CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 59 results for author: <span class="mathjax">von Essen, C</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/" aria-role="search"> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="von Essen, C"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=von+Essen%2C+C&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="von Essen, C"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=von+Essen%2C+C&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=von+Essen%2C+C&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=von+Essen%2C+C&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.06680">arXiv:2209.06680</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.06680">pdf</a>, <a href="https://arxiv.org/ps/2209.06680">ps</a>, <a href="https://arxiv.org/format/2209.06680">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> </div> <p class="title is-5 mathjax"> Geometric albedos at short optical wavelengths for the hot Jupiters WASP-43b, WASP-103b, and TrES-3b </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Mallonn%2C+M">Matthias Mallonn</a>, <a href="/search/?searchtype=author&amp;query=Herrero%2C+E">Enrique Herrero</a>, <a href="/search/?searchtype=author&amp;query=von+Essen%2C+C">Carolina von Essen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.06680v1-abstract-short" style="display: inline;"> The largest and most close-in exoplanets would reflect enough star light to enable its ground-based photometric detection under the condition of a high to moderate albedo. We present the results of an observing campaign of secondary eclipse light curves of three of the most suitable exoplanet targets, WASP-43b, WASP-103b, and TrES-3b. The observations were conducted with meter-sized telescopes in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.06680v1-abstract-full').style.display = 'inline'; document.getElementById('2209.06680v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.06680v1-abstract-full" style="display: none;"> The largest and most close-in exoplanets would reflect enough star light to enable its ground-based photometric detection under the condition of a high to moderate albedo. We present the results of an observing campaign of secondary eclipse light curves of three of the most suitable exoplanet targets, WASP-43b, WASP-103b, and TrES-3b. The observations were conducted with meter-sized telescopes in the blue optical broadband filters Johnson B and Johnson V. We do not detect a photometric dimming at the moment of the eclipse, and derive a best-fit eclipse depth by an injection-recovery test. These depth values are then used to infer low geometric albedos ranging from zero to 0.18 with an uncertainty of 0.12 or better in most cases. This work illustrates the potential of ground-based telescopes to provide wavelength-resolved reflection properties of selected exoplanets even at short optical wavelengths, which otherwise are only accessible by the Hubble Space Telescope. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.06680v1-abstract-full').style.display = 'none'; document.getElementById('2209.06680v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for RNAAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.10102">arXiv:2202.10102</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.10102">pdf</a>, <a href="https://arxiv.org/format/2202.10102">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/ac50b5">10.3847/1538-4365/ac50b5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chemical Composition Of Bright Stars In The Northern Hemisphere: Star-Planet Connection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Tautvai%C5%A1ien%C4%97%2C+G">G. Tautvai拧ien臈</a>, <a href="/search/?searchtype=author&amp;query=Mikolaitis%2C+%C5%A0">艩. Mikolaitis</a>, <a href="/search/?searchtype=author&amp;query=Drazdauskas%2C+A">A. Drazdauskas</a>, <a href="/search/?searchtype=author&amp;query=Stonkut%C4%97%2C+E">E. Stonkut臈</a>, <a href="/search/?searchtype=author&amp;query=Minkevi%C4%8Di%C5%ABt%C4%97%2C+R">R. Minkevi膷i奴t臈</a>, <a href="/search/?searchtype=author&amp;query=Pak%C5%A1tien%C4%97%2C+E">E. Pak拧tien臈</a>, <a href="/search/?searchtype=author&amp;query=Kjeldsen%2C+H">H. Kjeldsen</a>, <a href="/search/?searchtype=author&amp;query=Brogaard%2C+K">K. Brogaard</a>, <a href="/search/?searchtype=author&amp;query=Chorniy%2C+Y">Y. Chorniy</a>, <a href="/search/?searchtype=author&amp;query=von+Essen%2C+C">C. von Essen</a>, <a href="/search/?searchtype=author&amp;query=Grundahl%2C+F">F. Grundahl</a>, <a href="/search/?searchtype=author&amp;query=Ambrosch%2C+M">M. Ambrosch</a>, <a href="/search/?searchtype=author&amp;query=Bagdonas%2C+V">V. Bagdonas</a>, <a href="/search/?searchtype=author&amp;query=Sharma%2C+A">A. Sharma</a>, <a href="/search/?searchtype=author&amp;query=V%C3%A1zquez%2C+C+V">C. Viscasillas V谩zquez</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.10102v1-abstract-short" style="display: inline;"> In fulfilling the aims of the planetary and asteroseismic research missions, such as that of the NASA Transiting Exoplanet Survey Satellite (TESS) space telescope, accurate stellar atmospheric parameters and a detailed chemical composition are required as input. We have observed high-resolution spectra for all 848 bright (V&lt;8 mag) stars that are cooler than F5 spectral class in the area up to 12 d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.10102v1-abstract-full').style.display = 'inline'; document.getElementById('2202.10102v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.10102v1-abstract-full" style="display: none;"> In fulfilling the aims of the planetary and asteroseismic research missions, such as that of the NASA Transiting Exoplanet Survey Satellite (TESS) space telescope, accurate stellar atmospheric parameters and a detailed chemical composition are required as input. We have observed high-resolution spectra for all 848 bright (V&lt;8 mag) stars that are cooler than F5 spectral class in the area up to 12 deg surrounding the northern TESS continuous viewing zone and uniformly determined the main atmospheric parameters, ages, orbital parameters, velocity components, and precise abundances of up to 24 chemical species (C(C2), N(CN), [O I], Na I, Mg I, Al I, Si I, Si I, Ca I, Ca II, Sc I, Sc II, Ti I, Ti II, V I, Cr I, Cr II, Mn I, Fe I, Fe II, Co I, Ni I, Cu I, and Zn I) for 740 slowly rotating stars. The analysis of 25 planet-hosting stars in our sample drove us to the following conclusions: the dwarf stars hosting high-mass planets are more metal rich than those with low-mass planets. We find slightly negative C/O and Mg/Si slopes toward the stars with high-mass planets. All the low-mass planet hosts in our sample show positive $螖$[El/Fe] versus condensation temperature slopes, in particular, the star with the large number of various planets. The high-mass planet hosts have a diversity of slopes, but in more metal rich, older, and cooler stars, the positive elemental abundance slopes are more common. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.10102v1-abstract-full').style.display = 'none'; document.getElementById('2202.10102v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 8 figures. arXiv admin note: text overlap with arXiv:2005.07526</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.06335">arXiv:2109.06335</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.06335">pdf</a>, <a href="https://arxiv.org/format/2109.06335">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202141191">10.1051/0004-6361/202141191 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing the atmosphere of WASP-69 b with low- and high-resolution transmission spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Khalafinejad%2C+S">S. Khalafinejad</a>, <a href="/search/?searchtype=author&amp;query=Molaverdikhani%2C+K">K. Molaverdikhani</a>, <a href="/search/?searchtype=author&amp;query=Blecic%2C+J">J. Blecic</a>, <a href="/search/?searchtype=author&amp;query=Mallonn%2C+M">M. Mallonn</a>, <a href="/search/?searchtype=author&amp;query=Nortmann%2C+L">L. Nortmann</a>, <a href="/search/?searchtype=author&amp;query=Caballero%2C+J+A">J. A. Caballero</a>, <a href="/search/?searchtype=author&amp;query=Rahmati%2C+H">H. Rahmati</a>, <a href="/search/?searchtype=author&amp;query=Kaminski%2C+A">A. Kaminski</a>, <a href="/search/?searchtype=author&amp;query=Sadegi%2C+S">S. Sadegi</a>, <a href="/search/?searchtype=author&amp;query=Nagel%2C+E">E. Nagel</a>, <a href="/search/?searchtype=author&amp;query=Carone%2C+L">L. Carone</a>, <a href="/search/?searchtype=author&amp;query=Amado%2C+P+J">P. J. Amado</a>, <a href="/search/?searchtype=author&amp;query=Azzaro%2C+M">M. Azzaro</a>, <a href="/search/?searchtype=author&amp;query=Bauer%2C+F+F">F. F. Bauer</a>, <a href="/search/?searchtype=author&amp;query=Casasayas-Barris%2C+N">N. Casasayas-Barris</a>, <a href="/search/?searchtype=author&amp;query=Czesla%2C+S">S. Czesla</a>, <a href="/search/?searchtype=author&amp;query=von+Essen%2C+C">C. von Essen</a>, <a href="/search/?searchtype=author&amp;query=Fossati%2C+L">L. Fossati</a>, <a href="/search/?searchtype=author&amp;query=G%C3%BCdel%2C+M">M. G眉del</a>, <a href="/search/?searchtype=author&amp;query=Henning%2C+T">Th. Henning</a>, <a href="/search/?searchtype=author&amp;query=L%C3%B3pez-Puertas%2C+M">M. L贸pez-Puertas</a>, <a href="/search/?searchtype=author&amp;query=Lendl%2C+M">M. Lendl</a>, <a href="/search/?searchtype=author&amp;query=L%C3%BCftinger%2C+T">T. L眉ftinger</a>, <a href="/search/?searchtype=author&amp;query=Montes%2C+D">D. Montes</a>, <a href="/search/?searchtype=author&amp;query=Oshagh%2C+M">M. Oshagh</a> , et al. (9 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.06335v1-abstract-short" style="display: inline;"> Consideration of both low- and high-resolution transmission spectroscopy is key for obtaining a comprehensive picture of exoplanet atmospheres. In studies of transmission spectra, the continuum information is well established with low-resolution spectra, while the shapes of individual lines are best constrained with high-resolution observations. In this work, we aim to merge high- with low-resolut&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.06335v1-abstract-full').style.display = 'inline'; document.getElementById('2109.06335v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.06335v1-abstract-full" style="display: none;"> Consideration of both low- and high-resolution transmission spectroscopy is key for obtaining a comprehensive picture of exoplanet atmospheres. In studies of transmission spectra, the continuum information is well established with low-resolution spectra, while the shapes of individual lines are best constrained with high-resolution observations. In this work, we aim to merge high- with low-resolution transmission spectroscopy. We present the analysis of three primary transits of WASP-69b in the VIS channel of the CARMENES instrument and perform a combined low- and high-resolution analysis using additional data from HARPS-N, OSIRIS/GTC, and WFC3/HST already available in the literature. During the first CARMENES observing night, we detected the planet Na D$_{2}$ and D$_{1}$ lines at $\sim 7蟽$ and $\sim 3蟽$ significance levels, respectively. We measured a D$_{2}$/D$_{1}$ intensity ratio of 2.5$\pm$0.7, which is in agreement with previous HARPS-N observations. Our modelling of WFC3 and OSIRIS data suggests strong Rayleigh scattering, solar to super-solar water abundance, and a highly muted Na feature in the atmosphere of this planet, in agreement with previous investigations of this target. We use the continuum information retrieved from the low-resolution spectroscopy as a prior to break the degeneracy between the Na abundance, reference pressure, and thermosphere temperature for the high-resolution spectroscopic analysis. We fit the Na D$_{1}$ and D$_{2}$ lines individually and find that the posterior distributions of the model parameters agree with each other within 1$蟽$. Our results suggest that local thermodynamic equilibrium processes can explain the observed D$_{2}$/D$_{1}$ ratio because the presence of haze opacity mutes the absorption features. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.06335v1-abstract-full').style.display = 'none'; document.getElementById('2109.06335v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 18 figures, accepted for publication in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 656, A142 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.08341">arXiv:2106.08341</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.08341">pdf</a>, <a href="https://arxiv.org/format/2106.08341">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-3881/ac09f1">10.3847/1538-3881/ac09f1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> TESS Data for Asteroseismology: Photometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Handberg%2C+R">Rasmus Handberg</a>, <a href="/search/?searchtype=author&amp;query=Lund%2C+M+N">Mikkel N. Lund</a>, <a href="/search/?searchtype=author&amp;query=White%2C+T+R">Timothy R. White</a>, <a href="/search/?searchtype=author&amp;query=Hall%2C+O+J">Oliver J. Hall</a>, <a href="/search/?searchtype=author&amp;query=Buzasi%2C+D+L">Derek L. Buzasi</a>, <a href="/search/?searchtype=author&amp;query=Pope%2C+B+J+S">Benjamin J. S. Pope</a>, <a href="/search/?searchtype=author&amp;query=Hansen%2C+J+S">Jonas S. Hansen</a>, <a href="/search/?searchtype=author&amp;query=von+Essen%2C+C">Carolina von Essen</a>, <a href="/search/?searchtype=author&amp;query=Carboneau%2C+L">Lindsey Carboneau</a>, <a href="/search/?searchtype=author&amp;query=Huber%2C+D">Daniel Huber</a>, <a href="/search/?searchtype=author&amp;query=Vanderspek%2C+R+K">Roland K. Vanderspek</a>, <a href="/search/?searchtype=author&amp;query=Fausnaug%2C+M+M">Michael M. Fausnaug</a>, <a href="/search/?searchtype=author&amp;query=Tenenbaum%2C+P">Peter Tenenbaum</a>, <a href="/search/?searchtype=author&amp;query=Jenkins%2C+J+M">Jon M. Jenkins</a>, <a href="/search/?searchtype=author&amp;query=Collaboration%2C+t+T">the T&#39;DA Collaboration</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.08341v1-abstract-short" style="display: inline;"> Over the last two decades, asteroseismology has increasingly proven to be the observational tool of choice for the study of stellar physics, aided by the high quality of data available from space-based missions such as CoRoT, Kepler, K2 and TESS. TESS in particular will produce more than an order of magnitude more such data than has ever been available before. While the standard TESS mission pro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.08341v1-abstract-full').style.display = 'inline'; document.getElementById('2106.08341v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.08341v1-abstract-full" style="display: none;"> Over the last two decades, asteroseismology has increasingly proven to be the observational tool of choice for the study of stellar physics, aided by the high quality of data available from space-based missions such as CoRoT, Kepler, K2 and TESS. TESS in particular will produce more than an order of magnitude more such data than has ever been available before. While the standard TESS mission products include light curves from 120-sec observations suitable for both exoplanet and asteroseismic studies, they do not include light curves for the vastly larger number of targets observed by the mission at a longer 1800-sec cadence in Full Frame Images (FFIs). To address this lack, the TESS Data for Asteroseismology (T&#39;DA) group under the TESS Asteroseismic Science Consortium (TASC), has constructed an open-source pipeline focused on producing light curves for all stars observed by TESS at all cadences, currently including stars down to a TESS magnitude of 15. The pipeline includes target identification, background estimation and removal, correction of FFI timestamps, and a range of potential photometric extraction methodologies, though aperture photometry is currently the default approach. For the brightest targets, we transparently apply a halo photometry algorithm to construct a calibrated light curve from unsaturated pixels in the image. In this paper, we describe in detail the algorithms, functionality, and products of this pipeline, and summarize the noise metrics for the light curves. Companion papers will address the removal of systematic noise sources from our light curves, and a stellar variability classification from these. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.08341v1-abstract-full').style.display = 'none'; document.getElementById('2106.08341v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 14 figures, Accepted for publication in The Astronomical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.04044">arXiv:2008.04044</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.04044">pdf</a>, <a href="https://arxiv.org/format/2008.04044">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/staa2435">10.1093/mnras/staa2435 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing the atmosphere of HD189733b with the Na I and K I lines </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Keles%2C+E">E. Keles</a>, <a href="/search/?searchtype=author&amp;query=Kitzmann%2C+D">D. Kitzmann</a>, <a href="/search/?searchtype=author&amp;query=Mallonn%2C+M">M. Mallonn</a>, <a href="/search/?searchtype=author&amp;query=Alexoudi%2C+X">X. Alexoudi</a>, <a href="/search/?searchtype=author&amp;query=Fossati%2C+L">L. Fossati</a>, <a href="/search/?searchtype=author&amp;query=Pino%2C+L">L. Pino</a>, <a href="/search/?searchtype=author&amp;query=Seidel%2C+J+V">J. V. Seidel</a>, <a href="/search/?searchtype=author&amp;query=Carroll%2C+T+A">T. A. Carroll</a>, <a href="/search/?searchtype=author&amp;query=Steffen%2C+M">M. Steffen</a>, <a href="/search/?searchtype=author&amp;query=Ilyin%2C+I">I. Ilyin</a>, <a href="/search/?searchtype=author&amp;query=Poppenhaeger%2C+K">K. Poppenhaeger</a>, <a href="/search/?searchtype=author&amp;query=Strassmeier%2C+K+G">K. G. Strassmeier</a>, <a href="/search/?searchtype=author&amp;query=von+Essen%2C+C">C. von Essen</a>, <a href="/search/?searchtype=author&amp;query=Nascimbeni%2C+V">V. Nascimbeni</a>, <a href="/search/?searchtype=author&amp;query=Turner%2C+J+D">J. D. Turner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.04044v1-abstract-short" style="display: inline;"> High spectral resolution transmission spectroscopy is a powerful tool to characterize exoplanet atmospheres. Especially for hot Jupiters, this technique is highly relevant, due to their high altitude absorption e.g. from resonant sodium (Na I) and potassium (K I) lines. We resolve the atmospheric K I-absorption on HD189733b with the aim to compare the resolved K I -line and previously obtained hig&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.04044v1-abstract-full').style.display = 'inline'; document.getElementById('2008.04044v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.04044v1-abstract-full" style="display: none;"> High spectral resolution transmission spectroscopy is a powerful tool to characterize exoplanet atmospheres. Especially for hot Jupiters, this technique is highly relevant, due to their high altitude absorption e.g. from resonant sodium (Na I) and potassium (K I) lines. We resolve the atmospheric K I-absorption on HD189733b with the aim to compare the resolved K I -line and previously obtained high resolution Na I-D-line observations with synthetic transmission spectra. The line profiles suggest atmospheric processes leading to a line broadening of the order of 10 km/s for the Na I-D-lines, and only a few km/s for the K I-line. The investigation hints that either the atmosphere of HD189733b lacks a significant amount of K I or the alkali lines probe different atmospheric regions with different temperature, which could explain the differences we see in the resolved absorption lines. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.04044v1-abstract-full').style.display = 'none'; document.getElementById('2008.04044v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.07716">arXiv:2007.07716</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.07716">pdf</a>, <a href="https://arxiv.org/format/2007.07716">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202038080">10.1051/0004-6361/202038080 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Role of the impact parameter in exoplanet transmission spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Alexoudi%2C+X">X. Alexoudi</a>, <a href="/search/?searchtype=author&amp;query=Mallonn%2C+M">M. Mallonn</a>, <a href="/search/?searchtype=author&amp;query=Keles%2C+E">E. Keles</a>, <a href="/search/?searchtype=author&amp;query=Poppenhaeger%2C+K">K. Poppenhaeger</a>, <a href="/search/?searchtype=author&amp;query=von+Essen%2C+C">C. von Essen</a>, <a href="/search/?searchtype=author&amp;query=Strassmeier%2C+K+G">K. G. Strassmeier</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.07716v1-abstract-short" style="display: inline;"> Transmission spectroscopy is a promising tool for the atmospheric characterization of transiting exoplanets. Because the planetary signal is faint, discrepancies have been reported regarding individual targets. We investigate the dependence of the estimated transmission spectrum on deviations of the orbital parameters of the star-planet system that are due to the limb-darkening effects of the host&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.07716v1-abstract-full').style.display = 'inline'; document.getElementById('2007.07716v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.07716v1-abstract-full" style="display: none;"> Transmission spectroscopy is a promising tool for the atmospheric characterization of transiting exoplanets. Because the planetary signal is faint, discrepancies have been reported regarding individual targets. We investigate the dependence of the estimated transmission spectrum on deviations of the orbital parameters of the star-planet system that are due to the limb-darkening effects of the host star. We describe how the uncertainty on the orbital parameters translates into an uncertainty on the planetary spectral slope. We created synthetic transit light curves in seven different wavelength bands, from the near-ultraviolet to the near-infrared, and fit them with transit models parameterized by fixed deviating values of the impact parameter $b$. Our simulations show a wavelength-dependent offset that is more pronounced at the blue wavelengths where the limb-darkening effect is stronger. This offset introduces a slope in the planetary transmission spectrum that becomes steeper with increasing $b$ values. Variations of $b$ by positive or negative values within its uncertainty interval introduce positive or negative slopes, thus the formation of an error envelope. The amplitude from blue optical to near-infrared wavelength for a typical uncertainty on $b$ corresponds to one atmospheric pressure scale height and more. This impact parameter degeneracy is confirmed for different host types; K stars present prominently steeper slopes, while M stars indicate features at the blue wavelengths. We demonstrate that transmission spectra can be hard to interpret, basically because of the limitations in defining a precise impact parameter value for a transiting exoplanet. This consequently limits a characterization of its atmosphere. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.07716v1-abstract-full').style.display = 'none'; document.getElementById('2007.07716v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 640, A134 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.09750">arXiv:2006.09750</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.09750">pdf</a>, <a href="https://arxiv.org/format/2006.09750">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202038524">10.1051/0004-6361/202038524 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> TESS unveils the optical phase curve of KELT-1b. Thermal emission and ellipsoidal variation from the brown dwarf companion, and activity from the star </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=von+Essen%2C+C">C. von Essen</a>, <a href="/search/?searchtype=author&amp;query=Mallonn%2C+M">M. Mallonn</a>, <a href="/search/?searchtype=author&amp;query=Piette%2C+A">A. Piette</a>, <a href="/search/?searchtype=author&amp;query=Cowan%2C+N+B">N. B. Cowan</a>, <a href="/search/?searchtype=author&amp;query=Madhusudhan%2C+N">N. Madhusudhan</a>, <a href="/search/?searchtype=author&amp;query=Agol%2C+E">E. Agol</a>, <a href="/search/?searchtype=author&amp;query=Antoci%2C+V">V. Antoci</a>, <a href="/search/?searchtype=author&amp;query=Poppenhaeger%2C+K">K. Poppenhaeger</a>, <a href="/search/?searchtype=author&amp;query=Stassun%2C+K+G">K. G. Stassun</a>, <a href="/search/?searchtype=author&amp;query=Khalafinejad%2C+S">S. Khalafinejad</a>, <a href="/search/?searchtype=author&amp;query=Tautvai%C5%A1ien%C4%97%2C+G">G. Tautvai拧ien臈</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.09750v2-abstract-short" style="display: inline;"> We present the detection and analysis of the phase curve of KELT-1b at optical wavelengths, analyzing data taken by the Transiting Exoplanet Survey Satellite (TESS). With a mass of ~27 M_J, KELT-1b is a low-mass brown dwarf. Due to the high mass and close proximity of its companion, the host star has a TESS light curve which shows clear ellipsoidal variations. We model the data with a six-componen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.09750v2-abstract-full').style.display = 'inline'; document.getElementById('2006.09750v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.09750v2-abstract-full" style="display: none;"> We present the detection and analysis of the phase curve of KELT-1b at optical wavelengths, analyzing data taken by the Transiting Exoplanet Survey Satellite (TESS). With a mass of ~27 M_J, KELT-1b is a low-mass brown dwarf. Due to the high mass and close proximity of its companion, the host star has a TESS light curve which shows clear ellipsoidal variations. We model the data with a six-component model: secondary eclipse, phase curve accounting for reflected light and thermal emission, Doppler beaming, ellipsoidal variations, stellar activity and the primary transit. We determine the secondary eclipse depth in the TESS bandpass to be 304 +/- 75 parts-per-million (ppm), the most accurate eclipse depth determined so far for KELT-1b. We measure the amplitude of the phase curve to be 128 +/- 27 ppm, with a corresponding eastward offset between the region of maximum brightness and the substellar point of 19.2 +/- 9.6 degrees, in good agreement with Spitzer measurements. We determine day and night brightness temperatures of 3201 +/- 147 K and 1484 +/- 110 K, respectively, slightly higher than those from Spitzer 3.6 and 4.5 micrometer data. A one-dimensional self-consistent atmospheric model can explain the TESS and Spitzer day side brightness temperatures with thermal emission alone and no reflected light. The night side data can be explained by a model with an internal temperature of ~1100 K, which may be related to the inflated radius. The difference between the TESS and Spitzer brightness temperatures can be explained by stronger molecular opacity in the Spitzer bands. On the night side, this opacity is due primarily to CH4 and CO while on the day side it is due to H2-H2 and H2-He collision-induced absorption. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.09750v2-abstract-full').style.display = 'none'; document.getElementById('2006.09750v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.07526">arXiv:2005.07526</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.07526">pdf</a>, <a href="https://arxiv.org/format/2005.07526">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/ab8b67">10.3847/1538-4365/ab8b67 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chemical Composition of Bright Stars in the Continuous Viewing Zone of the TESS Space Mission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Tautvai%C5%A1ien%C4%97%2C+G">G. Tautvai拧ien臈</a>, <a href="/search/?searchtype=author&amp;query=Mikolaitis%2C+%C5%A0">艩. Mikolaitis</a>, <a href="/search/?searchtype=author&amp;query=Drazdauskas%2C+A">A. Drazdauskas</a>, <a href="/search/?searchtype=author&amp;query=Stonkut%C4%97%2C+E">E. Stonkut臈</a>, <a href="/search/?searchtype=author&amp;query=Minkevi%C4%8Di%C5%ABt%C4%97%2C+R">R. Minkevi膷i奴t臈</a>, <a href="/search/?searchtype=author&amp;query=Kjeldsen%2C+H">H. Kjeldsen</a>, <a href="/search/?searchtype=author&amp;query=Brogaard%2C+K">K. Brogaard</a>, <a href="/search/?searchtype=author&amp;query=von+Essen%2C+C">C. von Essen</a>, <a href="/search/?searchtype=author&amp;query=Grundahl%2C+F">F. Grundahl</a>, <a href="/search/?searchtype=author&amp;query=Pak%C5%A1tien%C4%97%2C+E">E. Pak拧tien臈</a>, <a href="/search/?searchtype=author&amp;query=Bagdonas%2C+V">V. Bagdonas</a>, <a href="/search/?searchtype=author&amp;query=V%C3%A1zquez%2C+C+V">C. Viscasillas V谩zquez</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.07526v1-abstract-short" style="display: inline;"> Accurate atmospheric parameters and chemical composition of stars play a vital role in characterizing physical parameters of exoplanetary systems and understanding of their formation. A full asteroseismic characterization of a star is also possible if its main atmospheric parameters are known. The NASA Transiting Exoplanet Survey Satellite (TESS) space telescope will play a very important role in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.07526v1-abstract-full').style.display = 'inline'; document.getElementById('2005.07526v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.07526v1-abstract-full" style="display: none;"> Accurate atmospheric parameters and chemical composition of stars play a vital role in characterizing physical parameters of exoplanetary systems and understanding of their formation. A full asteroseismic characterization of a star is also possible if its main atmospheric parameters are known. The NASA Transiting Exoplanet Survey Satellite (TESS) space telescope will play a very important role in searching of exoplanets around bright stars and stellar asteroseismic variability research. We have observed all 302 bright (V &lt; 8 mag) and cooler than F5 spectral class stars in the northern TESS continuous viewing zone with a 1.65 m telescope at the Moletai Astronomical Observatory of Vilnius University and the high-resolution Vilnius University Echelle Spectrograph. We uniformly determined the main atmospheric parameters, ages, orbital parameters, velocity components, and precise abundances of 24 chemical species ( C(C2), N(CN), [O I], Na I, Mg I, Al I, Si I, Si II, Ca I, Ca II, Sc I, Sc II, Ti I, Ti II, V I, Cr I, Cr II, Mn I, Fe I, Fe II, Co I, Ni I, Cu I, and Zn I) for 277 slowly rotating single stars in the field. About 83 % of the sample stars exhibit the Mg/Si ratios greater than 1.0 and may potentially harbor rocky planets in their systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.07526v1-abstract-full').style.display = 'none'; document.getElementById('2005.07526v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 12 figures, published in ApJS, 2020 May 12</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal Supplement Series, 248:19 (11pp), 2020 May </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.07203">arXiv:2005.07203</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.07203">pdf</a>, <a href="https://arxiv.org/format/2005.07203">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-3881/ab93dd">10.3847/1538-3881/ab93dd <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> TESS Data for Asteroseismology: Timing verification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=von+Essen%2C+C">Carolina von Essen</a>, <a href="/search/?searchtype=author&amp;query=Lund%2C+M+N">Mikkel N. Lund</a>, <a href="/search/?searchtype=author&amp;query=Handberg%2C+R">Rasmus Handberg</a>, <a href="/search/?searchtype=author&amp;query=Sosa%2C+M+S">Marina S. Sosa</a>, <a href="/search/?searchtype=author&amp;query=Gadeberg%2C+J+T">Julie Thiim Gadeberg</a>, <a href="/search/?searchtype=author&amp;query=Kjeldsen%2C+H">Hans Kjeldsen</a>, <a href="/search/?searchtype=author&amp;query=Vanderspek%2C+R+K">Roland K. Vanderspek</a>, <a href="/search/?searchtype=author&amp;query=Mortensen%2C+D+S">Dina S. Mortensen</a>, <a href="/search/?searchtype=author&amp;query=Mallonn%2C+M">M. Mallonn</a>, <a href="/search/?searchtype=author&amp;query=Mammana%2C+L">L. Mammana</a>, <a href="/search/?searchtype=author&amp;query=Morgan%2C+E+H">Edward H. Morgan</a>, <a href="/search/?searchtype=author&amp;query=Villasenor%2C+J+N+S">Jesus Noel S. Villasenor</a>, <a href="/search/?searchtype=author&amp;query=Fausnaugh%2C+M+M">Michael M. Fausnaugh</a>, <a href="/search/?searchtype=author&amp;query=Ricker%2C+G+R">George R. Ricker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.07203v1-abstract-short" style="display: inline;"> The Transiting Exoplanet Survey Satellite (TESS) is NASA&#39;s latest space telescope dedicated to the discovery of transiting exoplanets around nearby stars. Besides the main goal of the mission, asteroseismology is an important secondary goal and very relevant for the high-quality time series that TESS will make during its two year all-sky survey. Using TESS for asteroseismology introduces strong ti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.07203v1-abstract-full').style.display = 'inline'; document.getElementById('2005.07203v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.07203v1-abstract-full" style="display: none;"> The Transiting Exoplanet Survey Satellite (TESS) is NASA&#39;s latest space telescope dedicated to the discovery of transiting exoplanets around nearby stars. Besides the main goal of the mission, asteroseismology is an important secondary goal and very relevant for the high-quality time series that TESS will make during its two year all-sky survey. Using TESS for asteroseismology introduces strong timing requirements, especially for coherent oscillators. Although the internal clock on board TESS is precise in its own time, it might have a constant drift and will thus need calibration, or offsets might inadvertently be introduced. Here we present simultaneously ground- and space-based observations of primary eclipses of several binary systems in the Southern ecliptic hemisphere, used to verify the reliability of the TESS timestamps. From twelve contemporaneous TESS/ground observations we determined a time offset equal to 5.8 +/- 2.5 sec, in the sense that the Barycentric time measured by TESS is ahead of real time. The offset is consistent with zero at 2.3-sigma level. In addition, we used 405 individually measured mid-eclipse times of 26 eclipsing binary stars observed solely by TESS to test the existence of a potential drift with a monotonic growth (or decay) affecting the observations of all stars. We find a drift corresponding to sigma_drift = 0.009 +/- 0.015 sec/day. We find that the measured offset is of a size that will not become an issue for comparing ground-based and space data for coherent oscillations for most of the targets observed with TESS. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.07203v1-abstract-full').style.display = 'none'; document.getElementById('2005.07203v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.06906">arXiv:2005.06906</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.06906">pdf</a>, <a href="https://arxiv.org/format/2005.06906">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/staa1344">10.1093/mnras/staa1344 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Large-scale changes of the cloud coverage in the $蔚$ Indi Ba,Bb system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Hitchcock%2C+J+A">J. A. Hitchcock</a>, <a href="/search/?searchtype=author&amp;query=Helling%2C+C">Ch. Helling</a>, <a href="/search/?searchtype=author&amp;query=Scholz%2C+A">A. Scholz</a>, <a href="/search/?searchtype=author&amp;query=Hodosan%2C+G">G. Hodosan</a>, <a href="/search/?searchtype=author&amp;query=Dominik%2C+M">M. Dominik</a>, <a href="/search/?searchtype=author&amp;query=Hundertmark%2C+M">M. Hundertmark</a>, <a href="/search/?searchtype=author&amp;query=J%C3%B8rgensen%2C+U+G">U. G. J酶rgensen</a>, <a href="/search/?searchtype=author&amp;query=Longa-Pe%C3%B1a%2C+P">P. Longa-Pe帽a</a>, <a href="/search/?searchtype=author&amp;query=Sajadian%2C+S">S. Sajadian</a>, <a href="/search/?searchtype=author&amp;query=Skottfelt%2C+J">J. Skottfelt</a>, <a href="/search/?searchtype=author&amp;query=Snodgrass%2C+C">C. Snodgrass</a>, <a href="/search/?searchtype=author&amp;query=Bozza%2C+V">V. Bozza</a>, <a href="/search/?searchtype=author&amp;query=Burgdorf%2C+M+J">M. J. Burgdorf</a>, <a href="/search/?searchtype=author&amp;query=Campbell-White%2C+J">J. Campbell-White</a>, <a href="/search/?searchtype=author&amp;query=Jaimes%2C+R+F">Roberto Figuera Jaimes</a>, <a href="/search/?searchtype=author&amp;query=Fujii%2C+Y+I">Y. I. Fujii</a>, <a href="/search/?searchtype=author&amp;query=Haikala%2C+L+K">L. K. Haikala</a>, <a href="/search/?searchtype=author&amp;query=Henning%2C+T">T. Henning</a>, <a href="/search/?searchtype=author&amp;query=Hinse%2C+T+C">T. C. Hinse</a>, <a href="/search/?searchtype=author&amp;query=Lowry%2C+S">S. Lowry</a>, <a href="/search/?searchtype=author&amp;query=Mancini%2C+L">L. Mancini</a>, <a href="/search/?searchtype=author&amp;query=Rahvar%2C+S">S. Rahvar</a>, <a href="/search/?searchtype=author&amp;query=Rabus%2C+M">M. Rabus</a>, <a href="/search/?searchtype=author&amp;query=Southworth%2C+J">J. Southworth</a>, <a href="/search/?searchtype=author&amp;query=von+Essen%2C+C">C. von Essen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.06906v1-abstract-short" style="display: inline;"> We present the results of 14 nights of \textit{I}-band photometric monitoring of the nearby brown dwarf binary, $蔚$ Indi Ba,Bb. Observations were acquired over 2 months, and total close to 42 hours of coverage at a typically high cadence of 1.4 minutes. At a separation of just $0.7&#39;&#39;$, we do not resolve the individual components, and so effectively treat the binary as if it were a single object. H&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.06906v1-abstract-full').style.display = 'inline'; document.getElementById('2005.06906v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.06906v1-abstract-full" style="display: none;"> We present the results of 14 nights of \textit{I}-band photometric monitoring of the nearby brown dwarf binary, $蔚$ Indi Ba,Bb. Observations were acquired over 2 months, and total close to 42 hours of coverage at a typically high cadence of 1.4 minutes. At a separation of just $0.7&#39;&#39;$, we do not resolve the individual components, and so effectively treat the binary as if it were a single object. However, $蔚$ Indi Ba (spectral type T1) is the brightest known T-type brown dwarf, and is expected to dominate the photometric signal. We typically find no strong variability associated with the target during each individual night of observing, but see significant changes in mean brightness - by as much as $0.10$ magnitudes - over the 2 months of the campaign. This strong variation is apparent on a timescale of at least 2 days. We detect no clear periodic signature, which suggests we may be observing the T1 brown dwarf almost pole-on, and the days-long variability in mean brightness is caused by changes in the large-scale structure of the cloud coverage. Dynamic clouds will very likely produce lightning, and complementary high cadence \textit{V}-band and H\textit{$伪$} images were acquired to search for the emission signatures associated with stochastic &#34;strikes.&#34; We report no positive detections for the target in either of these passbands. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.06906v1-abstract-full').style.display = 'none'; document.getElementById('2005.06906v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.10767">arXiv:2004.10767</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.10767">pdf</a>, <a href="https://arxiv.org/format/2004.10767">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202037905">10.1051/0004-6361/202037905 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> TESS unveils the phase curve of WASP-33b. Characterization of the planetary atmosphere and the pulsations from the star </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=von+Essen%2C+C">C. von Essen</a>, <a href="/search/?searchtype=author&amp;query=Mallonn%2C+M">M. Mallonn</a>, <a href="/search/?searchtype=author&amp;query=Borre%2C+C+C">C. C. Borre</a>, <a href="/search/?searchtype=author&amp;query=Antoci%2C+V">V. Antoci</a>, <a href="/search/?searchtype=author&amp;query=Stassun%2C+K+G">K. G. Stassun</a>, <a href="/search/?searchtype=author&amp;query=Khalafinejad%2C+S">S. Khalafinejad</a>, <a href="/search/?searchtype=author&amp;query=Tautvaivsiene%2C+G">G. Tautvaivsiene</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.10767v2-abstract-short" style="display: inline;"> We present the detection and characterization of the full-orbit phase curve and secondary eclipse of the ultra-hot Jupiter WASP-33b at optical wavelengths, along with the pulsation spectrum of the host star. We analyzed data collected by the Transiting Exoplanet Survey Satellite (TESS) in sector 18. WASP-33b belongs to a very short list of highly irradiated exoplanets that were discovered from the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.10767v2-abstract-full').style.display = 'inline'; document.getElementById('2004.10767v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.10767v2-abstract-full" style="display: none;"> We present the detection and characterization of the full-orbit phase curve and secondary eclipse of the ultra-hot Jupiter WASP-33b at optical wavelengths, along with the pulsation spectrum of the host star. We analyzed data collected by the Transiting Exoplanet Survey Satellite (TESS) in sector 18. WASP-33b belongs to a very short list of highly irradiated exoplanets that were discovered from the ground and were later visited by TESS. The host star of WASP-33b is of delta Scuti-type and shows nonradial pulsations in the millimagnitude regime, with periods comparable to the period of the primary transit. These completely deform the photometric light curve, which hinders our interpretations. By carrying out a detailed determination of the pulsation spectrum of the host star, we find 29 pulsation frequencies with a signal-to-noise ratio higher than 4. After cleaning the light curve from the stellar pulsations, we confidently report a secondary eclipse depth of 305.8 +/- 35.5 parts-per-million (ppm), along with an amplitude of the phase curve of 100.4 +/- 13.1 ppm and a corresponding westward offset between the region of maximum brightness and the substellar point of 28.7 +/- 7.1 degrees, making WASP-33b one of the few planets with such an offset found so far. Our derived Bond albedo, A_B = 0.369 +/- 0.050, and heat recirculation efficiency, epsilon = 0.189 +/- 0.014, confirm again that he behavior of WASP-33b is similar to that of other hot Jupiters, despite the high irradiation received from its host star. By connecting the amplitude of the phase curve to the primary transit and depths of the secondary eclipse, we determine that the day- and nightside brightness temperatures of WASP-33b are 3014 +/- 60 K and 1605 +/- 45 K, respectively. From the detection of photometric variations due to gravitational interactions, we estimate a planet mass of M_P = 2.81 +/- 0.53 M$_J. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.10767v2-abstract-full').style.display = 'none'; document.getElementById('2004.10767v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 639, A34 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.09067">arXiv:2004.09067</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.09067">pdf</a>, <a href="https://arxiv.org/format/2004.09067">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-3881/ab9ac3">10.3847/1538-3881/ab9ac3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> OGLE-2017-BLG-0406: ${\it Spitzer}$ Microlens Parallax Reveals Saturn-mass Planet orbiting M-dwarf Host in the Inner Galactic Disk </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Hirao%2C+Y">Yuki Hirao</a>, <a href="/search/?searchtype=author&amp;query=Bennett%2C+D+P">David P. Bennett</a>, <a href="/search/?searchtype=author&amp;query=Ryu%2C+Y">Yoon-Hyun Ryu</a>, <a href="/search/?searchtype=author&amp;query=Koshimoto%2C+N">Naoki Koshimoto</a>, <a href="/search/?searchtype=author&amp;query=Udalski%2C+A">Andrzej Udalski</a>, <a href="/search/?searchtype=author&amp;query=Yee%2C+J+C">Jennifer C. Yee</a>, <a href="/search/?searchtype=author&amp;query=Sumi%2C+T">Takahiro Sumi</a>, <a href="/search/?searchtype=author&amp;query=Bond%2C+I+A">Ian A. Bond</a>, <a href="/search/?searchtype=author&amp;query=Shvartzvald%2C+Y">Yossi Shvartzvald</a>, <a href="/search/?searchtype=author&amp;query=Abe%2C+F">Fumio Abe</a>, <a href="/search/?searchtype=author&amp;query=Barry%2C+R+K">Richard K. Barry</a>, <a href="/search/?searchtype=author&amp;query=Bhattacharya%2C+A">Aparna Bhattacharya</a>, <a href="/search/?searchtype=author&amp;query=Donachie%2C+M">Martin Donachie</a>, <a href="/search/?searchtype=author&amp;query=Fukui%2C+A">Akihiko Fukui</a>, <a href="/search/?searchtype=author&amp;query=Itow%2C+Y">Yoshitaka Itow</a>, <a href="/search/?searchtype=author&amp;query=Kondo%2C+I">Iona Kondo</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+M+C+A">Man Cheung Alex Li</a>, <a href="/search/?searchtype=author&amp;query=Matsubara%2C+Y">Yutaka Matsubara</a>, <a href="/search/?searchtype=author&amp;query=Matsuo%2C+T">Taro Matsuo</a>, <a href="/search/?searchtype=author&amp;query=Miyazaki%2C+S">Shota Miyazaki</a>, <a href="/search/?searchtype=author&amp;query=Muraki%2C+Y">Yasushi Muraki</a>, <a href="/search/?searchtype=author&amp;query=Nagakane%2C+M">Masayuki Nagakane</a>, <a href="/search/?searchtype=author&amp;query=Ranc%2C+C">Clement Ranc</a>, <a href="/search/?searchtype=author&amp;query=Rattenbury%2C+N+J">Nicholas J. Rattenbury</a>, <a href="/search/?searchtype=author&amp;query=Suematsu%2C+H">Haruno Suematsu</a> , et al. (71 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.09067v2-abstract-short" style="display: inline;"> We report the discovery and analysis of the planetary microlensing event OGLE-2017-BLG-0406, which was observed both from the ground and by the ${\it Spitzer}$ satellite in a solar orbit. At high magnification, the anomaly in the light curve was densely observed by ground-based-survey and follow-up groups, and it was found to be explained by a planetary lens with a planet/host mass ratio of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.09067v2-abstract-full').style.display = 'inline'; document.getElementById('2004.09067v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.09067v2-abstract-full" style="display: none;"> We report the discovery and analysis of the planetary microlensing event OGLE-2017-BLG-0406, which was observed both from the ground and by the ${\it Spitzer}$ satellite in a solar orbit. At high magnification, the anomaly in the light curve was densely observed by ground-based-survey and follow-up groups, and it was found to be explained by a planetary lens with a planet/host mass ratio of $q=7.0 \times 10^{-4}$ from the light-curve modeling. The ground-only and ${\it Spitzer}$-&#34;only&#34; data each provide very strong one-dimensional (1-D) constraints on the 2-D microlens parallax vector $\bf{蟺_{\rm E}}$. When combined, these yield a precise measurement of $\bf{蟺_{\rm E}}$, and so of the masses of the host $M_{\rm host}=0.56\pm0.07\,M_\odot$ and planet $M_{\rm planet} = 0.41 \pm 0.05\,M_{\rm Jup}$. The system lies at a distance $D_{\rm L}=5.2 \pm 0.5 \ {\rm kpc}$ from the Sun toward the Galactic bulge, and the host is more likely to be a disk population star according to the kinematics of the lens. The projected separation of the planet from the host is $a_{\perp} = 3.5 \pm 0.3 \ {\rm au}$, i.e., just over twice the snow line. The Galactic-disk kinematics are established in part from a precise measurement of the source proper motion based on OGLE-IV data. By contrast, the ${\it Gaia}$ proper-motion measurement of the source suffers from a catastrophic $10\,蟽$ error. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.09067v2-abstract-full').style.display = 'none'; document.getElementById('2004.09067v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">40 pages, 12 figures, 10 tables, accepted for publication in The Astronomical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.06424">arXiv:2003.06424</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.06424">pdf</a>, <a href="https://arxiv.org/format/2003.06424">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201937169">10.1051/0004-6361/201937169 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> HST/STIS transmission spectrum of the ultra-hot Jupiter WASP-76 b confirms the presence of sodium in its atmosphere </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=von+Essen%2C+C">C. von Essen</a>, <a href="/search/?searchtype=author&amp;query=Mallonn%2C+M">M. Mallonn</a>, <a href="/search/?searchtype=author&amp;query=Hermansen%2C+S">S. Hermansen</a>, <a href="/search/?searchtype=author&amp;query=Nixon%2C+M+C">M. C. Nixon</a>, <a href="/search/?searchtype=author&amp;query=Madhusudhan%2C+N">N. Madhusudhan</a>, <a href="/search/?searchtype=author&amp;query=Kjeldsen%2C+H">H. Kjeldsen</a>, <a href="/search/?searchtype=author&amp;query=Tautvai%C5%A1ien%C4%97%2C+G">G. Tautvai拧ien臈</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.06424v2-abstract-short" style="display: inline;"> We present an atmospheric transmission spectrum of the ultra-hot Jupiter WASP-76 b by analyzing archival data obtained with the Space Telescope Imaging Spectrograph (STIS) on board the Hubble Space Telescope (HST). The dataset spans three transits, two with a wavelength coverage between 2900 and 5700 Armstrong, and the third one between 5250 and 10300 Armstrong. From the one-dimensional, time depe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.06424v2-abstract-full').style.display = 'inline'; document.getElementById('2003.06424v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.06424v2-abstract-full" style="display: none;"> We present an atmospheric transmission spectrum of the ultra-hot Jupiter WASP-76 b by analyzing archival data obtained with the Space Telescope Imaging Spectrograph (STIS) on board the Hubble Space Telescope (HST). The dataset spans three transits, two with a wavelength coverage between 2900 and 5700 Armstrong, and the third one between 5250 and 10300 Armstrong. From the one-dimensional, time dependent spectra we constructed white and chromatic light curves, the latter with typical integration band widths of ~200 Armstrong. We computed the wavelength dependent planet-to-star radii ratios taking into consideration WASP-76&#39;s companion. The resulting transmission spectrum of WASP-76 b is dominated by a spectral slope of increasing opacity towards shorter wavelengths of amplitude of about three scale heights under the assumption of planetary equilibrium temperature. If the slope is caused by Rayleigh scattering, we derive a lower limit to the temperature of ~870 K. Following-up on previous detection of atomic sodium derived from high resolution spectra, we re-analyzed HST data using narrower bands centered around sodium. From an atmospheric retrieval of this transmission spectrum, we report evidence of sodium at 2.9-sigma significance. In this case, the retrieved temperature at the top of the atmosphere (10-5 bar) is 2300 +412-392 K. We also find marginal evidence for titanium hydride. However, additional high resolution ground-based data are required to confirm this discovery. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.06424v2-abstract-full').style.display = 'none'; document.getElementById('2003.06424v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 637, A76 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.05555">arXiv:2002.05555</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.05555">pdf</a>, <a href="https://arxiv.org/format/2002.05555">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-3881/ab6a19">10.3847/1538-3881/ab6a19 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-resolution Spectroscopic Study of Dwarf Stars in the Northern Sky: Lithium, Carbon, and Oxygen Abundances </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Stonkut%C4%97%2C+E">Edita Stonkut臈</a>, <a href="/search/?searchtype=author&amp;query=Chorniy%2C+Y">Yuriy Chorniy</a>, <a href="/search/?searchtype=author&amp;query=Tautvai%C5%A1ien%C4%97%2C+G">Gra啪ina Tautvai拧ien臈</a>, <a href="/search/?searchtype=author&amp;query=Drazdauskas%2C+A">Arnas Drazdauskas</a>, <a href="/search/?searchtype=author&amp;query=Minkevi%C4%8Di%C5%ABt%C4%97%2C+R">Renata Minkevi膷i奴t臈</a>, <a href="/search/?searchtype=author&amp;query=Mikolaitis%2C+%C5%A0">艩ar奴nas Mikolaitis</a>, <a href="/search/?searchtype=author&amp;query=Kjeldsen%2C+H">Hans Kjeldsen</a>, <a href="/search/?searchtype=author&amp;query=von+Essen%2C+C">Carolina von Essen</a>, <a href="/search/?searchtype=author&amp;query=Pak%C5%A1tien%C4%97%2C+E">Erika Pak拧tien臈</a>, <a href="/search/?searchtype=author&amp;query=Bagdonas%2C+V">Vilius Bagdonas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.05555v1-abstract-short" style="display: inline;"> Abundances of lithium, carbon, and oxygen have been derived using spectral synthesis for a sample of 249 bright F, G, and K Northern Hemisphere dwarf stars from the high-resolution spectra acquired with the VUES spectrograph at the Moletai Astronomical Observatory of Vilnius University. The sample stars have metallicities, effective temperatures, and ages between -0.7 and 0.4 dex; 5000 and 6900 K;&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.05555v1-abstract-full').style.display = 'inline'; document.getElementById('2002.05555v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.05555v1-abstract-full" style="display: none;"> Abundances of lithium, carbon, and oxygen have been derived using spectral synthesis for a sample of 249 bright F, G, and K Northern Hemisphere dwarf stars from the high-resolution spectra acquired with the VUES spectrograph at the Moletai Astronomical Observatory of Vilnius University. The sample stars have metallicities, effective temperatures, and ages between -0.7 and 0.4 dex; 5000 and 6900 K; 1 and 12 Gyr, accordingly. We confirm a so far unexplained lithium abundance decrease at supersolar metallicities - $A$(Li) in our sample stars, which drop by 0.7 dex in the [Fe/H] range from +0.10 to +0.55 dex. Furthermore, we identified stars with similar ages, atmospheric parameters, and rotational velocities, but with significantly different lithium abundances, which suggests that additional specific evolutionary factors should be taken into account while interpreting the stellar lithium content. Nine stars with predominantly supersolar metallicities, i.e. about 12 % among 78 stars with C and O abundances determined, have the C/O number ratios larger than 0.65, thus may form carbon-rich rocky planets. Ten planet-hosting stars, available in our sample, do not show a discernible difference from the stars with no planets detected regarding their lithium content. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.05555v1-abstract-full').style.display = 'none'; document.getElementById('2002.05555v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 15 figures. Published 2020 February 6, 2020. The Astronomical Journal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astronomical Journal, Volume 159, Number 3, 2020 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.07519">arXiv:1911.07519</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.07519">pdf</a>, <a href="https://arxiv.org/format/1911.07519">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-3881/ab5280">10.3847/1538-3881/ab5280 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Asteroseismology of the Multiplanet System K2-93 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lund%2C+M+N">Mikkel N. Lund</a>, <a href="/search/?searchtype=author&amp;query=Knudstrup%2C+E">Emil Knudstrup</a>, <a href="/search/?searchtype=author&amp;query=Aguirre%2C+V+S">Victor Silva Aguirre</a>, <a href="/search/?searchtype=author&amp;query=Basu%2C+S">Sarbani Basu</a>, <a href="/search/?searchtype=author&amp;query=Chontos%2C+A">Ashley Chontos</a>, <a href="/search/?searchtype=author&amp;query=Von+Essen%2C+C">Carolina Von Essen</a>, <a href="/search/?searchtype=author&amp;query=Chaplin%2C+W+J">William J. Chaplin</a>, <a href="/search/?searchtype=author&amp;query=Bieryla%2C+A">Allyson Bieryla</a>, <a href="/search/?searchtype=author&amp;query=Casagrande%2C+L">Luca Casagrande</a>, <a href="/search/?searchtype=author&amp;query=Vanderburg%2C+A">Andrew Vanderburg</a>, <a href="/search/?searchtype=author&amp;query=Huber%2C+D">Daniel Huber</a>, <a href="/search/?searchtype=author&amp;query=Kane%2C+S+R">Stephen R. Kane</a>, <a href="/search/?searchtype=author&amp;query=Albrecht%2C+S">Simon Albrecht</a>, <a href="/search/?searchtype=author&amp;query=Latham%2C+D+W">David W. Latham</a>, <a href="/search/?searchtype=author&amp;query=Davies%2C+G+R">Guy R. Davies</a>, <a href="/search/?searchtype=author&amp;query=Becker%2C+J+C">Juliette C. Becker</a>, <a href="/search/?searchtype=author&amp;query=Rodriguez%2C+J+E">Joseph E. Rodriguez</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.07519v1-abstract-short" style="display: inline;"> We revisit the analysis of the bright multiplanet system K2-93, discovered with data taken by the K2 mission. This system contains five identified planets ranging in size from sub-Neptune to Jupiter size. The K2 data available at the discovery of the system only showed single transits for the three outer planets, which allowed weak constraints to be put on their periods. As these planets are inter&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.07519v1-abstract-full').style.display = 'inline'; document.getElementById('1911.07519v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.07519v1-abstract-full" style="display: none;"> We revisit the analysis of the bright multiplanet system K2-93, discovered with data taken by the K2 mission. This system contains five identified planets ranging in size from sub-Neptune to Jupiter size. The K2 data available at the discovery of the system only showed single transits for the three outer planets, which allowed weak constraints to be put on their periods. As these planets are interesting candidates for future atmospheric studies, a better characterization of the host star and tighter constraints on their orbital periods are essential. Using new data from the K2 mission taken after the discovery of the system, we perform an asteroseismic characterization of the host star. We are able to place strong constraints on the stellar parameters and obtain a value for the stellar mass of $1.22^{+0.03}_{-0.02}\, \rm M_{\odot}$, a stellar radius of $1.30\pm 0.01\, \rm R_{\odot}$, and an age of $2.07^{+0.36}_{-0.27}$ Gyr. Put together with the additional transits identified for two of the three outer planets, we constrain the orbital periods of the outer planets and provide updated estimates for the stellar reflex velocities induced by the planets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.07519v1-abstract-full').style.display = 'none'; document.getElementById('1911.07519v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 9 figures, accepted for publication in the Astronomical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.04884">arXiv:1909.04884</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.04884">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnrasl/slz123">10.1093/mnrasl/slz123 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The potassium absorption on HD189733b and HD209458b </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Keles%2C+E">Engin Keles</a>, <a href="/search/?searchtype=author&amp;query=Mallonn%2C+M">Matthias Mallonn</a>, <a href="/search/?searchtype=author&amp;query=von+Essen%2C+C">Carolina von Essen</a>, <a href="/search/?searchtype=author&amp;query=Carroll%2C+T+A">Thorsten A. Carroll</a>, <a href="/search/?searchtype=author&amp;query=Alexoudi%2C+X">Xanthippi Alexoudi</a>, <a href="/search/?searchtype=author&amp;query=Pino%2C+L">Lorenzo Pino</a>, <a href="/search/?searchtype=author&amp;query=Ilyin%2C+I">Ilya Ilyin</a>, <a href="/search/?searchtype=author&amp;query=Poppenhaeger%2C+K">Katja Poppenhaeger</a>, <a href="/search/?searchtype=author&amp;query=Kitzmann%2C+D">Daniel Kitzmann</a>, <a href="/search/?searchtype=author&amp;query=Nascimbeni%2C+V">Valerio Nascimbeni</a>, <a href="/search/?searchtype=author&amp;query=Turner%2C+J">Jake Turner</a>, <a href="/search/?searchtype=author&amp;query=Strassmeier%2C+K+G">Klaus G. Strassmeier</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.04884v2-abstract-short" style="display: inline;"> In this work, we investigate the potassium excess absorption around 7699A of the exoplanets HD189733b and HD209458b. For this purpose, we used high spectral resolution transit observations acquired with the 2 x 8.4m Large Binocular Telescope (LBT) and the Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI). For a bandwidth of 0.8A, we present a detection &gt; 7-sigma with an absorption&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.04884v2-abstract-full').style.display = 'inline'; document.getElementById('1909.04884v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.04884v2-abstract-full" style="display: none;"> In this work, we investigate the potassium excess absorption around 7699A of the exoplanets HD189733b and HD209458b. For this purpose, we used high spectral resolution transit observations acquired with the 2 x 8.4m Large Binocular Telescope (LBT) and the Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI). For a bandwidth of 0.8A, we present a detection &gt; 7-sigma with an absorption level of 0.18% for HD189733b. Applying the same analysis to HD209458b, we can set 3-sigma upper limit of 0.09%, even though we do not detect a K- excess absorption. The investigation suggests that the K- feature is less present in the atmosphere of HD209458b than in the one of HD189733b. This comparison confirms previous claims that the atmospheres of these two planets must have fundamentally different properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.04884v2-abstract-full').style.display = 'none'; document.getElementById('1909.04884v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in M.N.R.A.S, https://doi.org/10.1093/mnrasl/slz123</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.08269">arXiv:1907.08269</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.08269">pdf</a>, <a href="https://arxiv.org/ps/1907.08269">ps</a>, <a href="https://arxiv.org/format/1907.08269">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stz2602">10.1093/mnras/stz2602 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Transit timing variations in the WASP-4 planetary system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Southworth%2C+J">John Southworth</a>, <a href="/search/?searchtype=author&amp;query=Dominik%2C+M">M. Dominik</a>, <a href="/search/?searchtype=author&amp;query=Jorgensen%2C+U+G">U. G. Jorgensen</a>, <a href="/search/?searchtype=author&amp;query=Andersen%2C+M+I">M. I. Andersen</a>, <a href="/search/?searchtype=author&amp;query=Bozza%2C+V">V. Bozza</a>, <a href="/search/?searchtype=author&amp;query=Burgdorf%2C+M+J">M. J. Burgdorf</a>, <a href="/search/?searchtype=author&amp;query=D%27Ago%2C+G">G. D&#39;Ago</a>, <a href="/search/?searchtype=author&amp;query=Dib%2C+S">S. Dib</a>, <a href="/search/?searchtype=author&amp;query=Jaimes%2C+R+F">R. Figuera Jaimes</a>, <a href="/search/?searchtype=author&amp;query=Fujii%2C+Y+I">Y. I. Fujii</a>, <a href="/search/?searchtype=author&amp;query=Gill%2C+S">S. Gill</a>, <a href="/search/?searchtype=author&amp;query=Haikala%2C+L+K">L. K. Haikala</a>, <a href="/search/?searchtype=author&amp;query=Hinse%2C+T+C">T. C. Hinse</a>, <a href="/search/?searchtype=author&amp;query=Hundertmark%2C+M">M. Hundertmark</a>, <a href="/search/?searchtype=author&amp;query=Khalouei%2C+E">E. Khalouei</a>, <a href="/search/?searchtype=author&amp;query=Korhonen%2C+H">H. Korhonen</a>, <a href="/search/?searchtype=author&amp;query=Longa-Pena%2C+P">P. Longa-Pena</a>, <a href="/search/?searchtype=author&amp;query=Mancini%2C+L">L. Mancini</a>, <a href="/search/?searchtype=author&amp;query=Peixinho%2C+N">N. Peixinho</a>, <a href="/search/?searchtype=author&amp;query=Rabus%2C+M">M. Rabus</a>, <a href="/search/?searchtype=author&amp;query=Rahvar%2C+S">S. Rahvar</a>, <a href="/search/?searchtype=author&amp;query=Sajadian%2C+S">S. Sajadian</a>, <a href="/search/?searchtype=author&amp;query=Skottfelt%2C+J">J. Skottfelt</a>, <a href="/search/?searchtype=author&amp;query=Snodgrass%2C+C">C. Snodgrass</a>, <a href="/search/?searchtype=author&amp;query=Spyratos%2C+P">P. Spyratos</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.08269v2-abstract-short" style="display: inline;"> Transits in the planetary system WASP-4 were recently found to occur 80s earlier than expected in observations from the TESS satellite. We present 22 new times of mid-transit that confirm the existence of transit timing variations, and are well fitted by a quadratic ephemeris with period decay dP/dt = -9.2 +/- 1.1 ms/yr. We rule out instrumental issues, stellar activity and the Applegate mechanism&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.08269v2-abstract-full').style.display = 'inline'; document.getElementById('1907.08269v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.08269v2-abstract-full" style="display: none;"> Transits in the planetary system WASP-4 were recently found to occur 80s earlier than expected in observations from the TESS satellite. We present 22 new times of mid-transit that confirm the existence of transit timing variations, and are well fitted by a quadratic ephemeris with period decay dP/dt = -9.2 +/- 1.1 ms/yr. We rule out instrumental issues, stellar activity and the Applegate mechanism as possible causes. The light-time effect is also not favoured due to the non-detection of changes in the systemic velocity. Orbital decay and apsidal precession are plausible but unproven. WASP-4b is only the third hot Jupiter known to show transit timing variations to high confidence. We discuss a variety of observations of this and other planetary systems that would be useful in improving our understanding of WASP-4 in particular and orbital decay in general. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.08269v2-abstract-full').style.display = 'none'; document.getElementById('1907.08269v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication to MNRAS Main Journal. 7 pages, 2 colour figures, 1 table. Version 2 is the revised version after the refereeing process, which includes changes to some of the conclusions of the paper</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.06534">arXiv:1907.06534</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.06534">pdf</a>, <a href="https://arxiv.org/format/1907.06534">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201935879">10.1051/0004-6361/201935879 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Kepler Object of Interest Network III. Kepler-82f: A new non-transiting $21 M_\bigoplus$ planet from photodynamical modelling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Freudenthal%2C+J">J. Freudenthal</a>, <a href="/search/?searchtype=author&amp;query=von+Essen%2C+C">C. von Essen</a>, <a href="/search/?searchtype=author&amp;query=Ofir%2C+A">A. Ofir</a>, <a href="/search/?searchtype=author&amp;query=~Dreizler%2C+S">S. ~Dreizler</a>, <a href="/search/?searchtype=author&amp;query=Agol%2C+E">E. Agol</a>, <a href="/search/?searchtype=author&amp;query=Wedemeyer%2C+S">S. Wedemeyer</a>, <a href="/search/?searchtype=author&amp;query=Morris%2C+B+M">B. M. Morris</a>, <a href="/search/?searchtype=author&amp;query=Becker%2C+A+C">A. C. Becker</a>, <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J">H. J. Deeg</a>, <a href="/search/?searchtype=author&amp;query=Hoyer%2C+S">S. Hoyer</a>, <a href="/search/?searchtype=author&amp;query=Mallonn%2C+M">M. Mallonn</a>, <a href="/search/?searchtype=author&amp;query=Poppenhaeger%2C+K">K. Poppenhaeger</a>, <a href="/search/?searchtype=author&amp;query=Herrero%2C+E">E. Herrero</a>, <a href="/search/?searchtype=author&amp;query=Ribas%2C+I">I. Ribas</a>, <a href="/search/?searchtype=author&amp;query=Boumis%2C+P">P. Boumis</a>, <a href="/search/?searchtype=author&amp;query=Liakos%2C+A">A. Liakos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.06534v1-abstract-short" style="display: inline;"> Context. The Kepler Object of Interest Network (KOINet) is a multi-site network of telescopes around the globe organised for follow-up observations of transiting planet candidate Kepler objects of interest (KOIs) with large transit timing variations (TTVs). The main goal of KOINet is the completion of their TTV curves as the Kepler telescope stopped observing the original Kepler field in 2013. A&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.06534v1-abstract-full').style.display = 'inline'; document.getElementById('1907.06534v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.06534v1-abstract-full" style="display: none;"> Context. The Kepler Object of Interest Network (KOINet) is a multi-site network of telescopes around the globe organised for follow-up observations of transiting planet candidate Kepler objects of interest (KOIs) with large transit timing variations (TTVs). The main goal of KOINet is the completion of their TTV curves as the Kepler telescope stopped observing the original Kepler field in 2013. Aims. We ensure a comprehensive characterisation of the investigated systems by analysing Kepler data combined with new ground-based transit data using a photodynamical model. This method is applied to the Kepler-82 system leading to its first dynamic analysis. Methods. In order to provide a coherent description of all observations simultaneously, we combine the numerical integration of the gravitational dynamics of a system over the time span of observations with a transit light curve model. To explore the model parameter space, this photodynamical model is coupled with a Markov chain Monte Carlo algorithm. Results. The Kepler-82b/c system shows sinusoidal TTVs due to their near 2:1 resonance dynamical interaction. An additional chopping effect in the TTVs of Kepler-82c hints to a further planet near the 3:2 or 3:1 resonance. We photodynamically analysed Kepler long- and short-cadence data and three new transit observations obtained by KOINet between 2014 and 2018. Our result reveals a non-transiting outer planet with a mass of $m_f=20.9\pm1.0\;M_\bigoplus$ near the 3:2 resonance to the outermost known planet, Kepler-82c. Furthermore, we determined the densities of planets b and c to the significantly more precise values $蟻_b=0.98_{-0.14}^{+0.10}\;\text{g cm}^{-3}$ and $蟻_c=0.494_{-0.077}^{+0.066}\;\text{g cm}^{-3}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.06534v1-abstract-full').style.display = 'none'; document.getElementById('1907.06534v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 9 figures. Accepted for publication in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 628, A108 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.11204">arXiv:1904.11204</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.11204">pdf</a>, <a href="https://arxiv.org/format/1904.11204">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ab6ff8">10.3847/1538-4357/ab6ff8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spitzer Microlensing parallax reveals two isolated stars in the Galactic bulge </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Zang%2C+W">Weicheng Zang</a>, <a href="/search/?searchtype=author&amp;query=Shvartzvald%2C+Y">Yossi Shvartzvald</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+T">Tianshu Wang</a>, <a href="/search/?searchtype=author&amp;query=Udalski%2C+A">Andrzej Udalski</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+C">Chung-Uk Lee</a>, <a href="/search/?searchtype=author&amp;query=Sumi%2C+T">Takahiro Sumi</a>, <a href="/search/?searchtype=author&amp;query=Skottfelt%2C+J">Jesper Skottfelt</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+S">Shun-Sheng Li</a>, <a href="/search/?searchtype=author&amp;query=Mao%2C+S">Shude Mao</a>, <a href="/search/?searchtype=author&amp;query=Zhu%2C+W">Wei Zhu</a>, <a href="/search/?searchtype=author&amp;query=Yee%2C+J+C">Jennifer C. Yee</a>, <a href="/search/?searchtype=author&amp;query=Novati%2C+S+C">Sebastiano Calchi Novati</a>, <a href="/search/?searchtype=author&amp;query=Beichman%2C+C+A">Charles A. Beichman</a>, <a href="/search/?searchtype=author&amp;query=Bryden%2C+G">Geoffery Bryden</a>, <a href="/search/?searchtype=author&amp;query=Carey%2C+S">Sean Carey</a>, <a href="/search/?searchtype=author&amp;query=Gaudi%2C+B+S">B. Scott Gaudi</a>, <a href="/search/?searchtype=author&amp;query=Henderson%2C+C+B">Calen B. Henderson</a>, <a href="/search/?searchtype=author&amp;query=Mr%C3%B3z%2C+P">Przemek Mr贸z</a>, <a href="/search/?searchtype=author&amp;query=Skowron%2C+J">Jan Skowron</a>, <a href="/search/?searchtype=author&amp;query=Poleski%2C+R">Radoslaw Poleski</a>, <a href="/search/?searchtype=author&amp;query=Szyma%C5%84ski%2C+M+K">Micha艂 K. Szyma艅ski</a>, <a href="/search/?searchtype=author&amp;query=Soszy%C5%84ski%2C+I">Igor Soszy艅ski</a>, <a href="/search/?searchtype=author&amp;query=Pietrukowicz%2C+P">Pawe艂 Pietrukowicz</a>, <a href="/search/?searchtype=author&amp;query=Koz%C5%82owski%2C+S">Szymon Koz艂owski</a>, <a href="/search/?searchtype=author&amp;query=Ulaczyk%2C+K">Krzysztof Ulaczyk</a> , et al. (69 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.11204v1-abstract-short" style="display: inline;"> We report the mass and distance measurements of two single-lens events from the 2017 Spitzer microlensing campaign. The ground-based observations yield the detection of finite-source effects, and the microlens parallaxes are derived from the joint analysis of ground-based observations and Spitzer observations. We find that the lens of OGLE-2017-BLG-1254 is a $0.60 \pm 0.03 M_{\odot}$ star with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.11204v1-abstract-full').style.display = 'inline'; document.getElementById('1904.11204v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.11204v1-abstract-full" style="display: none;"> We report the mass and distance measurements of two single-lens events from the 2017 Spitzer microlensing campaign. The ground-based observations yield the detection of finite-source effects, and the microlens parallaxes are derived from the joint analysis of ground-based observations and Spitzer observations. We find that the lens of OGLE-2017-BLG-1254 is a $0.60 \pm 0.03 M_{\odot}$ star with $D_{\rm LS} = 0.53 \pm 0.11~\text{kpc}$, where $D_{\rm LS}$ is the distance between the lens and the source. The second event, OGLE-2017-BLG-1161, is subject to the known satellite parallax degeneracy, and thus is either a $0.51^{+0.12}_{-0.10} M_{\odot}$ star with $D_{\rm LS} = 0.40 \pm 0.12~\text{kpc}$ or a $0.38^{+0.13}_{-0.12} M_{\odot}$ star with $D_{\rm LS} = 0.53 \pm 0.19~\text{kpc}$. Both of the lenses are therefore isolated stars in the Galactic bulge. By comparing the mass and distance distributions of the eight published Spitzer finite-source events with the expectations from a Galactic model, we find that the Spitzer sample is in agreement with the probability of finite-source effects occurrence in single lens events. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.11204v1-abstract-full').style.display = 'none'; document.getElementById('1904.11204v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 6 Figures. Submitted to AAS journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.07718">arXiv:1904.07718</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.07718">pdf</a>, <a href="https://arxiv.org/format/1904.07718">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stz1873">10.1093/mnras/stz1873 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> OGLE-2017-BLG-1186: first application of asteroseismology and Gaussian processes to microlensing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Li%2C+S">Shun-Sheng Li</a>, <a href="/search/?searchtype=author&amp;query=Zang%2C+W">Weicheng Zang</a>, <a href="/search/?searchtype=author&amp;query=Udalski%2C+A">Andrzej Udalski</a>, <a href="/search/?searchtype=author&amp;query=Shvartzvald%2C+Y">Yossi Shvartzvald</a>, <a href="/search/?searchtype=author&amp;query=Huber%2C+D">Daniel Huber</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+C">Chung-Uk Lee</a>, <a href="/search/?searchtype=author&amp;query=Sumi%2C+T">Takahiro Sumi</a>, <a href="/search/?searchtype=author&amp;query=Gould%2C+A">Andrew Gould</a>, <a href="/search/?searchtype=author&amp;query=Mao%2C+S">Shude Mao</a>, <a href="/search/?searchtype=author&amp;query=Fouqu%C3%A9%2C+P">Pascal Fouqu茅</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+T">Tianshu Wang</a>, <a href="/search/?searchtype=author&amp;query=Dong%2C+S">Subo Dong</a>, <a href="/search/?searchtype=author&amp;query=J%C3%B8rgensen%2C+U+G">Uffe G. J酶rgensen</a>, <a href="/search/?searchtype=author&amp;query=Cole%2C+A">Andrew Cole</a>, <a href="/search/?searchtype=author&amp;query=Mr%C3%B3z%2C+P">Przemek Mr贸z</a>, <a href="/search/?searchtype=author&amp;query=Szyma%C5%84ski%2C+M+K">Micha艂 K. Szyma艅ski</a>, <a href="/search/?searchtype=author&amp;query=Skowron%2C+J">Jan Skowron</a>, <a href="/search/?searchtype=author&amp;query=Poleski%2C+R">Rados艂aw Poleski</a>, <a href="/search/?searchtype=author&amp;query=Soszy%C5%84ski%2C+I">Igor Soszy艅ski</a>, <a href="/search/?searchtype=author&amp;query=Pietrukowicz%2C+P">Pawe艂 Pietrukowicz</a>, <a href="/search/?searchtype=author&amp;query=Koz%C5%82owski%2C+S">Szymon Koz艂owski</a>, <a href="/search/?searchtype=author&amp;query=Ulaczyk%2C+K">Krzysztof Ulaczyk</a>, <a href="/search/?searchtype=author&amp;query=Rybicki%2C+K+A">Krzysztof A. Rybicki</a>, <a href="/search/?searchtype=author&amp;query=Iwanek%2C+P">Patryk Iwanek</a>, <a href="/search/?searchtype=author&amp;query=Yee%2C+J+C">Jennifer C. Yee</a> , et al. (80 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.07718v2-abstract-short" style="display: inline;"> We present the analysis of the event OGLE-2017-BLG-1186 from the 2017 Spitzer microlensing campaign. This is a remarkable microlensing event because its source is photometrically bright and variable, which makes it possible to perform an asteroseismic analysis using ground-based data. We find that the source star is an oscillating red giant with average timescale of $\sim 9$ d. The asteroseismic a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.07718v2-abstract-full').style.display = 'inline'; document.getElementById('1904.07718v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.07718v2-abstract-full" style="display: none;"> We present the analysis of the event OGLE-2017-BLG-1186 from the 2017 Spitzer microlensing campaign. This is a remarkable microlensing event because its source is photometrically bright and variable, which makes it possible to perform an asteroseismic analysis using ground-based data. We find that the source star is an oscillating red giant with average timescale of $\sim 9$ d. The asteroseismic analysis also provides us source properties including the source angular size ($\sim 27~渭{\rm as}$) and distance ($\sim 11.5$ kpc), which are essential for inferring the properties of the lens. When fitting the light curve, we test the feasibility of Gaussian Processes (GPs) in handling the correlated noise caused by the variable source. We find that the parameters from the GP model are generally more loosely constrained than those from the traditional $蠂^2$ minimization method. We note that this event is the first microlensing system for which asteroseismology and GPs have been used to account for the variable source. With both finite-source effect and microlens parallax measured, we find that the lens is likely a $\sim 0.045~M_{\odot}$ brown dwarf at distance $\sim 9.0$ kpc, or a $\sim 0.073~M_{\odot}$ ultracool dwarf at distance $\sim 9.8$ kpc. Combining the estimated lens properties with a Bayesian analysis using a Galactic model, we find a $\sim 35$ per cent probability for the lens to be a bulge object and $\sim 65$ per cent to be a background disc object. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.07718v2-abstract-full').style.display = 'none'; document.getElementById('1904.07718v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 4 figures, 5 tables. Revised to match version published in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.06360">arXiv:1904.06360</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.06360">pdf</a>, <a href="https://arxiv.org/format/1904.06360">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201731966">10.1051/0004-6361/201731966 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Indications for transit timing variations in the exo-Neptune HAT-P-26b </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=von+Essen%2C+C">C. von Essen</a>, <a href="/search/?searchtype=author&amp;query=Wedemeyer%2C+S">S. Wedemeyer</a>, <a href="/search/?searchtype=author&amp;query=Sosa%2C+M+S">M. S. Sosa</a>, <a href="/search/?searchtype=author&amp;query=Hjorth%2C+M">M. Hjorth</a>, <a href="/search/?searchtype=author&amp;query=Parkash%2C+V">V. Parkash</a>, <a href="/search/?searchtype=author&amp;query=Freudenthal%2C+J">J. Freudenthal</a>, <a href="/search/?searchtype=author&amp;query=Mallonn%2C+M">M. Mallonn</a>, <a href="/search/?searchtype=author&amp;query=Miculan%2C+R+G">R. G. Miculan</a>, <a href="/search/?searchtype=author&amp;query=Zibecchi%2C+L">L. Zibecchi</a>, <a href="/search/?searchtype=author&amp;query=Cellone%2C+S">S. Cellone</a>, <a href="/search/?searchtype=author&amp;query=Torres%2C+A+F">A. F. Torres</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.06360v1-abstract-short" style="display: inline;"> From its discovery, the low density transiting Neptune HAT-P-26b showed a 2.1-sigma detection drift in its spectroscopic data, while photometric data showed a weak curvature in the timing residuals that required further follow-up observations to be confirmed. To investigate this suspected variability, we observed 11 primary transits of HAT-P-26b between March, 2015 and July, 2018. For this, we use&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.06360v1-abstract-full').style.display = 'inline'; document.getElementById('1904.06360v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.06360v1-abstract-full" style="display: none;"> From its discovery, the low density transiting Neptune HAT-P-26b showed a 2.1-sigma detection drift in its spectroscopic data, while photometric data showed a weak curvature in the timing residuals that required further follow-up observations to be confirmed. To investigate this suspected variability, we observed 11 primary transits of HAT-P-26b between March, 2015 and July, 2018. For this, we used the 2.15 meter Jorge Sahade Telescope placed in San Juan, Argentina, and the 1.2 meter STELLA and the 2.5 meter Nordic Optical Telescope, both located in the Canary Islands, Spain. To add upon valuable information on the transmission spectrum of HAT-P-26b, we focused our observations in the R-band only. To contrast the observed timing variability with possible stellar activity, we carried out a photometric follow-up of the host star along three years. We carried out a global fit to the data and determined the individual mid-transit times focusing specifically on the light curves that showed complete transit coverage. Using bibliographic data corresponding to both ground and space-based facilities, plus our new characterized mid-transit times derived from parts-per-thousand precise photometry, we observed indications of transit timing variations in the system, with an amplitude of ~4 minutes and a periodicity of ~270 epochs. The photometric and spectroscopic follow-up observations of this system will be continued in order to rule out any aliasing effects caused by poor sampling and the long-term periodicity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.06360v1-abstract-full').style.display = 'none'; document.getElementById('1904.06360v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages,4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.05362">arXiv:1904.05362</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.05362">pdf</a>, <a href="https://arxiv.org/format/1904.05362">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201935312">10.1051/0004-6361/201935312 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Light of Engineered Diffusers at the Nordic Optical Telescope Reveal Time Variability in the Optical Eclipse Depth of WASP-12b </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=von+Essen%2C+C">C. von Essen</a>, <a href="/search/?searchtype=author&amp;query=Stefansson%2C+G">G. Stefansson</a>, <a href="/search/?searchtype=author&amp;query=Mallonn%2C+M">M. Mallonn</a>, <a href="/search/?searchtype=author&amp;query=Pursimo%2C+T">T. Pursimo</a>, <a href="/search/?searchtype=author&amp;query=Djupvik%2C+A+A">A. A. Djupvik</a>, <a href="/search/?searchtype=author&amp;query=Mahadevan%2C+S">S. Mahadevan</a>, <a href="/search/?searchtype=author&amp;query=Kjeldsen%2C+H">H. Kjeldsen</a>, <a href="/search/?searchtype=author&amp;query=Freudenthal%2C+J">J. Freudenthal</a>, <a href="/search/?searchtype=author&amp;query=Dreizler%2C+S">S. Dreizler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.05362v1-abstract-short" style="display: inline;"> We present the characterization of two engineered diffusers mounted on the 2.5 meter Nordic Optical Telescope, located at Roque de Los Muchachos, Spain. To assess the reliability and the efficiency of the diffusers, we carried out several test observations of two photometric standard stars, along with observations of one primary transit observation of TrES-3b in the red (R-band), one of CoRoT-1b i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.05362v1-abstract-full').style.display = 'inline'; document.getElementById('1904.05362v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.05362v1-abstract-full" style="display: none;"> We present the characterization of two engineered diffusers mounted on the 2.5 meter Nordic Optical Telescope, located at Roque de Los Muchachos, Spain. To assess the reliability and the efficiency of the diffusers, we carried out several test observations of two photometric standard stars, along with observations of one primary transit observation of TrES-3b in the red (R-band), one of CoRoT-1b in the blue (B-band), and three secondary eclipses of WASP-12b in V-band. The achieved photometric precision is in all cases within the sub-millimagnitude level for exposures between 25 and 180 seconds. Along a detailed analysis of the functionality of the diffusers, we add a new transit depth measurement in the blue (B-band) to the already observed transmission spectrum of CoRoT-1b, disfavouring a Rayleigh slope. We also report variability of the eclipse depth of WASP-12b in the V-band. For the WASP-12b secondary eclipses, we observe a secondary-depth deviation of about 5-sigma, and a difference of 6-sigma and 2.5-sigma when compared to the values reported by other authors in similar wavelength range determined from Hubble Space Telescope data. We further speculate about the potential physical processes or causes responsible for this observed variability <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.05362v1-abstract-full').style.display = 'none'; document.getElementById('1904.05362v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.01475">arXiv:1903.01475</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.01475">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Dual-Beam Optical Linear Polarimetry from Southern Skies. Characterisation of CasPol for high precision polarimetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Sosa%2C+M+S">M. S. Sosa</a>, <a href="/search/?searchtype=author&amp;query=von+Essen%2C+C">C. von Essen</a>, <a href="/search/?searchtype=author&amp;query=Andruchow%2C+I">I. Andruchow</a>, <a href="/search/?searchtype=author&amp;query=Cellone%2C+S+A">S. A. Cellone</a>, <a href="/search/?searchtype=author&amp;query=Mammana%2C+L+A">L. A. Mammana</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.01475v2-abstract-short" style="display: inline;"> We present a characterization of CasPol, a dual-beam polarimeter mounted at the 2.15 meter Jorge Sahade Telescope, located at the Complejo Astron贸mico El Leoncito, Argentina. The telescope is one of the few available meter-sized optical telescopes located in the Southern Hemisphere hosting a polarimeter. To carry out this work we collected photo-polarimetric data along five observing campaigns, th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.01475v2-abstract-full').style.display = 'inline'; document.getElementById('1903.01475v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.01475v2-abstract-full" style="display: none;"> We present a characterization of CasPol, a dual-beam polarimeter mounted at the 2.15 meter Jorge Sahade Telescope, located at the Complejo Astron贸mico El Leoncito, Argentina. The telescope is one of the few available meter-sized optical telescopes located in the Southern Hemisphere hosting a polarimeter. To carry out this work we collected photo-polarimetric data along five observing campaigns, the first one during January, 2014, and the remaining ones spread between August, 2017 and March, 2018. The data were taken through the Johnson-Cousins V, R and I filters. Along the campaigns, we observed eight unpolarized and four polarized standard stars. Our analysis begun characterizing the impact of seeing and aperture into the polarimetric measurements, defining an optimum aperture extraction and setting a clear limit for seeing conditions. Then, we used the unpolarized standard stars to characterize the level of instrumental polarization, and to assess the presence of polarization dependent on the position across the charge coupled-device. Polarized standard stars were investigated to quantify the stability of the instrument with wavelength. Specifically, we find that the overall instrumental polarization of CasPol is $\sim 0.2 \%$ in the V, R and I bands, with a negligible polarization dependence on the position of the stars on the detector. The stability of the half-wave plate retarder is about 0.35 degrees, making CasPol comparable to already existing instruments. We also provide new measurements in the three photometric bands for both the unpolarized and polarized standard stars. Finally, we show scientific results, illustrating the capabilities of CasPol for precision polarimetry of relatively faint objects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.01475v2-abstract-full').style.display = 'none'; document.getElementById('1903.01475v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.07944">arXiv:1902.07944</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.07944">pdf</a>, <a href="https://arxiv.org/ps/1902.07944">ps</a>, <a href="https://arxiv.org/format/1902.07944">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201935079">10.1051/0004-6361/201935079 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low albedos of hot to ultra-hot Jupiters in the optical to near-infrared transition regime </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Mallonn%2C+M">M. Mallonn</a>, <a href="/search/?searchtype=author&amp;query=K%C3%B6hler%2C+J">J. K枚hler</a>, <a href="/search/?searchtype=author&amp;query=Alexoudi%2C+X">X. Alexoudi</a>, <a href="/search/?searchtype=author&amp;query=von+Essen%2C+C">C. von Essen</a>, <a href="/search/?searchtype=author&amp;query=Granzer%2C+T">T. Granzer</a>, <a href="/search/?searchtype=author&amp;query=Poppenhaeger%2C+K">K. Poppenhaeger</a>, <a href="/search/?searchtype=author&amp;query=Strassmeier%2C+K+G">K. G. Strassmeier</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.07944v2-abstract-short" style="display: inline;"> The depth of a secondary eclipse contains information of both the thermally emitted light component of a hot Jupiter and the reflected light component. If the dayside atmosphere of the planet is assumed to be isothermal, it is possible to disentangle both. In this work, we analyze 11 eclipse light curves of the hot Jupiter HAT-P-32b obtained at 0.89 $渭$m in the z&#39; band. We obtain a null detection&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.07944v2-abstract-full').style.display = 'inline'; document.getElementById('1902.07944v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.07944v2-abstract-full" style="display: none;"> The depth of a secondary eclipse contains information of both the thermally emitted light component of a hot Jupiter and the reflected light component. If the dayside atmosphere of the planet is assumed to be isothermal, it is possible to disentangle both. In this work, we analyze 11 eclipse light curves of the hot Jupiter HAT-P-32b obtained at 0.89 $渭$m in the z&#39; band. We obtain a null detection for the eclipse depth with state-of-the-art precision, -0.01 +- 0.10 ppt. We confirm previous studies showing that a non-inverted atmosphere model is in disagreement to the measured emission spectrum of HAT-P-32b. We derive an upper limit on the reflected light component, and thus, on the planetary geometric albedo $A_g$. The 97.5%-confidence upper limit is $A_g$ &lt; 0.2. This is the first albedo constraint for HAT-P-32b, and the first z&#39; band albedo value for any exoplanet. It disfavors the influence of large-sized silicate condensates on the planetary day side. We inferred z&#39; band geometric albedo limits from published eclipse measurements also for the ultra-hot Jupiters WASP-12b, WASP-19b, WASP-103b, and WASP-121b, applying the same method. These values consistently point to a low reflectivity in the optical to near-infrared transition regime for hot to ultra-hot Jupiters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.07944v2-abstract-full').style.display = 'none'; document.getElementById('1902.07944v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted for publication in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 624, A62 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.05882">arXiv:1812.05882</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.05882">pdf</a>, <a href="https://arxiv.org/ps/1812.05882">ps</a>, <a href="https://arxiv.org/format/1812.05882">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201834194">10.1051/0004-6361/201834194 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ephemeris refinement of 21 Hot Jupiter exoplanets with high timing uncertainties </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Mallonn%2C+M">M. Mallonn</a>, <a href="/search/?searchtype=author&amp;query=von+Essen%2C+C">C. von Essen</a>, <a href="/search/?searchtype=author&amp;query=Herrero%2C+E">E. Herrero</a>, <a href="/search/?searchtype=author&amp;query=Alexoudi%2C+X">X. Alexoudi</a>, <a href="/search/?searchtype=author&amp;query=Granzer%2C+T">T. Granzer</a>, <a href="/search/?searchtype=author&amp;query=Sosa%2C+M">M. Sosa</a>, <a href="/search/?searchtype=author&amp;query=Strassmeier%2C+K+G">K. G. Strassmeier</a>, <a href="/search/?searchtype=author&amp;query=Bakos%2C+G">G. Bakos</a>, <a href="/search/?searchtype=author&amp;query=Bayliss%2C+D">D. Bayliss</a>, <a href="/search/?searchtype=author&amp;query=Brahm%2C+R">R. Brahm</a>, <a href="/search/?searchtype=author&amp;query=Bretton%2C+M">M. Bretton</a>, <a href="/search/?searchtype=author&amp;query=Campos%2C+F">F. Campos</a>, <a href="/search/?searchtype=author&amp;query=Carone%2C+L">L. Carone</a>, <a href="/search/?searchtype=author&amp;query=Col%C3%B3n%2C+K+D">K. D. Col贸n</a>, <a href="/search/?searchtype=author&amp;query=Dale%2C+H+A">H. A. Dale</a>, <a href="/search/?searchtype=author&amp;query=Dragomir%2C+D">D. Dragomir</a>, <a href="/search/?searchtype=author&amp;query=Espinoza%2C+N">N. Espinoza</a>, <a href="/search/?searchtype=author&amp;query=Evans%2C+P">P. Evans</a>, <a href="/search/?searchtype=author&amp;query=Garcia%2C+F">F. Garcia</a>, <a href="/search/?searchtype=author&amp;query=Gu%2C+S+-">S. -H. Gu</a>, <a href="/search/?searchtype=author&amp;query=Guerra%2C+P">P. Guerra</a>, <a href="/search/?searchtype=author&amp;query=Jongen%2C+Y">Y. Jongen</a>, <a href="/search/?searchtype=author&amp;query=Jord%C3%A1n%2C+A">A. Jord谩n</a>, <a href="/search/?searchtype=author&amp;query=Kang%2C+W">W. Kang</a>, <a href="/search/?searchtype=author&amp;query=Keles%2C+E">E. Keles</a> , et al. (10 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.05882v2-abstract-short" style="display: inline;"> Transit events of extrasolar planets offer a wealth of information for planetary characterization. However, for many known targets, the uncertainty of their predicted transit windows prohibits an accurate scheduling of follow-up observations. In this work, we refine the ephemerides of 21 Hot Jupiter exoplanets with the largest timing uncertainty. We collected 120 professional and amateur transit l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.05882v2-abstract-full').style.display = 'inline'; document.getElementById('1812.05882v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.05882v2-abstract-full" style="display: none;"> Transit events of extrasolar planets offer a wealth of information for planetary characterization. However, for many known targets, the uncertainty of their predicted transit windows prohibits an accurate scheduling of follow-up observations. In this work, we refine the ephemerides of 21 Hot Jupiter exoplanets with the largest timing uncertainty. We collected 120 professional and amateur transit light curves of the targets of interest, observed with 0.3m to 2.2m telescopes, and analyzed them including the timing information of the planets discovery papers. In the case of WASP-117b, we measured a timing deviation compared to the known ephemeris of about 3.5 hours, for HAT-P-29b and HAT-P-31b the deviation amounted to about 2 hours and more. For all targets, the new ephemeris predicts transit timings with uncertainties of less than 6 minutes in the year 2018 and less than 13 minutes until 2025. Thus, our results allow for an accurate scheduling of follow-up observations in the next decade. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.05882v2-abstract-full').style.display = 'none'; document.getElementById('1812.05882v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted for publication in Astronomy &amp; Astrophysics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 622, A81 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.02438">arXiv:1812.02438</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.02438">pdf</a>, <a href="https://arxiv.org/ps/1812.02438">ps</a>, <a href="https://arxiv.org/format/1812.02438">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> </div> <p class="title is-5 mathjax"> Planet-star interactions with precise transit timing. I. The refined orbital decay rate for WASP-12 b and initial constraints for HAT-P-23 b, KELT-1 b, KELT-16 b, WASP-33 b, and WASP-103 b </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Maciejewski%2C+G">G. Maciejewski</a>, <a href="/search/?searchtype=author&amp;query=Fern%C3%A1ndez%2C+M">M. Fern谩ndez</a>, <a href="/search/?searchtype=author&amp;query=Aceituno%2C+F">F. Aceituno</a>, <a href="/search/?searchtype=author&amp;query=Mart%C3%ADn-Ruiz%2C+S">S. Mart铆n-Ruiz</a>, <a href="/search/?searchtype=author&amp;query=Ohlert%2C+J">J. Ohlert</a>, <a href="/search/?searchtype=author&amp;query=Dimitrov%2C+D">D. Dimitrov</a>, <a href="/search/?searchtype=author&amp;query=Szyszka%2C+K">K. Szyszka</a>, <a href="/search/?searchtype=author&amp;query=von+Essen%2C+C">C. von Essen</a>, <a href="/search/?searchtype=author&amp;query=Mugrauer%2C+M">M. Mugrauer</a>, <a href="/search/?searchtype=author&amp;query=Bischoff%2C+R">R. Bischoff</a>, <a href="/search/?searchtype=author&amp;query=Michel%2C+K+-">K. -U. Michel</a>, <a href="/search/?searchtype=author&amp;query=Mallonn%2C+M">M. Mallonn</a>, <a href="/search/?searchtype=author&amp;query=Stangret%2C+M">M. Stangret</a>, <a href="/search/?searchtype=author&amp;query=Mo%C5%BAdzierski%2C+D">D. Mo藕dzierski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.02438v2-abstract-short" style="display: inline;"> Theoretical calculations and some indirect observations show that massive exoplanets on tight orbits must decay due to tidal dissipation within their host stars. This orbital evolution could be observationally accessible through precise transit timing over a course of decades. The rate of planetary in-spiralling may not only help us to understand some aspects of evolution of planetary systems, but&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.02438v2-abstract-full').style.display = 'inline'; document.getElementById('1812.02438v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.02438v2-abstract-full" style="display: none;"> Theoretical calculations and some indirect observations show that massive exoplanets on tight orbits must decay due to tidal dissipation within their host stars. This orbital evolution could be observationally accessible through precise transit timing over a course of decades. The rate of planetary in-spiralling may not only help us to understand some aspects of evolution of planetary systems, but also can be used as a probe of the stellar internal structure. In this paper we present results of transit timing campaigns organised for a carefully selected sample of hot Jupiter-like planets which were found to be the best candidates for detecting planet-star tidal interactions on the Northern hemisphere. Among them, there is the WASP-12 system which is the best candidate for possessing an in-falling giant exoplanet. Our new observations support the scenario of orbital decay of WASP-12 b and allow us to refine its rate. The derived tidal quality parameter of the host star Q&#39;_{*} = (1.82 +/- 0.32) x 10^5 is in agreement with theoretical predictions for subgiant stars. For the remaining systems - HAT-P-23, KELT-1, KELT-16, WASP-33, and WASP-103 - our transit timing data reveal no deviations from the constant-period models, hence constraints on the individual rates of orbital decay were placed. The tidal quality parameters of host stars in at least 4 systems - HAT-P-23, KELT-1, WASP-33, and WASP-103 - were found to be greater than the value reported for WASP-12. This is in line with the finding that those hosts are main sequence stars, for which efficiency of tidal dissipation is predicted to be relatively weak. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.02438v2-abstract-full').style.display = 'none'; document.getElementById('1812.02438v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Acta Astronomica, 2018, vol. 68</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.02573">arXiv:1811.02573</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.02573">pdf</a>, <a href="https://arxiv.org/format/1811.02573">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201833837">10.1051/0004-6361/201833837 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An optical transmission spectrum of the ultra-hot Jupiter WASP-33b. First indication of AlO in an exoplanet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=von+Essen%2C+C">C. von Essen</a>, <a href="/search/?searchtype=author&amp;query=Mallonn%2C+M">M. Mallonn</a>, <a href="/search/?searchtype=author&amp;query=Welbanks%2C+L">L. Welbanks</a>, <a href="/search/?searchtype=author&amp;query=Madhusudhan%2C+N">N. Madhusudhan</a>, <a href="/search/?searchtype=author&amp;query=Pinhas%2C+A">A. Pinhas</a>, <a href="/search/?searchtype=author&amp;query=Bouy%2C+H">H. Bouy</a>, <a href="/search/?searchtype=author&amp;query=Hansen%2C+P+W">P. Weis Hansen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.02573v1-abstract-short" style="display: inline;"> There has been increasing progress toward detailed characterization of exoplanetary atmospheres, in both observations and theoretical methods. Improvements in observational facilities and data reduction and analysis techniques are enabling increasingly higher quality spectra, especially from ground-based facilities. The high data quality also necessitates concomitant improvements in models require&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.02573v1-abstract-full').style.display = 'inline'; document.getElementById('1811.02573v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.02573v1-abstract-full" style="display: none;"> There has been increasing progress toward detailed characterization of exoplanetary atmospheres, in both observations and theoretical methods. Improvements in observational facilities and data reduction and analysis techniques are enabling increasingly higher quality spectra, especially from ground-based facilities. The high data quality also necessitates concomitant improvements in models required to interpret such data. In particular, the detection of trace species such as metal oxides has been challenging. Extremely irradiated exoplanets (~3000 K) are expected to show oxides with strong absorption signals in the optical. However, there are only a few hot Jupiters where such signatures have been reported. Here we aim to characterize the atmosphere of the ultra-hot Jupiter WASP-33b using two primary transits taken 18 orbits apart. Our atmospheric retrieval, performed on the combined data sets, provides initial constraints on the atmospheric composition of WASP-33b. We report a possible indication of aluminum oxide (AlO) at 3.3-sigma significance. The data were obtained with the long slit OSIRIS spectrograph mounted at the 10-meter Gran Telescopio Canarias. We cleaned the brightness variations from the light curves produced by stellar pulsations, and we determined the wavelength-dependent variability of the planetary radius caused by the atmospheric absorption of stellar light. A simultaneous fit to the two transit light curves allowed us to refine the transit parameters, and the common wavelength coverage between the two transits served to contrast our results. Future observations with HST as well as other large ground-based facilities will be able to further constrain the atmospheric chemical composition of the planet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.02573v1-abstract-full').style.display = 'none'; document.getElementById('1811.02573v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 622, A71 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.02172">arXiv:1810.02172</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.02172">pdf</a>, <a href="https://arxiv.org/format/1810.02172">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201833691">10.1051/0004-6361/201833691 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Deciphering the atmosphere of HAT-P-12b: solving discrepant results </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Alexoudi%2C+X">X. Alexoudi</a>, <a href="/search/?searchtype=author&amp;query=Mallonn%2C+M">M. Mallonn</a>, <a href="/search/?searchtype=author&amp;query=von+Essen%2C+C">C. von Essen</a>, <a href="/search/?searchtype=author&amp;query=Turner%2C+J+D">J. D. Turner</a>, <a href="/search/?searchtype=author&amp;query=Keles%2C+E">E. Keles</a>, <a href="/search/?searchtype=author&amp;query=Southworth%2C+J">J. Southworth</a>, <a href="/search/?searchtype=author&amp;query=Mancini%2C+L">L. Mancini</a>, <a href="/search/?searchtype=author&amp;query=Ciceri%2C+S">S. Ciceri</a>, <a href="/search/?searchtype=author&amp;query=Granzer%2C+T">T. Granzer</a>, <a href="/search/?searchtype=author&amp;query=Denker%2C+C">C. Denker</a>, <a href="/search/?searchtype=author&amp;query=Dineva%2C+E">E. Dineva</a>, <a href="/search/?searchtype=author&amp;query=Strassmeier%2C+K+G">K. G. Strassmeier</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.02172v2-abstract-short" style="display: inline;"> Two independent investigations of the atmosphere of the hot Jupiter HAT-P-12b by two different groups resulted in discrepant solutions. Using broad-band photometry from the ground, one study found a flat and featureless transmission spectrum which was interpreted as a gray absorption by dense cloud coverage. The second study made use of the Hubble Space Telescope (HST) observations and found Rayle&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.02172v2-abstract-full').style.display = 'inline'; document.getElementById('1810.02172v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.02172v2-abstract-full" style="display: none;"> Two independent investigations of the atmosphere of the hot Jupiter HAT-P-12b by two different groups resulted in discrepant solutions. Using broad-band photometry from the ground, one study found a flat and featureless transmission spectrum which was interpreted as a gray absorption by dense cloud coverage. The second study made use of the Hubble Space Telescope (HST) observations and found Rayleigh scattering at optical wavelengths caused by haze. The main purpose of this work is to find the source of this inconsistency and provide feedback to prevent similar discrepancies in future analyses of other exoplanetary atmospheres. We studied the observed discrepancy via two methods. With further broad-band observations in the optical wavelength regions, we strengthened the previous measurements in precision and with a homogeneous reanalysis of the published data, we managed to assess the systematic errors and the independent analyses of the two different groups. Repeating the analysis steps of both works, we found that deviating values for the orbital parameters are the reason for the aforementioned discrepancy. Our work showed a degeneracy of the planetary spectral slope with these parameters. In a homogeneous reanalysis of all data, the two literature data sets and the new observations converge to a consistent transmission spectrum, showing a low-amplitude spectral slope and a tentative detection of potassium absorption. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.02172v2-abstract-full').style.display = 'none'; document.getElementById('1810.02172v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 620, A142 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.10621">arXiv:1807.10621</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.10621">pdf</a>, <a href="https://arxiv.org/format/1807.10621">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201732029">10.1051/0004-6361/201732029 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The atmosphere of WASP-17b: Optical high-resolution transmission spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Khalafinejad%2C+S">Sara Khalafinejad</a>, <a href="/search/?searchtype=author&amp;query=Salz%2C+M">Michael Salz</a>, <a href="/search/?searchtype=author&amp;query=Cubillos%2C+P+E">Patricio E. Cubillos</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+G">George Zhou</a>, <a href="/search/?searchtype=author&amp;query=von+Essen%2C+C">Carolina von Essen</a>, <a href="/search/?searchtype=author&amp;query=Husser%2C+T">Tim-Oliver Husser</a>, <a href="/search/?searchtype=author&amp;query=Bayliss%2C+D+D+R">Daniel D. R. Bayliss</a>, <a href="/search/?searchtype=author&amp;query=L%C3%B3pez-Morales%2C+M">Mercedes L贸pez-Morales</a>, <a href="/search/?searchtype=author&amp;query=Dreizler%2C+S">Stefan Dreizler</a>, <a href="/search/?searchtype=author&amp;query=Schmitt%2C+J+H+M+M">J眉rgen H. M. M Schmitt</a>, <a href="/search/?searchtype=author&amp;query=L%C3%BCftinger%2C+T">Theresa L眉ftinger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.10621v1-abstract-short" style="display: inline;"> High-resolution transmission spectroscopy is a method for understanding the chemical and physical properties of upper exoplanetary atmospheres. Due to large absorption cross-sections, resonance lines of atomic sodium D-lines (at 5889.95 $脜$ and 5895.92 $脜$) produce large transmission signals. Our aim is to unveil the physical properties of WASP-17b through an accurate measurement of the sodium abs&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.10621v1-abstract-full').style.display = 'inline'; document.getElementById('1807.10621v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.10621v1-abstract-full" style="display: none;"> High-resolution transmission spectroscopy is a method for understanding the chemical and physical properties of upper exoplanetary atmospheres. Due to large absorption cross-sections, resonance lines of atomic sodium D-lines (at 5889.95 $脜$ and 5895.92 $脜$) produce large transmission signals. Our aim is to unveil the physical properties of WASP-17b through an accurate measurement of the sodium absorption in the transmission spectrum. We analyze 37 high-resolution spectra observed during a single transit of WASP-17b with the MIKE instrument on the 6.5 meter Magellan Telescopes. We exclude stellar flaring activity during the observations by analyzing the temporal variations of H$_伪$ and Ca II infra-red triplet (IRT) lines. Then we obtain the excess absorption light curves in wavelength bands of 0.75, 1, 1.5 and 3 $脜$ around the center of each sodium line (i.e., the light curve approach). We model the effects of differential limb-darkening, and the changing planetary radial velocity on the light curves. We also analyze the sodium absorption directly in the transmission spectrum, which is obtained through dividing in-transit by out-of-transit spectra (i.e., the division approach). We then compare our measurements with a radiative transfer atmospheric model. Our analysis results in a tentative detection of exoplanetary sodium: we measure the width and amplitude of the exoplanetary sodium feature to be $蟽_{\mathrm{Na}}$ = (0.128 $\pm$ 0.078) $脜$ and A$_{\mathrm{Na}}$ = (1.7 $\pm$ 0.9)% in the excess light curve approach and $蟽_{\mathrm{Na}}$ = (0.850 $\pm$ 0.034) $脜$ and A$_{\mathrm{Na}}$ = (1.3 $\pm$ 0.6)% in the division approach. By comparing our measurements with a simple atmospheric model, we retrieve an atmospheric temperature of 1550 $^{+170} _{-200}$ K and radius (at 0.1 bar) of 1.81 $\pm$ 0.02 R$_{\rm Jup}$ for WASP-17b. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.10621v1-abstract-full').style.display = 'none'; document.getElementById('1807.10621v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Astronomy and Astrophysics Journal (name of the file in the first submission: Optical narrow-band transmission spectroscopy of WASP-17b)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 618, A98 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.00007">arXiv:1807.00007</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.00007">pdf</a>, <a href="https://arxiv.org/format/1807.00007">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201833436">10.1051/0004-6361/201833436 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Kepler Object of Interest Network II. Photodynamical modelling of Kepler-9 over 8 years of transit observations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Freudenthal%2C+J">J. Freudenthal</a>, <a href="/search/?searchtype=author&amp;query=von+Essen%2C+C">C. von Essen</a>, <a href="/search/?searchtype=author&amp;query=Dreizler%2C+S">S. Dreizler</a>, <a href="/search/?searchtype=author&amp;query=Wedemeyer%2C+S">S. Wedemeyer</a>, <a href="/search/?searchtype=author&amp;query=Agol%2C+E">E. Agol</a>, <a href="/search/?searchtype=author&amp;query=Morris%2C+B+M">B. M. Morris</a>, <a href="/search/?searchtype=author&amp;query=Becker%2C+A+C">A. C. Becker</a>, <a href="/search/?searchtype=author&amp;query=Mallonn%2C+M">M. Mallonn</a>, <a href="/search/?searchtype=author&amp;query=Hoyer%2C+S">S. Hoyer</a>, <a href="/search/?searchtype=author&amp;query=Ofir%2C+A">A. Ofir</a>, <a href="/search/?searchtype=author&amp;query=Or%2C+L+T">L. Tal Or</a>, <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J">H. J. Deeg</a>, <a href="/search/?searchtype=author&amp;query=Herrero%2C+E">E. Herrero</a>, <a href="/search/?searchtype=author&amp;query=Ribas%2C+I">I. Ribas</a>, <a href="/search/?searchtype=author&amp;query=Khalafinejad%2C+S">S. Khalafinejad</a>, <a href="/search/?searchtype=author&amp;query=Hern%C3%A1ndez%2C+J">J. Hern谩ndez</a>, <a href="/search/?searchtype=author&amp;query=S%2C+M+M+R">M. M. Rodr铆guez S</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.00007v1-abstract-short" style="display: inline;"> The Kepler Object of Interest Network (KOINet) is a multi-site network of telescopes around the globe organised to follow up transiting planet candidate KOIs with large transit timing variations (TTVs). Its main goal is to complete their TTV curves, as the Kepler telescope no longer observes the original Kepler field. Combining Kepler and new ground-based transit data we improve the modelling of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.00007v1-abstract-full').style.display = 'inline'; document.getElementById('1807.00007v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.00007v1-abstract-full" style="display: none;"> The Kepler Object of Interest Network (KOINet) is a multi-site network of telescopes around the globe organised to follow up transiting planet candidate KOIs with large transit timing variations (TTVs). Its main goal is to complete their TTV curves, as the Kepler telescope no longer observes the original Kepler field. Combining Kepler and new ground-based transit data we improve the modelling of these systems. To this end, we have developed a photodynamical model, and we demonstrate its performance using the Kepler-9 system as an example. Our comprehensive analysis combines the numerical integration of the system&#39;s dynamics over the time span of the observations along with the transit light curve model. This model is coupled with a Markov chain Monte Carlo algorithm, allowing the exploration of the model parameter space. Applied to the Kepler-9 long cadence data, short cadence data and 13 new transit observations collected by KOINet between the years 2014 to 2017, our modelling provides well constrained predictions for the next transits and the system&#39;s parameters. We have determined the densities of the planets Kepler-9b and 9c to the very precise values of rho_b = 0.439 +/-0.023 g/cm3 and rho_c = 0.322 +/- 0.017 g/cm3. Our analysis reveals that Kepler-9c will stop transiting in about 30 years. This results from strong dynamical interactions between Kepler-9b and 9c, near 2:1 resonance, that leads to a periodic change in inclination. Over the next 30 years the inclination of Kepler-9c (-9b) will decrease (increase) slowly. This should be measurable by a substantial decrease (increase) in the transit duration, in as soon as a few years&#39; time. Observations that contradict this prediction might indicate the presence of additional objects. If this prediction proves true, this behaviour opens up a unique chance to scan the different latitudes of a star. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.00007v1-abstract-full').style.display = 'none'; document.getElementById('1807.00007v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 22 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 618, A41 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.03671">arXiv:1805.03671</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.03671">pdf</a>, <a href="https://arxiv.org/format/1805.03671">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1538-3873/aadf6f">10.1088/1538-3873/aadf6f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Framework for Prioritizing the TESS Planetary Candidates Most Amenable to Atmospheric Characterization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Kempton%2C+E+M+-">Eliza M. -R. Kempton</a>, <a href="/search/?searchtype=author&amp;query=Bean%2C+J+L">Jacob L. Bean</a>, <a href="/search/?searchtype=author&amp;query=Louie%2C+D+R">Dana R. Louie</a>, <a href="/search/?searchtype=author&amp;query=Deming%2C+D">Drake Deming</a>, <a href="/search/?searchtype=author&amp;query=Koll%2C+D+D+B">Daniel D. B. Koll</a>, <a href="/search/?searchtype=author&amp;query=Mansfield%2C+M">Megan Mansfield</a>, <a href="/search/?searchtype=author&amp;query=Christiansen%2C+J+L">Jessie L. Christiansen</a>, <a href="/search/?searchtype=author&amp;query=Lopez-Morales%2C+M">Mercedes Lopez-Morales</a>, <a href="/search/?searchtype=author&amp;query=Swain%2C+M+R">Mark R. Swain</a>, <a href="/search/?searchtype=author&amp;query=Zellem%2C+R+T">Robert T. Zellem</a>, <a href="/search/?searchtype=author&amp;query=Ballard%2C+S">Sarah Ballard</a>, <a href="/search/?searchtype=author&amp;query=Barclay%2C+T">Thomas Barclay</a>, <a href="/search/?searchtype=author&amp;query=Barstow%2C+J+K">Joanna K. Barstow</a>, <a href="/search/?searchtype=author&amp;query=Batalha%2C+N+E">Natasha E. Batalha</a>, <a href="/search/?searchtype=author&amp;query=Beatty%2C+T+G">Thomas G. Beatty</a>, <a href="/search/?searchtype=author&amp;query=Berta-Thompson%2C+Z">Zach Berta-Thompson</a>, <a href="/search/?searchtype=author&amp;query=Birkby%2C+J">Jayne Birkby</a>, <a href="/search/?searchtype=author&amp;query=Buchhave%2C+L+A">Lars A. Buchhave</a>, <a href="/search/?searchtype=author&amp;query=Charbonneau%2C+D">David Charbonneau</a>, <a href="/search/?searchtype=author&amp;query=Cowan%2C+N+B">Nicolas B. Cowan</a>, <a href="/search/?searchtype=author&amp;query=Crossfield%2C+I">Ian Crossfield</a>, <a href="/search/?searchtype=author&amp;query=de+Val-Borro%2C+M">Miguel de Val-Borro</a>, <a href="/search/?searchtype=author&amp;query=Doyon%2C+R">Rene Doyon</a>, <a href="/search/?searchtype=author&amp;query=Dragomir%2C+D">Diana Dragomir</a>, <a href="/search/?searchtype=author&amp;query=Gaidos%2C+E">Eric Gaidos</a> , et al. (18 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.03671v2-abstract-short" style="display: inline;"> A key legacy of the recently launched TESS mission will be to provide the astronomical community with many of the best transiting exoplanet targets for atmospheric characterization. However, time is of the essence to take full advantage of this opportunity. JWST, although delayed, will still complete its nominal five year mission on a timeline that motivates rapid identification, confirmation, and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.03671v2-abstract-full').style.display = 'inline'; document.getElementById('1805.03671v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.03671v2-abstract-full" style="display: none;"> A key legacy of the recently launched TESS mission will be to provide the astronomical community with many of the best transiting exoplanet targets for atmospheric characterization. However, time is of the essence to take full advantage of this opportunity. JWST, although delayed, will still complete its nominal five year mission on a timeline that motivates rapid identification, confirmation, and mass measurement of the top atmospheric characterization targets from TESS. Beyond JWST, future dedicated missions for atmospheric studies such as ARIEL require the discovery and confirmation of several hundred additional sub-Jovian size planets (R_p &lt; 10 R_Earth) orbiting bright stars, beyond those known today, to ensure a successful statistical census of exoplanet atmospheres. Ground-based ELTs will also contribute to surveying the atmospheres of the transiting planets discovered by TESS. Here we present a set of two straightforward analytic metrics, quantifying the expected signal-to-noise in transmission and thermal emission spectroscopy for a given planet, that will allow the top atmospheric characterization targets to be readily identified among the TESS planet candidates. Targets that meet our proposed threshold values for these metrics would be encouraged for rapid follow-up and confirmation via radial velocity mass measurements. Based on the catalog of simulated TESS detections by Sullivan et al. (2015), we determine appropriate cutoff values of the metrics, such that the TESS mission will ultimately yield a sample of $\sim300$ high-quality atmospheric characterization targets across a range of planet size bins, extending down to Earth-size, potentially habitable worlds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.03671v2-abstract-full').style.display = 'none'; document.getElementById('1805.03671v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted to PASP</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.05677">arXiv:1803.05677</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1803.05677">pdf</a>, <a href="https://arxiv.org/ps/1803.05677">ps</a>, <a href="https://arxiv.org/format/1803.05677">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201732300">10.1051/0004-6361/201732300 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> GJ1214: Rotation period, starspots, and uncertainty on the optical slope of the transmission spectrum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Mallonn%2C+M">M. Mallonn</a>, <a href="/search/?searchtype=author&amp;query=Herrero%2C+E">E. Herrero</a>, <a href="/search/?searchtype=author&amp;query=Juvan%2C+I+G">I. G. Juvan</a>, <a href="/search/?searchtype=author&amp;query=von+Essen%2C+C">C. von Essen</a>, <a href="/search/?searchtype=author&amp;query=Rosich%2C+A">A. Rosich</a>, <a href="/search/?searchtype=author&amp;query=Ribas%2C+I">I. Ribas</a>, <a href="/search/?searchtype=author&amp;query=Granzer%2C+T">T. Granzer</a>, <a href="/search/?searchtype=author&amp;query=Alexoudi%2C+X">X. Alexoudi</a>, <a href="/search/?searchtype=author&amp;query=Strassmeier%2C+K+G">K. G. Strassmeier</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.05677v1-abstract-short" style="display: inline;"> Brightness inhomogeneities in the stellar photosphere (dark spots or bright regions) affect the measurements of the planetary transmission spectrum. To investigate the star spots of the M dwarf GJ 1214, we conducted a multicolor photometric monitoring from 2012 to 2016. The measured variability shows a periodicity of 125 +- 5 days, which we interpret as the signature of the stellar rotation period&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.05677v1-abstract-full').style.display = 'inline'; document.getElementById('1803.05677v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.05677v1-abstract-full" style="display: none;"> Brightness inhomogeneities in the stellar photosphere (dark spots or bright regions) affect the measurements of the planetary transmission spectrum. To investigate the star spots of the M dwarf GJ 1214, we conducted a multicolor photometric monitoring from 2012 to 2016. The measured variability shows a periodicity of 125 +- 5 days, which we interpret as the signature of the stellar rotation period. This value overrules previous suggestions of a significantly shorter stellar rotation period. A light curve inversion of the monitoring data yields an estimation of the flux dimming of a permanent spot filling factor not contributing to the photometric variability, a temperature contrast of the spots of about 370 K and persistent active longitudes. The derived surface maps over all five seasons were used to estimate the influence of the star spots on the transmission spectrum of the planet from 400 nm to 2000 nm. The monitoring data presented here do not support a recent interpretation of a measured transmission spectrum of GJ 1214b as to be caused by bright regions in the stellar photosphere. Instead, we list arguments as to why the effect of dark spots likely dominated over bright regions in the period of our monitoring. Furthermore, our photometry proves an increase in variability over at least four years, indicative for a cyclic activity behavior. The age of GJ 1214 is likely between 6 and 10 Gyr. The long-term photometry allows for a correction of unocculted spots. For an active star such as GJ 1214, there remains a degeneracy between occulted spots and the transit parameters used to build the transmission spectrum. This degeneracy can only be broken by high-precision transit photometry resolving the spot crossing signature in the transit light curve. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.05677v1-abstract-full').style.display = 'none'; document.getElementById('1803.05677v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 8 figures, accepted for publication in Astronomy &amp; Astrophysics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 614, A35 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.02582">arXiv:1802.02582</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.02582">pdf</a>, <a href="https://arxiv.org/format/1802.02582">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.32023/0001-5237/68.1.1">10.32023/0001-5237/68.1.1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> OGLE-2017-BLG-1434Lb: Eighth q &lt; 1 * 10^-4 Mass-Ratio Microlens Planet Confirms Turnover in Planet Mass-Ratio Function </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Udalski%2C+A">A. Udalski</a>, <a href="/search/?searchtype=author&amp;query=Ryu%2C+Y+-">Y. -H. Ryu</a>, <a href="/search/?searchtype=author&amp;query=Sajadian%2C+S">S. Sajadian</a>, <a href="/search/?searchtype=author&amp;query=Gould%2C+A">A. Gould</a>, <a href="/search/?searchtype=author&amp;query=Mr%C3%B3z%2C+P">P. Mr贸z</a>, <a href="/search/?searchtype=author&amp;query=Poleski%2C+R">R. Poleski</a>, <a href="/search/?searchtype=author&amp;query=Szyma%C5%84ski%2C+M+K">M. K. Szyma艅ski</a>, <a href="/search/?searchtype=author&amp;query=Skowron%2C+J">J. Skowron</a>, <a href="/search/?searchtype=author&amp;query=Soszy%C5%84ski%2C+I">I. Soszy艅ski</a>, <a href="/search/?searchtype=author&amp;query=Koz%C5%82owski%2C+S">S. Koz艂owski</a>, <a href="/search/?searchtype=author&amp;query=Pietrukowicz%2C+P">P. Pietrukowicz</a>, <a href="/search/?searchtype=author&amp;query=Ulaczyk%2C+K">K. Ulaczyk</a>, <a href="/search/?searchtype=author&amp;query=Pawlak%2C+M">M. Pawlak</a>, <a href="/search/?searchtype=author&amp;query=Rybicki%2C+K">K. Rybicki</a>, <a href="/search/?searchtype=author&amp;query=Iwanek%2C+P">P. Iwanek</a>, <a href="/search/?searchtype=author&amp;query=Albrow%2C+M+D">M. D. Albrow</a>, <a href="/search/?searchtype=author&amp;query=Chung%2C+S+-">S. -J. Chung</a>, <a href="/search/?searchtype=author&amp;query=Han%2C+C">C. Han</a>, <a href="/search/?searchtype=author&amp;query=Hwang%2C+K+-">K. -H. Hwang</a>, <a href="/search/?searchtype=author&amp;query=Jung%2C+Y+K">Y. K. Jung</a>, <a href="/search/?searchtype=author&amp;query=Shin%2C+I+-">I. -G. Shin</a>, <a href="/search/?searchtype=author&amp;query=Shvartzvald%2C+Y">Y. Shvartzvald</a>, <a href="/search/?searchtype=author&amp;query=Yee%2C+J+C">J. C. Yee</a>, <a href="/search/?searchtype=author&amp;query=Zang%2C+W">W. Zang</a>, <a href="/search/?searchtype=author&amp;query=Zhu%2C+W">W. Zhu</a> , et al. (33 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.02582v1-abstract-short" style="display: inline;"> We report the discovery of a cold Super-Earth planet (m_p=4.4 +/- 0.5 M_Earth) orbiting a low-mass (M=0.23 +/- 0.03 M_Sun) M dwarf at projected separation a_perp = 1.18 +/- 0.10 AU, i.e., about 1.9 times the snow line. The system is quite nearby for a microlensing planet, D_Lens = 0.86 +/- 0.09 kpc. Indeed, it was the large lens-source relative parallax pi_rel=1.0 mas (combined with the low mass M&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.02582v1-abstract-full').style.display = 'inline'; document.getElementById('1802.02582v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.02582v1-abstract-full" style="display: none;"> We report the discovery of a cold Super-Earth planet (m_p=4.4 +/- 0.5 M_Earth) orbiting a low-mass (M=0.23 +/- 0.03 M_Sun) M dwarf at projected separation a_perp = 1.18 +/- 0.10 AU, i.e., about 1.9 times the snow line. The system is quite nearby for a microlensing planet, D_Lens = 0.86 +/- 0.09 kpc. Indeed, it was the large lens-source relative parallax pi_rel=1.0 mas (combined with the low mass M) that gave rise to the large, and thus well-measured, &#34;microlens parallax&#34; that enabled these precise measurements. OGLE-2017-BLG-1434Lb is the eighth microlensing planet with planet-host mass ratio q &lt; 1 * 10^-4. We apply a new planet-detection sensitivity method, which is a variant of &#34;V/V_max&#34;, to seven of these eight planets to derive the mass-ratio function in this regime. We find dN/d(ln q) ~ q^p, with p = 1.05 (+0.78,-0.68), which confirms the &#34;turnover&#34; in the mass function found by Suzuki et al. relative to the power law of opposite sign n = -0.93 +/- 0.13 at higher mass ratios q &gt;~ 2 * 10^-4. We combine our result with that of Suzuki et al. to obtain p = 0.73 (+0.42,-0.34). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.02582v1-abstract-full').style.display = 'none'; document.getElementById('1802.02582v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">53 pages, 16 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.06191">arXiv:1801.06191</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1801.06191">pdf</a>, <a href="https://arxiv.org/ps/1801.06191">ps</a>, <a href="https://arxiv.org/format/1801.06191">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201732483">10.1051/0004-6361/201732483 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Kepler Object of Interest Network I. First results combining ground and space-based observations of Kepler systems with transit timing variations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=von+Essen%2C+C">C. von Essen</a>, <a href="/search/?searchtype=author&amp;query=Ofir%2C+A">A. Ofir</a>, <a href="/search/?searchtype=author&amp;query=Dreizler%2C+S">S. Dreizler</a>, <a href="/search/?searchtype=author&amp;query=Agol%2C+E">E. Agol</a>, <a href="/search/?searchtype=author&amp;query=Freudenthal%2C+J">J. Freudenthal</a>, <a href="/search/?searchtype=author&amp;query=Hernandez%2C+J">J. Hernandez</a>, <a href="/search/?searchtype=author&amp;query=Wedemeyer%2C+S">S. Wedemeyer</a>, <a href="/search/?searchtype=author&amp;query=Parkash%2C+V">V. Parkash</a>, <a href="/search/?searchtype=author&amp;query=Deeg%2C+H+J">H. J. Deeg</a>, <a href="/search/?searchtype=author&amp;query=Hoyer%2C+S">S. Hoyer</a>, <a href="/search/?searchtype=author&amp;query=Morris%2C+B+M">B. M. Morris</a>, <a href="/search/?searchtype=author&amp;query=Becker%2C+A+C">A. C. Becker</a>, <a href="/search/?searchtype=author&amp;query=Sun%2C+L">L. Sun</a>, <a href="/search/?searchtype=author&amp;query=Gu%2C+S+H">S. H. Gu</a>, <a href="/search/?searchtype=author&amp;query=Herrero%2C+E">E. Herrero</a>, <a href="/search/?searchtype=author&amp;query=Tal-Or%2C+L">L. Tal-Or</a>, <a href="/search/?searchtype=author&amp;query=Poppenhaeger%2C+K">K. Poppenhaeger</a>, <a href="/search/?searchtype=author&amp;query=Mallonn%2C+M">M. Mallonn</a>, <a href="/search/?searchtype=author&amp;query=Albrecht%2C+S">S. Albrecht</a>, <a href="/search/?searchtype=author&amp;query=Khalafinejad%2C+S">S. Khalafinejad</a>, <a href="/search/?searchtype=author&amp;query=Boumis%2C+P">P. Boumis</a>, <a href="/search/?searchtype=author&amp;query=Delgado-Correal%2C+C">C. Delgado-Correal</a>, <a href="/search/?searchtype=author&amp;query=Fabrycky%2C+D+C">D. C. Fabrycky</a>, <a href="/search/?searchtype=author&amp;query=Janulis%2C+R">R. Janulis</a>, <a href="/search/?searchtype=author&amp;query=Lalitha%2C+S">S. Lalitha</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.06191v1-abstract-short" style="display: inline;"> During its four years of photometric observations, the Kepler space telescope detected thousands of exoplanets and exoplanet candidates. One of Kepler&#39;s greatest heritages has been the confirmation and characterization of hundreds of multi-planet systems via Transit Timing Variations (TTVs). However, there are many interesting candidate systems displaying TTVs on such long time scales that the exi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.06191v1-abstract-full').style.display = 'inline'; document.getElementById('1801.06191v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.06191v1-abstract-full" style="display: none;"> During its four years of photometric observations, the Kepler space telescope detected thousands of exoplanets and exoplanet candidates. One of Kepler&#39;s greatest heritages has been the confirmation and characterization of hundreds of multi-planet systems via Transit Timing Variations (TTVs). However, there are many interesting candidate systems displaying TTVs on such long time scales that the existing Kepler observations are of insufficient length to confirm and characterize them by means of this technique. To continue with Kepler&#39;s unique work we have organized the &#34;Kepler Object of Interest Network&#34; (KOINet). The goals of KOINet are, among others, to complete the TTV curves of systems where Kepler did not cover the interaction timescales well. KOINet has been operational since March, 2014. Here we show some promising first results obtained from analyzing seven primary transits of KOI-0410.01, KOI-0525.01, KOI-0760.01, and KOI-0902.01 in addition to Kepler data, acquired during the first and second observing seasons of KOINet. While carefully choosing the targets we set demanding constraints about timing precision (at least 1 minute) and photometric precision (as good as 1 part per thousand) that were achieved by means of our observing strategies and data analysis techniques. For KOI-0410.01, new transit data revealed a turn-over of its TTVs. We carried out an in-depth study of the system, that is identified in the NASA&#39;s Data Validation Report as false positive. Among others, we investigated a gravitationally-bound hierarchical triple star system, and a planet-star system. While the simultaneous transit fitting of ground and space-based data allowed for a planet solution, we could not fully reject the three-star scenario. New data, already scheduled in the upcoming 2018 observing season, will set tighter constraints on the nature of the system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.06191v1-abstract-full').style.display = 'none'; document.getElementById('1801.06191v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 615, A79 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.09974">arXiv:1710.09974</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.09974">pdf</a>, <a href="https://arxiv.org/ps/1710.09974">ps</a>, <a href="https://arxiv.org/format/1710.09974">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-3881/aa9be4">10.3847/1538-3881/aa9be4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> OGLE-2016-BLG-1190Lb: First Spitzer Bulge Planet Lies Near the Planet/Brown-Dwarf Boundary </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Ryu%2C+Y+-">Y. -H. Ryu</a>, <a href="/search/?searchtype=author&amp;query=Yee%2C+J+C">J. C. Yee</a>, <a href="/search/?searchtype=author&amp;query=Udalski%2C+A">A. Udalski</a>, <a href="/search/?searchtype=author&amp;query=Bond%2C+I+A">I. A. Bond</a>, <a href="/search/?searchtype=author&amp;query=Shvartzvald%2C+Y">Y. Shvartzvald</a>, <a href="/search/?searchtype=author&amp;query=Zang%2C+W">W. Zang</a>, <a href="/search/?searchtype=author&amp;query=Jaimes%2C+R+F">R. Figuera Jaimes</a>, <a href="/search/?searchtype=author&amp;query=Jorgensen%2C+U+G">U. G. Jorgensen</a>, <a href="/search/?searchtype=author&amp;query=Zhu%2C+W">W. Zhu</a>, <a href="/search/?searchtype=author&amp;query=Huang%2C+C+X">C. X. Huang</a>, <a href="/search/?searchtype=author&amp;query=Jung%2C+Y+K">Y. K. Jung</a>, <a href="/search/?searchtype=author&amp;query=Albrow%2C+M+D">M. D. Albrow</a>, <a href="/search/?searchtype=author&amp;query=Chung%2C+S+-">S. -J. Chung</a>, <a href="/search/?searchtype=author&amp;query=Gould%2C+A">A. Gould</a>, <a href="/search/?searchtype=author&amp;query=Han%2C+C">C. Han</a>, <a href="/search/?searchtype=author&amp;query=Hwang%2C+K+-">K. -H. Hwang</a>, <a href="/search/?searchtype=author&amp;query=Shin%2C+I+-">I. -G. Shin</a>, <a href="/search/?searchtype=author&amp;query=Cha%2C+S+-">S. -M. Cha</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+D+-">D. -J. Kim</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+H+-">H. -W. Kim</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+S+-">S. -L. Kim</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+C+-">C. -U. Lee</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+D+-">D. -J. Lee</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+Y">Y. Lee</a>, <a href="/search/?searchtype=author&amp;query=Park%2C+B+-">B. -G. Park</a> , et al. (85 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.09974v3-abstract-short" style="display: inline;"> We report the discovery of OGLE-2016-BLG-1190Lb, which is likely to be the first Spitzer microlensing planet in the Galactic bulge/bar, an assignation that can be confirmed by two epochs of high-resolution imaging of the combined source-lens baseline object. The planet&#39;s mass M_p= 13.4+-0.9 M_J places it right at the deuterium burning limit, i.e., the conventional boundary between &#34;planets&#34; and &#34;b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.09974v3-abstract-full').style.display = 'inline'; document.getElementById('1710.09974v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.09974v3-abstract-full" style="display: none;"> We report the discovery of OGLE-2016-BLG-1190Lb, which is likely to be the first Spitzer microlensing planet in the Galactic bulge/bar, an assignation that can be confirmed by two epochs of high-resolution imaging of the combined source-lens baseline object. The planet&#39;s mass M_p= 13.4+-0.9 M_J places it right at the deuterium burning limit, i.e., the conventional boundary between &#34;planets&#34; and &#34;brown dwarfs&#34;. Its existence raises the question of whether such objects are really &#34;planets&#34; (formed within the disks of their hosts) or &#34;failed stars&#34; (low mass objects formed by gas fragmentation). This question may ultimately be addressed by comparing disk and bulge/bar planets, which is a goal of the Spitzer microlens program. The host is a G dwarf M_host = 0.89+-0.07 M_sun and the planet has a semi-major axis a~2.0 AU. We use Kepler K2 Campaign 9 microlensing data to break the lens-mass degeneracy that generically impacts parallax solutions from Earth-Spitzer observations alone, which is the first successful application of this approach. The microlensing data, derived primarily from near-continuous, ultra-dense survey observations from OGLE, MOA, and three KMTNet telescopes, contain more orbital information than for any previous microlensing planet, but not quite enough to accurately specify the full orbit. However, these data do permit the first rigorous test of microlensing orbital-motion measurements, which are typically derived from data taken over &lt;1% of an orbital period. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.09974v3-abstract-full').style.display = 'none'; document.getElementById('1710.09974v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">63 pages, 13 figures, 7 tables, AJ, in press</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.07476">arXiv:1709.07476</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.07476">pdf</a>, <a href="https://arxiv.org/format/1709.07476">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201731855">10.1051/0004-6361/201731855 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-resolution Imaging of Transiting Extrasolar Planetary systems (HITEP). II. Lucky Imaging results from 2015 and 2016 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Evans%2C+D+F">D. F. Evans</a>, <a href="/search/?searchtype=author&amp;query=Southworth%2C+J">J. Southworth</a>, <a href="/search/?searchtype=author&amp;query=Smalley%2C+B">B. Smalley</a>, <a href="/search/?searchtype=author&amp;query=J%C3%B8rgensen%2C+U+G">U. G. J酶rgensen</a>, <a href="/search/?searchtype=author&amp;query=Dominik%2C+M">M. Dominik</a>, <a href="/search/?searchtype=author&amp;query=Andersen%2C+M+I">M. I. Andersen</a>, <a href="/search/?searchtype=author&amp;query=Bozza%2C+V">V. Bozza</a>, <a href="/search/?searchtype=author&amp;query=Bramich%2C+D+M">D. M. Bramich</a>, <a href="/search/?searchtype=author&amp;query=Burgdorf%2C+M+J">M. J. Burgdorf</a>, <a href="/search/?searchtype=author&amp;query=Ciceri%2C+S">S. Ciceri</a>, <a href="/search/?searchtype=author&amp;query=D%27Ago%2C+G">G. D&#39;Ago</a>, <a href="/search/?searchtype=author&amp;query=Jaimes%2C+R+F">R. Figuera Jaimes</a>, <a href="/search/?searchtype=author&amp;query=Gu%2C+S+-">S. -H. Gu</a>, <a href="/search/?searchtype=author&amp;query=Hinse%2C+T+C">T. C. Hinse</a>, <a href="/search/?searchtype=author&amp;query=Henning%2C+T">Th. Henning</a>, <a href="/search/?searchtype=author&amp;query=Hundertmark%2C+M">M. Hundertmark</a>, <a href="/search/?searchtype=author&amp;query=Kains%2C+N">N. Kains</a>, <a href="/search/?searchtype=author&amp;query=Kerins%2C+E">E. Kerins</a>, <a href="/search/?searchtype=author&amp;query=Korhonen%2C+H">H. Korhonen</a>, <a href="/search/?searchtype=author&amp;query=Kokotanekova%2C+R">R. Kokotanekova</a>, <a href="/search/?searchtype=author&amp;query=Kuffmeier%2C+M">M. Kuffmeier</a>, <a href="/search/?searchtype=author&amp;query=Longa-Pe%C3%B1a%2C+P">P. Longa-Pe帽a</a>, <a href="/search/?searchtype=author&amp;query=Mancini%2C+L">L. Mancini</a>, <a href="/search/?searchtype=author&amp;query=MacKenzie%2C+J">J. MacKenzie</a>, <a href="/search/?searchtype=author&amp;query=Popovas%2C+A">A. Popovas</a> , et al. (11 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.07476v2-abstract-short" style="display: inline;"> The formation and dynamical history of hot Jupiters is currently debated, with wide stellar binaries having been suggested as a potential formation pathway. Additionally, contaminating light from both binary companions and unassociated stars can significantly bias the results of planet characterisation studies, but can be corrected for if the properties of the contaminating star are known. We sear&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.07476v2-abstract-full').style.display = 'inline'; document.getElementById('1709.07476v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.07476v2-abstract-full" style="display: none;"> The formation and dynamical history of hot Jupiters is currently debated, with wide stellar binaries having been suggested as a potential formation pathway. Additionally, contaminating light from both binary companions and unassociated stars can significantly bias the results of planet characterisation studies, but can be corrected for if the properties of the contaminating star are known. We search for binary companions to known transiting exoplanet host stars, in order to determine the multiplicity properties of hot Jupiter host stars. We also characterise unassociated stars along the line of sight, allowing photometric and spectroscopic observations of the planetary system to be corrected for contaminating light. We analyse lucky imaging observations of 97 Southern hemisphere exoplanet host stars, using the Two Colour Instrument on the Danish 1.54m telescope. For each detected companion star, we determine flux ratios relative to the planet host star in two passbands, and measure the relative position of the companion. The probability of each companion being physically associated was determined using our two-colour photometry. A catalogue of close companion stars is presented, including flux ratios, position measurements, and estimated companion star temperature. For companions that are potential binary companions, we review archival and catalogue data for further evidence. For WASP-77AB and WASP-85AB, we combine our data with historical measurements to determine the binary orbits, showing them to be moderately eccentric and inclined to the line of sight and planetary orbital axis. Combining our survey with the similar Friends of Hot Jupiters survey, we conclude that known hot Jupiter host stars show a deficit of high mass stellar companions compared to the field star population; however, this may be a result of the biases in detection and target selection by ground-based surveys. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.07476v2-abstract-full').style.display = 'none'; document.getElementById('1709.07476v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 14 figures, 12 tables. The contents of tables 2, 3, 4, 9 and 10 are included in the arXiv source. Updated to correct typos and include tables in final format</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.05700">arXiv:1708.05700</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1708.05700">pdf</a>, <a href="https://arxiv.org/ps/1708.05700">ps</a>, <a href="https://arxiv.org/format/1708.05700">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stx1612">10.1093/mnras/stx1612 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multi-band characterization of the hot Jupiters: WASP-5b, WASP-44b and WASP-46b </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Moyano%2C+M">M. Moyano</a>, <a href="/search/?searchtype=author&amp;query=Almeida%2C+L+A">L. A. Almeida</a>, <a href="/search/?searchtype=author&amp;query=von+Essen%2C+C">C. von Essen</a>, <a href="/search/?searchtype=author&amp;query=Jablonski%2C+F">F. Jablonski</a>, <a href="/search/?searchtype=author&amp;query=Pereira%2C+M+G">M. G. Pereira</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.05700v2-abstract-short" style="display: inline;"> We have carried out a campaign to characterize the hot Jupiters WASP-5b, WASP-44b and WASP-46b using multiband photometry collected at the Observat贸rio do Pico Dos Dias in Brazil. We have determined the planetary physical properties and new transit ephemerides for these systems. The new orbital parameters and physical properties of WASP-5b and WASP-44b are consistent with previous estimates. In th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.05700v2-abstract-full').style.display = 'inline'; document.getElementById('1708.05700v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.05700v2-abstract-full" style="display: none;"> We have carried out a campaign to characterize the hot Jupiters WASP-5b, WASP-44b and WASP-46b using multiband photometry collected at the Observat贸rio do Pico Dos Dias in Brazil. We have determined the planetary physical properties and new transit ephemerides for these systems. The new orbital parameters and physical properties of WASP-5b and WASP-44b are consistent with previous estimates. In the case of WASP-46b, there is some quota of disagreement between previous results. We provide a new determination of the radius of this planet and help clarify the previous differences. We also studied the transit time variations including our new measurements. No clear variation from a linear trend was found for the systems WASP-5b and WASP-44b. In the case of WASP-46b, we found evidence of deviations indicating the presence of a companion but statistical analysis of the existing times points to a signal due to the sampling rather than a new planet. Finally, we studied the fractional radius variation as a function of wavelength for these systems. The broad-band spectrums of WASP-5b and WASP-44b are mostly flat. In the case of WASP-46b we found a trend, but further measurements are necessary to confirm this finding. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.05700v2-abstract-full').style.display = 'none'; document.getElementById('1708.05700v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.07688">arXiv:1707.07688</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.07688">pdf</a>, <a href="https://arxiv.org/ps/1707.07688">ps</a>, <a href="https://arxiv.org/format/1707.07688">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201629823">10.1051/0004-6361/201629823 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Impact of seeing and host galaxy into the analysis of photo-polarimetric microvariability in blazars - Case study of the nearby blazars 1ES 1959+650 and HB89 2201+044 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Sosa%2C+M">Marina Sosa</a>, <a href="/search/?searchtype=author&amp;query=von+Essen%2C+C">Carolina von Essen</a>, <a href="/search/?searchtype=author&amp;query=Andruchow%2C+I">Ileana Andruchow</a>, <a href="/search/?searchtype=author&amp;query=Cellone%2C+S">Sergio Cellone</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.07688v1-abstract-short" style="display: inline;"> Blazars, a type of Active Galactic Nuclei, present a particular orientation of their jets close to the line ofsight. Their radiation is thus relativistically beamed, giving rise to extreme behaviors, specially strong variability on very short time-scales (i.e., microvariability). Here we present simultaneous photometric and polarimetric observations of two relatively nearby blazars, 1ES 1959+650 a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.07688v1-abstract-full').style.display = 'inline'; document.getElementById('1707.07688v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.07688v1-abstract-full" style="display: none;"> Blazars, a type of Active Galactic Nuclei, present a particular orientation of their jets close to the line ofsight. Their radiation is thus relativistically beamed, giving rise to extreme behaviors, specially strong variability on very short time-scales (i.e., microvariability). Here we present simultaneous photometric and polarimetric observations of two relatively nearby blazars, 1ES 1959+650 and HB89 2201+044, that were obtained using the Calar Alto Faint Object Spectrograph mounted at the 2.2 m telescope in Calar Alto, Spain. An outstanding characteristic of these two blazars is the presence of well resolved host galaxies. This particular feature allows us to produce a study of their intrinsic polarization, a measurement of the polarization state of the galactic nucleus unaffected by the host galaxy. To carry out this work, we computed photometric fluxes from which we calculated the degree and orientation of the blazars polarization. Then, we analyzed the depolarizing effect introduced by the host galaxy with the main goal to recover the intrinsic polarization of the galactic nucleus, carefully taking into consideration the spurious polarimetric variability introduced by changes in seeing along the observing nights. We find that the two blazars do not present intra-night photo-polarimetric variability, although we do detect a significant inter-night variability. Comparing polarimetric values before and after accounting for the host galaxies, we observe a significant difference in the polarization degree of about 1 % in the case of 1ES 1959+650, and 0.3 % in the case of HB89 2201+044, thus evidencing the non-negligible impact introduced by the host galaxies. We note that this host galaxy effect depends on the weaveband, and varies with changing seeing conditions, so it should be particularly considered when studying frequency-dependent polarization in blazars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.07688v1-abstract-full').style.display = 'none'; document.getElementById('1707.07688v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 607, A49 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.10647">arXiv:1703.10647</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1703.10647">pdf</a>, <a href="https://arxiv.org/ps/1703.10647">ps</a>, <a href="https://arxiv.org/format/1703.10647">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201730506">10.1051/0004-6361/201730506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Testing connections between exo-atmospheres and their host stars. GEMINI-N/GMOS ground-based transmission spectrum of Qatar-1b </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=von+Essen%2C+C">C. von Essen</a>, <a href="/search/?searchtype=author&amp;query=Cellone%2C+S">S. Cellone</a>, <a href="/search/?searchtype=author&amp;query=Mallonn%2C+M">M. Mallonn</a>, <a href="/search/?searchtype=author&amp;query=Albrecht%2C+S">S. Albrecht</a>, <a href="/search/?searchtype=author&amp;query=Micul%C3%A1n%2C+R">R. Micul谩n</a>, <a href="/search/?searchtype=author&amp;query=M%C3%BCller%2C+H+M">H. M. M眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.10647v1-abstract-short" style="display: inline;"> Till date, only a handful exo-atmospheres have been well characterized, mostly by means of the transit method. Data show exoplanet atmospheres to be diverse. However, this is based on a small number of cases. Here we focus our study on the exo-atmosphere of Qatar-1b, an exoplanet that looks much like HD 189733b regarding its host star activity level, their surface gravity, scale height, equilibriu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.10647v1-abstract-full').style.display = 'inline'; document.getElementById('1703.10647v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.10647v1-abstract-full" style="display: none;"> Till date, only a handful exo-atmospheres have been well characterized, mostly by means of the transit method. Data show exoplanet atmospheres to be diverse. However, this is based on a small number of cases. Here we focus our study on the exo-atmosphere of Qatar-1b, an exoplanet that looks much like HD 189733b regarding its host star activity level, their surface gravity, scale height, equilibrium temperature and transit parameters. Thus, our motivation relied on carrying out a comparative study of their atmospheres, and assess if these are regulated by their environment. In this work we present one primary transit of Qatar-1b obtained during September, 2014, using the 8.1 m GEMINI North telescope. The observations were performed using the GMOS-N instrument in multi-object spectroscopic mode. We collected fluxes of Qatar-1 and six more reference stars, covering the wavelength range between 460 and 746 nm. The achieved photometric precision of 0.18 parts-per-thousand in the white light curve, at a cadence of 165 seconds, makes this one of the most precise datasets obtained from the ground. We created 12 chromatic transit light curves that we computed by integrating fluxes in wavelength bins of different sizes, ranging between 3.5 and 20 nm. Although the data are of excellent quality, the wavelength coverage and the precision of the transmission spectrum are not sufficient to neither rule out or to favor classic atmospheric models. Nonetheless, simple statistical analysis favors the clear atmosphere scenario. A larger wavelength coverage or space-based data is required to characterize the constituents of Qatar-1b&#39;s atmosphere and to compare it to the well known HD 189733b. On top of the similarities of the orbital and physical parameters of both exoplanets, from a long Halpha photometric follow-up of Qatar-1, presented in this work, we find Qatar-1 to be as active as HD 189733. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.10647v1-abstract-full').style.display = 'none'; document.getElementById('1703.10647v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 603, A20 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.01610">arXiv:1610.01610</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1610.01610">pdf</a>, <a href="https://arxiv.org/format/1610.01610">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201629473">10.1051/0004-6361/201629473 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exoplanetary atmospheric sodium revealed by the orbital motion. Narrow-band transmission spectroscopy of HD 189733b with UVES </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Khalafinejad%2C+S">S. Khalafinejad</a>, <a href="/search/?searchtype=author&amp;query=von+Essen%2C+C">C. von Essen</a>, <a href="/search/?searchtype=author&amp;query=Hoeijmakers%2C+H+J">H. J. Hoeijmakers</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+G">G. Zhou</a>, <a href="/search/?searchtype=author&amp;query=Klocova%2C+T">T. Klocova</a>, <a href="/search/?searchtype=author&amp;query=Schmitt%2C+J+H+M+M">J. H. M. M. Schmitt</a>, <a href="/search/?searchtype=author&amp;query=Dreizler%2C+S">S. Dreizler</a>, <a href="/search/?searchtype=author&amp;query=Lopez-Morales%2C+M">M. Lopez-Morales</a>, <a href="/search/?searchtype=author&amp;query=Husser%2C+T+-">T. -O. Husser</a>, <a href="/search/?searchtype=author&amp;query=Schmidt%2C+T+O+B">T. O. B. Schmidt</a>, <a href="/search/?searchtype=author&amp;query=Collet%2C+R">R. Collet</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.01610v2-abstract-short" style="display: inline;"> During primary transits, the spectral signatures of an exoplanet atmosphere can be measured using transmission spectroscopy. The goal of this work is to accurately measure the atomspheric sodium absorption light curve in HD189733b, correcting for the effects of stellar differential limb-darkening, stellar activity and a &#34;bump&#34; caused by the changing radial velocity of the exoplanet. In fact, due t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.01610v2-abstract-full').style.display = 'inline'; document.getElementById('1610.01610v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.01610v2-abstract-full" style="display: none;"> During primary transits, the spectral signatures of an exoplanet atmosphere can be measured using transmission spectroscopy. The goal of this work is to accurately measure the atomspheric sodium absorption light curve in HD189733b, correcting for the effects of stellar differential limb-darkening, stellar activity and a &#34;bump&#34; caused by the changing radial velocity of the exoplanet. In fact, due to the high cadence and quality of our data, it is the first time that the last feature can be detected even by visual inspection. We use 244 high-resolution optical spectra taken by the UVES instrument mounted at the VLT. Our observations cover a full transit of HD 189733b, with a cadence of 45 seconds. To probe the transmission spectrum of sodium we produce excess light- curves integrating the stellar flux in passbands of 1 脜, 1.5 脜, and 3 脜inside the core of each sodium D-line. We model the effects of external sources on the excess light-curves, which correspond to an observed stellar flare beginning close to mid-transit time and the wavelength dependent limb-darkening effects. In addition, by characterizing the effect of the changing radial velocity and Doppler shifts of the planetary sodium lines inside the stellar sodium lines, we estimate the depth and width of the exoplanetary sodium feature. We estimate the shape of the planetary sodium line by a Gaussian profile, with an equivalent width of 0.0023 \pm 0.0010 脜, thereby confirming the presence of sodium in the atmosphere of HD189733b with excess absorption levels of 0.72 \pm 0.25%, 0.34 \pm 0.11%, and 0.20 \pm 0.06% for the integration bands of 1 脜, 1.5 脜, and 3 脜, respectively. From these, we produce a first order estimate of the number density of sodium in the exoplanet atmosphere. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.01610v2-abstract-full').style.display = 'none'; document.getElementById('1610.01610v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 9 figures, Accepted for publication at Astronomy and Astrophysics Journal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 598, A131 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.02346">arXiv:1608.02346</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.02346">pdf</a>, <a href="https://arxiv.org/ps/1608.02346">ps</a>, <a href="https://arxiv.org/format/1608.02346">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stw1999">10.1093/mnras/stw1999 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Broad-band spectrophotometry of HAT-P-32 b: Search for a scattering signature in the planetary spectrum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Mallonn%2C+M">M. Mallonn</a>, <a href="/search/?searchtype=author&amp;query=Bernt%2C+I">I. Bernt</a>, <a href="/search/?searchtype=author&amp;query=Herrero%2C+E">E. Herrero</a>, <a href="/search/?searchtype=author&amp;query=Hoyer%2C+S">S. Hoyer</a>, <a href="/search/?searchtype=author&amp;query=Kirk%2C+J">J. Kirk</a>, <a href="/search/?searchtype=author&amp;query=Wheatley%2C+P+J">P. J. Wheatley</a>, <a href="/search/?searchtype=author&amp;query=Seeliger%2C+M">M. Seeliger</a>, <a href="/search/?searchtype=author&amp;query=Mackebrandt%2C+F">F. Mackebrandt</a>, <a href="/search/?searchtype=author&amp;query=von+Essen%2C+C">C. von Essen</a>, <a href="/search/?searchtype=author&amp;query=Strassmeier%2C+K+G">K. G. Strassmeier</a>, <a href="/search/?searchtype=author&amp;query=Granzer%2C+T">T. Granzer</a>, <a href="/search/?searchtype=author&amp;query=K%7F%7F%C3%BCnstler%2C+A">A. K眉nstler</a>, <a href="/search/?searchtype=author&amp;query=Dhillon%2C+V+S">V. S. Dhillon</a>, <a href="/search/?searchtype=author&amp;query=Marsh%2C+T+R">T. R. Marsh</a>, <a href="/search/?searchtype=author&amp;query=Gaitan%2C+J">J. Gaitan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.02346v1-abstract-short" style="display: inline;"> Multi-colour broad-band transit observations offer the opportunity to characterise the atmosphere of an extrasolar planet with small- to medium-sized telescopes. One of the most favourable targets is the hot Jupiter HAT-P-32 b. We combined 21 new transit observations of this planet with 36 previously published light curves for a homogeneous analysis of the broad-band transmission spectrum from the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.02346v1-abstract-full').style.display = 'inline'; document.getElementById('1608.02346v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.02346v1-abstract-full" style="display: none;"> Multi-colour broad-band transit observations offer the opportunity to characterise the atmosphere of an extrasolar planet with small- to medium-sized telescopes. One of the most favourable targets is the hot Jupiter HAT-P-32 b. We combined 21 new transit observations of this planet with 36 previously published light curves for a homogeneous analysis of the broad-band transmission spectrum from the Sloan u&#39; band to the Sloan z&#39; band. Our results rule out cloud-free planetary atmosphere models of solar metallicity. Furthermore, a discrepancy at reddest wavelengths to previously published results makes a recent tentative detection of a scattering feature less likely. Instead, the available spectral measurements of HAT-P-32 b favour a completely flat spectrum from the near-UV to the near-IR. A plausible interpretation is a thick cloud cover at high altitudes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.02346v1-abstract-full').style.display = 'none'; document.getElementById('1608.02346v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.03680">arXiv:1607.03680</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1607.03680">pdf</a>, <a href="https://arxiv.org/ps/1607.03680">ps</a>, <a href="https://arxiv.org/format/1607.03680">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> </div> <p class="title is-5 mathjax"> Modelling systematics of ground-based transit photometry I. Implications on transit timing variations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=von+Essen%2C+C">C. von Essen</a>, <a href="/search/?searchtype=author&amp;query=Cellone%2C+S">S. Cellone</a>, <a href="/search/?searchtype=author&amp;query=Mallonn%2C+M">M. Mallonn</a>, <a href="/search/?searchtype=author&amp;query=Tingley%2C+B">B. Tingley</a>, <a href="/search/?searchtype=author&amp;query=Marcussen%2C+M">M. Marcussen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.03680v1-abstract-short" style="display: inline;"> The transit timing variation technique (TTV) has been widely used to detect and characterize multiple planetary systems. Due to the observational biases imposed mainly by the photometric conditions and instrumentation and the high signal-to-noise required to produce primary transit observations, ground-based data acquired using small telescopes limit the technique to the follow-up of hot Jupiters.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.03680v1-abstract-full').style.display = 'inline'; document.getElementById('1607.03680v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.03680v1-abstract-full" style="display: none;"> The transit timing variation technique (TTV) has been widely used to detect and characterize multiple planetary systems. Due to the observational biases imposed mainly by the photometric conditions and instrumentation and the high signal-to-noise required to produce primary transit observations, ground-based data acquired using small telescopes limit the technique to the follow-up of hot Jupiters. However, space-based missions such as Kepler and CoRoT have already revealed that hot Jupiters are mainly found in single systems. Thus, it is natural to question ourselves if we are properly using the observing time at hand carrying out such follow-ups, or if the use of medium-to-low quality transit light curves, combined with current standard techniques of data analysis, could be playing a main role against exoplanetary search via TTVs. The purpose of this work is to investigate to what extent ground-based observations treated with current modelling techniques are reliable to detect and characterize additional planets in already known planetary systems. To meet this goal, we simulated typical primary transit observations of a hot Jupiter mimicing an existing system, Qatar-1. To resemble ground-based observations we attempt to reproduce, by means of physically and empirically motivated relationships, the effects caused by the Earth&#39;s atmosphere and the instrumental setup on the synthetic light curves. Therefore, the synthetic data present different photometric quality and transit coverage. In addition, we introduced a perturbation in the mid-transit times of the hot Jupiter, caused by an Earth-sized planet in a 3:2 mean motion resonance. Analyzing the synthetic light curves produced after certain epochs, we attempt to recover the synthetically added TTV signal by means of usual primary transit fitting techniques, and show how these can recover (or not) the TTV signal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.03680v1-abstract-full').style.display = 'none'; document.getElementById('1607.03680v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 20 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1605.06141">arXiv:1605.06141</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1605.06141">pdf</a>, <a href="https://arxiv.org/ps/1605.06141">ps</a>, <a href="https://arxiv.org/format/1605.06141">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201628864">10.1051/0004-6361/201628864 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Many new variable stars discovered in the core of the globular cluster NGC 6715 (M54) with EMCCD observations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Jaimes%2C+R+F">R. Figuera Jaimes</a>, <a href="/search/?searchtype=author&amp;query=Bramich%2C+D+M">D. M. Bramich</a>, <a href="/search/?searchtype=author&amp;query=Kains%2C+N">N. Kains</a>, <a href="/search/?searchtype=author&amp;query=Skottfelt%2C+J">J. Skottfelt</a>, <a href="/search/?searchtype=author&amp;query=J%C3%B8rgensen%2C+U+G">U. G. J酶rgensen</a>, <a href="/search/?searchtype=author&amp;query=Horne%2C+K">K. Horne</a>, <a href="/search/?searchtype=author&amp;query=Dominik%2C+M">M. Dominik</a>, <a href="/search/?searchtype=author&amp;query=Alsubai%2C+K+A">K. A. Alsubai</a>, <a href="/search/?searchtype=author&amp;query=Bozza%2C+V">V. Bozza</a>, <a href="/search/?searchtype=author&amp;query=Burgdorf%2C+M+J">M. J. Burgdorf</a>, <a href="/search/?searchtype=author&amp;query=Novati%2C+S+C">S. Calchi Novati</a>, <a href="/search/?searchtype=author&amp;query=Ciceri%2C+S">S. Ciceri</a>, <a href="/search/?searchtype=author&amp;query=D%27Ago%2C+G">G. D&#39;Ago</a>, <a href="/search/?searchtype=author&amp;query=Evans%2C+D+F">D. F. Evans</a>, <a href="/search/?searchtype=author&amp;query=Galianni%2C+P">P. Galianni</a>, <a href="/search/?searchtype=author&amp;query=Gu%2C+S+H">S. H. Gu</a>, <a href="/search/?searchtype=author&amp;query=Harps%C3%B8e%2C+K+B+W">K. B. W Harps酶e</a>, <a href="/search/?searchtype=author&amp;query=Haugb%C3%B8lle%2C+T">T. Haugb酶lle</a>, <a href="/search/?searchtype=author&amp;query=Hinse%2C+T+C">T. C. Hinse</a>, <a href="/search/?searchtype=author&amp;query=Hundertmark%2C+M">M. Hundertmark</a>, <a href="/search/?searchtype=author&amp;query=Juncher%2C+D">D. Juncher</a>, <a href="/search/?searchtype=author&amp;query=Kerins%2C+E">E. Kerins</a>, <a href="/search/?searchtype=author&amp;query=Korhonen%2C+H">H. Korhonen</a>, <a href="/search/?searchtype=author&amp;query=Kuffmeier%2C+M">M. Kuffmeier</a>, <a href="/search/?searchtype=author&amp;query=Mancini%2C+L">L. Mancini</a> , et al. (16 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1605.06141v1-abstract-short" style="display: inline;"> We show the benefits of using Electron-Multiplying CCDs and the shift-and-add technique as a tool to minimise the effects of the atmospheric turbulence such as blending between stars in crowded fields and to avoid saturated stars in the fields observed. We intend to complete, or improve, the census of the variable star population in globular cluster NGC~6715. Our aim is to obtain high-precision&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.06141v1-abstract-full').style.display = 'inline'; document.getElementById('1605.06141v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1605.06141v1-abstract-full" style="display: none;"> We show the benefits of using Electron-Multiplying CCDs and the shift-and-add technique as a tool to minimise the effects of the atmospheric turbulence such as blending between stars in crowded fields and to avoid saturated stars in the fields observed. We intend to complete, or improve, the census of the variable star population in globular cluster NGC~6715. Our aim is to obtain high-precision time-series photometry of the very crowded central region of this stellar system via the collection of better angular resolution images than has been previously achieved with conventional CCDs on ground-based telescopes. Observations were carried out using the Danish 1.54-m Telescope at the ESO La Silla observatory in Chile. The telescope is equipped with an Electron-Multiplying CCD that allowed to obtain short-exposure-time images (ten images per second) that were stacked using the shift-and-add technique to produce the normal-exposure-time images (minutes). The high precision photometry was performed via difference image analysis employing the DanDIA pipeline. We attempted automatic detection of variable stars in the field. We statistically analysed the light curves of 1405 stars in the crowded central region of NGC~6715 to automatically identify the variable stars present in this cluster. We found light curves for 17 previously known variable stars near the edges of our reference image (16 RR Lyrae and 1 semi-regular) and we discovered 67 new variables (30 RR Lyrae, 21 long-period irregular, 3 semi-regular, 1 W Virginis, 1 eclipsing binary, and 11 unclassified). Photometric measurements for these stars are available in electronic form through the Strasbourg Astronomical Data Centre. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.06141v1-abstract-full').style.display = 'none'; document.getElementById('1605.06141v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Astronomy &amp; Astrophysics, 18 pages, 7 figures, 4 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 592, A120 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.03274">arXiv:1603.03274</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1603.03274">pdf</a>, <a href="https://arxiv.org/ps/1603.03274">ps</a>, <a href="https://arxiv.org/format/1603.03274">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201527970">10.1051/0004-6361/201527970 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-resolution Imaging of Transiting Extrasolar Planetary systems (HITEP). I. Lucky imaging observations of 101 systems in the southern hemisphere </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Evans%2C+D+F">D. F. Evans</a>, <a href="/search/?searchtype=author&amp;query=Southworth%2C+J">J. Southworth</a>, <a href="/search/?searchtype=author&amp;query=Maxted%2C+P+F+L">P. F. L. Maxted</a>, <a href="/search/?searchtype=author&amp;query=Skottfelt%2C+J">J. Skottfelt</a>, <a href="/search/?searchtype=author&amp;query=Hundertmark%2C+M">M. Hundertmark</a>, <a href="/search/?searchtype=author&amp;query=J%C3%B8rgensen%2C+U+G">U. G. J酶rgensen</a>, <a href="/search/?searchtype=author&amp;query=Dominik%2C+M">M. Dominik</a>, <a href="/search/?searchtype=author&amp;query=Alsubai%2C+K+A">K. A. Alsubai</a>, <a href="/search/?searchtype=author&amp;query=Andersen%2C+M+I">M. I. Andersen</a>, <a href="/search/?searchtype=author&amp;query=Bozza%2C+V">V. Bozza</a>, <a href="/search/?searchtype=author&amp;query=Bramich%2C+D+M">D. M. Bramich</a>, <a href="/search/?searchtype=author&amp;query=Burgdorf%2C+M+J">M. J. Burgdorf</a>, <a href="/search/?searchtype=author&amp;query=Ciceri%2C+S">S. Ciceri</a>, <a href="/search/?searchtype=author&amp;query=D%27Ago%2C+G">G. D&#39;Ago</a>, <a href="/search/?searchtype=author&amp;query=Jaimes%2C+R+F">R. Figuera Jaimes</a>, <a href="/search/?searchtype=author&amp;query=Gu%2C+S+H">S. H. Gu</a>, <a href="/search/?searchtype=author&amp;query=Haugb%C3%B8lle%2C+T">T. Haugb酶lle</a>, <a href="/search/?searchtype=author&amp;query=Hinse%2C+T+C">T. C. Hinse</a>, <a href="/search/?searchtype=author&amp;query=Juncher%2C+D">D. Juncher</a>, <a href="/search/?searchtype=author&amp;query=Kains%2C+N">N. Kains</a>, <a href="/search/?searchtype=author&amp;query=Kerins%2C+E">E. Kerins</a>, <a href="/search/?searchtype=author&amp;query=Korhonen%2C+H">H. Korhonen</a>, <a href="/search/?searchtype=author&amp;query=Kuffmeier%2C+M">M. Kuffmeier</a>, <a href="/search/?searchtype=author&amp;query=Mancini%2C+L">L. Mancini</a>, <a href="/search/?searchtype=author&amp;query=Peixinho%2C+N">N. Peixinho</a> , et al. (11 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.03274v2-abstract-short" style="display: inline;"> (abridged) Context. Wide binaries are a potential pathway for the formation of hot Jupiters. The binary fraction among host stars is an important discriminator between competing formation theories, but has not been well characterised. Additionally, contaminating light from unresolved stars can significantly affect the accuracy of photometric and spectroscopic measurements in studies of transiting&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.03274v2-abstract-full').style.display = 'inline'; document.getElementById('1603.03274v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.03274v2-abstract-full" style="display: none;"> (abridged) Context. Wide binaries are a potential pathway for the formation of hot Jupiters. The binary fraction among host stars is an important discriminator between competing formation theories, but has not been well characterised. Additionally, contaminating light from unresolved stars can significantly affect the accuracy of photometric and spectroscopic measurements in studies of transiting exoplanets. Aims. We observed 101 transiting exoplanet host systems in the Southern hemisphere in order to create a homogeneous catalogue of both bound companion stars and contaminating background stars. We investigate the binary fraction among the host stars in order to test theories for the formation of hot Jupiters, in an area of the sky where transiting exoplanetary systems have not been systematically searched for stellar companions. Methods. Lucky imaging observations from the Two Colour Instrument on the Danish 1.54m telescope at La Silla were used to search for previously unresolved stars at small angular separations. The separations and relative magnitudes of all detected stars were measured. For 12 candidate companions to 10 host stars, previous astrometric measurements were used to evaluate how likely the companions are to be physically associated. Results. We provide measurements of 499 candidate companions within 20 arcseconds of our sample of 101 planet host stars. 51 candidates are located within 5 arcseconds of a host star, and we provide the first published measurements for 27 of these. Calibrations for the plate scale and colour performance of the Two Colour Instrument are presented. Conclusions. We find that the overall multiplicity rate of the host stars is 38 +17 -13%, consistent with the rate among solar-type stars in our sensitivity range, suggesting that planet formation does not preferentially occur in long period binaries compared to a random sample of field stars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.03274v2-abstract-full').style.display = 'none'; document.getElementById('1603.03274v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 9 figures. Accepted in A&amp;A. Minor correction</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 589, A58 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1601.01699">arXiv:1601.01699</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1601.01699">pdf</a>, <a href="https://arxiv.org/ps/1601.01699">ps</a>, <a href="https://arxiv.org/format/1601.01699">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/0004-637X/820/1/79">10.3847/0004-637X/820/1/79 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spitzer Observations of OGLE-2015-BLG-1212 Reveal a New Path to Breaking Strong Microlens Degeneracies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Bozza%2C+V">V. Bozza</a>, <a href="/search/?searchtype=author&amp;query=Shvartzvald%2C+Y">Y. Shvartzvald</a>, <a href="/search/?searchtype=author&amp;query=Udalski%2C+A">A. Udalski</a>, <a href="/search/?searchtype=author&amp;query=Novati%2C+S+C">S. Calchi Novati</a>, <a href="/search/?searchtype=author&amp;query=Bond%2C+I+A">I. A. Bond</a>, <a href="/search/?searchtype=author&amp;query=Han%2C+C">C. Han</a>, <a href="/search/?searchtype=author&amp;query=Hundertmark%2C+M">M. Hundertmark</a>, <a href="/search/?searchtype=author&amp;query=Poleski%2C+R">R. Poleski</a>, <a href="/search/?searchtype=author&amp;query=Pawlak%2C+M">M. Pawlak</a>, <a href="/search/?searchtype=author&amp;query=Szyma%C5%84ski%2C+M+K">M. K. Szyma艅ski</a>, <a href="/search/?searchtype=author&amp;query=Skowron%2C+J">J. Skowron</a>, <a href="/search/?searchtype=author&amp;query=Mr%C3%B3z%2C+P">P. Mr贸z</a>, <a href="/search/?searchtype=author&amp;query=Koz%C5%82owski%2C+S">S. Koz艂owski</a>, <a href="/search/?searchtype=author&amp;query=Wyrzykowski%2C+%C5%81">艁. Wyrzykowski</a>, <a href="/search/?searchtype=author&amp;query=Pietrukowicz%2C+P">P. Pietrukowicz</a>, <a href="/search/?searchtype=author&amp;query=Soszy%C5%84ski%2C+I">I. Soszy艅ski</a>, <a href="/search/?searchtype=author&amp;query=Ulaczyk%2C+K">K. Ulaczyk</a>, <a href="/search/?searchtype=author&amp;query=Beichman%2C+C">C. Beichman</a>, <a href="/search/?searchtype=author&amp;query=Bryden%2C+G">G. Bryden</a>, <a href="/search/?searchtype=author&amp;query=Carey%2C+S">S. Carey</a>, <a href="/search/?searchtype=author&amp;query=Fausnaugh%2C+M">M. Fausnaugh</a>, <a href="/search/?searchtype=author&amp;query=Gaudi%2C+B+S">B. S. Gaudi</a>, <a href="/search/?searchtype=author&amp;query=Gould%2C+A">A. Gould</a>, <a href="/search/?searchtype=author&amp;query=Henderson%2C+C+B">C. B. Henderson</a>, <a href="/search/?searchtype=author&amp;query=Pogge%2C+R+W">R. W. Pogge</a> , et al. (76 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1601.01699v2-abstract-short" style="display: inline;"> Spitzer microlensing parallax observations of OGLE-2015-BLG-1212 decisively breaks a degeneracy between planetary and binary solutions that is somewhat ambiguous when only ground-based data are considered. Only eight viable models survive out of an initial set of 32 local minima in the parameter space. These models clearly indicate that the lens is a stellar binary system possibly located within t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.01699v2-abstract-full').style.display = 'inline'; document.getElementById('1601.01699v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1601.01699v2-abstract-full" style="display: none;"> Spitzer microlensing parallax observations of OGLE-2015-BLG-1212 decisively breaks a degeneracy between planetary and binary solutions that is somewhat ambiguous when only ground-based data are considered. Only eight viable models survive out of an initial set of 32 local minima in the parameter space. These models clearly indicate that the lens is a stellar binary system possibly located within the bulge of our Galaxy, ruling out the planetary alternative. We argue that several types of discrete degeneracies can be broken via such space-based parallax observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.01699v2-abstract-full').style.display = 'none'; document.getElementById('1601.01699v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 6 figures, accepted by ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1512.08520">arXiv:1512.08520</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1512.08520">pdf</a>, <a href="https://arxiv.org/ps/1512.08520">ps</a>, <a href="https://arxiv.org/format/1512.08520">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/0004-637X/823/1/63">10.3847/0004-637X/823/1/63 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spitzer Microlensing Program as a Probe for Globular Cluster Planets. Analysis of OGLE-2015-BLG-0448 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Poleski%2C+R">Rados艂aw Poleski</a>, <a href="/search/?searchtype=author&amp;query=Zhu%2C+W">Wei Zhu</a>, <a href="/search/?searchtype=author&amp;query=Christie%2C+G+W">Grant W. Christie</a>, <a href="/search/?searchtype=author&amp;query=Udalski%2C+A">Andrzej Udalski</a>, <a href="/search/?searchtype=author&amp;query=Gould%2C+A">Andrew Gould</a>, <a href="/search/?searchtype=author&amp;query=Bachelet%2C+E">Etienne Bachelet</a>, <a href="/search/?searchtype=author&amp;query=Skottfelt%2C+J">Jesper Skottfelt</a>, <a href="/search/?searchtype=author&amp;query=Novati%2C+S+C">Sebastiano Calchi Novati</a>, <a href="/search/?searchtype=author&amp;query=Szyma%C5%84ski%2C+M+K">M. K. Szyma艅ski</a>, <a href="/search/?searchtype=author&amp;query=Soszy%C5%84ski%2C+I">I. Soszy艅ski</a>, <a href="/search/?searchtype=author&amp;query=Pietrzy%C5%84ski%2C+G">G. Pietrzy艅ski</a>, <a href="/search/?searchtype=author&amp;query=Wyrzykowski%2C+%C5%81">艁. Wyrzykowski</a>, <a href="/search/?searchtype=author&amp;query=Ulaczyk%2C+K">K. Ulaczyk</a>, <a href="/search/?searchtype=author&amp;query=Pietrukowicz%2C+P">P. Pietrukowicz</a>, <a href="/search/?searchtype=author&amp;query=Koz%C5%82owski%2C+S">Szymon Koz艂owski</a>, <a href="/search/?searchtype=author&amp;query=Skowron%2C+J">J. Skowron</a>, <a href="/search/?searchtype=author&amp;query=Mr%C3%B3z%2C+P">P. Mr贸z</a>, <a href="/search/?searchtype=author&amp;query=Pawlak%2C+M">M. Pawlak</a>, <a href="/search/?searchtype=author&amp;query=Beichman%2C+C">C. Beichman</a>, <a href="/search/?searchtype=author&amp;query=Bryden%2C+G">G. Bryden</a>, <a href="/search/?searchtype=author&amp;query=Carey%2C+S">S. Carey</a>, <a href="/search/?searchtype=author&amp;query=Fausnaugh%2C+M">M. Fausnaugh</a>, <a href="/search/?searchtype=author&amp;query=Gaudi%2C+B+S">B. S. Gaudi</a>, <a href="/search/?searchtype=author&amp;query=Henderson%2C+C+B">C. B. Henderson</a>, <a href="/search/?searchtype=author&amp;query=Pogge%2C+R+W">R. W. Pogge</a> , et al. (61 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1512.08520v2-abstract-short" style="display: inline;"> The microlensing event OGLE-2015-BLG-0448 was observed by Spitzer and lay within the tidal radius of the globular cluster NGC 6558. The event had moderate magnification and was intensively observed, hence it had the potential to probe the distribution of planets in globular clusters. We measure the proper motion of NGC 6558 ($渭_{\rm cl}$(N,E) = (+0.36+-0.10, +1.42+-0.10) mas/yr) as well as the sou&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.08520v2-abstract-full').style.display = 'inline'; document.getElementById('1512.08520v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1512.08520v2-abstract-full" style="display: none;"> The microlensing event OGLE-2015-BLG-0448 was observed by Spitzer and lay within the tidal radius of the globular cluster NGC 6558. The event had moderate magnification and was intensively observed, hence it had the potential to probe the distribution of planets in globular clusters. We measure the proper motion of NGC 6558 ($渭_{\rm cl}$(N,E) = (+0.36+-0.10, +1.42+-0.10) mas/yr) as well as the source and show that the lens is not a cluster member. Even though this particular event does not probe the distribution of planets in globular clusters, other potential cluster lens events can be verified using our methodology. Additionally, we find that microlens parallax measured using OGLE photometry is consistent with the value found based on the light curve displacement between Earth and Spitzer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.08520v2-abstract-full').style.display = 'none'; document.getElementById('1512.08520v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ApJ submitted, 12 pages, 8 figures, 2 tabels</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1512.05549">arXiv:1512.05549</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1512.05549">pdf</a>, <a href="https://arxiv.org/ps/1512.05549">ps</a>, <a href="https://arxiv.org/format/1512.05549">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stw279">10.1093/mnras/stw279 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-precision photometry by telescope defocussing. VIII. WASP-22, WASP-41, WASP-42 and WASP-55 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Southworth%2C+J">John Southworth</a>, <a href="/search/?searchtype=author&amp;query=Tregloan-Reed%2C+J">J. Tregloan-Reed</a>, <a href="/search/?searchtype=author&amp;query=Andersen%2C+M+I">M. I. Andersen</a>, <a href="/search/?searchtype=author&amp;query=Novati%2C+S+C">S. Calchi Novati</a>, <a href="/search/?searchtype=author&amp;query=Ciceri%2C+S">S. Ciceri</a>, <a href="/search/?searchtype=author&amp;query=Colque%2C+J+P">J. P. Colque</a>, <a href="/search/?searchtype=author&amp;query=D%27Ago%2C+G">G. D&#39;Ago</a>, <a href="/search/?searchtype=author&amp;query=Dominik%2C+M">M. Dominik</a>, <a href="/search/?searchtype=author&amp;query=Evans%2C+D">D. Evans</a>, <a href="/search/?searchtype=author&amp;query=Gu%2C+S+-">S. -H. Gu</a>, <a href="/search/?searchtype=author&amp;query=Herrera-Cruces%2C+A">A. Herrera-Cruces</a>, <a href="/search/?searchtype=author&amp;query=Hinse%2C+T+C">T. C. Hinse</a>, <a href="/search/?searchtype=author&amp;query=Jorgensen%2C+U+G">U. G. Jorgensen</a>, <a href="/search/?searchtype=author&amp;query=Juncher%2C+D">D. Juncher</a>, <a href="/search/?searchtype=author&amp;query=Kuffmeier%2C+M">M. Kuffmeier</a>, <a href="/search/?searchtype=author&amp;query=Mancini%2C+L">L. Mancini</a>, <a href="/search/?searchtype=author&amp;query=Peixinho%2C+N">N. Peixinho</a>, <a href="/search/?searchtype=author&amp;query=Popovas%2C+A">A. Popovas</a>, <a href="/search/?searchtype=author&amp;query=Rabus%2C+M">M. Rabus</a>, <a href="/search/?searchtype=author&amp;query=Skottfelt%2C+J">J. Skottfelt</a>, <a href="/search/?searchtype=author&amp;query=Tronsgaard%2C+R">R. Tronsgaard</a>, <a href="/search/?searchtype=author&amp;query=Unda-Sanzana%2C+E">E. Unda-Sanzana</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+X+-">X. -B. Wang</a>, <a href="/search/?searchtype=author&amp;query=Wertz%2C+O">O. Wertz</a>, <a href="/search/?searchtype=author&amp;query=Alsubai%2C+K+A">K. A. Alsubai</a> , et al. (25 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1512.05549v2-abstract-short" style="display: inline;"> We present 13 high-precision and four additional light curves of four bright southern-hemisphere transiting planetary systems: WASP-22, WASP-41, WASP-42 and WASP-55. In the cases of WASP-42 and WASP-55, these are the first follow-up observations since their discovery papers. We present refined measurements of the physical properties and orbital ephemerides of all four systems. No indications of tr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.05549v2-abstract-full').style.display = 'inline'; document.getElementById('1512.05549v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1512.05549v2-abstract-full" style="display: none;"> We present 13 high-precision and four additional light curves of four bright southern-hemisphere transiting planetary systems: WASP-22, WASP-41, WASP-42 and WASP-55. In the cases of WASP-42 and WASP-55, these are the first follow-up observations since their discovery papers. We present refined measurements of the physical properties and orbital ephemerides of all four systems. No indications of transit timing variations were seen. All four planets have radii inflated above those expected from theoretical models of gas-giant planets; WASP-55b is the most discrepant with a mass of 0.63 Mjup and a radius of 1.34 Rjup. WASP-41 shows brightness anomalies during transit due to the planet occulting spots on the stellar surface. Two anomalies observed 3.1 d apart are very likely due to the same spot. We measure its change in position and determine a rotation period for the host star of 18.6 +/- 1.5 d, in good agreement with a published measurement from spot-induced brightness modulation, and a sky-projected orbital obliquity of lambda = 6 +/- 11 degrees. We conclude with a compilation of obliquity measurements from spot-tracking analyses and a discussion of this technique in the study of the orbital configurations of hot Jupiters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.05549v2-abstract-full').style.display = 'none'; document.getElementById('1512.05549v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 8 tables, 11 figures. Version 2 is the final accepted version of the paper</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Monthly Notices of the Royal Astronomical Society 457 (2016), 4205-4217 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.02097">arXiv:1510.02097</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1510.02097">pdf</a>, <a href="https://arxiv.org/ps/1510.02097">ps</a>, <a href="https://arxiv.org/format/1510.02097">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/0004-637X/825/1/60">10.3847/0004-637X/825/1/60 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mass Measurements of Isolated Objects from Space-based Microlensing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Zhu%2C+W">Wei Zhu</a>, <a href="/search/?searchtype=author&amp;query=Novati%2C+S+C">S. Calchi Novati</a>, <a href="/search/?searchtype=author&amp;query=Gould%2C+A">A. Gould</a>, <a href="/search/?searchtype=author&amp;query=Udalski%2C+A">A. Udalski</a>, <a href="/search/?searchtype=author&amp;query=Han%2C+C">C. Han</a>, <a href="/search/?searchtype=author&amp;query=Shvartzvald%2C+Y">Y. Shvartzvald</a>, <a href="/search/?searchtype=author&amp;query=Ranc%2C+C">C. Ranc</a>, <a href="/search/?searchtype=author&amp;query=Jorgensen%2C+U+G">U. G. Jorgensen</a>, <a href="/search/?searchtype=author&amp;query=Poleski%2C+R">R. Poleski</a>, <a href="/search/?searchtype=author&amp;query=Bozza%2C+V">V. Bozza</a>, <a href="/search/?searchtype=author&amp;query=Beichman%2C+C">C. Beichman</a>, <a href="/search/?searchtype=author&amp;query=Bryden%2C+G">G. Bryden</a>, <a href="/search/?searchtype=author&amp;query=Carey%2C+S">S. Carey</a>, <a href="/search/?searchtype=author&amp;query=Gaudi%2C+B+S">B. S. Gaudi</a>, <a href="/search/?searchtype=author&amp;query=Henderson%2C+C+B">C. B. Henderson</a>, <a href="/search/?searchtype=author&amp;query=Pogge%2C+R+W">R. W. Pogge</a>, <a href="/search/?searchtype=author&amp;query=Porritt%2C+I">I. Porritt</a>, <a href="/search/?searchtype=author&amp;query=Wibking%2C+B">B. Wibking</a>, <a href="/search/?searchtype=author&amp;query=Yee%2C+J+C">J. C. Yee</a>, <a href="/search/?searchtype=author&amp;query=Pawlak%2C+M">M. Pawlak</a>, <a href="/search/?searchtype=author&amp;query=Szymanski%2C+M+K">M. K. Szymanski</a>, <a href="/search/?searchtype=author&amp;query=Skowron%2C+J">J. Skowron</a>, <a href="/search/?searchtype=author&amp;query=Mroz%2C+P">P. Mroz</a>, <a href="/search/?searchtype=author&amp;query=Kozlowski%2C+S">S. Kozlowski</a>, <a href="/search/?searchtype=author&amp;query=Wyrzykowski%2C+L">L. Wyrzykowski</a> , et al. (56 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.02097v2-abstract-short" style="display: inline;"> We report on the mass and distance measurements of two single-lens events from the 2015 \emph{Spitzer} microlensing campaign. With both finite-source effect and microlens parallax measurements, we find that the lens of OGLE-2015-BLG-1268 is very likely a brown dwarf. Assuming that the source star lies behind the same amount of dust as the Bulge red clump, we find the lens is a $45\pm7$&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.02097v2-abstract-full').style.display = 'inline'; document.getElementById('1510.02097v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.02097v2-abstract-full" style="display: none;"> We report on the mass and distance measurements of two single-lens events from the 2015 \emph{Spitzer} microlensing campaign. With both finite-source effect and microlens parallax measurements, we find that the lens of OGLE-2015-BLG-1268 is very likely a brown dwarf. Assuming that the source star lies behind the same amount of dust as the Bulge red clump, we find the lens is a $45\pm7$ $M_{\rm J}$ brown dwarf at $5.9\pm1.0$ kpc. The lens of of the second event, OGLE-2015-BLG-0763, is a $0.50\pm0.04$ $M_\odot$ star at $6.9\pm1.0$ kpc. We show that the probability to definitively measure the mass of isolated microlenses is dramatically increased once simultaneous ground- and space-based observations are conducted. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.02097v2-abstract-full').style.display = 'none'; document.getElementById('1510.02097v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 papers, 4 figures, 2 tables; ApJ in press</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1509.05272">arXiv:1509.05272</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1509.05272">pdf</a>, <a href="https://arxiv.org/ps/1509.05272">ps</a>, <a href="https://arxiv.org/format/1509.05272">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201425395">10.1051/0004-6361/201425395 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Broad-band spectrophotometry of the hot Jupiter HAT-P-12b from the near-UV to the near-IR </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Mallonn%2C+M">M. Mallonn</a>, <a href="/search/?searchtype=author&amp;query=Nascimbeni%2C+V">V. Nascimbeni</a>, <a href="/search/?searchtype=author&amp;query=Weingrill%2C+J">J. Weingrill</a>, <a href="/search/?searchtype=author&amp;query=von+Essen%2C+C">C. von Essen</a>, <a href="/search/?searchtype=author&amp;query=Strassmeier%2C+K+G">K. G. Strassmeier</a>, <a href="/search/?searchtype=author&amp;query=Piotto%2C+G">G. Piotto</a>, <a href="/search/?searchtype=author&amp;query=Pagano%2C+I">I. Pagano</a>, <a href="/search/?searchtype=author&amp;query=Scandariato%2C+G">G. Scandariato</a>, <a href="/search/?searchtype=author&amp;query=Csizmadia%2C+S">Sz. Csizmadia</a>, <a href="/search/?searchtype=author&amp;query=Herrero%2C+E">E. Herrero</a>, <a href="/search/?searchtype=author&amp;query=Sada%2C+P+V">P. V. Sada</a>, <a href="/search/?searchtype=author&amp;query=Dhillon%2C+V+S">V. S. Dhillon</a>, <a href="/search/?searchtype=author&amp;query=Marsh%2C+T+R">T. R. Marsh</a>, <a href="/search/?searchtype=author&amp;query=K%C3%BCnstler%2C+A">A. K眉nstler</a>, <a href="/search/?searchtype=author&amp;query=Bernt%2C+I">I. Bernt</a>, <a href="/search/?searchtype=author&amp;query=Granzer%2C+T">T. Granzer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1509.05272v1-abstract-short" style="display: inline;"> The detection of trends or gradients in the transmission spectrum of extrasolar planets is possible with observations at very low spectral resolution. Transit measurements of sufficient accuracy using selected broad-band filters allow for an initial characterization of the atmosphere of the planet. We obtained time series photometry of 20 transit events and analyzed them homogeneously, along with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.05272v1-abstract-full').style.display = 'inline'; document.getElementById('1509.05272v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1509.05272v1-abstract-full" style="display: none;"> The detection of trends or gradients in the transmission spectrum of extrasolar planets is possible with observations at very low spectral resolution. Transit measurements of sufficient accuracy using selected broad-band filters allow for an initial characterization of the atmosphere of the planet. We obtained time series photometry of 20 transit events and analyzed them homogeneously, along with eight light curves obtained from the literature. In total, the light curves span a range from 0.35 to 1.25 microns. During two observing seasons over four months each, we monitored the host star to constrain the potential influence of starspots on the derived transit parameters. We rule out the presence of a Rayleigh slope extending over the entire optical wavelength range, a flat spectrum is favored for HAT-P-12b with respect to a cloud-free atmosphere model spectrum. A potential cause of such gray absorption is the presence of a cloud layer at the probed latitudes. Furthermore, in this work we refine the transit parameters, the ephemeris and perform a TTV analysis in which we found no indication for an unseen companion. The host star showed a mild non-periodic variability of up to 1%. However, no stellar rotation period could be detected to high confidence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.05272v1-abstract-full').style.display = 'none'; document.getElementById('1509.05272v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 6 figures, Accepted for publication in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 583, A138 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1508.07027">arXiv:1508.07027</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1508.07027">pdf</a>, <a href="https://arxiv.org/ps/1508.07027">ps</a>, <a href="https://arxiv.org/format/1508.07027">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/0004-637X/819/2/93">10.3847/0004-637X/819/2/93 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spitzer Parallax of OGLE-2015-BLG-0966: A Cold Neptune in the Galactic Disk </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Street%2C+R+A">R. A. Street</a>, <a href="/search/?searchtype=author&amp;query=Udalski%2C+A">A. Udalski</a>, <a href="/search/?searchtype=author&amp;query=Novati%2C+S+C">S. Calchi Novati</a>, <a href="/search/?searchtype=author&amp;query=Hundertmark%2C+M+P+G">M. P. G. Hundertmark</a>, <a href="/search/?searchtype=author&amp;query=Zhu%2C+W">W. Zhu</a>, <a href="/search/?searchtype=author&amp;query=Gould%2C+A">A. Gould</a>, <a href="/search/?searchtype=author&amp;query=Yee%2C+J">J. Yee</a>, <a href="/search/?searchtype=author&amp;query=Tsapras%2C+Y">Y. Tsapras</a>, <a href="/search/?searchtype=author&amp;query=Bennett%2C+D+P">D. P. Bennett</a>, <a href="/search/?searchtype=author&amp;query=Project%2C+T+R">The RoboNet Project</a>, <a href="/search/?searchtype=author&amp;query=Consortium%2C+M">MiNDSTEp Consortium</a>, <a href="/search/?searchtype=author&amp;query=Jorgensen%2C+U+G">U. G. Jorgensen</a>, <a href="/search/?searchtype=author&amp;query=Dominik%2C+M">M. Dominik</a>, <a href="/search/?searchtype=author&amp;query=Andersen%2C+M+I">M. I. Andersen</a>, <a href="/search/?searchtype=author&amp;query=Bachelet%2C+E">E. Bachelet</a>, <a href="/search/?searchtype=author&amp;query=Bozza%2C+V">V. Bozza</a>, <a href="/search/?searchtype=author&amp;query=Bramich%2C+D+M">D. M. Bramich</a>, <a href="/search/?searchtype=author&amp;query=Burgdorf%2C+M+J">M. J. Burgdorf</a>, <a href="/search/?searchtype=author&amp;query=Cassan%2C+A">A. Cassan</a>, <a href="/search/?searchtype=author&amp;query=Ciceri%2C+S">S. Ciceri</a>, <a href="/search/?searchtype=author&amp;query=D%27Ago%2C+G">G. D&#39;Ago</a>, <a href="/search/?searchtype=author&amp;query=Dong%2C+S">Subo Dong</a>, <a href="/search/?searchtype=author&amp;query=Evans%2C+D+F">D. F. Evans</a>, <a href="/search/?searchtype=author&amp;query=Gu%2C+S">Sheng-hong Gu</a>, <a href="/search/?searchtype=author&amp;query=Harkonnen%2C+H">H. Harkonnen</a> , et al. (84 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1508.07027v1-abstract-short" style="display: inline;"> We report the detection of a Cold Neptune m_planet=21+/-2MEarth orbiting a 0.38MSol M dwarf lying 2.5-3.3 kpc toward the Galactic center as part of a campaign combining ground-based and Spitzer observations to measure the Galactic distribution of planets. This is the first time that the complex real-time protocols described by Yee et al. (2015), which aim to maximize planet sensitivity while maint&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.07027v1-abstract-full').style.display = 'inline'; document.getElementById('1508.07027v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1508.07027v1-abstract-full" style="display: none;"> We report the detection of a Cold Neptune m_planet=21+/-2MEarth orbiting a 0.38MSol M dwarf lying 2.5-3.3 kpc toward the Galactic center as part of a campaign combining ground-based and Spitzer observations to measure the Galactic distribution of planets. This is the first time that the complex real-time protocols described by Yee et al. (2015), which aim to maximize planet sensitivity while maintaining sample integrity, have been carried out in practice. Multiple survey and follow-up teams successfully combined their efforts within the framework of these protocols to detect this planet. This is the second planet in the Spitzer Galactic distribution sample. Both are in the near-to-mid disk and clearly not in the Galactic bulge. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.07027v1-abstract-full').style.display = 'none'; document.getElementById('1508.07027v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 3 figures, 2 tables, submitted to ApJ</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=von+Essen%2C+C&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=von+Essen%2C+C&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=von+Essen%2C+C&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10