CINXE.COM

Equation - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Equation - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"4dda0270-35f6-4f7d-be08-c751007ba5ad","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Equation","wgTitle":"Equation","wgCurRevisionId":1282491265,"wgRevisionId":1282491265,"wgArticleId":9284,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 French-language sources (fr)","Articles containing explicitly cited English-language text","Articles with short description","Short description is different from Wikidata","Articles needing translation from French Wikipedia","Elementary algebra","Equations"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Equation","wgRelevantArticleId":9284,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":30000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q11345","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGELevelingUpEnabledForUser":false}; RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.22"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Equation - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Equation"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Equation&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Equation"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="auth.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Equation rootpage-Equation skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="Main menu" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li><li id="n-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages"><span>Special pages</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Equation" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Equation" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Equation" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Equation" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Description" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Description"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Description</span> </div> </a> <ul id="toc-Description-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Properties" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Properties</span> </div> </a> <ul id="toc-Properties-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Examples" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Examples</span> </div> </a> <button aria-controls="toc-Examples-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Examples subsection</span> </button> <ul id="toc-Examples-sublist" class="vector-toc-list"> <li id="toc-Analogous_illustration" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Analogous_illustration"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Analogous illustration</span> </div> </a> <ul id="toc-Analogous_illustration-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Parameters_and_unknowns" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Parameters_and_unknowns"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Parameters and unknowns</span> </div> </a> <ul id="toc-Parameters_and_unknowns-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Identities" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Identities"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Identities</span> </div> </a> <ul id="toc-Identities-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Algebra" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Algebra"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Algebra</span> </div> </a> <button aria-controls="toc-Algebra-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Algebra subsection</span> </button> <ul id="toc-Algebra-sublist" class="vector-toc-list"> <li id="toc-Polynomial_equations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Polynomial_equations"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Polynomial equations</span> </div> </a> <ul id="toc-Polynomial_equations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Systems_of_linear_equations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Systems_of_linear_equations"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Systems of linear equations</span> </div> </a> <ul id="toc-Systems_of_linear_equations-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Geometry" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Geometry"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Geometry</span> </div> </a> <button aria-controls="toc-Geometry-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Geometry subsection</span> </button> <ul id="toc-Geometry-sublist" class="vector-toc-list"> <li id="toc-Analytic_geometry" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Analytic_geometry"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Analytic geometry</span> </div> </a> <ul id="toc-Analytic_geometry-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Cartesian_equations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Cartesian_equations"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Cartesian equations</span> </div> </a> <ul id="toc-Cartesian_equations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Parametric_equations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Parametric_equations"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Parametric equations</span> </div> </a> <ul id="toc-Parametric_equations-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Number_theory" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Number_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Number theory</span> </div> </a> <button aria-controls="toc-Number_theory-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Number theory subsection</span> </button> <ul id="toc-Number_theory-sublist" class="vector-toc-list"> <li id="toc-Diophantine_equations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Diophantine_equations"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Diophantine equations</span> </div> </a> <ul id="toc-Diophantine_equations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Algebraic_and_transcendental_numbers" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Algebraic_and_transcendental_numbers"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Algebraic and transcendental numbers</span> </div> </a> <ul id="toc-Algebraic_and_transcendental_numbers-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Algebraic_geometry" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Algebraic_geometry"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Algebraic geometry</span> </div> </a> <ul id="toc-Algebraic_geometry-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Differential_equations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Differential_equations"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Differential equations</span> </div> </a> <button aria-controls="toc-Differential_equations-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Differential equations subsection</span> </button> <ul id="toc-Differential_equations-sublist" class="vector-toc-list"> <li id="toc-Ordinary_differential_equations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Ordinary_differential_equations"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Ordinary differential equations</span> </div> </a> <ul id="toc-Ordinary_differential_equations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Partial_differential_equations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Partial_differential_equations"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>Partial differential equations</span> </div> </a> <ul id="toc-Partial_differential_equations-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Types_of_equations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Types_of_equations"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Types of equations</span> </div> </a> <ul id="toc-Types_of_equations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="Table of Contents" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Equation</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 122 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-122" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">122 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Vergelyking_(wiskunde)" title="Vergelyking (wiskunde) – Afrikaans" lang="af" hreflang="af" data-title="Vergelyking (wiskunde)" data-language-autonym="Afrikaans" data-language-local-name="Afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-als mw-list-item"><a href="https://als.wikipedia.org/wiki/Gleichung" title="Gleichung – Alemannic" lang="gsw" hreflang="gsw" data-title="Gleichung" data-language-autonym="Alemannisch" data-language-local-name="Alemannic" class="interlanguage-link-target"><span>Alemannisch</span></a></li><li class="interlanguage-link interwiki-anp mw-list-item"><a href="https://anp.wikipedia.org/wiki/%E0%A4%B8%E0%A4%AE%E0%A5%80%E0%A4%95%E0%A4%B0%E0%A4%A3" title="समीकरण – Angika" lang="anp" hreflang="anp" data-title="समीकरण" data-language-autonym="अंगिका" data-language-local-name="Angika" class="interlanguage-link-target"><span>अंगिका</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D8%B9%D8%A7%D8%AF%D9%84%D8%A9_%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A9" title="معادلة رياضية – Arabic" lang="ar" hreflang="ar" data-title="معادلة رياضية" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-an mw-list-item"><a href="https://an.wikipedia.org/wiki/Ecuaci%C3%B3n" title="Ecuación – Aragonese" lang="an" hreflang="an" data-title="Ecuación" data-language-autonym="Aragonés" data-language-local-name="Aragonese" class="interlanguage-link-target"><span>Aragonés</span></a></li><li class="interlanguage-link interwiki-as mw-list-item"><a href="https://as.wikipedia.org/wiki/%E0%A6%B8%E0%A6%AE%E0%A7%80%E0%A6%95%E0%A7%B0%E0%A6%A3" title="সমীকৰণ – Assamese" lang="as" hreflang="as" data-title="সমীকৰণ" data-language-autonym="অসমীয়া" data-language-local-name="Assamese" class="interlanguage-link-target"><span>অসমীয়া</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Ecuaci%C3%B3n" title="Ecuación – Asturian" lang="ast" hreflang="ast" data-title="Ecuación" data-language-autonym="Asturianu" data-language-local-name="Asturian" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/T%C9%99nlik" title="Tənlik – Azerbaijani" lang="az" hreflang="az" data-title="Tənlik" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%B8%E0%A6%AE%E0%A7%80%E0%A6%95%E0%A6%B0%E0%A6%A3" title="সমীকরণ – Bangla" lang="bn" hreflang="bn" data-title="সমীকরণ" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/Hong-t%C3%AAng-sek" title="Hong-têng-sek – Minnan" lang="nan" hreflang="nan" data-title="Hong-têng-sek" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="Minnan" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%A2%D0%B8%D0%B3%D0%B5%D2%99%D0%BB%D3%99%D0%BC%D3%99" title="Тигеҙләмә – Bashkir" lang="ba" hreflang="ba" data-title="Тигеҙләмә" data-language-autonym="Башҡортса" data-language-local-name="Bashkir" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%A3%D1%80%D0%B0%D1%9E%D0%BD%D0%B5%D0%BD%D0%BD%D0%B5" title="Ураўненне – Belarusian" lang="be" hreflang="be" data-title="Ураўненне" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%A0%D0%B0%D1%9E%D0%BD%D0%B0%D0%BD%D1%8C%D0%BD%D0%B5" title="Раўнаньне – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Раўнаньне" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5" title="Уравнение – Bulgarian" lang="bg" hreflang="bg" data-title="Уравнение" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Jedna%C4%8Dina" title="Jednačina – Bosnian" lang="bs" hreflang="bs" data-title="Jednačina" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-bxr mw-list-item"><a href="https://bxr.wikipedia.org/wiki/%D0%A2%D1%8D%D0%B3%D1%88%D1%8D%D0%B4%D1%85%D1%8D%D0%BB" title="Тэгшэдхэл – Russia Buriat" lang="bxr" hreflang="bxr" data-title="Тэгшэдхэл" data-language-autonym="Буряад" data-language-local-name="Russia Buriat" class="interlanguage-link-target"><span>Буряад</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Equaci%C3%B3" title="Equació – Catalan" lang="ca" hreflang="ca" data-title="Equació" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%A2%D0%B0%D0%BD%D0%BB%C4%83%D1%85_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Танлăх (математика) – Chuvash" lang="cv" hreflang="cv" data-title="Танлăх (математика)" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Rovnice" title="Rovnice – Czech" lang="cs" hreflang="cs" data-title="Rovnice" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-sn mw-list-item"><a href="https://sn.wikipedia.org/wiki/Enzane" title="Enzane – Shona" lang="sn" hreflang="sn" data-title="Enzane" data-language-autonym="ChiShona" data-language-local-name="Shona" class="interlanguage-link-target"><span>ChiShona</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Hafaliad" title="Hafaliad – Welsh" lang="cy" hreflang="cy" data-title="Hafaliad" data-language-autonym="Cymraeg" data-language-local-name="Welsh" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Ligning" title="Ligning – Danish" lang="da" hreflang="da" data-title="Ligning" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Gleichung" title="Gleichung – German" lang="de" hreflang="de" data-title="Gleichung" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/V%C3%B5rrand" title="Võrrand – Estonian" lang="et" hreflang="et" data-title="Võrrand" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%95%CE%BE%CE%AF%CF%83%CF%89%CF%83%CE%B7" title="Εξίσωση – Greek" lang="el" hreflang="el" data-title="Εξίσωση" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-eml mw-list-item"><a href="https://eml.wikipedia.org/wiki/Equazi%C3%A5n" title="Equaziån – Emiliano-Romagnolo" lang="egl" hreflang="egl" data-title="Equaziån" data-language-autonym="Emiliàn e rumagnòl" data-language-local-name="Emiliano-Romagnolo" class="interlanguage-link-target"><span>Emiliàn e rumagnòl</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Ecuaci%C3%B3n" title="Ecuación – Spanish" lang="es" hreflang="es" data-title="Ecuación" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Ekvacio" title="Ekvacio – Esperanto" lang="eo" hreflang="eo" data-title="Ekvacio" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-ext mw-list-item"><a href="https://ext.wikipedia.org/wiki/Ecuaci%C3%B3n" title="Ecuación – Extremaduran" lang="ext" hreflang="ext" data-title="Ecuación" data-language-autonym="Estremeñu" data-language-local-name="Extremaduran" class="interlanguage-link-target"><span>Estremeñu</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Ekuazio" title="Ekuazio – Basque" lang="eu" hreflang="eu" data-title="Ekuazio" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%85%D8%B9%D8%A7%D8%AF%D9%84%D9%87" title="معادله – Persian" lang="fa" hreflang="fa" data-title="معادله" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-hif mw-list-item"><a href="https://hif.wikipedia.org/wiki/Baraabri" title="Baraabri – Fiji Hindi" lang="hif" hreflang="hif" data-title="Baraabri" data-language-autonym="Fiji Hindi" data-language-local-name="Fiji Hindi" class="interlanguage-link-target"><span>Fiji Hindi</span></a></li><li class="interlanguage-link interwiki-fo mw-list-item"><a href="https://fo.wikipedia.org/wiki/L%C3%ADkning" title="Líkning – Faroese" lang="fo" hreflang="fo" data-title="Líkning" data-language-autonym="Føroyskt" data-language-local-name="Faroese" class="interlanguage-link-target"><span>Føroyskt</span></a></li><li class="interlanguage-link interwiki-fr badge-Q17437796 badge-featuredarticle mw-list-item" title="featured article badge"><a href="https://fr.wikipedia.org/wiki/%C3%89quation" title="Équation – French" lang="fr" hreflang="fr" data-title="Équation" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Cothrom%C3%B3id" title="Cothromóid – Irish" lang="ga" hreflang="ga" data-title="Cothromóid" data-language-autonym="Gaeilge" data-language-local-name="Irish" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Ecuaci%C3%B3n" title="Ecuación – Galician" lang="gl" hreflang="gl" data-title="Ecuación" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-gan mw-list-item"><a href="https://gan.wikipedia.org/wiki/%E6%96%B9%E7%A8%8B" title="方程 – Gan" lang="gan" hreflang="gan" data-title="方程" data-language-autonym="贛語" data-language-local-name="Gan" class="interlanguage-link-target"><span>贛語</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%B0%A9%EC%A0%95%EC%8B%9D" title="방정식 – Korean" lang="ko" hreflang="ko" data-title="방정식" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%80%D5%A1%D5%BE%D5%A1%D5%BD%D5%A1%D6%80%D5%B8%D6%82%D5%B4" title="Հավասարում – Armenian" lang="hy" hreflang="hy" data-title="Հավասարում" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%B8%E0%A4%AE%E0%A5%80%E0%A4%95%E0%A4%B0%E0%A4%A3" title="समीकरण – Hindi" lang="hi" hreflang="hi" data-title="समीकरण" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Jednad%C5%BEba" title="Jednadžba – Croatian" lang="hr" hreflang="hr" data-title="Jednadžba" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Equaciono" title="Equaciono – Ido" lang="io" hreflang="io" data-title="Equaciono" data-language-autonym="Ido" data-language-local-name="Ido" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Persamaan" title="Persamaan – Indonesian" lang="id" hreflang="id" data-title="Persamaan" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Equation" title="Equation – Interlingua" lang="ia" hreflang="ia" data-title="Equation" data-language-autonym="Interlingua" data-language-local-name="Interlingua" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-xh mw-list-item"><a href="https://xh.wikipedia.org/wiki/I-Equation" title="I-Equation – Xhosa" lang="xh" hreflang="xh" data-title="I-Equation" data-language-autonym="IsiXhosa" data-language-local-name="Xhosa" class="interlanguage-link-target"><span>IsiXhosa</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Jafna" title="Jafna – Icelandic" lang="is" hreflang="is" data-title="Jafna" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Equazione" title="Equazione – Italian" lang="it" hreflang="it" data-title="Equazione" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%A9%D7%95%D7%95%D7%90%D7%94" title="משוואה – Hebrew" lang="he" hreflang="he" data-title="משוואה" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-kbp mw-list-item"><a href="https://kbp.wikipedia.org/wiki/K%C9%A9ma%C5%8B_w%C9%9B%CA%8A%CA%8A" title="Kɩmaŋ wɛʊʊ – Kabiye" lang="kbp" hreflang="kbp" data-title="Kɩmaŋ wɛʊʊ" data-language-autonym="Kabɩyɛ" data-language-local-name="Kabiye" class="interlanguage-link-target"><span>Kabɩyɛ</span></a></li><li class="interlanguage-link interwiki-kn mw-list-item"><a href="https://kn.wikipedia.org/wiki/%E0%B2%B8%E0%B2%AE%E0%B3%80%E0%B2%95%E0%B2%B0%E0%B2%A3" title="ಸಮೀಕರಣ – Kannada" lang="kn" hreflang="kn" data-title="ಸಮೀಕರಣ" data-language-autonym="ಕನ್ನಡ" data-language-local-name="Kannada" class="interlanguage-link-target"><span>ಕನ್ನಡ</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%92%E1%83%90%E1%83%9C%E1%83%A2%E1%83%9D%E1%83%9A%E1%83%94%E1%83%91%E1%83%90" title="განტოლება – Georgian" lang="ka" hreflang="ka" data-title="განტოლება" data-language-autonym="ქართული" data-language-local-name="Georgian" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%A2%D0%B5%D2%A3%D0%B4%D0%B5%D1%83" title="Теңдеу – Kazakh" lang="kk" hreflang="kk" data-title="Теңдеу" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-sw mw-list-item"><a href="https://sw.wikipedia.org/wiki/Mlinganyo" title="Mlinganyo – Swahili" lang="sw" hreflang="sw" data-title="Mlinganyo" data-language-autonym="Kiswahili" data-language-local-name="Swahili" class="interlanguage-link-target"><span>Kiswahili</span></a></li><li class="interlanguage-link interwiki-gcr mw-list-item"><a href="https://gcr.wikipedia.org/wiki/%C3%89kwasyon" title="Ékwasyon – Guianan Creole" lang="gcr" hreflang="gcr" data-title="Ékwasyon" data-language-autonym="Kriyòl gwiyannen" data-language-local-name="Guianan Creole" class="interlanguage-link-target"><span>Kriyòl gwiyannen</span></a></li><li class="interlanguage-link interwiki-ku mw-list-item"><a href="https://ku.wikipedia.org/wiki/Wekhev%C3%AE" title="Wekhevî – Kurdish" lang="ku" hreflang="ku" data-title="Wekhevî" data-language-autonym="Kurdî" data-language-local-name="Kurdish" class="interlanguage-link-target"><span>Kurdî</span></a></li><li class="interlanguage-link interwiki-lo mw-list-item"><a href="https://lo.wikipedia.org/wiki/%E0%BA%AA%E0%BA%BB%E0%BA%A1%E0%BA%9C%E0%BA%BB%E0%BA%99" title="ສົມຜົນ – Lao" lang="lo" hreflang="lo" data-title="ສົມຜົນ" data-language-autonym="ລາວ" data-language-local-name="Lao" class="interlanguage-link-target"><span>ລາວ</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Aequatio" title="Aequatio – Latin" lang="la" hreflang="la" data-title="Aequatio" data-language-autonym="Latina" data-language-local-name="Latin" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Vien%C4%81dojums" title="Vienādojums – Latvian" lang="lv" hreflang="lv" data-title="Vienādojums" data-language-autonym="Latviešu" data-language-local-name="Latvian" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Lygtis" title="Lygtis – Lithuanian" lang="lt" hreflang="lt" data-title="Lygtis" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lfn mw-list-item"><a href="https://lfn.wikipedia.org/wiki/Egali" title="Egali – Lingua Franca Nova" lang="lfn" hreflang="lfn" data-title="Egali" data-language-autonym="Lingua Franca Nova" data-language-local-name="Lingua Franca Nova" class="interlanguage-link-target"><span>Lingua Franca Nova</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Equazion" title="Equazion – Lombard" lang="lmo" hreflang="lmo" data-title="Equazion" data-language-autonym="Lombard" data-language-local-name="Lombard" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Egyenlet" title="Egyenlet – Hungarian" lang="hu" hreflang="hu" data-title="Egyenlet" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%A0%D0%B0%D0%B2%D0%B5%D0%BD%D0%BA%D0%B0" title="Равенка – Macedonian" lang="mk" hreflang="mk" data-title="Равенка" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%B8%E0%B4%AE%E0%B4%B5%E0%B4%BE%E0%B4%95%E0%B5%8D%E0%B4%AF%E0%B4%82_(%E0%B4%97%E0%B4%A3%E0%B4%BF%E0%B4%A4%E0%B4%B6%E0%B4%BE%E0%B4%B8%E0%B5%8D%E0%B4%A4%E0%B5%8D%E0%B4%B0%E0%B4%82)" title="സമവാക്യം (ഗണിതശാസ്ത്രം) – Malayalam" lang="ml" hreflang="ml" data-title="സമവാക്യം (ഗണിതശാസ്ത്രം)" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%B8%E0%A4%AE%E0%A5%80%E0%A4%95%E0%A4%B0%E0%A4%A3" title="समीकरण – Marathi" lang="mr" hreflang="mr" data-title="समीकरण" data-language-autonym="मराठी" data-language-local-name="Marathi" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-arz mw-list-item"><a href="https://arz.wikipedia.org/wiki/%D9%85%D8%B9%D8%A7%D8%AF%D9%84%D8%A9_%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A9" title="معادلة رياضية – Egyptian Arabic" lang="arz" hreflang="arz" data-title="معادلة رياضية" data-language-autonym="مصرى" data-language-local-name="Egyptian Arabic" class="interlanguage-link-target"><span>مصرى</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Persamaan" title="Persamaan – Malay" lang="ms" hreflang="ms" data-title="Persamaan" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-fj mw-list-item"><a href="https://fj.wikipedia.org/wiki/Ivakatakata" title="Ivakatakata – Fijian" lang="fj" hreflang="fj" data-title="Ivakatakata" data-language-autonym="Na Vosa Vakaviti" data-language-local-name="Fijian" class="interlanguage-link-target"><span>Na Vosa Vakaviti</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Vergelijking_(wiskunde)" title="Vergelijking (wiskunde) – Dutch" lang="nl" hreflang="nl" data-title="Vergelijking (wiskunde)" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-new mw-list-item"><a href="https://new.wikipedia.org/wiki/%E0%A4%B8%E0%A4%AE%E0%A5%80%E0%A4%95%E0%A4%B0%E0%A4%A3" title="समीकरण – Newari" lang="new" hreflang="new" data-title="समीकरण" data-language-autonym="नेपाल भाषा" data-language-local-name="Newari" class="interlanguage-link-target"><span>नेपाल भाषा</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E6%96%B9%E7%A8%8B%E5%BC%8F" title="方程式 – Japanese" lang="ja" hreflang="ja" data-title="方程式" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-nap mw-list-item"><a href="https://nap.wikipedia.org/wiki/Equazzione" title="Equazzione – Neapolitan" lang="nap" hreflang="nap" data-title="Equazzione" data-language-autonym="Napulitano" data-language-local-name="Neapolitan" class="interlanguage-link-target"><span>Napulitano</span></a></li><li class="interlanguage-link interwiki-frr mw-list-item"><a href="https://frr.wikipedia.org/wiki/Liknang" title="Liknang – Northern Frisian" lang="frr" hreflang="frr" data-title="Liknang" data-language-autonym="Nordfriisk" data-language-local-name="Northern Frisian" class="interlanguage-link-target"><span>Nordfriisk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Ligning_(matematikk)" title="Ligning (matematikk) – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Ligning (matematikk)" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Likning" title="Likning – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Likning" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Equacion" title="Equacion – Occitan" lang="oc" hreflang="oc" data-title="Equacion" data-language-autonym="Occitan" data-language-local-name="Occitan" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-om mw-list-item"><a href="https://om.wikipedia.org/wiki/Qixxaatoo" title="Qixxaatoo – Oromo" lang="om" hreflang="om" data-title="Qixxaatoo" data-language-autonym="Oromoo" data-language-local-name="Oromo" class="interlanguage-link-target"><span>Oromoo</span></a></li><li class="interlanguage-link interwiki-uz badge-Q17437798 badge-goodarticle mw-list-item" title="good article badge"><a href="https://uz.wikipedia.org/wiki/Tenglama" title="Tenglama – Uzbek" lang="uz" hreflang="uz" data-title="Tenglama" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%B8%E0%A8%AE%E0%A9%80%E0%A8%95%E0%A8%B0%E0%A8%A8" title="ਸਮੀਕਰਨ – Punjabi" lang="pa" hreflang="pa" data-title="ਸਮੀਕਰਨ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="Punjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://pnb.wikipedia.org/wiki/%D8%AA%D8%B1%DA%A9%DA%91%DB%8C" title="ترکڑی – Western Punjabi" lang="pnb" hreflang="pnb" data-title="ترکڑی" data-language-autonym="پنجابی" data-language-local-name="Western Punjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li><li class="interlanguage-link interwiki-jam mw-list-item"><a href="https://jam.wikipedia.org/wiki/Ikwiejan" title="Ikwiejan – Jamaican Creole English" lang="jam" hreflang="jam" data-title="Ikwiejan" data-language-autonym="Patois" data-language-local-name="Jamaican Creole English" class="interlanguage-link-target"><span>Patois</span></a></li><li class="interlanguage-link interwiki-km mw-list-item"><a href="https://km.wikipedia.org/wiki/%E1%9E%9F%E1%9E%98%E1%9E%B8%E1%9E%80%E1%9E%B6%E1%9E%9A" title="សមីការ – Khmer" lang="km" hreflang="km" data-title="សមីការ" data-language-autonym="ភាសាខ្មែរ" data-language-local-name="Khmer" class="interlanguage-link-target"><span>ភាសាខ្មែរ</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/Equassion" title="Equassion – Piedmontese" lang="pms" hreflang="pms" data-title="Equassion" data-language-autonym="Piemontèis" data-language-local-name="Piedmontese" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-nds mw-list-item"><a href="https://nds.wikipedia.org/wiki/Glieken" title="Glieken – Low German" lang="nds" hreflang="nds" data-title="Glieken" data-language-autonym="Plattdüütsch" data-language-local-name="Low German" class="interlanguage-link-target"><span>Plattdüütsch</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/R%C3%B3wnanie" title="Równanie – Polish" lang="pl" hreflang="pl" data-title="Równanie" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Equa%C3%A7%C3%A3o" title="Equação – Portuguese" lang="pt" hreflang="pt" data-title="Equação" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Ecua%C8%9Bie" title="Ecuație – Romanian" lang="ro" hreflang="ro" data-title="Ecuație" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-qu mw-list-item"><a href="https://qu.wikipedia.org/wiki/Paqtachani" title="Paqtachani – Quechua" lang="qu" hreflang="qu" data-title="Paqtachani" data-language-autonym="Runa Simi" data-language-local-name="Quechua" class="interlanguage-link-target"><span>Runa Simi</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5" title="Уравнение – Russian" lang="ru" hreflang="ru" data-title="Уравнение" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sah mw-list-item"><a href="https://sah.wikipedia.org/wiki/%D0%A2%D1%8D%D2%A5%D0%BD%D1%8D%D0%B1%D0%B8%D0%BB" title="Тэҥнэбил – Yakut" lang="sah" hreflang="sah" data-title="Тэҥнэбил" data-language-autonym="Саха тыла" data-language-local-name="Yakut" class="interlanguage-link-target"><span>Саха тыла</span></a></li><li class="interlanguage-link interwiki-sco mw-list-item"><a href="https://sco.wikipedia.org/wiki/Equation" title="Equation – Scots" lang="sco" hreflang="sco" data-title="Equation" data-language-autonym="Scots" data-language-local-name="Scots" class="interlanguage-link-target"><span>Scots</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Ekuacioni" title="Ekuacioni – Albanian" lang="sq" hreflang="sq" data-title="Ekuacioni" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/Iquazzioni" title="Iquazzioni – Sicilian" lang="scn" hreflang="scn" data-title="Iquazzioni" data-language-autonym="Sicilianu" data-language-local-name="Sicilian" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Equation" title="Equation – Simple English" lang="en-simple" hreflang="en-simple" data-title="Equation" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Rovnica_(matematika)" title="Rovnica (matematika) – Slovak" lang="sk" hreflang="sk" data-title="Rovnica (matematika)" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Ena%C4%8Dba" title="Enačba – Slovenian" lang="sl" hreflang="sl" data-title="Enačba" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%DA%BE%D8%A7%D9%88%DA%A9%DB%8E%D8%B4%DB%95" title="ھاوکێشە – Central Kurdish" lang="ckb" hreflang="ckb" data-title="ھاوکێشە" data-language-autonym="کوردی" data-language-local-name="Central Kurdish" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%88%D0%B5%D0%B4%D0%BD%D0%B0%D1%87%D0%B8%D0%BD%D0%B0" title="Једначина – Serbian" lang="sr" hreflang="sr" data-title="Једначина" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Jedna%C4%8Dina" title="Jednačina – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Jednačina" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Yht%C3%A4l%C3%B6" title="Yhtälö – Finnish" lang="fi" hreflang="fi" data-title="Yhtälö" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Ekvation" title="Ekvation – Swedish" lang="sv" hreflang="sv" data-title="Ekvation" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Ekwasyon" title="Ekwasyon – Tagalog" lang="tl" hreflang="tl" data-title="Ekwasyon" data-language-autonym="Tagalog" data-language-local-name="Tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%9A%E0%AE%AE%E0%AE%A9%E0%AF%8D%E0%AE%AA%E0%AE%BE%E0%AE%9F%E0%AF%81" title="சமன்பாடு – Tamil" lang="ta" hreflang="ta" data-title="சமன்பாடு" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-shi mw-list-item"><a href="https://shi.wikipedia.org/wiki/Tagdazalt" title="Tagdazalt – Tachelhit" lang="shi" hreflang="shi" data-title="Tagdazalt" data-language-autonym="Taclḥit" data-language-local-name="Tachelhit" class="interlanguage-link-target"><span>Taclḥit</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/%D0%A2%D0%B8%D0%B3%D0%B5%D0%B7%D0%BB%D3%99%D0%BC%D3%99" title="Тигезләмә – Tatar" lang="tt" hreflang="tt" data-title="Тигезләмә" data-language-autonym="Татарча / tatarça" data-language-local-name="Tatar" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%AA%E0%B8%A1%E0%B8%81%E0%B8%B2%E0%B8%A3" title="สมการ – Thai" lang="th" hreflang="th" data-title="สมการ" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tg mw-list-item"><a href="https://tg.wikipedia.org/wiki/%D0%9C%D1%83%D0%BE%D0%B4%D0%B8%D0%BB%D0%B0" title="Муодила – Tajik" lang="tg" hreflang="tg" data-title="Муодила" data-language-autonym="Тоҷикӣ" data-language-local-name="Tajik" class="interlanguage-link-target"><span>Тоҷикӣ</span></a></li><li class="interlanguage-link interwiki-chr mw-list-item"><a href="https://chr.wikipedia.org/wiki/%E1%8E%A2%E1%8F%97%E1%8E%A6%E1%8F%B2%E1%8F%8D%E1%8F%97" title="ᎢᏗᎦᏲᏍᏗ – Cherokee" lang="chr" hreflang="chr" data-title="ᎢᏗᎦᏲᏍᏗ" data-language-autonym="ᏣᎳᎩ" data-language-local-name="Cherokee" class="interlanguage-link-target"><span>ᏣᎳᎩ</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Denklem" title="Denklem – Turkish" lang="tr" hreflang="tr" data-title="Denklem" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-tk mw-list-item"><a href="https://tk.wikipedia.org/wiki/De%C5%88leme" title="Deňleme – Turkmen" lang="tk" hreflang="tk" data-title="Deňleme" data-language-autonym="Türkmençe" data-language-local-name="Turkmen" class="interlanguage-link-target"><span>Türkmençe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A0%D1%96%D0%B2%D0%BD%D1%8F%D0%BD%D0%BD%D1%8F" title="Рівняння – Ukrainian" lang="uk" hreflang="uk" data-title="Рівняння" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D9%85%D8%B3%D8%A7%D9%88%D8%A7%D8%AA" title="مساوات – Urdu" lang="ur" hreflang="ur" data-title="مساوات" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Ph%C6%B0%C6%A1ng_tr%C3%ACnh" title="Phương trình – Vietnamese" lang="vi" hreflang="vi" data-title="Phương trình" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-fiu-vro mw-list-item"><a href="https://fiu-vro.wikipedia.org/wiki/V%C3%B5rrand" title="Võrrand – Võro" lang="vro" hreflang="vro" data-title="Võrrand" data-language-autonym="Võro" data-language-local-name="Võro" class="interlanguage-link-target"><span>Võro</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E6%96%B9%E7%A8%8B" title="方程 – Literary Chinese" lang="lzh" hreflang="lzh" data-title="方程" data-language-autonym="文言" data-language-local-name="Literary Chinese" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-vls mw-list-item"><a href="https://vls.wikipedia.org/wiki/Vergelykinge_(wiskunde)" title="Vergelykinge (wiskunde) – West Flemish" lang="vls" hreflang="vls" data-title="Vergelykinge (wiskunde)" data-language-autonym="West-Vlams" data-language-local-name="West Flemish" class="interlanguage-link-target"><span>West-Vlams</span></a></li><li class="interlanguage-link interwiki-war mw-list-item"><a href="https://war.wikipedia.org/wiki/Ekwasyon" title="Ekwasyon – Waray" lang="war" hreflang="war" data-title="Ekwasyon" data-language-autonym="Winaray" data-language-local-name="Waray" class="interlanguage-link-target"><span>Winaray</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E6%96%B9%E7%A8%8B" title="方程 – Wu" lang="wuu" hreflang="wuu" data-title="方程" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-yi mw-list-item"><a href="https://yi.wikipedia.org/wiki/%D7%92%D7%9C%D7%99%D7%99%D7%9B%D7%95%D7%A0%D7%92" title="גלייכונג – Yiddish" lang="yi" hreflang="yi" data-title="גלייכונג" data-language-autonym="ייִדיש" data-language-local-name="Yiddish" class="interlanguage-link-target"><span>ייִדיש</span></a></li><li class="interlanguage-link interwiki-yo mw-list-item"><a href="https://yo.wikipedia.org/wiki/%C3%8C%E1%B9%A3ed%E1%BB%8D%CC%81gba" title="Ìṣedọ́gba – Yoruba" lang="yo" hreflang="yo" data-title="Ìṣedọ́gba" data-language-autonym="Yorùbá" data-language-local-name="Yoruba" class="interlanguage-link-target"><span>Yorùbá</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E6%96%B9%E7%A8%8B%E5%BC%8F" title="方程式 – Cantonese" lang="yue" hreflang="yue" data-title="方程式" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%96%B9%E7%A8%8B" title="方程 – Chinese" lang="zh" hreflang="zh" data-title="方程" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q11345#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Equation" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Equation" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Equation"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Equation&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Equation&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Equation"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Equation&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Equation&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Equation" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Equation" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Equation&amp;oldid=1282491265" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Equation&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Equation&amp;id=1282491265&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FEquation"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FEquation"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Equation&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Equation&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Equations" hreflang="en"><span>Wikimedia Commons</span></a></li><li class="wb-otherproject-link wb-otherproject-wikibooks mw-list-item"><a href="https://en.wikibooks.org/wiki/Algebra/Chapter_3" hreflang="en"><span>Wikibooks</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q11345" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Mathematical formula expressing equality</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">For other uses, see <a href="/wiki/Equation_(disambiguation)" class="mw-disambig" title="Equation (disambiguation)">Equation (disambiguation)</a>.</div><style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-Expand_language plainlinks metadata ambox ambox-notice skin-invert-image" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/Translation_to_english_arrow.svg/50px-Translation_to_english_arrow.svg.png" decoding="async" width="50" height="17" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/Translation_to_english_arrow.svg/75px-Translation_to_english_arrow.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8a/Translation_to_english_arrow.svg/100px-Translation_to_english_arrow.svg.png 2x" data-file-width="60" data-file-height="20" /></span></span></div></td><td class="mbox-text"><div class="mbox-text-span"><style data-mw-deduplicate="TemplateStyles:r1214851843">.mw-parser-output .hidden-begin{box-sizing:border-box;width:100%;padding:5px;border:none;font-size:95%}.mw-parser-output .hidden-title{font-weight:bold;line-height:1.6;text-align:left}.mw-parser-output .hidden-content{text-align:left}@media all and (max-width:500px){.mw-parser-output .hidden-begin{width:auto!important;clear:none!important;float:none!important}}</style><div class="hidden-begin mw-collapsible mw-collapsed" style="font-size:100%; padding: 0px;"><div class="hidden-title skin-nightmode-reset-color" style="text-align:center; padding-right: 3em; font-weight: normal; text-align: left">You can help <b>expand this article with text translated from <a href="https://fr.wikipedia.org/wiki/%C3%89quation" class="extiw" title="fr:Équation">the corresponding article</a> in French</b>. <small>Click [show] for important translation instructions.</small></div><div class="hidden-content mw-collapsible-content" style=""> <ul><li class="mw-empty-elt"></li> <li>Machine translation, like <a rel="nofollow" class="external text" href="https://deepl.com">DeepL</a> or <a rel="nofollow" class="external text" href="https://translate.google.com/">Google Translate</a>, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia.</li> <li>Consider <b><a href="/wiki/Template:Expand_French#Topics_and_categorization" title="Template:Expand French">adding a topic</a></b> to this template: there are already 1,963 articles in the <a href="/wiki/Category:Articles_needing_translation_from_French_Wikipedia" title="Category:Articles needing translation from French Wikipedia">main category</a>, and specifying<code class="tpl-para" style="word-break:break-word;">&#124;topic&#61;</code> will aid in categorization.</li> <li>Do not translate text that appears unreliable or low-quality. If possible, verify the text with references provided in the foreign-language article.</li> <li>You <b>must</b> provide <a href="/wiki/Wikipedia:Copying_within_Wikipedia" title="Wikipedia:Copying within Wikipedia">copyright attribution</a> in the <a href="/wiki/Help:Edit_summary" title="Help:Edit summary">edit summary</a> accompanying your translation by providing an <a href="/wiki/Help:Interlanguage_links" title="Help:Interlanguage links">interlanguage link</a> to the source of your translation. A model attribution edit summary is <code>Content in this edit is translated from the existing French Wikipedia article at [[:fr:Équation]]; see its history for attribution.</code></li> <li>You may also add the template <code>{{Translated|fr|Équation}}</code> to the <a href="/wiki/Talk:Equation" title="Talk:Equation">talk page</a>.</li> <li>For more guidance, see <a href="/wiki/Wikipedia:Translation" title="Wikipedia:Translation">Wikipedia:Translation</a>.</li></ul></div></div></div></td></tr></tbody></table><figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:First_Equation_Ever.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8d/First_Equation_Ever.png/300px-First_Equation_Ever.png" decoding="async" width="300" height="32" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8d/First_Equation_Ever.png/450px-First_Equation_Ever.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8d/First_Equation_Ever.png/600px-First_Equation_Ever.png 2x" data-file-width="784" data-file-height="83" /></a><figcaption>The first use of an equals sign, equivalent to 14<i>x</i> + 15 = 71 in modern notation. From <i><a href="/wiki/The_Whetstone_of_Witte" title="The Whetstone of Witte">The Whetstone of Witte</a></i> by <a href="/wiki/Robert_Recorde" title="Robert Recorde">Robert Recorde</a> of Wales (1557).<sup id="cite_ref-Whetstone_1-0" class="reference"><a href="#cite_note-Whetstone-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> <p>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, an <b>equation</b> is a <a href="/wiki/Mathematical_formula" class="mw-redirect" title="Mathematical formula">mathematical formula</a> that expresses the <a href="/wiki/Equality_(mathematics)" title="Equality (mathematics)">equality</a> of two <a href="/wiki/Expression_(mathematics)" title="Expression (mathematics)">expressions</a>, by connecting them with the <a href="/wiki/Equals_sign" title="Equals sign">equals sign</a> <span class="nounderlines" style="border: 1px solid var(--border-color-muted,#ddd); color: var(--color-base,#202122); background-color: var( --background-color-neutral-subtle, #fdfdfd); padding: 1px 1px;">=</span>.<sup id="cite_ref-:1_2-0" class="reference"><a href="#cite_note-:1-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> The word <i>equation</i> and its <a href="/wiki/Cognate" title="Cognate">cognates</a> in other languages may have subtly different meanings; for example, in <a href="/wiki/French_language" title="French language">French</a> an <i>équation</i> is defined as containing one or more <a href="/wiki/Variable_(mathematics)" title="Variable (mathematics)">variables</a>, while in <a href="/wiki/English_language" title="English language">English</a>, any <a href="/wiki/Well-formed_formula" title="Well-formed formula">well-formed formula</a> consisting of two expressions related with an equals sign is an equation.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/Equation_solving" title="Equation solving">Solving an equation</a> containing variables consists of determining which values of the variables make the equality true. The variables for which the equation has to be solved are also called <b>unknowns</b>, and the values of the unknowns that satisfy the equality are called <a href="/wiki/Solution_(equation)" class="mw-redirect" title="Solution (equation)">solutions</a> of the equation. There are two kinds of equations: <a href="/wiki/Identity_(mathematics)" title="Identity (mathematics)">identities</a> and conditional equations. An identity is true for all values of the variables. A conditional equation is only true for particular values of the variables.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p><p>The "<a href="/wiki/%3D" class="mw-redirect" title="=">=</a>" symbol, which appears in every equation, was invented in 1557 by <a href="/wiki/Robert_Recorde" title="Robert Recorde">Robert Recorde</a>, who considered that nothing could be more equal than parallel straight lines with the same length.<sup id="cite_ref-Whetstone_1-1" class="reference"><a href="#cite_note-Whetstone-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Description">Description</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Equation&amp;action=edit&amp;section=1" title="Edit section: Description"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>An equation is written as two <a href="/wiki/Expression_(mathematics)" title="Expression (mathematics)">expressions</a>, connected by an <a href="/wiki/Equals_sign" title="Equals sign">equals sign</a> ("=").<sup id="cite_ref-:1_2-1" class="reference"><a href="#cite_note-:1-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> The expressions on the two <a href="/wiki/Sides_of_an_equation" title="Sides of an equation">sides</a> of the equals sign are called the "left-hand side" and "right-hand side" of the equation. Very often the right-hand side of an equation is assumed to be zero. This does not reduce the generality, as this can be realized by subtracting the right-hand side from both sides. </p><p>The most common type of equation is a <a href="/wiki/Polynomial_equation" class="mw-redirect" title="Polynomial equation">polynomial equation</a> (commonly called also an <i>algebraic equation</i>) in which the two sides are <a href="/wiki/Polynomial" title="Polynomial">polynomials</a>. The sides of a polynomial equation contain one or more <a href="/wiki/Addition#Notation_and_terminology" title="Addition">terms</a>. For example, the equation </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Ax^{2}+Bx+C-y=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>B</mi> <mi>x</mi> <mo>+</mo> <mi>C</mi> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Ax^{2}+Bx+C-y=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48f35a43975baf07af45c8768074725fdcddb7aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:22.925ex; height:3.009ex;" alt="{\displaystyle Ax^{2}+Bx+C-y=0}" /></span></dd></dl> <p>has left-hand side <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Ax^{2}+Bx+C-y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>B</mi> <mi>x</mi> <mo>+</mo> <mi>C</mi> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Ax^{2}+Bx+C-y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dba4508f349e30d6fe1032237df53d03b7d5953e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.664ex; height:3.009ex;" alt="{\displaystyle Ax^{2}+Bx+C-y}" /></span>, which has four terms, and right-hand side <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}" /></span>, consisting of just one term. The names of the <a href="/wiki/Variable_(mathematics)" title="Variable (mathematics)">variables</a> suggest that <span class="texhtml"><i>x</i></span> and <span class="texhtml"><i>y</i></span> are unknowns, and that <span class="texhtml"><i>A</i></span>, <span class="texhtml"><i>B</i></span>, and <span class="texhtml"><i>C</i></span> are <a href="/wiki/Parameter" title="Parameter">parameters</a>, but this is normally fixed by the context (in some contexts, <span class="texhtml mvar" style="font-style:italic;">y</span> may be a parameter, or <span class="texhtml"><i>A</i></span>, <span class="texhtml"><i>B</i></span>, and <span class="texhtml"><i>C</i></span> may be ordinary variables). </p><p>An equation is analogous to a scale into which weights are placed. When equal weights of something (e.g., grain) are placed into the two pans, the two weights cause the scale to be in balance and are said to be equal. If a quantity of grain is removed from one pan of the balance, an equal amount must be removed from the other pan to keep the scale in balance. More generally, an equation remains balanced if the same operation is performed on each side.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Properties">Properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Equation&amp;action=edit&amp;section=2" title="Edit section: Properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Two equations or two systems of equations are <i>equivalent</i>, if they have the same set of solutions. The following operations transform an equation or a system of equations into an equivalent one – provided that the operations are meaningful for the expressions they are applied to: </p> <ul><li><a href="/wiki/Addition" title="Addition">Adding</a> or <a href="/wiki/Subtraction" title="Subtraction">subtracting</a> the same quantity to both sides of an equation. This shows that every equation is equivalent to an equation in which the right-hand side is zero.</li> <li><a href="/wiki/Multiplication" title="Multiplication">Multiplying</a> or <a href="/wiki/Division_(mathematics)" title="Division (mathematics)">dividing</a> both sides of an equation by a non-zero quantity.</li> <li>Applying an <a href="/wiki/Identity_(mathematics)" title="Identity (mathematics)">identity</a> to transform one side of the equation. For example, <a href="/wiki/Polynomial_expansion" title="Polynomial expansion">expanding</a> a product or <a href="/wiki/Factorization_of_polynomials" title="Factorization of polynomials">factoring</a> a sum.</li> <li>For a system: adding to both sides of an equation the corresponding side of another equation, multiplied by the same quantity.</li></ul> <p>If some <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> is applied to both sides of an equation, the resulting equation has the solutions of the initial equation among its solutions, but may have further solutions called <a href="/wiki/Extraneous_solution" class="mw-redirect" title="Extraneous solution">extraneous solutions</a>. For example, the equation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee42176e76ae6b56d68c42ced807e08b962a2b54" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.591ex; height:2.176ex;" alt="{\displaystyle x=1}" /></span> has the solution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45c68848dcaa8574feb04951e71070f80b77f752" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.237ex; height:2.176ex;" alt="{\displaystyle x=1.}" /></span> Raising both sides to the exponent of 2 (which means applying the function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(s)=s^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(s)=s^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/811ad531067d574222332295705ff8220cf70a78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.421ex; height:3.176ex;" alt="{\displaystyle f(s)=s^{2}}" /></span> to both sides of the equation) changes the equation to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{2}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51e28d7561fa4fe556f438b88380ef98c5631cf5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.645ex; height:2.676ex;" alt="{\displaystyle x^{2}=1}" /></span>, which not only has the previous solution but also introduces the extraneous solution, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=-1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=-1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a51899e84bbbb14d044de1e69f57f73f70178b4c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:8.046ex; height:2.343ex;" alt="{\displaystyle x=-1.}" /></span> Moreover, if the function is not defined at some values (such as 1/<i>x</i>, which is not defined for <i>x</i> = 0), solutions existing at those values may be lost. Thus, caution must be exercised when applying such a transformation to an equation. </p><p>The above transformations are the basis of most elementary methods for <a href="/wiki/Equation_solving" title="Equation solving">equation solving</a>, as well as some less elementary ones, like <a href="/wiki/Gaussian_elimination" title="Gaussian elimination">Gaussian elimination</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Examples">Examples</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Equation&amp;action=edit&amp;section=3" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Analogous_illustration">Analogous illustration</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Equation&amp;action=edit&amp;section=4" title="Edit section: Analogous illustration"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Equation_illustration_colour.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b2/Equation_illustration_colour.svg/250px-Equation_illustration_colour.svg.png" decoding="async" width="220" height="230" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b2/Equation_illustration_colour.svg/330px-Equation_illustration_colour.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b2/Equation_illustration_colour.svg/440px-Equation_illustration_colour.svg.png 2x" data-file-width="278" data-file-height="291" /></a><figcaption>Illustration of a simple equation; <i>x</i>, <i>y</i>, <i>z</i> are real numbers, analogous to weights.</figcaption></figure> <p>An equation is analogous to a <a href="/wiki/Weighing_scale" title="Weighing scale">weighing scale</a>, balance, or <a href="/wiki/Seesaw" title="Seesaw">seesaw</a>. </p><p>Each side of the equation corresponds to one side of the balance. Different quantities can be placed on each side: if the weights on the two sides are equal, the scale balances, and in analogy, the equality that represents the balance is also balanced (if not, then the lack of balance corresponds to an <a href="/wiki/Inequality_(mathematics)" title="Inequality (mathematics)">inequality</a> represented by an <a href="/wiki/Inequation" title="Inequation">inequation</a>). </p><p>In the illustration, <i>x</i>, <i>y</i> and <i>z</i> are all different quantities (in this case <a href="/wiki/Real_numbers" class="mw-redirect" title="Real numbers">real numbers</a>) represented as circular weights, and each of <i>x</i>, <i>y</i>, and <i>z</i> has a different weight. Addition corresponds to adding weight, while subtraction corresponds to removing weight from what is already there. When equality holds, the total weight on each side is the same. </p> <div class="mw-heading mw-heading3"><h3 id="Parameters_and_unknowns">Parameters and unknowns</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Equation&amp;action=edit&amp;section=5" title="Edit section: Parameters and unknowns"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951" /><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Expression_(mathematics)" title="Expression (mathematics)">Expression (mathematics)</a></div> <p>Equations often contain terms other than the unknowns. These other terms, which are assumed to be <i>known</i>, are usually called <i>constants</i>, <i>coefficients</i> or <i>parameters</i>. </p><p>An example of an equation involving <i>x</i> and <i>y</i> as unknowns and the parameter <i>R</i> is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}+y^{2}=R^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{2}+y^{2}=R^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe1f27078e621122772fdeb967fe85a71be259b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.003ex; height:3.009ex;" alt="{\displaystyle x^{2}+y^{2}=R^{2}.}" /></span></dd></dl> <p>When <i>R </i>is chosen to have the value of 2 (<i>R </i>= 2), this equation would be recognized in <a href="/wiki/Cartesian_coordinates" class="mw-redirect" title="Cartesian coordinates">Cartesian coordinates</a> as the equation for the circle of radius of 2 around the origin. Hence, the equation with <i>R</i> unspecified is the general equation for the circle. </p><p>Usually, the unknowns are denoted by letters at the end of the alphabet, <i>x</i>, <i>y</i>, <i>z</i>, <i>w</i>, ..., while coefficients (parameters) are denoted by letters at the beginning, <i>a</i>, <i>b</i>, <i>c</i>, <i>d</i>, ... . For example, the general <a href="/wiki/Quadratic_equation" title="Quadratic equation">quadratic equation</a> is usually written <i>ax</i><sup>2</sup>&#160;+&#160;<i>bx</i>&#160;+&#160;<i>c</i>&#160;=&#160;0. </p><p>The process of finding the solutions, or, in case of parameters, expressing the unknowns in terms of the parameters, is called <a href="/wiki/Equation_solving" title="Equation solving">solving the equation</a>. Such expressions of the solutions in terms of the parameters are also called <i>solutions</i>. </p><p>A <a href="/wiki/System_of_equations" title="System of equations">system of equations</a> is a set of <i>simultaneous equations</i>, usually in several unknowns for which the common solutions are sought. Thus, a <i>solution to the system</i> is a set of values for each of the unknowns, which together form a solution to each equation in the system. For example, the system </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}3x+5y&amp;=2\\5x+8y&amp;=3\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mn>3</mn> <mi>x</mi> <mo>+</mo> <mn>5</mn> <mi>y</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mn>5</mn> <mi>x</mi> <mo>+</mo> <mn>8</mn> <mi>y</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>3</mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}3x+5y&amp;=2\\5x+8y&amp;=3\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64d70f591a29304ca95853d2b2ddd15fe3b67b94" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:12.663ex; height:5.843ex;" alt="{\displaystyle {\begin{aligned}3x+5y&amp;=2\\5x+8y&amp;=3\end{aligned}}}" /></span></dd></dl> <p>has the unique solution <i>x</i>&#160;=&#160;−1, <i>y</i>&#160;=&#160;1. </p> <div class="mw-heading mw-heading3"><h3 id="Identities">Identities</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Equation&amp;action=edit&amp;section=6" title="Edit section: Identities"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951" /><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Identity_(mathematics)" title="Identity (mathematics)">Identity (mathematics)</a> and <a href="/wiki/List_of_trigonometric_identities" title="List of trigonometric identities">List of trigonometric identities</a></div> <p>An identity is an equation that is true for all possible values of the variable(s) it contains. Many identities are known in algebra and calculus. In the process of solving an equation, an identity is often used to simplify an equation, making it more easily solvable. </p><p>In algebra, an example of an identity is the <a href="/wiki/Difference_of_two_squares" title="Difference of two squares">difference of two squares</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}-y^{2}=(x+y)(x-y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{2}-y^{2}=(x+y)(x-y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f6364fdb9e9d31860302d0d4dd231cc4f06e992c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.807ex; height:3.176ex;" alt="{\displaystyle x^{2}-y^{2}=(x+y)(x-y)}" /></span></dd></dl> <p>which is true for all <i>x</i> and <i>y</i>. </p><p><a href="/wiki/Trigonometry" title="Trigonometry">Trigonometry</a> is an area where many identities exist; these are useful in manipulating or solving <a href="/wiki/Trigonometric_equation" class="mw-redirect" title="Trigonometric equation">trigonometric equations</a>. Two of many that involve the <a href="/wiki/Sine_function" class="mw-redirect" title="Sine function">sine</a> and <a href="/wiki/Cosine_function" class="mw-redirect" title="Cosine function">cosine</a> functions are: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin ^{2}(\theta )+\cos ^{2}(\theta )=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x3b8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mo>+</mo> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x3b8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin ^{2}(\theta )+\cos ^{2}(\theta )=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47f3203bca6dc55c36d94ee525c44dac9e1716f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.976ex; height:3.176ex;" alt="{\displaystyle \sin ^{2}(\theta )+\cos ^{2}(\theta )=1}" /></span></dd></dl> <p>and </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin(2\theta )=2\sin(\theta )\cos(\theta )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x3b8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>2</mn> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x3b8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x3b8;<!-- θ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin(2\theta )=2\sin(\theta )\cos(\theta )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49b9120d4e69a660935b978d66f352fd2e645199" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.719ex; height:2.843ex;" alt="{\displaystyle \sin(2\theta )=2\sin(\theta )\cos(\theta )}" /></span></dd></dl> <p>which are both true for all values of <i>θ</i>. </p><p>For example, to solve for the value of <i>θ</i> that satisfies the equation: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3\sin(\theta )\cos(\theta )=1\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x3b8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x3b8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3\sin(\theta )\cos(\theta )=1\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef5afc15255c1fbbb969663c81461fde3c67f197" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.998ex; height:2.843ex;" alt="{\displaystyle 3\sin(\theta )\cos(\theta )=1\,,}" /></span></dd></dl> <p>where <i>θ</i> is limited to between 0 and 45 degrees, one may use the above identity for the product to give: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {3}{2}}\sin(2\theta )=1\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x3b8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {3}{2}}\sin(2\theta )=1\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d40af5eefb61021cfcf56a14ecc5407d8f2417e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:14.598ex; height:5.176ex;" alt="{\displaystyle {\frac {3}{2}}\sin(2\theta )=1\,,}" /></span></dd></dl> <p>yielding the following solution for <i>θ:</i> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta ={\frac {1}{2}}\arcsin \left({\frac {2}{3}}\right)\approx 20.9^{\circ }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3b8;<!-- θ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi>arcsin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>&#x2248;<!-- ≈ --></mo> <msup> <mn>20.9</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2218;<!-- ∘ --></mo> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta ={\frac {1}{2}}\arcsin \left({\frac {2}{3}}\right)\approx 20.9^{\circ }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d051c1ae231480e303ae4e8291dfe51173147613" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:26.89ex; height:6.176ex;" alt="{\displaystyle \theta ={\frac {1}{2}}\arcsin \left({\frac {2}{3}}\right)\approx 20.9^{\circ }.}" /></span></dd></dl> <p>Since the sine function is a <a href="/wiki/Periodic_function" title="Periodic function">periodic function</a>, there are infinitely many solutions if there are no restrictions on <i>θ</i>. In this example, restricting <i>θ</i> to be between 0 and 45 degrees would restrict the solution to only one number. </p> <div class="mw-heading mw-heading2"><h2 id="Algebra">Algebra</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Equation&amp;action=edit&amp;section=7" title="Edit section: Algebra"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Algebra" title="Algebra">Algebra</a> studies two main families of equations: <a href="/wiki/Polynomial_equations" class="mw-redirect" title="Polynomial equations">polynomial equations</a> and, among them, the special case of <a href="/wiki/Linear_equations" class="mw-redirect" title="Linear equations">linear equations</a>. When there is only one variable, polynomial equations have the form <i>P</i>(<i>x</i>)&#160;=&#160;0, where <i>P</i> is a <a href="/wiki/Polynomial" title="Polynomial">polynomial</a>, and linear equations have the form <i>ax</i>&#160;+&#160;<i>b</i>&#160;=&#160;0, where <i>a</i> and <i>b</i> are <a href="/wiki/Parameter#Mathematical_functions" title="Parameter">parameters</a>. To solve equations from either family, one uses algorithmic or geometric techniques that originate from <a href="/wiki/Linear_algebra" title="Linear algebra">linear algebra</a> or <a href="/wiki/Mathematical_analysis" title="Mathematical analysis">mathematical analysis</a>. Algebra also studies <a href="/wiki/Diophantine_equations" class="mw-redirect" title="Diophantine equations">Diophantine equations</a> where the coefficients and solutions are <a href="/wiki/Integers" class="mw-redirect" title="Integers">integers</a>. The techniques used are different and come from <a href="/wiki/Number_theory" title="Number theory">number theory</a>. These equations are difficult in general; one often searches just to find the existence or absence of a solution, and, if they exist, to count the number of solutions. </p> <div class="mw-heading mw-heading3"><h3 id="Polynomial_equations">Polynomial equations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Equation&amp;action=edit&amp;section=8" title="Edit section: Polynomial equations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951" /><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Polynomial_equation" class="mw-redirect" title="Polynomial equation">Polynomial equation</a></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Polynomialdeg2.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f8/Polynomialdeg2.svg/250px-Polynomialdeg2.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f8/Polynomialdeg2.svg/330px-Polynomialdeg2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f8/Polynomialdeg2.svg/440px-Polynomialdeg2.svg.png 2x" data-file-width="320" data-file-height="320" /></a><figcaption>The solutions –1 and 2 of the polynomial equation <span class="nowrap"><i>x</i><sup>2</sup> – <i>x</i> + 2 = 0</span> are the points where the <a href="/wiki/Graph_of_a_function" title="Graph of a function">graph</a> of the <a href="/wiki/Quadratic_function" title="Quadratic function">quadratic function</a> <span class="nowrap"><i>y</i> = <i>x</i><sup>2</sup> – <i>x</i> + 2</span> cuts the x-axis.</figcaption></figure> <p>In general, an <i>algebraic equation</i> or <a href="/wiki/Polynomial_equation" class="mw-redirect" title="Polynomial equation">polynomial equation</a> is an equation of the form </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f6f743f37b37ce0c2ddc1db0fdca0e577c19f51d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.006ex; height:2.176ex;" alt="{\displaystyle P=0}" /></span>, or</dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P=Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>=</mo> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P=Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2abc7e2c5a78e9e6cb7a2a907279953f9b4a3f52" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.682ex; height:2.509ex;" alt="{\displaystyle P=Q}" /></span><sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>a<span class="cite-bracket">&#93;</span></a></sup></dd></dl> <p>where <i>P</i> and <i>Q</i> are <a href="/wiki/Polynomial" title="Polynomial">polynomials</a> with coefficients in some <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field</a> (e.g., <a href="/wiki/Rational_number" title="Rational number">rational numbers</a>, <a href="/wiki/Real_number" title="Real number">real numbers</a>, <a href="/wiki/Complex_number" title="Complex number">complex numbers</a>). An algebraic equation is <i>univariate</i> if it involves only one <a href="/wiki/Variable_(mathematics)" title="Variable (mathematics)">variable</a>. On the other hand, a polynomial equation may involve several variables, in which case it is called <i>multivariate</i> (multiple variables, x, y, z, etc.). </p><p>For example, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{5}-3x+1=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mi>x</mi> <mo>+</mo> <mn>1</mn> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{5}-3x+1=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/698e1afb9a1d47e492390b6a5a4612ea0dfff0cc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:15.98ex; height:2.843ex;" alt="{\displaystyle x^{5}-3x+1=0}" /></span></dd></dl> <p>is a univariate algebraic (polynomial) equation with integer coefficients and </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y^{4}+{\frac {xy}{2}}={\frac {x^{3}}{3}}-xy^{2}+y^{2}-{\frac {1}{7}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mi>y</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mn>3</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>7</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y^{4}+{\frac {xy}{2}}={\frac {x^{3}}{3}}-xy^{2}+y^{2}-{\frac {1}{7}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b5e8a49bf6d100e7a8b65135f6faffd17e470ceb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:30.974ex; height:5.843ex;" alt="{\displaystyle y^{4}+{\frac {xy}{2}}={\frac {x^{3}}{3}}-xy^{2}+y^{2}-{\frac {1}{7}}}" /></span></dd></dl> <p>is a multivariate polynomial equation over the rational numbers. </p><p>Some polynomial equations with <a href="/wiki/Rational_number" title="Rational number">rational coefficients</a> have a solution that is an <a href="/wiki/Algebraic_expression" title="Algebraic expression">algebraic expression</a>, with a finite number of operations involving just those coefficients (i.e., can be <a href="/wiki/Algebraic_solution" class="mw-redirect" title="Algebraic solution">solved algebraically</a>). This can be done for all such equations of <a href="/wiki/Degree_of_a_polynomial" title="Degree of a polynomial">degree</a> one, two, three, or four; but equations of degree five or more cannot always be solved in this way, as the <a href="/wiki/Abel%E2%80%93Ruffini_theorem" title="Abel–Ruffini theorem">Abel–Ruffini theorem</a> demonstrates. </p><p>A large amount of research has been devoted to compute efficiently accurate approximations of the <a href="/wiki/Real_number" title="Real number">real</a> or <a href="/wiki/Complex_number" title="Complex number">complex</a> solutions of a univariate algebraic equation (see <a href="/wiki/Root_finding_of_polynomials" class="mw-redirect" title="Root finding of polynomials">Root finding of polynomials</a>) and of the common solutions of several multivariate polynomial equations (see <a href="/wiki/System_of_polynomial_equations" title="System of polynomial equations">System of polynomial equations</a>). </p> <div class="mw-heading mw-heading3"><h3 id="Systems_of_linear_equations">Systems of linear equations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Equation&amp;action=edit&amp;section=9" title="Edit section: Systems of linear equations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:%E4%B9%9D%E7%AB%A0%E7%AE%97%E8%A1%93.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/88/%E4%B9%9D%E7%AB%A0%E7%AE%97%E8%A1%93.gif/250px-%E4%B9%9D%E7%AB%A0%E7%AE%97%E8%A1%93.gif" decoding="async" width="220" height="287" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/88/%E4%B9%9D%E7%AB%A0%E7%AE%97%E8%A1%93.gif/330px-%E4%B9%9D%E7%AB%A0%E7%AE%97%E8%A1%93.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/8/88/%E4%B9%9D%E7%AB%A0%E7%AE%97%E8%A1%93.gif 2x" data-file-width="419" data-file-height="546" /></a><figcaption><a href="/wiki/The_Nine_Chapters_on_the_Mathematical_Art" title="The Nine Chapters on the Mathematical Art">The Nine Chapters on the Mathematical Art</a> is an anonymous 2nd-century Chinese book proposing a method of resolution for linear equations.</figcaption></figure> <p>A <a href="/wiki/System_of_linear_equations" title="System of linear equations">system of linear equations</a> (or <i>linear system</i>) is a collection of <a href="/wiki/Linear_equation" title="Linear equation">linear equations</a> involving one or more <a href="/wiki/Variable_(math)" class="mw-redirect" title="Variable (math)">variables</a>.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>b<span class="cite-bracket">&#93;</span></a></sup> For example, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{alignedat}{7}3x&amp;&amp;\;+\;&amp;&amp;2y&amp;&amp;\;-\;&amp;&amp;z&amp;&amp;\;=\;&amp;&amp;1&amp;\\2x&amp;&amp;\;-\;&amp;&amp;2y&amp;&amp;\;+\;&amp;&amp;4z&amp;&amp;\;=\;&amp;&amp;-2&amp;\\-x&amp;&amp;\;+\;&amp;&amp;{\tfrac {1}{2}}y&amp;&amp;\;-\;&amp;&amp;z&amp;&amp;\;=\;&amp;&amp;0&amp;\end{alignedat}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em" displaystyle="true"> <mtr> <mtd> <mn>3</mn> <mi>x</mi> </mtd> <mtd></mtd> <mtd> <mspace width="thickmathspace"></mspace> <mo>+</mo> <mspace width="thickmathspace"></mspace> </mtd> <mtd></mtd> <mtd> <mn>2</mn> <mi>y</mi> </mtd> <mtd></mtd> <mtd> <mspace width="thickmathspace"></mspace> <mo>&#x2212;<!-- − --></mo> <mspace width="thickmathspace"></mspace> </mtd> <mtd></mtd> <mtd> <mi>z</mi> </mtd> <mtd></mtd> <mtd> <mspace width="thickmathspace"></mspace> <mo>=</mo> <mspace width="thickmathspace"></mspace> </mtd> <mtd></mtd> <mtd> <mn>1</mn> </mtd> <mtd></mtd> </mtr> <mtr> <mtd> <mn>2</mn> <mi>x</mi> </mtd> <mtd></mtd> <mtd> <mspace width="thickmathspace"></mspace> <mo>&#x2212;<!-- − --></mo> <mspace width="thickmathspace"></mspace> </mtd> <mtd></mtd> <mtd> <mn>2</mn> <mi>y</mi> </mtd> <mtd></mtd> <mtd> <mspace width="thickmathspace"></mspace> <mo>+</mo> <mspace width="thickmathspace"></mspace> </mtd> <mtd></mtd> <mtd> <mn>4</mn> <mi>z</mi> </mtd> <mtd></mtd> <mtd> <mspace width="thickmathspace"></mspace> <mo>=</mo> <mspace width="thickmathspace"></mspace> </mtd> <mtd></mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mtd> <mtd></mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> </mtd> <mtd></mtd> <mtd> <mspace width="thickmathspace"></mspace> <mo>+</mo> <mspace width="thickmathspace"></mspace> </mtd> <mtd></mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mi>y</mi> </mtd> <mtd></mtd> <mtd> <mspace width="thickmathspace"></mspace> <mo>&#x2212;<!-- − --></mo> <mspace width="thickmathspace"></mspace> </mtd> <mtd></mtd> <mtd> <mi>z</mi> </mtd> <mtd></mtd> <mtd> <mspace width="thickmathspace"></mspace> <mo>=</mo> <mspace width="thickmathspace"></mspace> </mtd> <mtd></mtd> <mtd> <mn>0</mn> </mtd> <mtd></mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{alignedat}{7}3x&amp;&amp;\;+\;&amp;&amp;2y&amp;&amp;\;-\;&amp;&amp;z&amp;&amp;\;=\;&amp;&amp;1&amp;\\2x&amp;&amp;\;-\;&amp;&amp;2y&amp;&amp;\;+\;&amp;&amp;4z&amp;&amp;\;=\;&amp;&amp;-2&amp;\\-x&amp;&amp;\;+\;&amp;&amp;{\tfrac {1}{2}}y&amp;&amp;\;-\;&amp;&amp;z&amp;&amp;\;=\;&amp;&amp;0&amp;\end{alignedat}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d691839a2b284331b58b0820654d32e101e26a03" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.338ex; width:21.219ex; height:9.676ex;" alt="{\displaystyle {\begin{alignedat}{7}3x&amp;&amp;\;+\;&amp;&amp;2y&amp;&amp;\;-\;&amp;&amp;z&amp;&amp;\;=\;&amp;&amp;1&amp;\\2x&amp;&amp;\;-\;&amp;&amp;2y&amp;&amp;\;+\;&amp;&amp;4z&amp;&amp;\;=\;&amp;&amp;-2&amp;\\-x&amp;&amp;\;+\;&amp;&amp;{\tfrac {1}{2}}y&amp;&amp;\;-\;&amp;&amp;z&amp;&amp;\;=\;&amp;&amp;0&amp;\end{alignedat}}}" /></span></dd></dl> <p>is a system of three equations in the three variables <span class="texhtml"><i>x</i>, <i>y</i>, <i>z</i></span>. A <b>solution</b> to a linear system is an assignment of numbers to the variables such that all the equations are simultaneously satisfied. A <a href="/wiki/Equation_solving" title="Equation solving">solution</a> to the system above is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{alignedat}{2}x&amp;\,=\,&amp;1\\y&amp;\,=\,&amp;-2\\z&amp;\,=\,&amp;-2\end{alignedat}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left" rowspacing="3pt" columnspacing="0em 0em 0em 0em" displaystyle="true"> <mtr> <mtd> <mi>x</mi> </mtd> <mtd> <mi></mi> <mspace width="thinmathspace"></mspace> <mo>=</mo> <mspace width="thinmathspace"></mspace> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mi>y</mi> </mtd> <mtd> <mi></mi> <mspace width="thinmathspace"></mspace> <mo>=</mo> <mspace width="thinmathspace"></mspace> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mi>z</mi> </mtd> <mtd> <mi></mi> <mspace width="thinmathspace"></mspace> <mo>=</mo> <mspace width="thinmathspace"></mspace> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{alignedat}{2}x&amp;\,=\,&amp;1\\y&amp;\,=\,&amp;-2\\z&amp;\,=\,&amp;-2\end{alignedat}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4460866202afb67e822389a6b11a0b453c89c1c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.838ex; width:8.279ex; height:8.843ex;" alt="{\displaystyle {\begin{alignedat}{2}x&amp;\,=\,&amp;1\\y&amp;\,=\,&amp;-2\\z&amp;\,=\,&amp;-2\end{alignedat}}}" /></span></dd></dl> <p>since it makes all three equations valid. The word "<i>system</i>" indicates that the equations are to be considered collectively, rather than individually. </p><p>In mathematics, the theory of linear systems is a fundamental part of <a href="/wiki/Linear_algebra" title="Linear algebra">linear algebra</a>, a subject which is used in many parts of modern mathematics. Computational <a href="/wiki/Algorithm" title="Algorithm">algorithms</a> for finding the solutions are an important part of <a href="/wiki/Numerical_linear_algebra" title="Numerical linear algebra">numerical linear algebra</a>, and play a prominent role in <a href="/wiki/Physics" title="Physics">physics</a>, <a href="/wiki/Engineering" title="Engineering">engineering</a>, <a href="/wiki/Chemistry" title="Chemistry">chemistry</a>, <a href="/wiki/Computer_science" title="Computer science">computer science</a>, and <a href="/wiki/Economics" title="Economics">economics</a>. A <a href="/wiki/Nonlinear_system" title="Nonlinear system">system of non-linear equations</a> can often be <a href="/wiki/Approximation" title="Approximation">approximated</a> by a linear system (see <a href="/wiki/Linearization" title="Linearization">linearization</a>), a helpful technique when making a <a href="/wiki/Mathematical_model" title="Mathematical model">mathematical model</a> or <a href="/wiki/Computer_simulation" title="Computer simulation">computer simulation</a> of a relatively complex system. </p> <div class="mw-heading mw-heading2"><h2 id="Geometry">Geometry</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Equation&amp;action=edit&amp;section=10" title="Edit section: Geometry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Analytic_geometry">Analytic geometry</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Equation&amp;action=edit&amp;section=11" title="Edit section: Analytic geometry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:FunLin_04.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/FunLin_04.svg/250px-FunLin_04.svg.png" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/FunLin_04.svg/330px-FunLin_04.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d6/FunLin_04.svg/500px-FunLin_04.svg.png 2x" data-file-width="1200" data-file-height="900" /></a><figcaption>The blue and red line is the set of all points (<i>x</i>,<i>y</i>) such that <i>x</i>+<i>y</i>=5 and -<i>x</i>+2<i>y</i>=4, respectively. Their <a href="/wiki/Intersection_(Euclidean_geometry)" class="mw-redirect" title="Intersection (Euclidean geometry)">intersection</a> point, (2,3), satisfies both equations.</figcaption></figure><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951" /><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Analytic_geometry" title="Analytic geometry">Analytic geometry</a></div> <p>In <a href="/wiki/Euclidean_geometry" title="Euclidean geometry">Euclidean geometry</a>, it is possible to associate a set of coordinates to each point in space, for example by an orthogonal grid. This method allows one to characterize geometric figures by equations. A plane in three-dimensional space can be expressed as the solution set of an equation of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ax+by+cz+d=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> <mi>y</mi> <mo>+</mo> <mi>c</mi> <mi>z</mi> <mo>+</mo> <mi>d</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ax+by+cz+d=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/746e9e9c5e6a562485cbc5ed6a9375ec67bad26f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:20.805ex; height:2.509ex;" alt="{\displaystyle ax+by+cz+d=0}" /></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,b,c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a,b,c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f13f068df656c1b1911ae9f81628c49a6181194d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.302ex; height:2.509ex;" alt="{\displaystyle a,b,c}" /></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e85ff03cbe0c7341af6b982e47e9f90d235c66ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.216ex; height:2.176ex;" alt="{\displaystyle d}" /></span> are real numbers and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,y,z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,y,z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bbeca34b28f569a407ef74a955d041df9f360268" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.641ex; height:2.009ex;" alt="{\displaystyle x,y,z}" /></span> are the unknowns that correspond to the coordinates of a point in the system given by the orthogonal grid. The values <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,b,c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a,b,c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f13f068df656c1b1911ae9f81628c49a6181194d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.302ex; height:2.509ex;" alt="{\displaystyle a,b,c}" /></span> are the coordinates of a vector perpendicular to the plane defined by the equation. A line is expressed as the intersection of two planes, that is as the solution set of a single linear equation with values in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e150115ab9f63023215109595b76686a1ff890fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{2}}" /></span> or as the solution set of two linear equations with values in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b00b2b4fd27c2cbffa02df568472f77b194a6db9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.379ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}.}" /></span> </p><p>A <a href="/wiki/Conic_section" title="Conic section">conic section</a> is the intersection of a <a href="/wiki/Cone" title="Cone">cone</a> with equation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}+y^{2}=z^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{2}+y^{2}=z^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24defb565dbcba7850e1bfb51176bcf574b4e56b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.682ex; height:3.009ex;" alt="{\displaystyle x^{2}+y^{2}=z^{2}}" /></span> and a plane. In other words, in space, all conics are defined as the solution set of an equation of a plane and of the equation of a cone just given. This formalism allows one to determine the positions and the properties of the focuses of a conic. </p><p>The use of equations allows one to call on a large area of mathematics to solve geometric questions. The <a href="/wiki/Cartesian_coordinate" class="mw-redirect" title="Cartesian coordinate">Cartesian coordinate</a> system transforms a geometric problem into an analysis problem, once the figures are transformed into equations; thus the name <a href="/wiki/Analytic_geometry" title="Analytic geometry">analytic geometry</a>. This point of view, outlined by <a href="/wiki/Descartes" class="mw-redirect" title="Descartes">Descartes</a>, enriches and modifies the type of geometry conceived of by the ancient Greek mathematicians. </p><p>Currently, analytic geometry designates an active branch of mathematics. Although it still uses equations to characterize figures, it also uses other sophisticated techniques such as <a href="/wiki/Functional_analysis" title="Functional analysis">functional analysis</a> and <a href="/wiki/Linear_algebra" title="Linear algebra">linear algebra</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Cartesian_equations">Cartesian equations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Equation&amp;action=edit&amp;section=12" title="Edit section: Cartesian equations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Cartesian-coordinate-system-with-circle.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2e/Cartesian-coordinate-system-with-circle.svg/250px-Cartesian-coordinate-system-with-circle.svg.png" decoding="async" width="220" height="226" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2e/Cartesian-coordinate-system-with-circle.svg/330px-Cartesian-coordinate-system-with-circle.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/2e/Cartesian-coordinate-system-with-circle.svg/500px-Cartesian-coordinate-system-with-circle.svg.png 2x" data-file-width="768" data-file-height="790" /></a><figcaption>Cartesian coordinate system with a circle of radius 2 centered at the origin marked in red. The equation of a circle is <span class="nowrap">(<i>x</i> − <i>a</i>)<sup>2</sup> + (<i>y</i> − <i>b</i>)<sup>2</sup> = <i>r</i><sup>2</sup></span> where <i>a</i> and <i>b</i> are the coordinates of the center <span class="nowrap">(<i>a</i>, <i>b</i>)</span> and <i>r</i> is the radius.</figcaption></figure><p>In <a href="/wiki/Cartesian_geometry" class="mw-redirect" title="Cartesian geometry">Cartesian geometry</a>, equations are used to describe <a href="/wiki/Geometric_figures" class="mw-redirect" title="Geometric figures">geometric figures</a>. As the equations that are considered, such as <a href="/wiki/Implicit_equation" class="mw-redirect" title="Implicit equation">implicit equations</a> or <a href="/wiki/Parametric_equation" title="Parametric equation">parametric equations</a>, have infinitely many solutions, the objective is now different: instead of giving the solutions explicitly or counting them, which is impossible, one uses equations for studying properties of figures. This is the starting idea of <a href="/wiki/Algebraic_geometry" title="Algebraic geometry">algebraic geometry</a>, an important area of mathematics. </p><p>One can use the same principle to specify the position of any point in three-<a href="/wiki/Dimension" title="Dimension">dimensional</a> <a href="/wiki/Space_(mathematics)" title="Space (mathematics)">space</a> by the use of three Cartesian coordinates, which are the signed distances to three mutually perpendicular planes (or, equivalently, by its perpendicular projection onto three mutually perpendicular lines). </p><p>The invention of Cartesian coordinates in the 17th century by <a href="/wiki/Ren%C3%A9_Descartes" title="René Descartes">René Descartes</a> revolutionized mathematics by providing the first systematic link between <a href="/wiki/Euclidean_geometry" title="Euclidean geometry">Euclidean geometry</a> and <a href="/wiki/Algebra" title="Algebra">algebra</a>. Using the Cartesian coordinate system, geometric shapes (such as <a href="/wiki/Curve" title="Curve">curves</a>) can be described by Cartesian equations: algebraic equations involving the coordinates of the points lying on the shape. For example, a circle of radius 2 in a plane, centered on a particular point called the origin, may be described as the set of all points whose coordinates <i>x</i> and <i>y</i> satisfy the equation <span class="nowrap"><i>x</i><sup>2</sup> + <i>y</i><sup>2</sup> = 4</span>. </p> <div class="mw-heading mw-heading3"><h3 id="Parametric_equations">Parametric equations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Equation&amp;action=edit&amp;section=13" title="Edit section: Parametric equations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951" /><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Parametric_equation" title="Parametric equation">Parametric equation</a></div> <p>A <a href="/wiki/Parametric_equation" title="Parametric equation">parametric equation</a> for a <a href="/wiki/Curve" title="Curve">curve</a> expresses the <a href="/wiki/Coordinates" class="mw-redirect" title="Coordinates">coordinates</a> of the points of the curve as functions of a <a href="/wiki/Variable_(mathematics)" title="Variable (mathematics)">variable</a>, called a <a href="/wiki/Parameter" title="Parameter">parameter</a>.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> For example, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}x&amp;=\cos t\\y&amp;=\sin t\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>x</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>t</mi> </mtd> </mtr> <mtr> <mtd> <mi>y</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>t</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}x&amp;=\cos t\\y&amp;=\sin t\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/627bb5a6d2b57174bd596f1fc7990592b8e6076b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:9.517ex; height:5.843ex;" alt="{\displaystyle {\begin{aligned}x&amp;=\cos t\\y&amp;=\sin t\end{aligned}}}" /></span></dd></dl> <p>are parametric equations for the <a href="/wiki/Unit_circle" title="Unit circle">unit circle</a>, where <i>t</i> is the parameter. Together, these equations are called a parametric representation of the curve. </p><p>The notion of <i>parametric equation</i> has been generalized to <a href="/wiki/Surface_(topology)" title="Surface (topology)">surfaces</a>, <a href="/wiki/Manifold" title="Manifold">manifolds</a> and <a href="/wiki/Algebraic_variety" title="Algebraic variety">algebraic varieties</a> of higher <a href="/wiki/Dimension_of_a_manifold" class="mw-redirect" title="Dimension of a manifold">dimension</a>, with the number of parameters being equal to the dimension of the manifold or variety, and the number of equations being equal to the dimension of the space in which the manifold or variety is considered (for curves the dimension is <i>one</i> and <i>one</i> parameter is used, for surfaces dimension <i>two</i> and <i>two</i> parameters, etc.). </p> <div class="mw-heading mw-heading2"><h2 id="Number_theory">Number theory</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Equation&amp;action=edit&amp;section=14" title="Edit section: Number theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Diophantine_equations">Diophantine equations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Equation&amp;action=edit&amp;section=15" title="Edit section: Diophantine equations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951" /><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Diophantine_equation" title="Diophantine equation">Diophantine equation</a></div> <p>A Diophantine equation is a <a href="/wiki/Polynomial_equation" class="mw-redirect" title="Polynomial equation">polynomial equation</a> in two or more unknowns for which only the <a href="/wiki/Integer" title="Integer">integer</a> <a href="/wiki/Zero_of_a_function#Polynomial_roots" title="Zero of a function">solutions</a> are sought (an integer solution is a solution such that all the unknowns take integer values). A linear Diophantine equation is an equation between two sums of <a href="/wiki/Monomials" class="mw-redirect" title="Monomials">monomials</a> of <a href="/wiki/Degree_of_a_polynomial" title="Degree of a polynomial">degree</a> zero or one. An example of linear Diophantine equation is <span class="texhtml"><i>ax</i> + <i>by</i> = <i>c</i></span> where <i>a</i>, <i>b</i>, and <i>c</i> are constants. An exponential Diophantine equation is one for which exponents of the terms of the equation can be unknowns. </p><p>Diophantine problems have fewer equations than unknown variables and involve finding integers that work correctly for all equations. In more technical language, they define an <a href="/wiki/Algebraic_curve" title="Algebraic curve">algebraic curve</a>, <a href="/wiki/Algebraic_surface" title="Algebraic surface">algebraic surface</a>, or more general object, and ask about the <a href="/wiki/Lattice_point" class="mw-redirect" title="Lattice point">lattice points</a> on it. </p><p>The word <i>Diophantine</i> refers to the <a href="/wiki/Greek_mathematics#Hellenistic" title="Greek mathematics">Hellenistic mathematician</a> of the 3rd century, <a href="/wiki/Diophantus" title="Diophantus">Diophantus</a> of <a href="/wiki/Alexandria" title="Alexandria">Alexandria</a>, who made a study of such equations and was one of the first mathematicians to introduce <a href="/wiki/Mathematical_symbol" class="mw-redirect" title="Mathematical symbol">symbolism</a> into <a href="/wiki/Algebra" title="Algebra">algebra</a>. The mathematical study of Diophantine problems that Diophantus initiated is now called Diophantine analysis. </p> <div class="mw-heading mw-heading3"><h3 id="Algebraic_and_transcendental_numbers">Algebraic and transcendental numbers</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Equation&amp;action=edit&amp;section=16" title="Edit section: Algebraic and transcendental numbers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951" /><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Algebraic_number" title="Algebraic number">Algebraic number</a> and <a href="/wiki/Transcendental_number" title="Transcendental number">Transcendental number</a></div> <p>An <a href="/wiki/Algebraic_number" title="Algebraic number">algebraic number</a> is a number that is a solution of a non-zero <a href="/wiki/Polynomial_equation" class="mw-redirect" title="Polynomial equation">polynomial equation</a> in one variable with <a href="/wiki/Rational_number" title="Rational number">rational</a> coefficients (or equivalently — by <a href="/wiki/Clearing_denominators" title="Clearing denominators">clearing denominators</a> — with <a href="/wiki/Integer" title="Integer">integer</a> coefficients). Numbers such as <a href="/wiki/Pi" title="Pi"><span class="texhtml mvar" style="font-style:italic;">π</span></a> that are not algebraic are said to be <a href="/wiki/Transcendental_number" title="Transcendental number">transcendental</a>. <a href="/wiki/Almost_all" title="Almost all">Almost all</a> <a href="/wiki/Real_number" title="Real number">real</a> and <a href="/wiki/Complex_number" title="Complex number">complex</a> numbers are transcendental. </p> <div class="mw-heading mw-heading3"><h3 id="Algebraic_geometry">Algebraic geometry</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Equation&amp;action=edit&amp;section=17" title="Edit section: Algebraic geometry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951" /><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Algebraic_geometry" title="Algebraic geometry">Algebraic geometry</a></div> <p><a href="/wiki/Algebraic_geometry" title="Algebraic geometry">Algebraic geometry</a> is a branch of <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, classically studying solutions of <a href="/wiki/Polynomial_equations" class="mw-redirect" title="Polynomial equations">polynomial equations</a>. Modern algebraic geometry is based on more abstract techniques of <a href="/wiki/Abstract_algebra" title="Abstract algebra">abstract algebra</a>, especially <a href="/wiki/Commutative_algebra" title="Commutative algebra">commutative algebra</a>, with the language and the problems of <a href="/wiki/Geometry" title="Geometry">geometry</a>. </p><p>The fundamental objects of study in algebraic geometry are <a href="/wiki/Algebraic_variety" title="Algebraic variety">algebraic varieties</a>, which are geometric manifestations of <a href="/wiki/Solution_set" title="Solution set">solutions</a> of <a href="/wiki/Systems_of_polynomial_equations" class="mw-redirect" title="Systems of polynomial equations">systems of polynomial equations</a>. Examples of the most studied classes of algebraic varieties are: <a href="/wiki/Plane_algebraic_curve" class="mw-redirect" title="Plane algebraic curve">plane algebraic curves</a>, which include <a href="/wiki/Line_(geometry)" title="Line (geometry)">lines</a>, <a href="/wiki/Circle" title="Circle">circles</a>, <a href="/wiki/Parabola" title="Parabola">parabolas</a>, <a href="/wiki/Ellipse" title="Ellipse">ellipses</a>, <a href="/wiki/Hyperbola" title="Hyperbola">hyperbolas</a>, <a href="/wiki/Cubic_curve" class="mw-redirect" title="Cubic curve">cubic curves</a> like <a href="/wiki/Elliptic_curve" title="Elliptic curve">elliptic curves</a> and quartic curves like <a href="/wiki/Lemniscate_of_Bernoulli" title="Lemniscate of Bernoulli">lemniscates</a>, and <a href="/wiki/Cassini_oval" title="Cassini oval">Cassini ovals</a>. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the <a href="/wiki/Singular_point_of_a_curve" title="Singular point of a curve">singular points</a>, the <a href="/wiki/Inflection_point" title="Inflection point">inflection points</a> and the <a href="/wiki/Point_at_infinity" title="Point at infinity">points at infinity</a>. More advanced questions involve the <a href="/wiki/Topology" title="Topology">topology</a> of the curve and relations between the curves given by different equations. </p> <div class="mw-heading mw-heading2"><h2 id="Differential_equations">Differential equations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Equation&amp;action=edit&amp;section=18" title="Edit section: Differential equations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951" /><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Differential_equation" title="Differential equation">Differential equation</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Attracteur_%C3%A9trange_de_Lorenz.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/95/Attracteur_%C3%A9trange_de_Lorenz.png/250px-Attracteur_%C3%A9trange_de_Lorenz.png" decoding="async" width="220" height="179" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/95/Attracteur_%C3%A9trange_de_Lorenz.png/330px-Attracteur_%C3%A9trange_de_Lorenz.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/95/Attracteur_%C3%A9trange_de_Lorenz.png/500px-Attracteur_%C3%A9trange_de_Lorenz.png 2x" data-file-width="965" data-file-height="784" /></a><figcaption>A <a href="/wiki/Strange_attractor" class="mw-redirect" title="Strange attractor">strange attractor</a>, which arises when solving a certain <a href="/wiki/Differential_equation" title="Differential equation">differential equation</a></figcaption></figure> <p>A <a href="/wiki/Differential_equation" title="Differential equation">differential equation</a> is a <a href="/wiki/Mathematics" title="Mathematics">mathematical</a> equation that relates some <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> with its <a href="/wiki/Derivative" title="Derivative">derivatives</a>. In applications, the functions usually represent physical quantities, the derivatives represent their rates of change, and the equation defines a relationship between the two. They are solved by finding an expression for the function that does not involve derivatives. Differential equations are used to model processes that involve the rates of change of the variable, and are used in areas such as physics, chemistry, biology, and economics. </p><p>In <a href="/wiki/Pure_mathematics" title="Pure mathematics">pure mathematics</a>, differential equations are studied from several different perspectives, mostly concerned with their solutions — the set of functions that satisfy the equation. Only the simplest differential equations are solvable by explicit formulas; however, some properties of solutions of a given differential equation may be determined without finding their exact form. </p><p>If a self-contained formula for the solution is not available, the solution may be numerically approximated using computers. The theory of <a href="/wiki/Dynamical_systems" class="mw-redirect" title="Dynamical systems">dynamical systems</a> puts emphasis on qualitative analysis of systems described by differential equations, while many <a href="/wiki/Numerical_methods" class="mw-redirect" title="Numerical methods">numerical methods</a> have been developed to determine solutions with a given degree of accuracy. </p> <div class="mw-heading mw-heading3"><h3 id="Ordinary_differential_equations">Ordinary differential equations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Equation&amp;action=edit&amp;section=19" title="Edit section: Ordinary differential equations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951" /><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Ordinary_differential_equation" title="Ordinary differential equation">Ordinary differential equation</a></div> <p>An <a href="/wiki/Ordinary_differential_equation" title="Ordinary differential equation">ordinary differential equation</a> or ODE is an equation containing a function of one <a href="/wiki/Independent_variable" class="mw-redirect" title="Independent variable">independent variable</a> and its derivatives. The term "<i>ordinary</i>" is used in contrast with the term <a href="/wiki/Partial_differential_equation" title="Partial differential equation">partial differential equation</a>, which may be with respect to <i>more than</i> one independent variable. </p><p>Linear differential equations, which have solutions that can be added and multiplied by coefficients, are well-defined and understood, and exact closed-form solutions are obtained. By contrast, ODEs that lack additive solutions are nonlinear, and solving them is far more intricate, as one can rarely represent them by <a href="/wiki/Elementary_functions" class="mw-redirect" title="Elementary functions">elementary functions</a> in closed form: Instead, exact and analytic solutions of ODEs are in series or integral form. Graphical and <a href="/wiki/Numerical_ordinary_differential_equations" class="mw-redirect" title="Numerical ordinary differential equations">numerical</a> methods, applied by hand or by computer, may approximate solutions of ODEs and perhaps yield useful information, often sufficing in the absence of exact, analytic solutions. </p> <div class="mw-heading mw-heading3"><h3 id="Partial_differential_equations">Partial differential equations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Equation&amp;action=edit&amp;section=20" title="Edit section: Partial differential equations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951" /><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Partial_differential_equation" title="Partial differential equation">Partial differential equation</a></div> <p>A <a href="/wiki/Partial_differential_equation" title="Partial differential equation">partial differential equation</a> (PDE) is a <a href="/wiki/Differential_equation" title="Differential equation">differential equation</a> that contains unknown <a href="/wiki/Multivariable_calculus" title="Multivariable calculus">multivariable functions</a> and their <a href="/wiki/Partial_derivative" title="Partial derivative">partial derivatives</a>. (This is in contrast to <a href="/wiki/Ordinary_differential_equations" class="mw-redirect" title="Ordinary differential equations">ordinary differential equations</a>, which deal with functions of a single variable and their derivatives.) PDEs are used to formulate problems involving functions of several variables, and are either solved by hand, or used to create a relevant <a href="/wiki/Computer_model" class="mw-redirect" title="Computer model">computer model</a>. </p><p>PDEs can be used to describe a wide variety of phenomena such as <a href="/wiki/Sound" title="Sound">sound</a>, <a href="/wiki/Heat" title="Heat">heat</a>, <a href="/wiki/Electrostatics" title="Electrostatics">electrostatics</a>, <a href="/wiki/Electrodynamics" class="mw-redirect" title="Electrodynamics">electrodynamics</a>, <a href="/wiki/Fluid_flow" class="mw-redirect" title="Fluid flow">fluid flow</a>, <a href="/wiki/Elasticity_(physics)" title="Elasticity (physics)">elasticity</a>, or <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">quantum mechanics</a>. These seemingly distinct physical phenomena can be formalised similarly in terms of PDEs. Just as ordinary differential equations often model one-dimensional <a href="/wiki/Dynamical_systems" class="mw-redirect" title="Dynamical systems">dynamical systems</a>, partial differential equations often model <a href="/wiki/Multidimensional_systems" class="mw-redirect" title="Multidimensional systems">multidimensional systems</a>. PDEs find their generalisation in <a href="/wiki/Stochastic_partial_differential_equations" class="mw-redirect" title="Stochastic partial differential equations">stochastic partial differential equations</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Types_of_equations">Types of equations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Equation&amp;action=edit&amp;section=21" title="Edit section: Types of equations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Equations can be classified according to the types of <a href="/wiki/Operation_(mathematics)" title="Operation (mathematics)">operations</a> and quantities involved. Important types include: </p> <ul><li>An <a href="/wiki/Algebraic_equation" title="Algebraic equation">algebraic equation</a> or <a href="/wiki/Polynomial" title="Polynomial">polynomial</a> equation is an equation in which both sides are polynomials (see also <a href="/wiki/System_of_polynomial_equations" title="System of polynomial equations">system of polynomial equations</a>). These are further classified by <a href="/wiki/Degree_of_a_polynomial" title="Degree of a polynomial">degree</a>: <ul><li><a href="/wiki/Linear_equation" title="Linear equation">linear equation</a> for degree one</li> <li><a href="/wiki/Quadratic_equation" title="Quadratic equation">quadratic equation</a> for degree two</li> <li><a href="/wiki/Cubic_equation" title="Cubic equation">cubic equation</a> for degree three</li> <li><a href="/wiki/Quartic_equation" title="Quartic equation">quartic equation</a> for degree four</li> <li><a href="/wiki/Quintic_equation" class="mw-redirect" title="Quintic equation">quintic equation</a> for degree five</li> <li><a href="/wiki/Sextic_equation" title="Sextic equation">sextic equation</a> for degree six</li> <li><a href="/wiki/Septic_equation" title="Septic equation">septic equation</a> for degree seven</li> <li><a href="/wiki/Octic_equation" class="mw-redirect" title="Octic equation">octic equation</a> for degree eight</li></ul></li> <li>A <a href="/wiki/Diophantine_equation" title="Diophantine equation">Diophantine equation</a> is an equation where the unknowns are required to be <a href="/wiki/Integer" title="Integer">integers</a></li> <li>A <a href="/wiki/Transcendental_equation" title="Transcendental equation">transcendental equation</a> is an equation involving a <a href="/wiki/Transcendental_function" title="Transcendental function">transcendental function</a> of its unknowns</li> <li>A <a href="/wiki/Parametric_equation" title="Parametric equation">parametric equation</a> is an equation in which the solutions for the variables are expressed as functions of some other variables, called <a href="/wiki/Parameter" title="Parameter">parameters</a> appearing in the equations</li> <li>A <a href="/wiki/Functional_equation" title="Functional equation">functional equation</a> is an equation in which the unknowns are <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">functions</a> rather than simple quantities</li> <li>Equations involving derivatives, integrals and finite differences: <ul><li>A <a href="/wiki/Differential_equation" title="Differential equation">differential equation</a> is a functional equation involving <a href="/wiki/Derivative" title="Derivative">derivatives</a> of the unknown functions, where the function and its derivatives are evaluated at the same point, such as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(x)=x^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(x)=x^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc93d64f68cd72d9f3cd1a4af2f8c6c8490cdeec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.627ex; height:3.176ex;" alt="{\displaystyle f&#39;(x)=x^{2}}" /></span>. Differential equations are subdivided into <a href="/wiki/Ordinary_differential_equation" title="Ordinary differential equation">ordinary differential equations</a> for functions of a single variable and <a href="/wiki/Partial_differential_equation" title="Partial differential equation">partial differential equations</a> for functions of multiple variables</li> <li>An <a href="/wiki/Integral_equation" title="Integral equation">integral equation</a> is a functional equation involving the <a href="/wiki/Antiderivative" title="Antiderivative">antiderivatives</a> of the unknown functions. For functions of one variable, such an equation differs from a differential equation primarily through a change of variable substituting the function by its derivative, however this is not the case when the integral is taken over an open surface</li> <li>An <a href="/wiki/Integro-differential_equation" title="Integro-differential equation">integro-differential equation</a> is a functional equation involving both the <a href="/wiki/Derivative" title="Derivative">derivatives</a> and the <a href="/wiki/Antiderivative" title="Antiderivative">antiderivatives</a> of the unknown functions. For functions of one variable, such an equation differs from integral and differential equations through a similar change of variable.</li> <li>A <a href="/wiki/Functional_differential_equation" title="Functional differential equation">functional differential equation</a> of <a href="/wiki/Delay_differential_equation" title="Delay differential equation">delay differential equation</a> is a function equation involving <a href="/wiki/Derivative" title="Derivative">derivatives</a> of the unknown functions, evaluated at multiple points, such as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(x)=f(x-2)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(x)=f(x-2)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/551d5554d0f762372d809cfeec19057805b4793c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.663ex; height:3.009ex;" alt="{\displaystyle f&#39;(x)=f(x-2)}" /></span></li> <li>A <a href="/wiki/Difference_equation" class="mw-redirect" title="Difference equation">difference equation</a> is an equation where the unknown is a function <i>f</i> that occurs in the equation through <i>f</i>(<i>x</i>), <i>f</i>(<i>x</i>−1), ..., <i>f</i>(<i>x</i>−<i>k</i>), for some whole integer <i>k</i> called the <i>order</i> of the equation. If <i>x</i> is restricted to be an integer, a difference equation is the same as a <a href="/wiki/Recurrence_relation" title="Recurrence relation">recurrence relation</a></li> <li>A <a href="/wiki/Stochastic_differential_equation" title="Stochastic differential equation">stochastic differential equation</a> is a differential equation in which one or more of the terms is a <a href="/wiki/Stochastic_process" title="Stochastic process">stochastic process</a></li></ul></li></ul> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Equation&amp;action=edit&amp;section=22" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col" style="column-width: 25em;"> <ul><li><a href="/wiki/Formula" title="Formula">Formula</a></li> <li><a href="/wiki/History_of_algebra" title="History of algebra">History of algebra</a></li> <li><a href="/wiki/Indeterminate_equation" class="mw-redirect" title="Indeterminate equation">Indeterminate equation</a></li> <li><a href="/wiki/List_of_equations" title="List of equations">List of equations</a></li> <li><a href="/wiki/List_of_scientific_equations_named_after_people" title="List of scientific equations named after people">List of scientific equations named after people</a></li> <li><a href="/wiki/Term_(logic)" title="Term (logic)">Term (logic)</a></li> <li><a href="/wiki/Theory_of_equations" title="Theory of equations">Theory of equations</a></li> <li><a href="/wiki/Cancelling_out" title="Cancelling out">Cancelling out</a></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Equation&amp;action=edit&amp;section=23" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-lower-alpha"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text">As such an equation can be rewritten <span class="texhtml"><i>P</i> – <i>Q</i> = 0</span>, many authors do not consider this case explicitly.</span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text">The subject of this article is basic in mathematics, and is treated in a lot of textbooks. Among them, Lay 2005, Meyer 2001, and Strang 2005 contain the material of this article.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Equation&amp;action=edit&amp;section=24" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626" /><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-Whetstone-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-Whetstone_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Whetstone_1-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Recorde, Robert, <i>The Whetstone of Witte</i> ... (London, England: Jhon Kyngstone, 1557), <a rel="nofollow" class="external text" href="https://archive.org/stream/TheWhetstoneOfWitte#page/n237/mode/2up">the third page of the chapter "The rule of equation, commonly called Algebers Rule."</a></span> </li> <li id="cite_note-:1-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-:1_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:1_2-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.mathopenref.com/equation.html">"Equation - Math Open Reference"</a>. <i>www.mathopenref.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-09-01</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=www.mathopenref.com&amp;rft.atitle=Equation+-+Math+Open+Reference&amp;rft_id=https%3A%2F%2Fwww.mathopenref.com%2Fequation.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AEquation" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.mathsisfun.com/algebra/equation-formula.html">"Equations and Formulas"</a>. <i>www.mathsisfun.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-09-01</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=www.mathsisfun.com&amp;rft.atitle=Equations+and+Formulas&amp;rft_id=https%3A%2F%2Fwww.mathsisfun.com%2Falgebra%2Fequation-formula.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AEquation" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFMarcusWatt" class="citation web cs1"><a href="/wiki/Solomon_Marcus" title="Solomon Marcus">Marcus, Solomon</a>; Watt, Stephen M. <a rel="nofollow" class="external text" href="https://www.academia.edu/3287674">"What is an Equation?"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">2019-02-27</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=What+is+an+Equation%3F&amp;rft.aulast=Marcus&amp;rft.aufirst=Solomon&amp;rft.au=Watt%2C+Stephen+M.&amp;rft_id=https%3A%2F%2Fwww.academia.edu%2F3287674&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AEquation" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFLachaud2025" class="citation book cs1 cs1-prop-foreign-lang-source">Lachaud, Gilles (29 January 2025). <a rel="nofollow" class="external text" href="http://www.universalis.fr/encyclopedie/NT01240/EQUATION_mathematique.htm">"Équation, mathématique"</a>. <i>Encyclopædia Universalis</i> (in French).</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=%C3%89quation%2C+math%C3%A9matique&amp;rft.btitle=Encyclop%C3%A6dia+Universalis&amp;rft.date=2025-01-29&amp;rft.aulast=Lachaud&amp;rft.aufirst=Gilles&amp;rft_id=http%3A%2F%2Fwww.universalis.fr%2Fencyclopedie%2FNT01240%2FEQUATION_mathematique.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AEquation" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text">"A statement of equality between two expressions. Equations are of two types, <b>identities</b> and <b>conditional equations</b> (or usually simply "equations")". «&#160;<i>Equation</i>&#160;», in <i><span title="English-language text"><span lang="en">Mathematics Dictionary</span></span></i>, <a href="/w/index.php?title=Glenn_James_(mathematician)&amp;action=edit&amp;redlink=1" class="new" title="Glenn James (mathematician) (page does not exist)">Glenn James</a><span class="noprint" style="font-size:85%; font-style: normal;">&#160;&#91;<a href="https://de.wikipedia.org/wiki/Glenn_James" class="extiw" title="de:Glenn James">de</a>&#93;</span> et <a href="/wiki/Robert_C._James" title="Robert C. James">Robert C. James</a> (éd.), Van Nostrand, 1968, 3 ed. 1st ed. 1948, p.&#160;131.</span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://blendedlearningmath.com/pages/mathematical-equations-guide/">"Math equations guide with rules and interesting examples"</a>. <i>blendedlearningmath</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2024-12-02</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=blendedlearningmath&amp;rft.atitle=Math+equations+guide+with+rules+and+interesting+examples.&amp;rft_id=https%3A%2F%2Fblendedlearningmath.com%2Fpages%2Fmathematical-equations-guide%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AEquation" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text">Thomas, George B., and Finney, Ross L., <i>Calculus and Analytic Geometry</i>, Addison Wesley Publishing Co., fifth edition, 1979, p. 91.</span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text">Weisstein, Eric W. "Parametric Equations." From MathWorld--A Wolfram Web Resource. <a rel="nofollow" class="external free" href="http://mathworld.wolfram.com/ParametricEquations.html">http://mathworld.wolfram.com/ParametricEquations.html</a></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Equation&amp;action=edit&amp;section=25" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20090816161008/http://math.exeter.edu/rparris/winplot.html">Winplot</a>: General Purpose plotter that can draw and animate 2D and 3D mathematical equations.</li> <li><a rel="nofollow" class="external text" href="http://www.cs.cornell.edu/w8/~andru/relplot">Equation plotter</a>: A web page for producing and downloading pdf or postscript plots of the solution sets to equations and inequations in two variables (<i>x</i> and <i>y</i>).</li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319" /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319" /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319" /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319" /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319" /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319" /></div><div role="navigation" class="navbox authority-control" aria-label="Navbox2016" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q11345#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Gleichung"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4021246-4">Germany</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Equations"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85044510">United States</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Équations"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb119470816">France</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Équations"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb119470816">BnF data</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="方程式"><a rel="nofollow" class="external text" href="https://id.ndl.go.jp/auth/ndlna/00563553">Japan</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="rovnice"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&amp;local_base=aut&amp;ccl_term=ica=ph125241&amp;CON_LNG=ENG">Czech Republic</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="משוואות"><a rel="nofollow" class="external text" href="https://www.nli.org.il/en/authorities/987007552900305171">Israel</a></span></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐684955989f‐fhltp Cached time: 20250331174525 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.463 seconds Real time usage: 0.752 seconds Preprocessor visited node count: 3606/1000000 Post‐expand include size: 44721/2097152 bytes Template argument size: 5875/2097152 bytes Highest expansion depth: 20/100 Expensive parser function count: 18/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 36342/5000000 bytes Lua time usage: 0.278/10.000 seconds Lua memory usage: 18997707/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 482.107 1 -total 36.72% 177.035 2 Template:Reflist 18.34% 88.424 1 Template:Authority_control 18.11% 87.289 1 Template:Expand_French 17.38% 83.781 1 Template:Expand_language 16.19% 78.050 1 Template:Lang 16.04% 77.311 1 Template:Ambox 14.42% 69.538 4 Template:Cite_web 11.68% 56.287 1 Template:Short_description 9.07% 43.715 1 Template:Hidden --> <!-- Saved in parser cache with key enwiki:pcache:9284:|#|:idhash:canonical and timestamp 20250331174525 and revision id 1282491265. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://auth.wikimedia.org/loginwiki/wiki/Special:CentralAutoLogin/start?useformat=desktop&amp;type=1x1&amp;usesul3=1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Equation&amp;oldid=1282491265">https://en.wikipedia.org/w/index.php?title=Equation&amp;oldid=1282491265</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Elementary_algebra" title="Category:Elementary algebra">Elementary algebra</a></li><li><a href="/wiki/Category:Equations" title="Category:Equations">Equations</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_French-language_sources_(fr)" title="Category:CS1 French-language sources (fr)">CS1 French-language sources (fr)</a></li><li><a href="/wiki/Category:Articles_containing_explicitly_cited_English-language_text" title="Category:Articles containing explicitly cited English-language text">Articles containing explicitly cited English-language text</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Articles_needing_translation_from_French_Wikipedia" title="Category:Articles needing translation from French Wikipedia">Articles needing translation from French Wikipedia</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 26 March 2025, at 19:03<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Equation&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://www.wikimedia.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/static/images/footer/wikimedia-button.svg" width="84" height="29"><img src="/static/images/footer/wikimedia.svg" width="25" height="25" alt="Wikimedia Foundation" lang="en" loading="lazy"></picture></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/w/resources/assets/poweredby_mediawiki.svg" width="88" height="31"><img src="/w/resources/assets/mediawiki_compact.svg" alt="Powered by MediaWiki" lang="en" width="25" height="25" loading="lazy"></picture></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><span class="mw-page-title-main">Equation</span></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>122 languages</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>Add topic</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="mw-portlet mw-portlet-dock-bottom emptyPortlet" id="p-dock-bottom"> <ul> </ul> </div> <script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-684955989f-kd9cj","wgBackendResponseTime":182,"wgPageParseReport":{"limitreport":{"cputime":"0.463","walltime":"0.752","ppvisitednodes":{"value":3606,"limit":1000000},"postexpandincludesize":{"value":44721,"limit":2097152},"templateargumentsize":{"value":5875,"limit":2097152},"expansiondepth":{"value":20,"limit":100},"expensivefunctioncount":{"value":18,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":36342,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 482.107 1 -total"," 36.72% 177.035 2 Template:Reflist"," 18.34% 88.424 1 Template:Authority_control"," 18.11% 87.289 1 Template:Expand_French"," 17.38% 83.781 1 Template:Expand_language"," 16.19% 78.050 1 Template:Lang"," 16.04% 77.311 1 Template:Ambox"," 14.42% 69.538 4 Template:Cite_web"," 11.68% 56.287 1 Template:Short_description"," 9.07% 43.715 1 Template:Hidden"]},"scribunto":{"limitreport-timeusage":{"value":"0.278","limit":"10.000"},"limitreport-memusage":{"value":18997707,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-684955989f-fhltp","timestamp":"20250331174525","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Equation","url":"https:\/\/en.wikipedia.org\/wiki\/Equation","sameAs":"http:\/\/www.wikidata.org\/entity\/Q11345","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q11345","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-03-24T15:13:11Z","dateModified":"2025-03-26T19:03:39Z","headline":"mathematical statement that asserts the equality of two expressions"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10