CINXE.COM

Search results for: digital printing

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: digital printing</title> <meta name="description" content="Search results for: digital printing"> <meta name="keywords" content="digital printing"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="digital printing" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="digital printing"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3090</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: digital printing</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3090</span> Improving Sustainability of the Apparel Industry with Joining the Forces among the Brand Owners: The Case Study of Digital Textile Printing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Babak%20Mohajeri">Babak Mohajeri</a>, <a href="https://publications.waset.org/abstracts/search?q=Elina%20Ilen"> Elina Ilen</a>, <a href="https://publications.waset.org/abstracts/search?q=Timo%20Nyberg"> Timo Nyberg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sustainability has become an important topic in contemporary business. The apparel industry is a good example to assess sustainability in practice. Value chains in the apparel industry are faced with various challenges regarding sustainability issues. Apparel companies pay higher attention to economic sustainability issues, and environmental and social sustainability issues of the apparel industry are often underrated. In this paper, we analyze the role of the different players in the value chain of the apparel industry in terms of sustainability. We realize that the brand owners have the highest impact on improving the sustainability of the apparel industry. We design a collaborative business model to join the forces among the brand owners for improving the sustainability of the apparel industry throughout the value chain. We have conducted a case study of shifting from conventional screen-printing to more environmentally sustainable digital textile printing. We suggest that this shift can be accelerated if the brand owners join their forces together to shift from conventional printing to digital printing technology in the apparel industry. Based on the proposed business model, we suggest future directions for using joining the forces among the brand owners for case of sustainability <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainability" title="sustainability">sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20textile%20printing" title=" digital textile printing "> digital textile printing </a>, <a href="https://publications.waset.org/abstracts/search?q=joining%20forces" title=" joining forces"> joining forces</a>, <a href="https://publications.waset.org/abstracts/search?q=apparel%20industry" title=" apparel industry"> apparel industry</a> </p> <a href="https://publications.waset.org/abstracts/64623/improving-sustainability-of-the-apparel-industry-with-joining-the-forces-among-the-brand-owners-the-case-study-of-digital-textile-printing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3089</span> Implementing 3D Printing for 3D Digital Modeling in the Classroom</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saritdikhun%20Somasa">Saritdikhun Somasa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 3D printing fabrication has empowered many artists in many fields. Artists who work in stop motion, 3D modeling, toy design, product design, sculpture, and fine arts become one-stop shop operations–where they can design, prototype, and distribute their designs for commercial or fine art purposes. The author has developed a digital sculpting course that fosters digital software, peripheral hardware, and 3D printing with traditional sculpting concept techniques to address the complexities of this multifaceted process, allowing the students to produce complex 3d-printed work. The author will detail the preparation and planning for pre- to post-process 3D printing elements, including software, materials, space, equipment, tools, and schedule consideration for small to medium figurine design statues in a semester-long class. In addition, the author provides insight into teaching challenges in the non-studio space that requires students to work intensively on post-printed models to assemble parts, finish, and refine the 3D printed surface. Even though this paper focuses on the 3D printing processes and techniques for small to medium design statue projects for the Digital Media program, the author hopes the paper will benefit other fields of study such as craft practices, product design, and fine-arts programs. Other schools that might implement 3D printing and fabrication in their programs will find helpful information in this paper, such as a teaching plan, choices of equipment and materials, adaptation for non-studio spaces, and putting together a complete and well-resolved project for students. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20digital%20modeling" title="3D digital modeling">3D digital modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20digital%20sculpting" title=" 3D digital sculpting"> 3D digital sculpting</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20modeling" title=" 3D modeling"> 3D modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title=" 3D printing"> 3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20digital%20fabrication" title=" 3D digital fabrication"> 3D digital fabrication</a> </p> <a href="https://publications.waset.org/abstracts/153758/implementing-3d-printing-for-3d-digital-modeling-in-the-classroom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3088</span> Digital Art Fabric Prints: Procedure, Process and Progress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tripti%20Singh">Tripti Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Digital tools are merging boundaries of different mediums as endeavoured artists exploring new areas. Digital fabric printing has motivated artists to create prints by combining images acquired by photograph, scanned images, computer graphics and microscopic imaginary etc to name few, with traditional media such as hand drawing, weaving, hand printed patterns, printing making techniques and so on. It opened whole new world of possibilities for artists to search, research and combine old and contemporary mediums for their unique art prints. As artistic medium digital art fabrics have aesthetic values which have impact and influence on not only on a personality but also interiors of a living or work space. In this way it can be worn, as fashion statement and also an interior decoration. Digital art fabric prints gives opportunity to print almost everything on any fabric with long lasting prints quality. Single edition and limited editions are possible for maintaining scarcity and uniqueness of an art form. These fabric prints fulfill today’s need, as they are eco-friendly in nature and they produce less wastage compared to traditional fabric printing techniques. These prints can be used to make unique and customized curtains, quilts, clothes, bags, furniture, dolls, pillows, framed artwork, costumes, banners and much, much more. This paper will explore the procedure, process, and progress techniques of digital art fabric printing in depth with suitable pictorial examples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20art" title="digital art">digital art</a>, <a href="https://publications.waset.org/abstracts/search?q=fabric%20prints" title=" fabric prints"> fabric prints</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20fabric%20prints" title=" digital fabric prints"> digital fabric prints</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20media" title=" new media"> new media</a> </p> <a href="https://publications.waset.org/abstracts/35137/digital-art-fabric-prints-procedure-process-and-progress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35137.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3087</span> Design Aspects of 3D Printing for Fashion and Textiles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chi-Chung%20Marven%20Chick">Chi-Chung Marven Chick</a>, <a href="https://publications.waset.org/abstracts/search?q=Chu-Po%20Ho"> Chu-Po Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Sau-Chuen%20Joe%20Au"> Sau-Chuen Joe Au</a>, <a href="https://publications.waset.org/abstracts/search?q=Wing-Fai%20Sidney%20Wong"> Wing-Fai Sidney Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi-Wai%20Kan"> Chi-Wai Kan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 3D printing is now drawing attention to manufacturing process. In fashion and textile industry, many 3D printing applications had been developed for prototyping or even final product production because of its great flexibility in production. However, when compared with conventional manufacturing processes for fashion and textiles, the design aspects and requirements may not be same for using 3D printing process. Therefore, in this paper, we will compare the design aspects between conventional manufacturing processes and 3D printing processes. Also, the material requirements related to the design in 3D printing for fashion and textiles will be reviewed and discussed. This review paper may demonstrate a possible way to develop 3D printing method(s) for fashion and textiles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a>, <a href="https://publications.waset.org/abstracts/search?q=textile" title=" textile"> textile</a>, <a href="https://publications.waset.org/abstracts/search?q=applications" title=" applications"> applications</a> </p> <a href="https://publications.waset.org/abstracts/184119/design-aspects-of-3d-printing-for-fashion-and-textiles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">57</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3086</span> Comparison of Tensile Strength and Folding Endurance of (FDM Process) 3D Printed ABS and PLA Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Devicharan">R. Devicharan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a short span 3D Printing is expected to play a vital role in our life. The possibility of creativity and speed in manufacturing through various 3D printing processes is infinite. This study is performed on the FDM (Fused Deposition Modelling) method of 3D printing, which is one of the pre-dominant methods of 3D printing technologies. This study focuses on physical properties of the objects produced by 3D printing which determine the applications of the 3D printed objects. This paper specifically aims at the study of the tensile strength and the folding endurance of the 3D printed objects through the FDM (Fused Deposition Modelling) method using the ABS (Acronitirile Butadiene Styrene) and PLA (Poly Lactic Acid) plastic materials. The study is performed on a controlled environment and the specific machine settings. Appropriate tables, graphs are plotted and research analysis techniques will be utilized to analyse, verify and validate the experiment results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FDM%20process" title="FDM process">FDM process</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title=" 3D printing"> 3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=ABS%20for%203D%20printing" title=" ABS for 3D printing"> ABS for 3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=PLA%20for%203D%20printing" title=" PLA for 3D printing"> PLA for 3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20prototyping" title=" rapid prototyping"> rapid prototyping</a> </p> <a href="https://publications.waset.org/abstracts/29802/comparison-of-tensile-strength-and-folding-endurance-of-fdm-process-3d-printed-abs-and-pla-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">599</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3085</span> The Bloom of 3D Printing in the Health Care Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mihika%20Shivkumar">Mihika Shivkumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Krishna%20Kumar"> Krishna Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Perisamy"> C. Perisamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 3D printing is a method of manufacturing wherein materials, such as plastic or metal, are deposited in layers one on top of the other to produce a three dimensional object. 3D printing is most commonly associated with creating engineering prototypes. However, its applications in the field of human health care have been frequently disregarded. Medical applications for 3D printing are expanding rapidly and are envisaged to revolutionize health care. Medical applications for 3D printing, both present and its potential, can be categorized broadly, including: creation of customized prosthetics tissue and organ fabrication; creation of implants, and anatomical models and pharmaceutical research regarding drug dosage forms. This piece breaks down bioprinting in the healthcare sector. It focuses on the better subtle elements of every particular point, including how 3D printing functions in the present, its impediments, and future applications in the health care sector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-printing" title="bio-printing">bio-printing</a>, <a href="https://publications.waset.org/abstracts/search?q=prototype" title=" prototype"> prototype</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery" title=" drug delivery"> drug delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=organ%20regeneration" title=" organ regeneration"> organ regeneration</a> </p> <a href="https://publications.waset.org/abstracts/44541/the-bloom-of-3d-printing-in-the-health-care-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3084</span> Development of Soft 3D Printing Materials for Textile Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chi-Chung%20Marven%20Chick">Chi-Chung Marven Chick</a>, <a href="https://publications.waset.org/abstracts/search?q=Chu-Po%20Ho"> Chu-Po Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Sau-Chuen%20Joe%20Au"> Sau-Chuen Joe Au</a>, <a href="https://publications.waset.org/abstracts/search?q=Wing-Fai%20Sidney%20Wong"> Wing-Fai Sidney Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi-Wai%20Kan"> Chi-Wai Kan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, 3D printing becomes popular process for manufacturing, especially has special attention in textile applications. However, there are various types of 3D printing materials, including plastic, resin, rubber, ceramics, gold, platinum, silver, iron, titanium but not all these materials are suitable for textile application. Generally speaking, 3D printing of textile mainly uses thermoplastic polymers such as acrylonitrile butadiene styrene (ABS), polylactide (PLA), polycaprolactone (PCL), thermoplastic polyurethane (TPU), polyethylene terephthalate glycol-modified (PETG), polystyrene (PS), polypropylene (PP). Due to the characteristics of the polymers, 3D printed textiles usually have low air permeability and poor comfortable. Therefore, in this paper, we will review the possible materials suitable for textile application with desired physical and mechanical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing%20materials" title=" 3D printing materials"> 3D printing materials</a>, <a href="https://publications.waset.org/abstracts/search?q=textile" title=" textile"> textile</a>, <a href="https://publications.waset.org/abstracts/search?q=properties" title=" properties"> properties</a> </p> <a href="https://publications.waset.org/abstracts/184118/development-of-soft-3d-printing-materials-for-textile-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184118.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3083</span> Factors Affecting Sustainability of a 3D Printed Object</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kadrefi%20Athanasia">Kadrefi Athanasia</a>, <a href="https://publications.waset.org/abstracts/search?q=Fronimaki%20Evgenia"> Fronimaki Evgenia</a>, <a href="https://publications.waset.org/abstracts/search?q=Mavri%20Maria"> Mavri Maria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 3D Printing (3DP) is a distinct, disruptive technology that belongs to a wider group of manufacturing technologies, Additive Manufacturing (AM). In 3DP, a custom digital file turns into a solid object using a single computer and a 3D printer. Among multiple advantages, 3DP offers production with fewer steps compared to conventional manufacturing, lower production costs, and customizable designs. 3DP can be performed by several techniques, while the most common is Fused Deposition Modeling (FDM). FDM belongs to a wider group of AM techniques, material extrusion, where a digital file converts into a solid object using raw material (called filament) melted in high temperatures. As in most manufacturing procedures, environmental issues have been raised here, too. This study aims to review the literature on issues that determine technical and mechanical factors that affect the sustainability and resilience of a final 3D-printed object. The research focuses on the collection of papers that deal with 3D printing techniques and use keywords or phrases like ‘3D printed objects’, ‘factors of 3DP sustainability’, ‘waste materials,’ ‘infill patterns,’ and ‘support structures.’ After determining factors, a pilot survey will be conducted at the 3D Printing Lab in order to define the significance of each factor in the final 3D printed object. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title=" 3D printing"> 3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20manufacturing" title=" sustainable manufacturing"> sustainable manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20production" title=" sustainable production"> sustainable production</a> </p> <a href="https://publications.waset.org/abstracts/182987/factors-affecting-sustainability-of-a-3d-printed-object" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3082</span> Evaluations of 3D Concrete Printing Produced in the Environment of United Arab Emirates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adil%20K.%20Tamimi">Adil K. Tamimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarig%20Ali"> Tarig Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Rawan%20Anoohi"> Rawan Anoohi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Rajput"> Ahmed Rajput</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaltham%20Alkamali"> Kaltham Alkamali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 3D concrete printing is one of the most innovative and modern techniques in the field of construction that achieved several milestones in that field for the following advantages: saving project&rsquo;s time, ability to execute complicated shapes, reduce waste and low cost. However, the concept of 3D printing in UAE is relatively new where construction teams, including clients, consultants, and contractors, do not have the required knowledge and experience in the field. This is the most significant obstacle for the construction parties, which make them refrained from using 3D concrete printing compared to conventional concreting methods. This study shows the historical development of the 3D concrete printing, its advantages, and the challenges facing this innovation. Concrete mixes and materials have been proposed and evaluated to select the best combination for successful 3D concrete printing. The main characteristics of the 3D concrete printing in the fresh and hardened states are considered, such as slump test, flow table, compressive strength, tensile, and flexural strengths. There is need to assess the structural stability of the 3D concrete by testing the bond between interlayers of the concrete. &nbsp; <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=workability" title=" workability"> workability</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=robots" title=" robots"> robots</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensions" title=" dimensions"> dimensions</a> </p> <a href="https://publications.waset.org/abstracts/111244/evaluations-of-3d-concrete-printing-produced-in-the-environment-of-united-arab-emirates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3081</span> Digital Fashion: An Integrated Approach to Additive Manufacturing in Wearable Fashion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lingju%20Wu">Lingju Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Hua"> Hao Hua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a digital fashion production methodology and workflow based on fused deposition modeling additive manufacturing technology, as demonstrated through a 3D printed fashion show held at Southeast University in Nanjing, China. Unlike traditional fashion, 3D printed fashion allows for the creation of complex geometric shapes and unique structural designs, facilitating diverse reconfiguration and sustainable production of textile fabrics. The proposed methodology includes two components: morphogenesis and the 3D printing process. The morphogenesis part comprises digital design methods such as mesh deformation, structural reorganization, particle flow stretching, sheet partitioning, and spreading methods. The 3D printing process section includes three types of methods: sculptural objects, multi-material composite fabric, and self-forming composite fabrics. This paper focuses on multi-material composite fabrics and self-forming composite fabrics, both of which involve weaving fabrics with 3D-printed material sandwiches. Multi-material composite fabrics create specially tailored fabric from the original properties of the printing path and multiple materials, while self-forming fabrics apply pre-stress to the flat fabric and then print the sandwich, allowing the fabric's own elasticity to interact with the printed components and shape into a 3D state. The digital design method and workflow enable the integration of abstract sensual aesthetics and rational thinking, showcasing a digital aesthetic that challenges conventional handicraft workshops. Overall, this paper provides a comprehensive framework for the production of 3D-printed fashion, from concept to final product. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20fashion" title="digital fashion">digital fashion</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20fabric" title=" composite fabric"> composite fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=self-forming%20structure" title=" self-forming structure"> self-forming structure</a>, <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title=" additive manufacturing"> additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=generating%20design" title=" generating design"> generating design</a> </p> <a href="https://publications.waset.org/abstracts/164039/digital-fashion-an-integrated-approach-to-additive-manufacturing-in-wearable-fashion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3080</span> 3D Printing Technology in Housing Projects Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20F.%20Haddad">Mohammed F. Haddad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20A.%20Albenayyan"> Mohammad A. Albenayyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Realistically, 3-D printing as a technology has not yet reached the required maturity level to handle construction housing projects for citizens on a country scale. However, potentially, it has all of the required elements for addressing this issue. There are two main high-level elements of this technology that need to be capitalized on in order for the technology to reach its full potential, technical and logistical. This paper aims to cover how 3-D printing can be a viable technical solution for housing projects and describe the impact of 3-D printing technical features on the logistical aspects of completing a housing project. Additionally, a perspective about 3-D printing in Saudi Arabia will be presented in order to give the reader an idea of where the kingdom stands in the deployment of this technology. Finally, a glimpse will be given regarding the potential utilization of this technology for space applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=large-scale%203-D%20printing" title="large-scale 3-D printing">large-scale 3-D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title=" additive manufacturing"> additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=D-%20shape" title=" D- shape"> D- shape</a>, <a href="https://publications.waset.org/abstracts/search?q=contour%20crafting" title=" contour crafting"> contour crafting</a> </p> <a href="https://publications.waset.org/abstracts/148137/3d-printing-technology-in-housing-projects-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148137.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3079</span> 3D Printing: Rebounding from Global Supply Chain Disruption Due to Natural Disaster</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gurjinder%20Singh">Gurjinder Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Jasmeen%20Kaur"> Jasmeen Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Mukul%20Dhiman"> Mukul Dhiman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper mainly describes the significance of 3D printing in the supply chain management in a scenario when there is disruption in global supply chain. Furthermore, the development and implementation of supply chain strategies in context of 3D printing technology is framed to make supply chain of an organization resilient to disruption caused by natural disasters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20supply%20chain" title=" global supply chain"> global supply chain</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20management" title=" supply chain management"> supply chain management</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20strategies" title=" supply chain strategies"> supply chain strategies</a> </p> <a href="https://publications.waset.org/abstracts/24079/3d-printing-rebounding-from-global-supply-chain-disruption-due-to-natural-disaster" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3078</span> Exploring the Impact of Additive Manufacturing on Supply Chains: A Game-Theoretic Analysis of Manufacturer-Retailer Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ebrahim%20Arbabian">Mohammad Ebrahim Arbabian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the impact of 3D printing, also known as additive manufacturing, on a multi-item supply chain comprising a manufacturer and retailer. Operating under a wholesale-price contract and catering to stochastic customer demand, this study delves into the largely unexplored realm of how 3D printing technology reshapes supply chain dynamics. A distinguishing aspect of 3D printing is its versatility in producing various product types, yet its slower production pace compared to traditional methods poses a challenge. We analyze the trade-off between 3D printing's limited capacity and its enhancement of production flexibility. By delineating the economic circumstances favoring 3D printing adoption by the manufacturer, we establish the Stackelberg equilibrium in the retailer-manufacturer game. Additionally, we determine optimal order quantities for the retailer considering 3D printing as an option for the manufacturer, ascertain optimal wholesale prices in the presence of 3D printing, and compute optimal profits for both parties involved in the supply chain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20management" title=" supply chain management"> supply chain management</a>, <a href="https://publications.waset.org/abstracts/search?q=contract%20theory" title=" contract theory"> contract theory</a>, <a href="https://publications.waset.org/abstracts/search?q=Stackelberg%20game" title=" Stackelberg game"> Stackelberg game</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/184661/exploring-the-impact-of-additive-manufacturing-on-supply-chains-a-game-theoretic-analysis-of-manufacturer-retailer-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184661.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3077</span> In Situ Production of Nano-Cu on a Cotton Fabric Surface by Ink-Jet Printing </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Zoghi">N. Zoghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Laleh%20Maleknia"> Laleh Maleknia </a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20E.%20Olya"> M. E. Olya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The nano-Cu particles were produced on cotton fabric substrate by ink-jet printing technology with water-soluble ink, which was based on copper. The surface tension and viscosity of the prepared inks were evaluated. The ink-jet printing process was repeated 1, 3, and 5 times in order to evaluate variations in the optical properties by changing thickness of printed film. Following initial drying of the printed film, the samples were annealed at different temperatures (150 °C, 200 °C and 250 °C) to determine the optimum temperature for the parameters set out in this experiment. The prepared nano-Cu particles were characterized by XRD and UV spectroscopy. The appearance of printed image and the nano-Cu particles morphology were observed by SEM. The results demonstrated that the ink-jet printing technology can be used to produce nano-particles on the cotton fabrics surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ink-jet%20printing" title="ink-jet printing">ink-jet printing</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-cu" title=" nano-cu"> nano-cu</a>, <a href="https://publications.waset.org/abstracts/search?q=fabric%20ink" title=" fabric ink"> fabric ink</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20situ%20production" title=" in situ production"> in situ production</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton%20fabric" title=" cotton fabric"> cotton fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=water-soluble%20ink" title=" water-soluble ink"> water-soluble ink</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology" title=" morphology"> morphology</a> </p> <a href="https://publications.waset.org/abstracts/35338/in-situ-production-of-nano-cu-on-a-cotton-fabric-surface-by-ink-jet-printing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3076</span> Implementation of a Photo-Curable 3D Additive Manufacturing Technology with Grey Capability by Using Piezo Ink-jets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ming-Jong%20Tsai">Ming-Jong Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20L.%20Cheng"> Y. L. Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20L.%20Kuo"> Y. L. Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Y.%20Hsiao"> S. Y. Hsiao</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20W.%20Chen"> J. W. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20H.%20Liu"> P. H. Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20H.%20Chen"> D. H. Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The 3D printing is a combination of digital technology, material science, intelligent manufacturing and control of opto-mechatronics systems. It is called the third industrial revolution from the view of the Economist Journal. A color 3D printing machine may provide the necessary support for high value-added industrial and commercial design, architectural design, personal boutique, and 3D artist’s creation. The main goal of this paper is to develop photo-curable color 3D manufacturing technology and system implementation. The key technologies include (1) Photo-curable color 3D additive manufacturing processes development and materials research (2) Piezo type ink-jet head control and Opto-mechatronics integration technique of the photo-curable color 3D laminated manufacturing system. The proposed system is integrated with single Piezo type ink-jet head with two individual channels for two primary UV light curable color resins which can provide for future colorful 3D printing solutions. The main research results are 16 grey levels and grey resolution of 75 dpi. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title=" additive manufacturing"> additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=color" title=" color"> color</a>, <a href="https://publications.waset.org/abstracts/search?q=photo-curable" title=" photo-curable"> photo-curable</a>, <a href="https://publications.waset.org/abstracts/search?q=Piezo%20type%20ink-jet" title=" Piezo type ink-jet"> Piezo type ink-jet</a>, <a href="https://publications.waset.org/abstracts/search?q=UV%20Resin" title=" UV Resin "> UV Resin </a> </p> <a href="https://publications.waset.org/abstracts/24597/implementation-of-a-photo-curable-3d-additive-manufacturing-technology-with-grey-capability-by-using-piezo-ink-jets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">561</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3075</span> Characterizing Nanoparticles Generated from the Different Working Type and the Stack Flue during 3D Printing Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kai-Jui%20Kou">Kai-Jui Kou</a>, <a href="https://publications.waset.org/abstracts/search?q=Tzu-Ling%20Shen"> Tzu-Ling Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying-Fang%20Wang"> Ying-Fang Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objectives of the present study are to characterize nanoparticles generated from the different working type in 3D printing room and the stack flue during 3D printing process. The studied laboratory (10.5 m× 7.2 m × 3.2 m) with a ventilation rate of 500 m³/H is installed a 3D metal printing machine. Direct-reading instrument of a scanning mobility particle sizer (SMPS, Model 3082, TSI Inc., St. Paul, MN, USA) was used to conduct static sampling for nanoparticle number concentration and particle size distribution measurements. The SMPS obtained particle number concentration at every 3 minutes, the diameter of the SMPS ranged from 11~372 nm when the aerosol and sheath flow rates were set at 0.6 and 6 L/min, respectively. The concentrations of background, printing process, clearing operation, and screening operation were performed in the laboratory. On the other hand, we also conducted nanoparticle measurement on the 3D printing machine's stack flue to understand its emission characteristics. Results show that the nanoparticles emitted from the different operation process were the same distribution in the form of the uni-modal with number median diameter (NMD) as approximately 28.3 nm to 29.6 nm. The number concentrations of nanoparticles were 2.55×10³ count/cm³ in laboratory background, 2.19×10³ count/cm³ during printing process, 2.29×10³ count/cm³ during clearing process, 3.05×10³ count/cm³ during screening process, 2.69×10³ count/cm³ in laboratory background after printing process, and 6.75×10³ outside laboratory, respectively. We found that there are no emission nanoparticles during the printing process. However, the number concentration of stack flue nanoparticles in the ongoing print is 1.13×10⁶ count/cm³, and that of the non-printing is 1.63×10⁴ count/cm³, with a NMD of 458 nm and 29.4 nm, respectively. It can be confirmed that the measured particle size belongs to easily penetrate the filter in theory during the printing process, even though the 3D printer has a high-efficiency filtration device. Therefore, it is recommended that the stack flue of the 3D printer would be equipped with an appropriate dust collection device to prevent the operators from exposing these hazardous particles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticle" title="nanoparticle">nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20emission" title=" particle emission"> particle emission</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title=" 3D printing"> 3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=number%20concentration" title=" number concentration"> number concentration</a> </p> <a href="https://publications.waset.org/abstracts/96276/characterizing-nanoparticles-generated-from-the-different-working-type-and-the-stack-flue-during-3d-printing-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3074</span> Geopolymer Stabilization of Earth Building Material for Construction 3D Printing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Timur%20Mukhametkaliyev">Timur Mukhametkaliyev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The earthen material possesses low compression strength, and it is highly sensitive to the water content. Different binders can be added (Portland cement or lime) to improve the durability and the mechanical characteristics of earthen material, but the production of these binders has high embodied energy and results in an increase in world CO₂ emission. Geopolymers are binders which can be synthesized at low temperature in alkaline solutions from raw materials consisting of amorphous aluminosilicates. Geopolymers are an attractive substitution of Portland cement and can be used as an excellent stabilization for earthen material. In this study, earthen material stabilized with geopolymer binder for use in construction 3D printing was developed. Construction 3D printing offers freedom of design, waste minimisation, customisation, reduced labour, and automation. For successful 3D printing, the properties of used material are the most important aspects because they require adaptability for extrusion and controlled time of hardening for the binder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20construction" title=" building construction"> building construction</a>, <a href="https://publications.waset.org/abstracts/search?q=geopolymer" title=" geopolymer"> geopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=architecture" title=" architecture"> architecture</a> </p> <a href="https://publications.waset.org/abstracts/135313/geopolymer-stabilization-of-earth-building-material-for-construction-3d-printing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3073</span> The Influence of 3D Printing Course on Middle School Students&#039; Spatial Thinking Ability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wang%20Xingjuan">Wang Xingjuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Qian%20Dongming"> Qian Dongming</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a common thinking ability, spatial thinking ability plays an increasingly important role in the information age. The key to cultivating students' spatial thinking ability is to cultivate students' ability to process and transform graphics. The 3D printing course enables students to constantly touch the rotation and movement of objects during the modeling process and to understand spatial graphics from different views. To this end, this article combines the classic PSVT: R test to explore the impact of 3D printing courses on the spatial thinking ability of middle school students. The results of the study found that: (1) Through the study of the 3D printing course, the students' spatial ability test scores have been significantly improved, which indirectly reflects the improvement of the spatial thinking ability level. (2) The student's spatial thinking ability test results are influenced by the parent's occupation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=middle%20school%20students" title=" middle school students"> middle school students</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20thinking%20ability" title=" spatial thinking ability"> spatial thinking ability</a>, <a href="https://publications.waset.org/abstracts/search?q=influence" title=" influence"> influence</a> </p> <a href="https://publications.waset.org/abstracts/109150/the-influence-of-3d-printing-course-on-middle-school-students-spatial-thinking-ability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109150.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3072</span> Ketones Emission during Pad Printing Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiurski%20S.%20Jelena">Kiurski S. Jelena</a>, <a href="https://publications.waset.org/abstracts/search?q=Aksentijevi%C4%87%20M.%20Sne%C5%BEana"> Aksentijević M. Snežana</a>, <a href="https://publications.waset.org/abstracts/search?q=Oros%20B.%20Ivana"> Oros B. Ivana</a>, <a href="https://publications.waset.org/abstracts/search?q=Keci%C4%87%20S.%20Vesna"> Kecić S. Vesna</a>, <a href="https://publications.waset.org/abstracts/search?q=Djogo%20Z.%20Maja"> Djogo Z. Maja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper investigates the effect of light intensity on the formation of two ketones, acetone and methyl ethyl ketone, in working premises of five pad printing departments in Novi Sad, Serbia. Multiple linear regression analysis examined the form of interdependency concentrations of methyl ethyl ketone, acetone and light intensity in five printing presses at seven sampling points, using Statistica software package version 10th. The results show an average stacking variation investigated variable and can be presented by the general regression model: y = b0 + b1xi1 + b2xi2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acetone" title="acetone">acetone</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20ethyl%20ketone" title=" methyl ethyl ketone"> methyl ethyl ketone</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20linear%20regression%20analysis" title=" multiple linear regression analysis"> multiple linear regression analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=pad%20printing" title=" pad printing"> pad printing</a> </p> <a href="https://publications.waset.org/abstracts/4798/ketones-emission-during-pad-printing-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4798.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3071</span> Topology Optimisation for Reduction in Material Use for Precast Concrete Elements: A Case Study of a 3D-Printed Staircase</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dengyu%20You">Dengyu You</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Kashani"> Alireza Kashani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study explores the potential of 3D concrete printing in manufacturing prefabricated staircases. The applications of 3D concrete printing in large-scale construction could enhance the industry’s implementation of the Industry 4.0 concept. In addition, the current global challenge is to achieve Net Zero Emissions by 2050. Innovation in the construction industry could potentially speed up achieving this target. The 3D printing technology offers a possible solution that reduces cement usage, minimises framework wastes, and is capable of manufacturing complex structures. The performance of the 3D concrete printed lightweight staircase needs to be evaluated. In this study, the staircase is designed using computer-aided technologies, fabricated by 3D concrete printing technologies, and tested with Australian Standard (AS 1657-2018 Fixed platforms, walkways, stairways, and ladders – design, construction, and installation) under a laboratory environment. The experiment results will be further compared with the FEM analysis. The results indicate that 3D concrete printing is capable of fast production, reducing material usage, and is highly automotive, which meets the industry’s future development goal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%203D%20printing" title="concrete 3D printing">concrete 3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=staircase" title=" staircase"> staircase</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=automation" title=" automation"> automation</a> </p> <a href="https://publications.waset.org/abstracts/154922/topology-optimisation-for-reduction-in-material-use-for-precast-concrete-elements-a-case-study-of-a-3d-printed-staircase" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154922.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3070</span> Integration from Laboratory to Industrialization for Hybrid Printed Electronics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Moulay">Ahmed Moulay</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariia%20Zhuldybina"> Mariia Zhuldybina</a>, <a href="https://publications.waset.org/abstracts/search?q=Mirko%20Torres"> Mirko Torres</a>, <a href="https://publications.waset.org/abstracts/search?q=Mike%20Rozel"> Mike Rozel</a>, <a href="https://publications.waset.org/abstracts/search?q=Ngoc%20Duc%20Trinh"> Ngoc Duc Trinh</a>, <a href="https://publications.waset.org/abstracts/search?q=Chlo%C3%A9%20Bois"> Chloé Bois</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hybrid printed electronics technology (HPE) provides innovative opportunities to enhance conventional electronics applications, which are often based on printed circuit boards (PCB). By combining the best of both performance from conventional electronic components and the flexibility from printed circuits makes it possible to manufacture HPE at high volumes using roll-to-roll printing processes. However, several challenges must be overcome in order to accurately integrate an electronic component on a printed circuit. In this presentation, we will demonstrate the integration process of electronic components from the lab scale to the industrialization. Both the printing quality and the integration technique must be studied to define the optimal conditions. To cover the parameters that influence the print quality of the printed circuit, different printing processes, flexible substrates, and conductive inks will be used to determine the optimized printing process/ink/substrate system. After the systems is selected, an electronic component of 2.5 mm2 chip size will be integrated to validate the functionality of the printed, electronic circuit. Critical information such as the conductive adhesive, the curing conditions, and the chip encapsulation will be determined. Thanks to these preliminary results, we are able to demonstrate the chip integration on a printed circuit using industrial equipment, showing the potential of industrialization, compatible using roll-to-roll printing and integrating processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flat%20bed%20screen-printing" title="flat bed screen-printing">flat bed screen-printing</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20printed%20electronics" title=" hybrid printed electronics"> hybrid printed electronics</a>, <a href="https://publications.waset.org/abstracts/search?q=integration" title=" integration"> integration</a>, <a href="https://publications.waset.org/abstracts/search?q=large-scale%20production" title=" large-scale production"> large-scale production</a>, <a href="https://publications.waset.org/abstracts/search?q=roll-to-roll%20printing" title=" roll-to-roll printing"> roll-to-roll printing</a>, <a href="https://publications.waset.org/abstracts/search?q=rotary%20screen%20printing" title=" rotary screen printing"> rotary screen printing</a> </p> <a href="https://publications.waset.org/abstracts/142964/integration-from-laboratory-to-industrialization-for-hybrid-printed-electronics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142964.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3069</span> A 3D Bioprinting System for Engineering Cell-Embedded Hydrogels by Digital Light Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jimmy%20Jiun-Ming%20Su">Jimmy Jiun-Ming Su</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan-Min%20Lin"> Yuan-Min Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bioprinting has been applied to produce 3D cellular constructs for tissue engineering. Microextrusion printing is the most common used method. However, printing low viscosity bioink is a challenge for this method. Herein, we developed a new 3D printing system to fabricate cell-laden hydrogels via a DLP-based projector. The bioprinter is assembled from affordable equipment including a stepper motor, screw, LED-based DLP projector, open source computer hardware and software. The system can use low viscosity and photo-polymerized bioink to fabricate 3D tissue mimics in a layer-by-layer manner. In this study, we used gelatin methylacrylate (GelMA) as bioink for stem cell encapsulation. In order to reinforce the printed construct, surface modified hydroxyapatite has been added in the bioink. We demonstrated the silanization of hydroxyapatite could improve the crosslinking between the interface of hydroxyapatite and GelMA. The results showed that the incorporation of silanized hydroxyapatite into the bioink had an enhancing effect on the mechanical properties of printed hydrogel, in addition, the hydrogel had low cytotoxicity and promoted the differentiation of embedded human bone marrow stem cells (hBMSCs) and retinal pigment epithelium (RPE) cells. Moreover, this bioprinting system has the ability to generate microchannels inside the engineered tissues to facilitate diffusion of nutrients. We believe this 3D bioprinting system has potential to fabricate various tissues for clinical applications and regenerative medicine in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioprinting" title="bioprinting">bioprinting</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20encapsulation" title=" cell encapsulation"> cell encapsulation</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20light%20processing" title=" digital light processing"> digital light processing</a>, <a href="https://publications.waset.org/abstracts/search?q=GelMA%20hydrogel" title=" GelMA hydrogel"> GelMA hydrogel</a> </p> <a href="https://publications.waset.org/abstracts/90711/a-3d-bioprinting-system-for-engineering-cell-embedded-hydrogels-by-digital-light-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90711.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3068</span> The Influence of Microscopic Features on the Self-Cleaning Ability of Developed 3D Printed Fabric-Like Structures Using Different Printing Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayat%20Adnan%20Atwah">Ayat Adnan Atwah</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20A.%20Khan"> Muhammad A. Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Self-cleaning surfaces are getting significant attention in industrial fields. Especially for textile fabrics, it is observed that self-cleaning textile fabric surfaces are created by manipulating the surface features with the help of coatings and nanoparticles, which are considered costly and far more complicated. However, controlling the fabrication parameters of textile fabrics at the microscopic level by exploring the potential for self-cleaning has not been addressed. This study aimed to establish the context of self-cleaning textile fabrics by controlling the fabrication parameters of the textile fabric at the microscopic level. Therefore, 3D-printed textile fabrics were fabricated using the low-cost fused filament fabrication (FFF) technique. The printing parameters, such as orientation angle (O), layer height (LH), and extruder width (EW), were used to control the microscopic features of the printed fabrics. The combination of three printing parameters was created to provide the best self-cleaning textile fabric surface: (LH) (0.15, 0.13, 0.10 mm) and (EW) (0.5, 0.4, 0.3 mm) along with two different (O) of (45º and 90º). Three different thermoplastic flexible filament materials were used: (TPU 98A), (TPE felaflex), and (TPC flex45). The printing parameters were optimised to get the optimum self-cleaning ability of the printed specimens. Furthermore, the impact of these characteristics on mechanical strength at the fabric-woven structure level was investigated. The study revealed that the printing parameters significantly affect the self-cleaning properties after adjusting the selected combination of layer height, extruder width, and printing orientation. A linear regression model was effectively developed to demonstrate the association between 3D printing parameters (layer height, extruder width, and orientation). According to the experimental results, (TPE felaflex) has a better self-cleaning ability than the other two materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=self-cleaning%20fabric" title=" self-cleaning fabric"> self-cleaning fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=microscopic%20features" title=" microscopic features"> microscopic features</a>, <a href="https://publications.waset.org/abstracts/search?q=printing%20parameters" title=" printing parameters"> printing parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=fabrication" title=" fabrication"> fabrication</a> </p> <a href="https://publications.waset.org/abstracts/168395/the-influence-of-microscopic-features-on-the-self-cleaning-ability-of-developed-3d-printed-fabric-like-structures-using-different-printing-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3067</span> Application and Evaluation of 3D Printing Technology in Customized Fashion Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ezza">A. Ezza</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20M.%20Babar%20Ramzan"> B. M. Babar Ramzan</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Hira"> C. Hira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study deliberates emerging design activates in 3D printing technology, the paper provides the insight into the broad opportunities in 3D printing applications in fashion world. 3D printing is becoming a reason for reduction of lead time. The process engenders the precise models and one of prototype components for design approbation; trail and testing significance through the production components to be utilized in true working environments. This emerging technology have given elevate to an emergent realm of digitally fabricated art and design. Bitonic Creations, CONTINUUM (3D printed shoes), Jiri Evenhuis, Michael Schmidt have be giving extensive amassments of haute couture dresses and accessories. Cosyflex TM, N12 undergarments are examples of an innovative process for 3D printing. Varied types of liquid polymers such as latex, silicon, polyurethane and Teflon as well as a variety of textile fibers such as cotton, viscose and polyamide enable tailor made fabrics for any need. Patterns, perforations, embossing and embellishments may be created by printing on 3D structure base plate. Computer solidifies material feedstock layer by layer with micro-millimeter detail. In lieu of producing textiles by meter, then cutting and sewing them into final product, 3D printing can become a reason to make sewing equipment obsolete. The findings positively corroborates the expected advantage of 3D printed sample that seem to facilitate the first steps for designer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=customization" title=" customization"> customization</a>, <a href="https://publications.waset.org/abstracts/search?q=fashion%20industry" title=" fashion industry"> fashion industry</a>, <a href="https://publications.waset.org/abstracts/search?q=Haute%20couture" title=" Haute couture "> Haute couture </a> </p> <a href="https://publications.waset.org/abstracts/25808/application-and-evaluation-of-3d-printing-technology-in-customized-fashion-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">566</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3066</span> Industrial Revolution: Army Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20%C5%9Eim%C5%9Fek">M. Şimşek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Additive manufacturing (AM) or generally known as three dimensional (3D) printing provides great opportunities for both civilian and military applications by which 3D has become the biggest nominee of breakthrough of 21th century. When properly used, it has a wide spectrum of applications that make production easier and more profitable. Considering the advantages of AM, every firm has an intention of catching up with this new trend. As well as reducing costs and thus increasing benefits, 3D printing provides opportunities for national armies by reducing maintenance and repair time and increasing operational readiness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=operational%20cost" title=" operational cost"> operational cost</a>, <a href="https://publications.waset.org/abstracts/search?q=operational%20readiness" title=" operational readiness"> operational readiness</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain" title=" supply chain"> supply chain</a>, <a href="https://publications.waset.org/abstracts/search?q=three%20dimensional%20printing" title=" three dimensional printing"> three dimensional printing</a> </p> <a href="https://publications.waset.org/abstracts/24307/industrial-revolution-army-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3065</span> Fully Printed Strain Gauges: A Comparison of Aerosoljet-Printing and Micropipette-Dispensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20Panreck">Benjamin Panreck</a>, <a href="https://publications.waset.org/abstracts/search?q=Manfred%20Hild"> Manfred Hild</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Strain sensors based on a change in resistance are well established for the measurement of forces, stresses, or material fatigue. Within the scope of this paper, fully additive manufactured strain sensors were produced using an ink of silver nanoparticles. Their behavior was evaluated by periodic tensile tests. Printed strain sensors exhibit two advantages: Their measuring grid is adaptable to the use case and they do not need a carrier-foil, as the measuring structure can be printed directly onto a thin sprayed varnish layer on the aluminum specimen. In order to compare quality characteristics, the sensors have been manufactured using two different technologies, namely aerosoljet-printing and micropipette-dispensing. Both processes produce structures which exhibit continuous features (in contrast to what can be achieved with droplets during inkjet printing). Briefly summarized the results show that aerosoljet-printing is the preferable technology for specimen with non-planar surfaces whereas both technologies are suitable for flat specimen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerosoljet-printing" title="aerosoljet-printing">aerosoljet-printing</a>, <a href="https://publications.waset.org/abstracts/search?q=micropipette-dispensing" title=" micropipette-dispensing"> micropipette-dispensing</a>, <a href="https://publications.waset.org/abstracts/search?q=printed%20electronics" title=" printed electronics"> printed electronics</a>, <a href="https://publications.waset.org/abstracts/search?q=printed%20sensors" title=" printed sensors"> printed sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20gauge" title=" strain gauge"> strain gauge</a> </p> <a href="https://publications.waset.org/abstracts/93361/fully-printed-strain-gauges-a-comparison-of-aerosoljet-printing-and-micropipette-dispensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3064</span> Effect of Printing Process on Mechanical Properties of Interface between 3D Printed Concrete Strips</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei%20Chen">Wei Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinlong%20Pan"> Jinlong Pan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 3D concrete printing technology is a novel and highly efficient construction method that holds significant promise for advancing low-carbon initiatives within the construction industry. In contrast to traditional construction practices, 3D printing offers a manual and formwork-free approach, resulting in a transformative shift in labor requirements and fabrication techniques. This transition yields substantial reductions in carbon emissions during the construction phase, as well as decreased on-site waste generation. Furthermore, when compared to conventionally printed concrete, 3D concrete exhibits mechanical anisotropy due to its layer-by-layer construction methodology. Therefore, it becomes imperative to investigate the influence of the printing process on the mechanical properties of 3D printed strips and to optimize the mechanical characteristics of these coagulated strips. In this study, we conducted three-dimensional reconstructions of printed blocks using both circular and directional print heads, incorporating various overlap distances between strips, and employed CT scanning for comprehensive analysis. Our research focused on assessing mechanical properties and micro-pore characteristics under different loading orientations. Our findings reveal that increasing the overlap degree between strips leads to enhanced mechanical properties of the strips. However, it's noteworthy that once full overlap is achieved, further increases in the degree of coincidence do not lead to a decrease in porosity between strips. Additionally, due to its superior printing cross-sectional area, the square printing head exhibited the most favorable impact on mechanical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing%20concrete" title="3D printing concrete">3D printing concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20anisotropy" title=" mechanical anisotropy"> mechanical anisotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-pore%20structure" title=" micro-pore structure"> micro-pore structure</a>, <a href="https://publications.waset.org/abstracts/search?q=printing%20technology" title=" printing technology"> printing technology</a> </p> <a href="https://publications.waset.org/abstracts/175395/effect-of-printing-process-on-mechanical-properties-of-interface-between-3d-printed-concrete-strips" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3063</span> Empirical Investigation of the Ecoprint Technique and Natural Dyes Using Geranium and Petunia Petals in a Sustainable Way</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mar%C3%ADa%20Rojo%20Granados">María Rojo Granados</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents an empirical investigation of the performance of pink and purple petunia petals and orange and red geranium petals on a linen fabric using the Eco Print technique. This theoretical and practical approach represents an advance in the textile world towards sustainable dyeing and printing methods. It is understood that the possibility of mass printing or dyeing through these methods in fashion is complex, but it can be an approach toward a more sustainable industry. The research consists of twenty-two empirical tests where different processes and methods are applied and explained at different temperatures and using different mordants. The test results allow the selection of which printing and dyeing methods can be applied to the fashion industry in an environmentally consistent way. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dyeing" title="dyeing">dyeing</a>, <a href="https://publications.waset.org/abstracts/search?q=empirical%20tests" title=" empirical tests"> empirical tests</a>, <a href="https://publications.waset.org/abstracts/search?q=petals" title=" petals"> petals</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=printing" title=" printing"> printing</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainably" title=" sustainably"> sustainably</a> </p> <a href="https://publications.waset.org/abstracts/164062/empirical-investigation-of-the-ecoprint-technique-and-natural-dyes-using-geranium-and-petunia-petals-in-a-sustainable-way" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164062.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3062</span> Future Applications of 4D Printing in Dentistry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hosamuddin%20Hamza">Hosamuddin Hamza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The major concept of 4D printing is self-folding under thermal and humidity changes. This concept relies on understanding how the microstructures of 3D-printed models can undergo spontaneous shape transformation under thermal and moisture changes. The transformation mechanism could be achieved by mixing, in a controllable pattern, a number of materials within the printed model, each with known strain/shrinkage properties. 4D printing has a strong potential to be applied in dentistry as the technology could produce dynamic and adaptable materials to be used as functional objects in the oral environment under the continuously changing thermal and humidity conditions. The motion criteria could override the undesired dimensional changes, thermal instability, polymerization shrinkage and microleakage. 4D printing could produce restorative materials being self-adjusted spontaneously without further intervention from the dentist or patient; that is, the materials could be capable of fixing its failed portions, compensating for some lost tooth structure, while avoiding microleakage or overhangs at the margins. In prosthetic dentistry, 4D printing could provide an option to manage the influence of bone and soft tissue imbalance during mastication (and at rest) with high predictability of the type/direction of forces. It can also produce materials with better fitting and retention characteristics than conventional or 3D-printed materials. Nevertheless, it is important to highlight that 4D-printed objects, having dynamic properties, could provide some cushion as they undergo self-folding compensating for any thermal changes or mechanical forces such as traumatic forces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=functional%20material" title="functional material">functional material</a>, <a href="https://publications.waset.org/abstracts/search?q=self-folding%20material" title=" self-folding material"> self-folding material</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title=" 3D printing"> 3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=4D%20printing" title=" 4D printing"> 4D printing</a> </p> <a href="https://publications.waset.org/abstracts/61642/future-applications-of-4d-printing-in-dentistry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61642.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">479</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3061</span> The Applications of Wire Print in Composite Material Research and Fabrication Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hsu%20Yi-Chia">Hsu Yi-Chia</a>, <a href="https://publications.waset.org/abstracts/search?q=Hoy%20June-Hao"> Hoy June-Hao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> FDM (Fused Deposition Modeling) is a rapid proofing method without mold, however, high material and time costs have always been a major disadvantage. Wire-printing is the next generation technology that can more flexible, and also easier to apply on a 3D printer and robotic arms printing. It can create its own construction methods. The research is mainly divided into three parts. The first is about the method of parameterizing the generated paths and the conversion of g-code to the wire-printing. The second is about material attempts and the application of effects. Third, is about the improvement of the operation of mechanical equipment and the design of robotic tool-head. The purpose of this study is to develop a new wire-print method that can efficiently generate line segments and paths in three- dimensions space. The parametric modeling software transforms the digital model into a 3D printer or robotic arms g-code, this article uses thermoplastics/ clay/composites materials for testing. The combination of materials and wire-print process makes architects and designers have the ability to research and develop works and construction in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=parametric%20software" title="parametric software">parametric software</a>, <a href="https://publications.waset.org/abstracts/search?q=wire%20print" title=" wire print"> wire print</a>, <a href="https://publications.waset.org/abstracts/search?q=robotic%20arms%20fabrication" title=" robotic arms fabrication"> robotic arms fabrication</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20filament%20additive%20manufacturing" title=" composite filament additive manufacturing"> composite filament additive manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/90780/the-applications-of-wire-print-in-composite-material-research-and-fabrication-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=digital%20printing&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=digital%20printing&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=digital%20printing&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=digital%20printing&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=digital%20printing&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=digital%20printing&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=digital%20printing&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=digital%20printing&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=digital%20printing&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=digital%20printing&amp;page=102">102</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=digital%20printing&amp;page=103">103</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=digital%20printing&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10