CINXE.COM

Search results for: SOFM algorithm

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: SOFM algorithm</title> <meta name="description" content="Search results for: SOFM algorithm"> <meta name="keywords" content="SOFM algorithm"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="SOFM algorithm" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="SOFM algorithm"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3597</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: SOFM algorithm</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3537</span> Travel Planning in Public Transport Networks Applying the Algorithm A* for Metropolitan District of Quito</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Fernanda%20Salgado">M. Fernanda Salgado</a>, <a href="https://publications.waset.org/abstracts/search?q=Alfonso%20Tierra"> Alfonso Tierra</a>, <a href="https://publications.waset.org/abstracts/search?q=Wilbert%20Aguilar"> Wilbert Aguilar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present project consists in applying the informed search algorithm A star (A*) to solve traveler problems, applying it by urban public transportation routes. The digitization of the information allowed to identify 26% of the total of routes that are registered within the Metropolitan District of Quito. For the validation of this information, data were taken in field on the travel times and the difference with respect to the times estimated by the program, resulting in that the difference between them was not greater than 2:20 minutes. We validate A* algorithm with the Dijkstra algorithm, comparing nodes vectors based on the public transport stops, the validation was established through the student t-test hypothesis. Then we verified that the times estimated by the program using the A* algorithm are similar to those registered on field. Furthermore, we review the performance of the algorithm generating iterations in both algorithms. Finally, with these iterations, a hypothesis test was carried out again with student t-test where it was concluded that the iterations of the base algorithm Dijsktra are greater than those generated by the algorithm A*. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algorithm%20A%2A" title="algorithm A*">algorithm A*</a>, <a href="https://publications.waset.org/abstracts/search?q=graph" title=" graph"> graph</a>, <a href="https://publications.waset.org/abstracts/search?q=mobility" title=" mobility"> mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20transport" title=" public transport"> public transport</a>, <a href="https://publications.waset.org/abstracts/search?q=travel%20planning" title=" travel planning"> travel planning</a>, <a href="https://publications.waset.org/abstracts/search?q=routes" title=" routes"> routes</a> </p> <a href="https://publications.waset.org/abstracts/81275/travel-planning-in-public-transport-networks-applying-the-algorithm-a-for-metropolitan-district-of-quito" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81275.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3536</span> Assessment of Memetic and Genetic Algorithm for a Flexible Integrated Logistics Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Behmanesh">E. Behmanesh</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Pannek"> J. Pannek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The distribution-allocation problem is known as one of the most comprehensive strategic decision. In real-world cases, it is impossible to solve a distribution-allocation problem in traditional ways with acceptable time. Hence researchers develop efficient non-traditional techniques for the large-term operation of the whole supply chain. These techniques provide near-optimal solutions particularly for large scales test problems. This paper, presents an integrated supply chain model which is flexible in the delivery path. As the solution methodology, we apply a memetic algorithm with a novelty in population presentation. To illustrate the performance of the proposed memetic algorithm, LINGO optimization software serves as a comparison basis for small size problems. In large size cases that we are dealing with in the real world, the Genetic algorithm as the second metaheuristic algorithm is considered to compare the results and show the efficiency of the memetic algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=integrated%20logistics%20network" title="integrated logistics network">integrated logistics network</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20path" title=" flexible path"> flexible path</a>, <a href="https://publications.waset.org/abstracts/search?q=memetic%20algorithm" title=" memetic algorithm"> memetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a> </p> <a href="https://publications.waset.org/abstracts/81478/assessment-of-memetic-and-genetic-algorithm-for-a-flexible-integrated-logistics-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3535</span> A Speeded up Robust Scale-Invariant Feature Transform Currency Recognition Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daliyah%20S.%20Aljutaili">Daliyah S. Aljutaili</a>, <a href="https://publications.waset.org/abstracts/search?q=Redna%20A.%20Almutlaq"> Redna A. Almutlaq</a>, <a href="https://publications.waset.org/abstracts/search?q=Suha%20A.%20Alharbi"> Suha A. Alharbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Dina%20M.%20Ibrahim"> Dina M. Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> All currencies around the world look very different from each other. For instance, the size, color, and pattern of the paper are different. With the development of modern banking services, automatic methods for paper currency recognition become important in many applications like vending machines. One of the currency recognition architecture&rsquo;s phases is Feature detection and description. There are many algorithms that are used for this phase, but they still have some disadvantages. This paper proposes a feature detection algorithm, which merges the advantages given in the current SIFT and SURF algorithms, which we call, Speeded up Robust Scale-Invariant Feature Transform (SR-SIFT) algorithm. Our proposed SR-SIFT algorithm overcomes the problems of both the SIFT and SURF algorithms. The proposed algorithm aims to speed up the SIFT feature detection algorithm and keep it robust. Simulation results demonstrate that the proposed SR-SIFT algorithm decreases the average response time, especially in small and minimum number of best key points, increases the distribution of the number of best key points on the surface of the currency. Furthermore, the proposed algorithm increases the accuracy of the true best point distribution inside the currency edge than the other two algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=currency%20recognition" title="currency recognition">currency recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20detection%20and%20description" title=" feature detection and description"> feature detection and description</a>, <a href="https://publications.waset.org/abstracts/search?q=SIFT%20algorithm" title=" SIFT algorithm"> SIFT algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=SURF%20algorithm" title=" SURF algorithm"> SURF algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=speeded%20up%20and%20robust%20features" title=" speeded up and robust features"> speeded up and robust features</a> </p> <a href="https://publications.waset.org/abstracts/94315/a-speeded-up-robust-scale-invariant-feature-transform-currency-recognition-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3534</span> Features Reduction Using Bat Algorithm for Identification and Recognition of Parkinson Disease </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Shrivastava">P. Shrivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Shukla"> A. Shukla</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Verma"> K. Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Rungta"> S. Rungta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Parkinson's disease is a chronic neurological disorder that directly affects human gait. It leads to slowness of movement, causes muscle rigidity and tremors. Gait serve as a primary outcome measure for studies aiming at early recognition of disease. Using gait techniques, this paper implements efficient binary bat algorithm for an early detection of Parkinson's disease by selecting optimal features required for classification of affected patients from others. The data of 166 people, both fit and affected is collected and optimal feature selection is done using PSO and Bat algorithm. The reduced dataset is then classified using neural network. The experiments indicate that binary bat algorithm outperforms traditional PSO and genetic algorithm and gives a fairly good recognition rate even with the reduced dataset. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=parkinson" title="parkinson">parkinson</a>, <a href="https://publications.waset.org/abstracts/search?q=gait" title=" gait"> gait</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20selection" title=" feature selection"> feature selection</a>, <a href="https://publications.waset.org/abstracts/search?q=bat%20algorithm" title=" bat algorithm"> bat algorithm</a> </p> <a href="https://publications.waset.org/abstracts/31393/features-reduction-using-bat-algorithm-for-identification-and-recognition-of-parkinson-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31393.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">545</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3533</span> Selecting the Best RBF Neural Network Using PSO Algorithm for ECG Signal Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Najmeh%20Mohsenifar">Najmeh Mohsenifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Narjes%20Mohsenifar"> Narjes Mohsenifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Kargar"> Abbas Kargar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, has been presented a stable method for predicting the ECG signals through the RBF neural networks, by the PSO algorithm. In spite of quasi-periodic ECG signal from a healthy person, there are distortions in electro cardiographic data for a patient. Therefore, there is no precise mathematical model for prediction. Here, we have exploited neural networks that are capable of complicated nonlinear mapping. Although the architecture and spread of RBF networks are usually selected through trial and error, the PSO algorithm has been used for choosing the best neural network. In this way, 2 second of a recorded ECG signal is employed to predict duration of 20 second in advance. Our simulations show that PSO algorithm can find the RBF neural network with minimum MSE and the accuracy of the predicted ECG signal is 97 %. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrocardiogram" title="electrocardiogram">electrocardiogram</a>, <a href="https://publications.waset.org/abstracts/search?q=RBF%20artificial%20neural%20network" title=" RBF artificial neural network"> RBF artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=PSO%20algorithm" title=" PSO algorithm"> PSO algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=predict" title=" predict"> predict</a>, <a href="https://publications.waset.org/abstracts/search?q=accuracy" title=" accuracy"> accuracy</a> </p> <a href="https://publications.waset.org/abstracts/33466/selecting-the-best-rbf-neural-network-using-pso-algorithm-for-ecg-signal-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">626</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3532</span> Application of a New Efficient Normal Parameter Reduction Algorithm of Soft Sets in Online Shopping</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiuqin%20Ma">Xiuqin Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongwu%20Qin"> Hongwu Qin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new efficient normal parameter reduction algorithm of soft set in decision making was proposed. However, up to the present, few documents have focused on real-life applications of this algorithm. Accordingly, we apply a New Efficient Normal Parameter Reduction algorithm into real-life datasets of online shopping, such as Blackberry Mobile Phone Dataset. Experimental results show that this algorithm is not only suitable but feasible for dealing with the online shopping. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soft%20sets" title="soft sets">soft sets</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter%20reduction" title=" parameter reduction"> parameter reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=normal%20parameter%20reduction" title=" normal parameter reduction"> normal parameter reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20shopping" title=" online shopping"> online shopping</a> </p> <a href="https://publications.waset.org/abstracts/6444/application-of-a-new-efficient-normal-parameter-reduction-algorithm-of-soft-sets-in-online-shopping" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">510</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3531</span> Discretization of Cuckoo Optimization Algorithm for Solving Quadratic Assignment Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elham%20Kazemi">Elham Kazemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quadratic Assignment Problem (QAP) is one the combinatorial optimization problems about which research has been done in many companies for allocating some facilities to some locations. The issue of particular importance in this process is the costs of this allocation and the attempt in this problem is to minimize this group of costs. Since the QAP’s are from NP-hard problem, they cannot be solved by exact solution methods. Cuckoo Optimization Algorithm is a Meta-heuristicmethod which has higher capability to find the global optimal points. It is an algorithm which is basically raised to search a continuous space. The Quadratic Assignment Problem is the issue which can be solved in the discrete space, thus the standard arithmetic operators of Cuckoo Optimization Algorithm need to be redefined on the discrete space in order to apply the Cuckoo Optimization Algorithm on the discrete searching space. This paper represents the way of discretizing the Cuckoo optimization algorithm for solving the quadratic assignment problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Quadratic%20Assignment%20Problem%20%28QAP%29" title="Quadratic Assignment Problem (QAP)">Quadratic Assignment Problem (QAP)</a>, <a href="https://publications.waset.org/abstracts/search?q=Discrete%20Cuckoo%20Optimization%20Algorithm%20%28DCOA%29" title=" Discrete Cuckoo Optimization Algorithm (DCOA)"> Discrete Cuckoo Optimization Algorithm (DCOA)</a>, <a href="https://publications.waset.org/abstracts/search?q=meta-heuristic%20algorithms" title=" meta-heuristic algorithms"> meta-heuristic algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20algorithms" title=" optimization algorithms"> optimization algorithms</a> </p> <a href="https://publications.waset.org/abstracts/25249/discretization-of-cuckoo-optimization-algorithm-for-solving-quadratic-assignment-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25249.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">517</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3530</span> Constant Factor Approximation Algorithm for p-Median Network Design Problem with Multiple Cable Types</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chaghoub%20Soraya">Chaghoub Soraya</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Xiaoyan"> Zhang Xiaoyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research presents the first constant approximation algorithm to the p-median network design problem with multiple cable types. This problem was addressed with a single cable type and there is a bifactor approximation algorithm for the problem. To the best of our knowledge, the algorithm proposed in this paper is the first constant approximation algorithm for the p-median network design with multiple cable types. The addressed problem is a combination of two well studied problems which are p-median problem and network design problem. The introduced algorithm is a random sampling approximation algorithm of constant factor which is conceived by using some random sampling techniques form the literature. It is based on a redistribution Lemma from the literature and a steiner tree problem as a subproblem. This algorithm is simple, and it relies on the notions of random sampling and probability. The proposed approach gives an approximation solution with one constant ratio without violating any of the constraints, in contrast to the one proposed in the literature. This paper provides a (21 + 2)-approximation algorithm for the p-median network design problem with multiple cable types using random sampling techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=approximation%20algorithms" title="approximation algorithms">approximation algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=buy-at-bulk" title=" buy-at-bulk"> buy-at-bulk</a>, <a href="https://publications.waset.org/abstracts/search?q=combinatorial%20optimization" title=" combinatorial optimization"> combinatorial optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20design" title=" network design"> network design</a>, <a href="https://publications.waset.org/abstracts/search?q=p-median" title=" p-median"> p-median</a> </p> <a href="https://publications.waset.org/abstracts/127337/constant-factor-approximation-algorithm-for-p-median-network-design-problem-with-multiple-cable-types" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3529</span> A Minimum Spanning Tree-Based Method for Initializing the K-Means Clustering Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Yang">J. Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Ma"> Y. Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=X.%20Zhang"> X. Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Li"> S. Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Zhang"> Y. Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The traditional k-means algorithm has been widely used as a simple and efficient clustering method. However, the algorithm often converges to local minima for the reason that it is sensitive to the initial cluster centers. In this paper, an algorithm for selecting initial cluster centers on the basis of minimum spanning tree (MST) is presented. The set of vertices in MST with same degree are regarded as a whole which is used to find the skeleton data points. Furthermore, a distance measure between the skeleton data points with consideration of degree and Euclidean distance is presented. Finally, MST-based initialization method for the k-means algorithm is presented, and the corresponding time complexity is analyzed as well. The presented algorithm is tested on five data sets from the UCI Machine Learning Repository. The experimental results illustrate the effectiveness of the presented algorithm compared to three existing initialization methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=degree" title="degree">degree</a>, <a href="https://publications.waset.org/abstracts/search?q=initial%20cluster%20center" title=" initial cluster center"> initial cluster center</a>, <a href="https://publications.waset.org/abstracts/search?q=k-means" title=" k-means"> k-means</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20spanning%20tree" title=" minimum spanning tree"> minimum spanning tree</a> </p> <a href="https://publications.waset.org/abstracts/59975/a-minimum-spanning-tree-based-method-for-initializing-the-k-means-clustering-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3528</span> An Optimized Association Rule Mining Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Archana%20Singh">Archana Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyoti%20Agarwal"> Jyoti Agarwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Rana"> Ajay Rana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Data Mining is an efficient technology to discover patterns in large databases. Association Rule Mining techniques are used to find the correlation between the various item sets in a database, and this co-relation between various item sets are used in decision making and pattern analysis. In recent years, the problem of finding association rules from large datasets has been proposed by many researchers. Various research papers on association rule mining (ARM) are studied and analyzed first to understand the existing algorithms. Apriori algorithm is the basic ARM algorithm, but it requires so many database scans. In DIC algorithm, less amount of database scan is needed but complex data structure lattice is used. The main focus of this paper is to propose a new optimized algorithm (Friendly Algorithm) and compare its performance with the existing algorithms A data set is used to find out frequent itemsets and association rules with the help of existing and proposed (Friendly Algorithm) and it has been observed that the proposed algorithm also finds all the frequent itemsets and essential association rules from databases as compared to existing algorithms in less amount of database scan. In the proposed algorithm, an optimized data structure is used i.e. Graph and Adjacency Matrix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=association%20rules" title="association rules">association rules</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20item%20set%20counting" title=" dynamic item set counting"> dynamic item set counting</a>, <a href="https://publications.waset.org/abstracts/search?q=FP-growth" title=" FP-growth"> FP-growth</a>, <a href="https://publications.waset.org/abstracts/search?q=friendly%20algorithm" title=" friendly algorithm"> friendly algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=graph" title=" graph"> graph</a> </p> <a href="https://publications.waset.org/abstracts/2437/an-optimized-association-rule-mining-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3527</span> Improved K-Means Clustering Algorithm Using RHadoop with Combiner</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji%20Eun%20Shin">Ji Eun Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20Hoon%20Lim"> Dong Hoon Lim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Data clustering is a common technique used in data analysis and is used in many applications, such as artificial intelligence, pattern recognition, economics, ecology, psychiatry and marketing. K-means clustering is a well-known clustering algorithm aiming to cluster a set of data points to a predefined number of clusters. In this paper, we implement K-means algorithm based on MapReduce framework with RHadoop to make the clustering method applicable to large scale data. RHadoop is a collection of R packages that allow users to manage and analyze data with Hadoop. The main idea is to introduce a combiner as a function of our map output to decrease the amount of data needed to be processed by reducers. The experimental results demonstrated that K-means algorithm using RHadoop can scale well and efficiently process large data sets on commodity hardware. We also showed that our K-means algorithm using RHadoop with combiner was faster than regular algorithm without combiner as the size of data set increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=big%20data" title="big data">big data</a>, <a href="https://publications.waset.org/abstracts/search?q=combiner" title=" combiner"> combiner</a>, <a href="https://publications.waset.org/abstracts/search?q=K-means%20clustering" title=" K-means clustering"> K-means clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=RHadoop" title=" RHadoop"> RHadoop</a> </p> <a href="https://publications.waset.org/abstracts/41570/improved-k-means-clustering-algorithm-using-rhadoop-with-combiner" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41570.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3526</span> A Genetic Algorithm to Schedule the Flow Shop Problem under Preventive Maintenance Activities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Kaabi">J. Kaabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Harrath"> Y. Harrath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studied the flow shop scheduling problem under machine availability constraints. The machines are subject to flexible preventive maintenance activities. The nonresumable scenario for the jobs was considered. That is, when a job is interrupted by an unavailability period of a machine it should be restarted from the beginning. The objective is to minimize the total tardiness time for the jobs and the advance/tardiness for the maintenance activities. To solve the problem, a genetic algorithm was developed and successfully tested and validated on many problem instances. The computational results showed that the new genetic algorithm outperforms another earlier proposed algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flow%20shop%20scheduling" title="flow shop scheduling">flow shop scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=maintenance" title=" maintenance"> maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=priority%20rules" title=" priority rules"> priority rules</a> </p> <a href="https://publications.waset.org/abstracts/38002/a-genetic-algorithm-to-schedule-the-flow-shop-problem-under-preventive-maintenance-activities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38002.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">471</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3525</span> Memetic Algorithm for Solving the One-To-One Shortest Path Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20Dib">Omar Dib</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandre%20Caminada"> Alexandre Caminada</a>, <a href="https://publications.waset.org/abstracts/search?q=Marie-Ange%20Manier"> Marie-Ange Manier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to introduce a novel approach to solve the one-to-one shortest path problem. A directed connected graph is assumed in which all edges’ weights are positive. Our method is based on a memetic algorithm in which we combine a genetic algorithm (GA) and a variable neighborhood search method (VNS). We compare our approximate method with two exact algorithms Dijkstra and Integer Programming (IP). We made experimentations using random generated, complete and real graph instances. In most case studies, numerical results show that our method outperforms exact methods with 5% average gap to the optimality. Our algorithm’s average speed is 20-times faster than Dijkstra and more than 1000-times compared to IP. The details of the experimental results are also discussed and presented in the paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shortest%20path%20problem" title="shortest path problem">shortest path problem</a>, <a href="https://publications.waset.org/abstracts/search?q=Dijkstra%E2%80%99s%20algorithm" title=" Dijkstra’s algorithm"> Dijkstra’s algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=integer%20programming" title=" integer programming"> integer programming</a>, <a href="https://publications.waset.org/abstracts/search?q=memetic%20algorithm" title=" memetic algorithm"> memetic algorithm</a> </p> <a href="https://publications.waset.org/abstracts/25629/memetic-algorithm-for-solving-the-one-to-one-shortest-path-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3524</span> Constructing the Density of States from the Parallel Wang Landau Algorithm Overlapping Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arman%20S.%20Kussainov">Arman S. Kussainov</a>, <a href="https://publications.waset.org/abstracts/search?q=Altynbek%20K.%20Beisekov"> Altynbek K. Beisekov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work focuses on building an efficient universal procedure to construct a single density of states from the multiple pieces of data provided by the parallel implementation of the Wang Landau Monte Carlo based algorithm. The Ising and Pott models were used as the examples of the two-dimensional spin lattices to construct their densities of states. Sampled energy space was distributed between the individual walkers with certain overlaps. This was made to include the latest development of the algorithm as the density of states replica exchange technique. Several factors of immediate importance for the seamless stitching process have being considered. These include but not limited to the speed and universality of the initial parallel algorithm implementation as well as the data post-processing to produce the expected smooth density of states. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density%20of%20states" title="density of states">density of states</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo" title=" Monte Carlo"> Monte Carlo</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20algorithm" title=" parallel algorithm"> parallel algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Landau%20algorithm" title=" Wang Landau algorithm"> Wang Landau algorithm</a> </p> <a href="https://publications.waset.org/abstracts/66265/constructing-the-density-of-states-from-the-parallel-wang-landau-algorithm-overlapping-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66265.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3523</span> A Preliminary Study for Design of Automatic Block Reallocation Algorithm with Genetic Algorithm Method in the Land Consolidation Projects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tayfun%20%C3%87ay">Tayfun Çay</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasar%20%C4%B0nceyol"> Yasar İnceyol</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdurrahman%20%C3%96zbeyaz"> Abdurrahman Özbeyaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Land reallocation is one of the most important steps in land consolidation projects. Many different models were proposed for land reallocation in the literature such as Fuzzy Logic, block priority based land reallocation and Spatial Decision Support Systems. A model including four parts is considered for automatic block reallocation with genetic algorithm method in land consolidation projects. These stages are preparing data tables for a project land, determining conditions and constraints of land reallocation, designing command steps and logical flow chart of reallocation algorithm and finally writing program codes of Genetic Algorithm respectively. In this study, we designed the first three steps of the considered model comprising four steps. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20consolidation" title="land consolidation">land consolidation</a>, <a href="https://publications.waset.org/abstracts/search?q=landholding" title=" landholding"> landholding</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20reallocation" title=" land reallocation"> land reallocation</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a> </p> <a href="https://publications.waset.org/abstracts/28036/a-preliminary-study-for-design-of-automatic-block-reallocation-algorithm-with-genetic-algorithm-method-in-the-land-consolidation-projects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28036.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3522</span> Upon One Smoothing Problem in Project Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dimitri%20Golenko-Ginzburg">Dimitri Golenko-Ginzburg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A CPM network project with deterministic activity durations, in which activities require homogenous resources with fixed capacities, is considered. The problem is to determine the optimal schedule of starting times for all network activities within their maximal allowable limits (in order not to exceed the network's critical time) to minimize the maximum required resources for the project at any point in time. In case when a non-critical activity may start only at discrete moments with the pregiven time span, the problem becomes NP-complete and an optimal solution may be obtained via a look-over algorithm. For the case when a look-over requires much computational time an approximate algorithm is suggested. The algorithm's performance ratio, i.e., the relative accuracy error, is determined. Experimentation has been undertaken to verify the suggested algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=resource%20smoothing%20problem" title="resource smoothing problem">resource smoothing problem</a>, <a href="https://publications.waset.org/abstracts/search?q=CPM%20network" title=" CPM network"> CPM network</a>, <a href="https://publications.waset.org/abstracts/search?q=lookover%20algorithm" title=" lookover algorithm"> lookover algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=lexicographical%20order" title=" lexicographical order"> lexicographical order</a>, <a href="https://publications.waset.org/abstracts/search?q=approximate%20algorithm" title=" approximate algorithm"> approximate algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=accuracy%20estimate" title=" accuracy estimate"> accuracy estimate</a> </p> <a href="https://publications.waset.org/abstracts/15779/upon-one-smoothing-problem-in-project-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15779.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3521</span> Implementation of CNV-CH Algorithm Using Map-Reduce Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aishik%20Deb">Aishik Deb</a>, <a href="https://publications.waset.org/abstracts/search?q=Rituparna%20Sinha"> Rituparna Sinha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have developed an algorithm to detect the abnormal segment/"structural variation in the genome across a number of samples. We have worked on simulated as well as real data from the BAM Files and have designed a segmentation algorithm where abnormal segments are detected. This algorithm aims to improve the accuracy and performance of the existing CNV-CH algorithm. The next-generation sequencing (NGS) approach is very fast and can generate large sequences in a reasonable time. So the huge volume of sequence information gives rise to the need for Big Data and parallel approaches of segmentation. Therefore, we have designed a map-reduce approach for the existing CNV-CH algorithm where a large amount of sequence data can be segmented and structural variations in the human genome can be detected. We have compared the efficiency of the traditional and map-reduce algorithms with respect to precision, sensitivity, and F-Score. The advantages of using our algorithm are that it is fast and has better accuracy. This algorithm can be applied to detect structural variations within a genome, which in turn can be used to detect various genetic disorders such as cancer, etc. The defects may be caused by new mutations or changes to the DNA and generally result in abnormally high or low base coverage and quantification values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer%20detection" title="cancer detection">cancer detection</a>, <a href="https://publications.waset.org/abstracts/search?q=convex%20hull%20segmentation" title=" convex hull segmentation"> convex hull segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=map%20reduce" title=" map reduce"> map reduce</a>, <a href="https://publications.waset.org/abstracts/search?q=next%20generation%20sequencing" title=" next generation sequencing"> next generation sequencing</a> </p> <a href="https://publications.waset.org/abstracts/132639/implementation-of-cnv-ch-algorithm-using-map-reduce-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3520</span> Multimodal Optimization of Density-Based Clustering Using Collective Animal Behavior Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kristian%20Bautista">Kristian Bautista</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruben%20A.%20Idoy"> Ruben A. Idoy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A bio-inspired metaheuristic algorithm inspired by the theory of collective animal behavior (CAB) was integrated to density-based clustering modeled as multimodal optimization problem. The algorithm was tested on synthetic, Iris, Glass, Pima and Thyroid data sets in order to measure its effectiveness relative to CDE-based Clustering algorithm. Upon preliminary testing, it was found out that one of the parameter settings used was ineffective in performing clustering when applied to the algorithm prompting the researcher to do an investigation. It was revealed that fine tuning distance δ3 that determines the extent to which a given data point will be clustered helped improve the quality of cluster output. Even though the modification of distance δ3 significantly improved the solution quality and cluster output of the algorithm, results suggest that there is no difference between the population mean of the solutions obtained using the original and modified parameter setting for all data sets. This implies that using either the original or modified parameter setting will not have any effect towards obtaining the best global and local animal positions. Results also suggest that CDE-based clustering algorithm is better than CAB-density clustering algorithm for all data sets. Nevertheless, CAB-density clustering algorithm is still a good clustering algorithm because it has correctly identified the number of classes of some data sets more frequently in a thirty trial run with a much smaller standard deviation, a potential in clustering high dimensional data sets. Thus, the researcher recommends further investigation in the post-processing stage of the algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clustering" title="clustering">clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=metaheuristics" title=" metaheuristics"> metaheuristics</a>, <a href="https://publications.waset.org/abstracts/search?q=collective%20animal%20behavior%20algorithm" title=" collective animal behavior algorithm"> collective animal behavior algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=density-based%20%20clustering" title=" density-based clustering"> density-based clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=multimodal%20optimization" title=" multimodal optimization"> multimodal optimization</a> </p> <a href="https://publications.waset.org/abstracts/94254/multimodal-optimization-of-density-based-clustering-using-collective-animal-behavior-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3519</span> Hardware for Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fariborz%20Ahmadi">Fariborz Ahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Tati"> Reza Tati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Genetic algorithm is a soft computing method that works on set of solutions. These solutions are called chromosome and the best one is the absolute solution of the problem. The main problem of this algorithm is that after passing through some generations, it may be produced some chromosomes that had been produced in some generations ago that causes reducing the convergence speed. From another respective, most of the genetic algorithms are implemented in software and less works have been done on hardware implementation. Our work implements genetic algorithm in hardware that doesn’t produce chromosome that have been produced in previous generations. In this work, most of genetic operators are implemented without producing iterative chromosomes and genetic diversity is preserved. Genetic diversity causes that not only do not this algorithm converge to local optimum but also reaching to global optimum. Without any doubts, proposed approach is so faster than software implementations. Evaluation results also show the proposed approach is faster than hardware ones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hardware" title="hardware">hardware</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20science" title=" computer science"> computer science</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering" title=" engineering"> engineering</a> </p> <a href="https://publications.waset.org/abstracts/5598/hardware-for-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3518</span> A Kruskal Based Heuxistic for the Application of Spanning Tree</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anjan%20Naidu">Anjan Naidu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we first discuss the minimum spanning tree, then we use the Kruskal algorithm to obtain minimum spanning tree. Based on Kruskal algorithm we propose Kruskal algorithm to apply an application to find minimum cost applying the concept of spanning tree. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minimum%20Spanning%20tree" title="Minimum Spanning tree">Minimum Spanning tree</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithm" title=" algorithm"> algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=Heuxistic" title=" Heuxistic"> Heuxistic</a>, <a href="https://publications.waset.org/abstracts/search?q=application" title=" application"> application</a>, <a href="https://publications.waset.org/abstracts/search?q=classification%20of%20Sub%2097K90" title=" classification of Sub 97K90"> classification of Sub 97K90</a> </p> <a href="https://publications.waset.org/abstracts/30559/a-kruskal-based-heuxistic-for-the-application-of-spanning-tree" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3517</span> Application of Imperialist Competitive Algorithm for Optimal Location and Sizing of Static Compensator Considering Voltage Profile</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vahid%20Rashtchi">Vahid Rashtchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashkan%20Pirooz"> Ashkan Pirooz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper applies the Imperialist Competitive Algorithm (ICA) to find the optimal place and size of Static Compensator (STATCOM) in power systems. The output of the algorithm is a two dimensional array which indicates the best bus number and STATCOM's optimal size that minimizes all bus voltage deviations from their nominal value. Simulations are performed on IEEE 5, 14, and 30 bus test systems. Also some comparisons have been done between ICA and the famous Particle Swarm Optimization (PSO) algorithm. Results show that how this method can be considered as one of the most precise evolutionary methods for the use of optimum compensator placement in electrical grids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evolutionary%20computation" title="evolutionary computation">evolutionary computation</a>, <a href="https://publications.waset.org/abstracts/search?q=imperialist%20competitive%20algorithm" title=" imperialist competitive algorithm"> imperialist competitive algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20systems%20compensation" title=" power systems compensation"> power systems compensation</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20compensators" title=" static compensators"> static compensators</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20profile" title=" voltage profile"> voltage profile</a> </p> <a href="https://publications.waset.org/abstracts/15436/application-of-imperialist-competitive-algorithm-for-optimal-location-and-sizing-of-static-compensator-considering-voltage-profile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">605</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3516</span> Particle Filter State Estimation Algorithm Based on Improved Artificial Bee Colony Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guangyuan%20Zhao">Guangyuan Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Nan%20Huang"> Nan Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuesong%20Han"> Xuesong Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Xu%20Huang"> Xu Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to solve the problem of sample dilution in the traditional particle filter algorithm and achieve accurate state estimation in a nonlinear system, a particle filter method based on an improved artificial bee colony (ABC) algorithm was proposed. The algorithm simulated the process of bee foraging and optimization and made the high likelihood region of the backward probability of particles moving to improve the rationality of particle distribution. The opposition-based learning (OBL) strategy is introduced to optimize the initial population of the artificial bee colony algorithm. The convergence factor is introduced into the neighborhood search strategy to limit the search range and improve the convergence speed. Finally, the crossover and mutation operations of the genetic algorithm are introduced into the search mechanism of the following bee, which makes the algorithm jump out of the local extreme value quickly and continue to search the global extreme value to improve its optimization ability. The simulation results show that the improved method can improve the estimation accuracy of particle filters, ensure the diversity of particles, and improve the rationality of particle distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=particle%20filter" title="particle filter">particle filter</a>, <a href="https://publications.waset.org/abstracts/search?q=impoverishment" title=" impoverishment"> impoverishment</a>, <a href="https://publications.waset.org/abstracts/search?q=state%20estimation" title=" state estimation"> state estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20bee%20colony%20algorithm" title=" artificial bee colony algorithm"> artificial bee colony algorithm</a> </p> <a href="https://publications.waset.org/abstracts/174985/particle-filter-state-estimation-algorithm-based-on-improved-artificial-bee-colony-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3515</span> Nonlinear Power Measurement Algorithm of the Input Mix Components of the Noise Signal and Pulse Interference</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexey%20V.%20Klyuev">Alexey V. Klyuev</a>, <a href="https://publications.waset.org/abstracts/search?q=Valery%20P.%20Samarin"> Valery P. Samarin</a>, <a href="https://publications.waset.org/abstracts/search?q=Viktor%20F.%20Klyuev"> Viktor F. Klyuev</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrey%20V.%20Klyuev"> Andrey V. Klyuev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A power measurement algorithm of the input mix components of the noise signal and pulse interference is considered. The algorithm efficiency analysis has been carried out for different interference to signal ratio. Algorithm performance features have been explored by numerical experiment results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=noise%20signal" title="noise signal">noise signal</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse%20interference" title=" pulse interference"> pulse interference</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20power" title=" signal power"> signal power</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrum%20width" title=" spectrum width"> spectrum width</a>, <a href="https://publications.waset.org/abstracts/search?q=detection" title=" detection"> detection</a> </p> <a href="https://publications.waset.org/abstracts/1915/nonlinear-power-measurement-algorithm-of-the-input-mix-components-of-the-noise-signal-and-pulse-interference" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1915.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3514</span> A Tagging Algorithm in Augmented Reality for Mobile Device Screens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doga%20Erisik">Doga Erisik</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Karaman"> Ahmet Karaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulfem%20Alptekin"> Gulfem Alptekin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ozlem%20Durmaz%20Incel"> Ozlem Durmaz Incel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Augmented reality (AR) is a type of virtual reality aiming to duplicate real world’s environment on a computer’s video feed. The mobile application, which is built for this project (called SARAS), enables annotating real world point of interests (POIs) that are located near mobile user. In this paper, we aim at introducing a robust and simple algorithm for placing labels in an augmented reality system. The system places labels of the POIs on the mobile device screen whose GPS coordinates are given. The proposed algorithm is compared to an existing one in terms of energy consumption and accuracy. The results show that the proposed algorithm gives better results in energy consumption and accuracy while standing still, and acceptably accurate results when driving. The technique provides benefits to AR browsers with its open access algorithm. Going forward, the algorithm will be improved to more rapidly react to position changes while driving. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accurate%20tagging%20algorithm" title="accurate tagging algorithm">accurate tagging algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=augmented%20reality" title=" augmented reality"> augmented reality</a>, <a href="https://publications.waset.org/abstracts/search?q=localization" title=" localization"> localization</a>, <a href="https://publications.waset.org/abstracts/search?q=location-based%20AR" title=" location-based AR"> location-based AR</a> </p> <a href="https://publications.waset.org/abstracts/60858/a-tagging-algorithm-in-augmented-reality-for-mobile-device-screens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3513</span> An Authentic Algorithm for Ciphering and Deciphering Called Latin Djokovic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diogen%20Babuc">Diogen Babuc</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The question that is a motivation of writing is how many devote themselves to discovering something in the world of science where much is discerned and revealed, but at the same time, much is unknown. Methods: The insightful elements of this algorithm are the ciphering and deciphering algorithms of Playfair, Caesar, and Vigenère. Only a few of their main properties are taken and modified, with the aim of forming a specific functionality of the algorithm called Latin Djokovic. Specifically, a string is entered as input data. A key k is given, with a random value between the values a and b = a+3. The obtained value is stored in a variable with the aim of being constant during the run of the algorithm. In correlation to the given key, the string is divided into several groups of substrings, and each substring has a length of k characters. The next step involves encoding each substring from the list of existing substrings. Encoding is performed using the basis of Caesar algorithm, i.e., shifting with k characters. However, that k is incremented by 1 when moving to the next substring in that list. When the value of k becomes greater than b+1, it’ll return to its initial value. The algorithm is executed, following the same procedure, until the last substring in the list is traversed. Results: Using this polyalphabetic method, ciphering and deciphering of strings are achieved. The algorithm also works for a 100-character string. The x character isn’t used when the number of characters in a substring is incompatible with the expected length. The algorithm is simple to implement, but it’s questionable if it works better than the other methods from the point of view of execution time and storage space. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ciphering" title="ciphering">ciphering</a>, <a href="https://publications.waset.org/abstracts/search?q=deciphering" title=" deciphering"> deciphering</a>, <a href="https://publications.waset.org/abstracts/search?q=authentic" title=" authentic"> authentic</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithm" title=" algorithm"> algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=polyalphabetic%20cipher" title=" polyalphabetic cipher"> polyalphabetic cipher</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20key" title=" random key"> random key</a>, <a href="https://publications.waset.org/abstracts/search?q=methods%20comparison" title=" methods comparison"> methods comparison</a> </p> <a href="https://publications.waset.org/abstracts/158121/an-authentic-algorithm-for-ciphering-and-deciphering-called-latin-djokovic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158121.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3512</span> Multiple Fault Diagnosis in Digital Circuits using Critical Path Tracing and Enhanced Deduction Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Mahmoud">Mohamed Mahmoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper has developed an effect-cause analysis technique for fault diagnosis in digital circuits. The main algorithm of our technique is based on the Enhanced Deduction Algorithm, which processes the real response of the CUT to the applied test T to deduce the values of the internal lines. An experimental version of the algorithm has been implemented in C++. The code takes about 7592 lines. The internal values are determined based on the logic values under the permanent stuck-fault model. Using a backtracking strategy guarantees that the actual values are covered by at least one solution, or no solution is found. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enhanced%20deduction%20algorithm" title="enhanced deduction algorithm">enhanced deduction algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=backtracking%20strategy" title=" backtracking strategy"> backtracking strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=automatic%20test%20equipment" title=" automatic test equipment"> automatic test equipment</a>, <a href="https://publications.waset.org/abstracts/search?q=verfication" title=" verfication"> verfication</a> </p> <a href="https://publications.waset.org/abstracts/144580/multiple-fault-diagnosis-in-digital-circuits-using-critical-path-tracing-and-enhanced-deduction-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3511</span> Performance of the New Laboratory-Based Algorithm for HIV Diagnosis in Southwestern China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanhua%20Zhao">Yanhua Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Chenli%20Rao"> Chenli Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=Dongdong%20Li"> Dongdong Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Chuanmin%20Tao"> Chuanmin Tao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Chinese Centers for Disease Control and Prevention (CCDC) issued a new laboratory-based algorithm for HIV diagnosis on April 2016, which initially screens with a combination HIV-1/HIV-2 antigen/antibody fourth-generation immunoassay (IA) followed, when reactive, an HIV-1/HIV-2 undifferentiated antibody IA in duplicate. Reactive specimens with concordant results undergo supplemental tests with western blots, or HIV-1 nucleic acid tests (NATs) and non-reactive specimens with discordant results receive HIV-1 NATs or p24 antigen tests or 2-4 weeks follow-up tests. However, little data evaluating the application of the new algorithm have been reported to date. The study was to evaluate the performance of new laboratory-based HIV diagnostic algorithm in an inpatient population of Southwest China over the initial 6 months by compared with the old algorithm. Plasma specimens collected from inpatients from May 1, 2016, to October 31, 2016, are submitted to the laboratory for screening HIV infection performed by both the new HIV testing algorithm and the old version. The sensitivity and specificity of the algorithms and the difference of the categorized numbers of plasmas were calculated. Under the new algorithm for HIV diagnosis, 170 of the total 52 749 plasma specimens were confirmed as positively HIV-infected (0.32%). The sensitivity and specificity of the new algorithm were 100% (170/170) and 100% (52 579/52 579), respectively; while 167 HIV-1 positive specimens were identified by the old algorithm with sensitivity 98.24% (167/170) and 100% (52 579/52 579), respectively. Three acute HIV-1 infections (AHIs) and two early HIV-1 infections (EHIs) were identified by the new algorithm; the former was missed by old procedure. Compared with the old version, the new algorithm produced fewer WB-indeterminate results (2 vs. 16, p = 0.001), which led to fewer follow-up tests. Therefore, the new HIV testing algorithm is more sensitive for detecting acute HIV-1 infections with maintaining the ability to verify the established HIV-1 infections and can dramatically decrease the greater number of WB-indeterminate specimens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algorithm" title="algorithm">algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnosis" title=" diagnosis"> diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=HIV" title=" HIV"> HIV</a>, <a href="https://publications.waset.org/abstracts/search?q=laboratory" title=" laboratory"> laboratory</a> </p> <a href="https://publications.waset.org/abstracts/68960/performance-of-the-new-laboratory-based-algorithm-for-hiv-diagnosis-in-southwestern-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68960.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3510</span> Approximately Similarity Measurement of Web Sites Using Genetic Algorithms and Binary Trees</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doru%20Anastasiu%20Popescu">Doru Anastasiu Popescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dan%20R%C4%83dulescu"> Dan Rădulescu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we determine the similarity of two HTML web applications. We are going to use a genetic algorithm in order to determine the most significant web pages of each application (we are not going to use every web page of a site). Using these significant web pages, we will find the similarity value between the two applications. The algorithm is going to be efficient because we are going to use a reduced number of web pages for comparisons but it will return an approximate value of the similarity. The binary trees are used to keep the tags from the significant pages. The algorithm was implemented in Java language. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tag" title="Tag">Tag</a>, <a href="https://publications.waset.org/abstracts/search?q=HTML" title=" HTML"> HTML</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20page" title=" web page"> web page</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20value" title=" similarity value"> similarity value</a>, <a href="https://publications.waset.org/abstracts/search?q=binary%20tree" title=" binary tree"> binary tree</a> </p> <a href="https://publications.waset.org/abstracts/50460/approximately-similarity-measurement-of-web-sites-using-genetic-algorithms-and-binary-trees" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3509</span> Optimal Sizing and Placement of Distributed Generators for Profit Maximization Using Firefly Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Engy%20Adel%20Mohamed">Engy Adel Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasser%20Gamal-Eldin%20Hegazy"> Yasser Gamal-Eldin Hegazy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a firefly based algorithm for optimal sizing and allocation of distributed generators for profit maximization. Distributed generators in the proposed algorithm are of photovoltaic and combined heat and power technologies. Combined heat and power distributed generators are modeled as voltage controlled nodes while photovoltaic distributed generators are modeled as constant power nodes. The proposed algorithm is implemented in MATLAB environment and tested the unbalanced IEEE 37-node feeder. The results show the effectiveness of the proposed algorithm in optimal selection of distributed generators size and site in order to maximize the total system profit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20generators" title="distributed generators">distributed generators</a>, <a href="https://publications.waset.org/abstracts/search?q=firefly%20algorithm" title=" firefly algorithm"> firefly algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=IEEE%2037-node%20feeder" title=" IEEE 37-node feeder"> IEEE 37-node feeder</a>, <a href="https://publications.waset.org/abstracts/search?q=profit%20maximization" title=" profit maximization"> profit maximization</a> </p> <a href="https://publications.waset.org/abstracts/6198/optimal-sizing-and-placement-of-distributed-generators-for-profit-maximization-using-firefly-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6198.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3508</span> A Parallel Implementation of Artificial Bee Colony Algorithm within CUDA Architecture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Selcuk%20Aslan">Selcuk Aslan</a>, <a href="https://publications.waset.org/abstracts/search?q=Dervis%20Karaboga"> Dervis Karaboga</a>, <a href="https://publications.waset.org/abstracts/search?q=Celal%20Ozturk"> Celal Ozturk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Artificial Bee Colony (ABC) algorithm is one of the most successful swarm intelligence based metaheuristics. It has been applied to a number of constrained or unconstrained numerical and combinatorial optimization problems. In this paper, we presented a parallelized version of ABC algorithm by adapting employed and onlooker bee phases to the Compute Unified Device Architecture (CUDA) platform which is a graphical processing unit (GPU) programming environment by NVIDIA. The execution speed and obtained results of the proposed approach and sequential version of ABC algorithm are compared on functions that are typically used as benchmarks for optimization algorithms. Tests on standard benchmark functions with different colony size and number of parameters showed that proposed parallelization approach for ABC algorithm decreases the execution time consumed by the employed and onlooker bee phases in total and achieved similar or better quality of the results compared to the standard sequential implementation of the ABC algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Artificial%20Bee%20Colony%20algorithm" title="Artificial Bee Colony algorithm">Artificial Bee Colony algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=GPU%20computing" title=" GPU computing"> GPU computing</a>, <a href="https://publications.waset.org/abstracts/search?q=swarm%20intelligence" title=" swarm intelligence"> swarm intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=parallelization" title=" parallelization"> parallelization</a> </p> <a href="https://publications.waset.org/abstracts/44876/a-parallel-implementation-of-artificial-bee-colony-algorithm-within-cuda-architecture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44876.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SOFM%20algorithm&amp;page=2" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SOFM%20algorithm&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SOFM%20algorithm&amp;page=2">2</a></li> <li class="page-item active"><span class="page-link">3</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SOFM%20algorithm&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SOFM%20algorithm&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SOFM%20algorithm&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SOFM%20algorithm&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SOFM%20algorithm&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SOFM%20algorithm&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SOFM%20algorithm&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SOFM%20algorithm&amp;page=119">119</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SOFM%20algorithm&amp;page=120">120</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SOFM%20algorithm&amp;page=4" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10