?q=oscilloscope%20loss" title=" oscilloscope loss"> oscilloscope loss</a>, <a href="https://publications.waset.org/search?q=normalization%20technique" title=" normalization technique"> normalization technique</a> </p> <a href="https://publications.waset.org/10012267/basic-calibration-and-normalization-techniques-for-time-domain-reflectometry-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012267/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012267/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012267/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012267/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012267/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012267/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012267/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012267/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012267/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012267/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012267.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">996</span> Recycling of Sintered NdFeB Magnet Waste via Oxidative Roasting and Selective Leaching</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=W.%20Kritsarikan">W. Kritsarikan</a>, <a href="https://publications.waset.org/search?q=T.%20Patcharawit"> T. Patcharawit</a>, <a href="https://publications.waset.org/search?q=T.%20Yingnakorn"> T. Yingnakorn</a>, <a href="https://publications.waset.org/search?q=S.%20Khumkoa"> S. Khumkoa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Neodymium-iron-boron (NdFeB) magnets classified as high-power magnets are widely used in various applications such as automotive, electrical and medical devices. Because significant amounts of rare earth metals will be subjected to shortages in the future, therefore domestic NdFeB magnet waste recycling should therefore be developed in order to reduce social and environmental impacts towards a circular economy. Each type of wastes has different characteristics and compositions. As a result, these directly affect recycling efficiency as well as types and purity of the recyclable products. This research, therefore, focused on the recycling of manufacturing NdFeB magnet waste obtained from the sintering stage of magnet production and the waste contained 23.6% Nd, 60.3% Fe and 0.261% B in order to recover high purity neodymium oxide (Nd2O3) using hybrid metallurgical process via oxidative roasting and selective leaching techniques. The sintered NdFeB waste was first ground to under 70 mesh prior to oxidative roasting at 550–800 oC to enable selective leaching of neodymium in the subsequent leaching step using H2SO4 at 2.5 M over 24 h. The leachate was then subjected to drying and roasting at 700–800 oC prior to precipitation by oxalic acid and calcination to obtain Nd2O3 as the recycling product. According to XRD analyses, it was found that increasing oxidative roasting temperature led to an increasing amount of hematite (Fe2O3) as the main composition with a smaller amount of magnetite (Fe3O4) found. Peaks of Nd2O3 were also observed in a lesser amount. Furthermore, neodymium iron oxide (NdFeO3) was present and its XRD peaks were pronounced at higher oxidative roasting temperatures. When proceeded to acid leaching and drying, iron sulfate and neodymium sulfate were mainly obtained. After the roasting step prior to water leaching, iron sulfate was converted to form Fe2O3 as the main compound, while neodymium sulfate remained in the ingredient. However, a small amount of Fe3O4 was still detected by XRD. The higher roasting temperature at 800 oC resulted in a greater Fe2O3 to Nd2(SO4)3 ratio, indicating a more effective roasting temperature. Iron oxides were subsequently water leached and filtered out while the solution contained mainly neodymium sulfate. Therefore, low oxidative roasting temperature not exceeding 600 oC followed by acid leaching and roasting at 800 oC gave the optimum condition for further steps of precipitation and calcination to finally achieve Nd2O3.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=NdFeB%20magnet%20waste" title="NdFeB magnet waste">NdFeB magnet waste</a>, <a href="https://publications.waset.org/search?q=oxidative%20roasting" title=" oxidative roasting"> oxidative roasting</a>, <a href="https://publications.waset.org/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/search?q=selective%20leaching" title=" selective leaching"> selective leaching</a> </p> <a href="https://publications.waset.org/10012237/recycling-of-sintered-ndfeb-magnet-waste-via-oxidative-roasting-and-selective-leaching" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012237/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012237/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012237/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012237/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012237/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012237/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012237/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012237/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012237/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012237/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">704</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">995</span> Evaluation of Corrosion in Steel Reinforced Concrete with Brick Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Julieta%20D.%20Chelaru">Julieta D. Chelaru</a>, <a href="https://publications.waset.org/search?q=Maria%20Gorea"> Maria Gorea</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The massive demolition of old buildings in recent years has generated tons of waste, especially brick waste. Thus, a concern of recent research is the use of this waste for the production of environmentally friendly concrete. At the same time, corrosion of the reinforcement steel rebar in classical concrete is a current problem. In this context, in the present paper a study was carried out on the corrosion of metal reinforcement in cement mortars with added brick waste. The corrosion process was analyzed on four compositions of mortars without and with 15%, 25% and 35% brick waste replacing the sand. The brick waste has majority content in SiO2, Al2O3, FeO3 and CaO. The grain size distribution of brick waste was close to that of the sand (dmax = 2 mm). The preparation method of the samples was similar to ordinary mortars. The corrosion action on the rebar in concrete, at different brick waste concentrations, was investigated by electrochemical measurements (polarization curves and electrochemical impedance spectroscopy (EIS)) at 1 month and 26 months. The results obtained at 26 months revealed that the addition of the brick waste in mortar improved the anticorrosion properties in the case of all samples compared with the etalon mortar. The best results were obtained in the case of the sample with 15% brick waste (the efficiency was ≈ 90%). The corrosion intermediary layer formed on the rebar surface was evidenced by SEM-EDX.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=EIS" title="EIS">EIS</a>, <a href="https://publications.waset.org/search?q=steel%20corrosion" title=" steel corrosion"> steel corrosion</a>, <a href="https://publications.waset.org/search?q=steel%20reinforced%20concrete" title=" steel reinforced concrete"> steel reinforced concrete</a>, <a href="https://publications.waset.org/search?q=waste%20materials." title=" waste materials."> waste materials.</a> </p> <a href="https://publications.waset.org/10012197/evaluation-of-corrosion-in-steel-reinforced-concrete-with-brick-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012197/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012197/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012197/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012197/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012197/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012197/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012197/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012197/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012197/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012197/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">680</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">994</span> Growth of Non-Polar a-Plane AlGaN Epilayer with High Crystalline Quality and Smooth Surface Morphology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Abbas%20Nasir">Abbas Nasir</a>, <a href="https://publications.waset.org/search?q=Xiong%20Zhang"> Xiong Zhang</a>, <a href="https://publications.waset.org/search?q=Sohail%20Ahmad"> Sohail Ahmad</a>, <a href="https://publications.waset.org/search?q=Yiping%20Cui"> Yiping Cui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Non-polar a-plane AlGaN epilayers of high structural quality have been grown on <em>r</em>-sapphire substrate by using metalorganic chemical vapor deposition (MOCVD). A graded non-polar AlGaN buffer layer with variable aluminium concentration was used to improve the structural quality of the non-polar <em>a-</em>plane AlGaN epilayer. The characterisations were carried out by high-resolution X-ray diffraction (HR-XRD), atomic force microscopy (AFM) and Hall effect measurement. The XRD and AFM results demonstrate that the Al-composition-graded non-polar AlGaN buffer layer significantly improved the crystalline quality and the surface morphology of the top layer. A low root mean square roughness 1.52 nm is obtained from AFM, and relatively low background carrier concentration down to 3.9× cm<sup>-3</sup> is obtained from Hall effect measurement.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Non-polar%20AlGaN%20epilayer" title="Non-polar AlGaN epilayer">Non-polar AlGaN epilayer</a>, <a href="https://publications.waset.org/search?q=Al%20composition-graded%20AlGaN%20layer" title=" Al composition-graded AlGaN layer"> Al composition-graded AlGaN layer</a>, <a href="https://publications.waset.org/search?q=root%20mean%20square" title=" root mean square"> root mean square</a>, <a href="https://publications.waset.org/search?q=background%20carrier%20concentration." title=" background carrier concentration."> background carrier concentration.</a> </p> <a href="https://publications.waset.org/10012024/growth-of-non-polar-a-plane-algan-epilayer-with-high-crystalline-quality-and-smooth-surface-morphology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012024/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012024/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012024/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012024/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012024/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012024/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012024/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012024/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012024/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012024/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">535</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/materials-and-metallurgical-engineering?page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/materials-and-metallurgical-engineering?page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/materials-and-metallurgical-engineering?page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/materials-and-metallurgical-engineering?page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/materials-and-metallurgical-engineering?page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/materials-and-metallurgical-engineering?page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/materials-and-metallurgical-engineering?page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/materials-and-metallurgical-engineering?page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/materials-and-metallurgical-engineering?page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/materials-and-metallurgical-engineering?page=34">34</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/materials-and-metallurgical-engineering?page=35">35</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/materials-and-metallurgical-engineering?page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>