CINXE.COM
{"title":"Applications of Big Data in Education","authors":"Faisal Kalota","volume":101,"journal":"International Journal of Educational and Pedagogical Sciences","pagesStart":1607,"pagesEnd":1613,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/10001396","abstract":"Big Data and analytics have gained a huge momentum\r\nin recent years. Big Data feeds into the field of Learning Analytics\r\n(LA) that may allow academic institutions to better understand the\r\nlearners\u2019 needs and proactively address them. Hence, it is important\r\nto have an understanding of Big Data and its applications. The\r\npurpose of this descriptive paper is to provide an overview of Big\r\nData, the technologies used in Big Data, and some of the applications\r\nof Big Data in education. Additionally, it discusses some of the\r\nconcerns related to Big Data and current research trends. While Big\r\nData can provide big benefits, it is important that institutions\r\nunderstand their own needs, infrastructure, resources, and limitation\r\nbefore jumping on the Big Data bandwagon.","references":"[1] M. Treder, \u201cThe definition of emerging technologies,\u201d 2010. (Online).\r\nAvailable: http:\/\/ieet.org\/index.php\/IEET\/more\/treder20101206.\r\n[2] T. Olavsrud, \u201c10 ways big data is changing the business of sports,\u201d\r\n2014. (Online). Available: http:\/\/www.cio.com\/article\/2687035\/big-data\/\r\n164523-10-Ways-Big-Data-Is-Changing-the-Business-of-Sports.html.\r\n[3] T. Olavsrud, \u201cHow big data is helping to save the planet,\u201d 2014.\r\n(Online). Available: http:\/\/www.cio.com\/article\/2683133\/big-data\/howbig-\r\ndata-is-helping-to-save-the-planet.html.\r\n[4] E. Dumbill, \u201cWhat is big data? An introduction to the big data\r\nlandscape,\u201d O\u2019Reilly Radar: Insight, Analysis, and Research about\r\nEmerging Technologies, 2012. (Online). Available:\r\nhttp:\/\/radar.oreilly.com\/2012\/01\/what-is-big-data.html.\r\n[5] E. Schmidt, \u201cEvery 2 days we create as much information as we did up\r\nto 2003,\u201d 2010. (Online). Available:\r\nhttp:\/\/techcrunch.com\/2010\/08\/04\/Schmidt-data\/.\r\n[6] J. J. Berman, Principles of Big Data: Preparing, Sharing, and Analyzing\r\nComplex Information, Waltham, MA: Elsevier, 2013.\r\n[7] K. Laudon and J. Laudon, Management Information System: Managing\r\nthe Digital Firm, 13th ed. UK: Pearson, 2014.\r\n[8] B. Schmarzo, \u201cBusiness analytics: moving from descriptive to predictive\r\nanalytics,\u201d 2014..\r\n[9] NMC, \u201cThe horizon report: 2014 higher education edition,\u201d 2014.\r\n[10] D. Conway, \u201cThe data science venn diagram,\u201d 2010. (Online).\r\nAvailable: http:\/\/drewconway.com\/zia\/2013\/3\/26\/the-data-science-venndiagram.\r\n[11] B. Poulson, \u201cTechniques and concepts of big data (Online Training\r\nCourse),\u201d 2014. (Online). Available: http:\/\/www.lynda.com\/sdk\/\r\nHadoop-tutorials\/Techniques-Concepts-Big-Data\/158656-2.html.\r\n[12] D. Henschen, \u201c12 Hadoop vendors to watch in 2012,\u201d InformationWeek\r\nConnecting the Business Technology Community, 2012. (Online).\r\nAvailable: http:\/\/www.informationweek.com\/big-data\/softwareplatforms\/\r\n12-hadoop-vendors-to-watch-in-2012\/d\/did\/\r\n1102410?page_number=13.\r\n[13] J. Sheard, \u201cBasics of statistical analysis of interactions data from webbased\r\nlearning environments,\u201d in Handbook of educational data mining,\r\nC. Romero, S. Ventura, M. Pechenizkiy, and R. Baker, Eds. Boca Raton,\r\nFL: CRC Press, 2011, pp. 27\u201342.\r\n[14] Y. Rogers, H. Sharp, and J. Preece. Interaction Design: Beyond Human-\r\nComputer Interaction, 3rd ed. John Wiley & Sons Ltd, 2011.\r\n[15] K. Card, D. Mackinley, and B. Shneiderman, Readings in Information\r\nVisualization: Using Vision to Think. San Francisco: Morgan Kaufmann,\r\n1999.\r\n[16] K. Silius and Kailanto, \u201cVisualizations of user data in a social media\r\nenhanced web- based environment in higher education,\u201d Int. J. Emerg.\r\nTechnol. Learn., vol. 8, no. 2, pp. 13\u201319, 2013.\r\n[17] W. Hamalainen and M. Vinni, \u201cClassifiers for educational data mining,\u201d\r\nin Handbook of educational data mining, C. Romero, S. Ventura, M.\r\nPechenizkiy, and R. Baker, Eds. Boca Raton, FL: CRC Press, 2011.\r\n[18] P. D. Antonenko, S. Toy, and D. Niederhauser, \u201cUsing cluster analysis\r\nfor data mining in educational technology research,\u201d Educ. Technology\r\nResearch and Develop, vol 60, pp. 383-398, 2012.\r\n[19] R. Agrawal, T. Imielinski, and A. Swami, \u201cMining association rules\r\nbetween sets of items in large databases,\u201d in Proceedings of the 1993\r\nACM SIGMOD Conference, 1993.\r\n[20] A. Picciano, \u201cThe evolution of big data and learning analytics in\r\namerican higher education,\u201d J. Asynchronous Learn. Networks, vol. 16,\r\nno. 3, pp. 9\u201320, 2012.\r\n[21] IBM, \u201cAnalytics for achievement: Understand success and boost\r\nperformance in primary and secondary education,\u201d Somers, NY, 2014.\r\n[22] D. Niemi and E. Gitin, \u201cUsing big data to predict student dropouts:\r\nTechnology affordances for research,\u201d in Proceedings from the\r\nInternational Association for Development of the Information Society\r\n(IADIS) International Conference on Cognition and Exploratory\r\nLearning in Digital Age, 2012.\r\n[23] P. Willging and S. Johnson, \u201cFactors that influence students\u2019 decision to\r\ndropout of online courses,\u201d J. Asynchronous Learn. Networks, vol. 13,\r\nno. 3, pp. 115\u2013127, 2009.\r\n[24] J. Kay, I. Koprinska, and K. Yacef, \u201cEducational data mining to support\r\ngroup work in software development projects,\u201d in Handbook of\r\neducational data mining, C. Romero, S. Ventura, M. Pechenizkiy, and\r\nR. Baker, Eds. Boca Raton, FL: CRC Press, 2011, pp. 173 \u2013 185.\r\n[25] D. Godoy and A. Amandi, \u201cLink recommendation in e-learning systems\r\nbased on content-based student profiles,\u201d in Handbook of educational\r\ndata mining, C. Romero, S. Ventura, M. Pechenizkiy, and R. Baker, Eds.\r\nBoca Raton, FL: CRC Press, 2011, pp. 273 \u2013 286.\r\n[26] NMC, \u201cThe horizon report: 2011 edition,\u201d 2011.\r\n[27] T. Peckham and G. McCalla, \u201cMining student behavior patterns in\r\nreading comprehension tasks,\u201d in Proceedings of the 5th International\r\nConference on Educational Data Mining, 2012.\r\n[28] M. Korolov, \u201c10 big myths about big data. Network World,\u201d 2014.\r\n(Online). Available: http:\/\/www.networkworld.com\/article\/2173703\/\r\nsoftware\/10-big-myths-about-big-data.html.\r\n[29] V. Protonotarios, G. Stoitsis, K. Kastrantas, and S. Sanchez-Alonso,\r\n\u201cUsing multilingual analytics to explore the usage of a learning portal in\r\ndeveloping countries,\u201d J. Asynchronous Learn. Networks, vol. 17, no. 2,\r\npp. 101\u2013117, 2013. [30] K. Xiangsheng, \u201cBig data x-learning resources integration and\r\nprocessing in cloud environment,\u201d Int. J. Emerg. Technol. Learn., vol. 9,\r\nno. 5, pp. 22\u201326, 2014.\r\n[31] J. Yoo and M.-H. Cho, \u201cMining concept maps to understand university\r\nstudents\u2019 learning,\u201d in Proceedings of the 5th International Conference\r\non Educational Data Mining, 2012.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 101, 2015"}