CINXE.COM
Search results for: ballistic impact
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: ballistic impact</title> <meta name="description" content="Search results for: ballistic impact"> <meta name="keywords" content="ballistic impact"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="ballistic impact" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="ballistic impact"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 11096</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: ballistic impact</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11096</span> Study of The Ballistic Impact at Low Speed on Angle-Ply Fibrous Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Barros">Daniel Barros</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Mota"> Carlos Mota</a>, <a href="https://publications.waset.org/abstracts/search?q=Raul%20Fangueiro"> Raul Fangueiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20Rosa"> Pedro Rosa</a>, <a href="https://publications.waset.org/abstracts/search?q=Gon%C3%A7alo%20Domingos"> Gonçalo Domingos</a>, <a href="https://publications.waset.org/abstracts/search?q=Alfredo%20Passanha"> Alfredo Passanha</a>, <a href="https://publications.waset.org/abstracts/search?q=Norberto%20Almeida"> Norberto Almeida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main aim of the work was to compare the ballistic performance of developed composites using different types of fiber woven fabrics [0,90] and different layers orientation (Angle-ply). The ballistic laminate composites were developed using E-glass, S-glass and aramid fabrics impregnated with thermosetting epoxy resin and using different layers orientation (0,0)º and (0,15)º. The idea of the study is to compare the ballistic performance of each laminate produced by studying the velocity loss of the fragment fired into the laminate surface. There are present some mechanical properties for laminates produced using the different types of fiber, where tensile, flexural and impact Charpy properties were studied. Overall, the angle-ply laminates produced using orientations of (0,15)º, despite the slight loss of mechanical properties compared to the (0,0)º orientation, presents better ballistic resistance and dissipation of energy, for lower ballistic impact velocities (under 290 m/s-1). After treatment of ballistic impact results, the S-Glass with (0,15)º laminate presents better ballistic perforce compared to the other combinations studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ballistic%20impact" title="ballistic impact">ballistic impact</a>, <a href="https://publications.waset.org/abstracts/search?q=angle-ply" title=" angle-ply"> angle-ply</a>, <a href="https://publications.waset.org/abstracts/search?q=ballistic%20composite" title=" ballistic composite"> ballistic composite</a>, <a href="https://publications.waset.org/abstracts/search?q=s-glass%20fiber" title=" s-glass fiber"> s-glass fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=aramid%20fiber" title=" aramid fiber"> aramid fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=fabric%20fiber" title=" fabric fiber"> fabric fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20dissipation" title=" energy dissipation"> energy dissipation</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20performance" title=" mechanical performance"> mechanical performance</a> </p> <a href="https://publications.waset.org/abstracts/140125/study-of-the-ballistic-impact-at-low-speed-on-angle-ply-fibrous-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11095</span> Computational Approaches for Ballistic Impact Response of Stainless Steel 304</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Mostafa">A. Mostafa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a numerical study on determination of ballistic limit velocity (<em>V<sub>50</sub></em>) of stainless steel 304 (SS 304) used in manufacturing security screens. The simulated ballistic impact tests were conducted on clamped sheets with different thicknesses using ABAQUS/Explicit nonlinear finite element (FE) package. The ballistic limit velocity was determined using three approaches, namely: numerical tests based on material properties, FE calculated residual velocities and FE calculated residual energies. Johnson-Cook plasticity and failure criterion were utilized to simulate the dynamic behaviour of the SS 304 under various strain rates, while the well-known Lambert-Jonas equation was used for the data regression for the residual velocity and energy model. Good agreement between the investigated numerical methods was achieved. Additionally, the dependence of the ballistic limit velocity on the sheet thickness was observed. The proposed approaches present viable and cost-effective assessment methods of the ballistic performance of SS 304, which will support the development of robust security screen systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ballistic%20velocity" title="ballistic velocity">ballistic velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20approaches" title=" numerical approaches"> numerical approaches</a>, <a href="https://publications.waset.org/abstracts/search?q=security%20screen" title=" security screen"> security screen</a> </p> <a href="https://publications.waset.org/abstracts/125088/computational-approaches-for-ballistic-impact-response-of-stainless-steel-304" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125088.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11094</span> Behavior of Fibre Reinforced Polymer Composite with Nano-Ceramic Particle under Ballistic Impact and Quasi-Static Punch-Shear Loading </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Rajalakshmi">K. Rajalakshmi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Vasudevan"> A. Vasudevan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The performance of Fibre Reinforced Polymer composite with the nano-ceramic particle as function of time and thickness of laminate which is subjected to ballistic impact and quasi-static punch-shear loading is investigated. The material investigated is made up of several layers of Kevlar fibres which are fabricated with nano-ceramic particles and epoxy resin by compression moulding. The ballistic impact and quasi-static punch-shear loading are studied experimentally and numerically. The failure mechanism is observed using scanning electron microscope (SEM). The result obtained in the experiment and numerical studies are compared. Due to nano size of the ceramic particle, the strength to weight ratio and penetrating resistance will improve in Fibre Reinforced Polymer composite which will have better impact property compared to ceramic plates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ballistic%20impact" title="ballistic impact">ballistic impact</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevlar" title=" Kevlar"> Kevlar</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20ceramic" title=" nano ceramic"> nano ceramic</a>, <a href="https://publications.waset.org/abstracts/search?q=penetration" title=" penetration"> penetration</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20composite" title=" polymer composite"> polymer composite</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20plug" title=" shear plug"> shear plug</a> </p> <a href="https://publications.waset.org/abstracts/75932/behavior-of-fibre-reinforced-polymer-composite-with-nano-ceramic-particle-under-ballistic-impact-and-quasi-static-punch-shear-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75932.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11093</span> Production and Mechanical Characterization of Ballistic Thermoplastic Composite Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Korsacilar">D. Korsacilar</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Atas"> C. Atas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, first thermoplastic composite materials/plates that have high ballistic impact resistance were produced. For this purpose, the thermoplastic prepreg and the vacuum bagging technique were used to produce a composite material. Thermoplastic prepregs (resin-impregnated fiber) that are supplied ready to be used, namely high-density polyethylene (HDPE) was chosen as matrix and unidirectional glass fiber was used as reinforcement. In order to compare the fiber configuration effect on mechanical properties, unidirectional and biaxial prepregs were used. Then the microstructural properties of the composites were investigated with scanning electron microscopy (SEM) analysis. Impact properties of the composites were examined by Charpy impact test and tensile mechanical tests and then the effects of ultraviolet irradiation were investigated on mechanical performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ballistic" title="ballistic">ballistic</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic" title=" thermoplastic"> thermoplastic</a>, <a href="https://publications.waset.org/abstracts/search?q=prepreg" title=" prepreg"> prepreg</a> </p> <a href="https://publications.waset.org/abstracts/13953/production-and-mechanical-characterization-of-ballistic-thermoplastic-composite-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11092</span> Perforation Analysis of the Aluminum Alloy Sheets Subjected to High Rate of Loading and Heated Using Thermal Chamber: Experimental and Numerical Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Bendarma">A. Bendarma</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Jankowiak"> T. Jankowiak</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Rusinek"> A. Rusinek</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Lodygowski"> T. Lodygowski</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kl%C3%B3sak"> M. Klósak</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bouslikhane"> S. Bouslikhane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The analysis of the mechanical characteristics and dynamic behavior of aluminum alloy sheet due to perforation tests based on the experimental tests coupled with the numerical simulation is presented. The impact problems (penetration and perforation) of the metallic plates have been of interest for a long time. Experimental, analytical as well as numerical studies have been carried out to analyze in details the perforation process. Based on these approaches, the ballistic properties of the material have been studied. The initial and residual velocities laser sensor is used during experiments to obtain the ballistic curve and the ballistic limit. The energy balance is also reported together with the energy absorbed by the aluminum including the ballistic curve and ballistic limit. The high speed camera helps to estimate the failure time and to calculate the impact force. A wide range of initial impact velocities from 40 up to 180 m/s has been covered during the tests. The mass of the conical nose shaped projectile is 28 g, its diameter is 12 mm, and the thickness of the aluminum sheet is equal to 1.0 mm. The ABAQUS/Explicit finite element code has been used to simulate the perforation processes. The comparison of the ballistic curve was obtained numerically and was verified experimentally, and the failure patterns are presented using the optimal mesh densities which provide the stability of the results. A good agreement of the numerical and experimental results is observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20alloy" title="aluminum alloy">aluminum alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=ballistic%20behavior" title=" ballistic behavior"> ballistic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20criterion" title=" failure criterion"> failure criterion</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/60677/perforation-analysis-of-the-aluminum-alloy-sheets-subjected-to-high-rate-of-loading-and-heated-using-thermal-chamber-experimental-and-numerical-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11091</span> Ballistic Transport in One-Dimensional Random Dimer Photonic Crystals </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samira%20Cherid">Samira Cherid</a>, <a href="https://publications.waset.org/abstracts/search?q=Samir%20Bentata"> Samir Bentata</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Zahira%20Meghoufel"> F. Zahira Meghoufel</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabria%20Terkhi"> Sabria Terkhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yamina%20Sefir"> Yamina Sefir</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Bendahma"> Fatima Bendahma</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouabdellah%20Bouadjemi"> Bouabdellah Bouadjemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Z.%20Itouni"> Ali Z. Itouni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we examined the propagation of light in one-dimensional systems is examined by means of the random dimer model. The introduction of defect elements, randomly in the studied system, breaks down the Anderson localization and provides a set of propagating delocalized modes at the corresponding conventional dimer resonances. However, tuning suitably the defect dimer resonance on the host ones (or vice versa), the transmission magnitudes can be enhanced providing the optimized ballistic transmission regime as an average response. Hence, ballistic optical filters can be conceived at desired wavelengths. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photonic%20crystals" title="photonic crystals">photonic crystals</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20dimer%20model" title=" random dimer model"> random dimer model</a>, <a href="https://publications.waset.org/abstracts/search?q=ballistic%20resonance" title=" ballistic resonance"> ballistic resonance</a>, <a href="https://publications.waset.org/abstracts/search?q=localization%20and%20transmission" title=" localization and transmission "> localization and transmission </a> </p> <a href="https://publications.waset.org/abstracts/33452/ballistic-transport-in-one-dimensional-random-dimer-photonic-crystals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33452.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">529</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11090</span> Penetration Analysis for Composites Applicable to Military Vehicle Armors, Aircraft Engines and Nuclear Power Plant Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dong%20Wook%20Lee">Dong Wook Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes a method for analyzing penetration for composite material using an explicit nonlinear Finite Element Analysis (FEA). This method may be used in the early stage of design for the protection of military vehicles, aircraft engines and nuclear power plant structures made of composite materials. This paper deals with simple ballistic penetration tests for composite materials and the FEA modeling method and results. The FEA was performed to interpret the ballistic field test phenomenon regarding the damage propagation in the structure subjected to local foreign object impact. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20aided%20engineering" title="computer aided engineering">computer aided engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20analysis" title=" impact analysis"> impact analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=penetration%20analysis" title=" penetration analysis"> penetration analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20material" title=" composite material"> composite material</a> </p> <a href="https://publications.waset.org/abstracts/133472/penetration-analysis-for-composites-applicable-to-military-vehicle-armors-aircraft-engines-and-nuclear-power-plant-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133472.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11089</span> Damage of Laminated Corrugated Sandwich Panels under Inclined Impact Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Kamran">Muhammad Kamran</a>, <a href="https://publications.waset.org/abstracts/search?q=Xue%20Pu"> Xue Pu</a>, <a href="https://publications.waset.org/abstracts/search?q=Naveed%20Ahmed"> Naveed Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sandwich foam structures are efficient in impact energy absorption and making components lightweight; however their efficient use require a detailed understanding of its mechanical response. In this study, the foam core, laminated facings’ sandwich panel with internal triangular rib configuration is impacted by a spherical steel projectile at different angles using ABAQUS finite element package and damage mechanics is studied. Laminated ribs’ structure is sub-divided into three formations; all zeros, all 45 and optimized combination of zeros and 45 degrees. Impact velocity is varied from 250 m/s to 500 m/s with an increment of 50 m/s. The impact damage can significantly demolish the structural integrity and energy absorption due to fiber breakage, matrix cracking, and de-bonding. Macroscopic fracture study of the panel and core along with load-displacement responses and failure modes are the key parameters in the design of smart ballistic resistant structures. Ballistic impact characteristics of panels are studied on different speed, different inclination angles and its dependency on the base, and core materials, ribs formation, and cross-sectional spaces among them are determined. Impact momentum, penetration and kinetic energy absorption data and curves are compiled to predict the first and proximity impact in an effort to enhance the dynamic energy absorption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20energy%20absorption" title="dynamic energy absorption">dynamic energy absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=proximity%20impact" title=" proximity impact"> proximity impact</a>, <a href="https://publications.waset.org/abstracts/search?q=sandwich%20panels" title=" sandwich panels"> sandwich panels</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20momentum" title=" impact momentum"> impact momentum</a> </p> <a href="https://publications.waset.org/abstracts/60138/damage-of-laminated-corrugated-sandwich-panels-under-inclined-impact-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11088</span> Impact of America's Anti-Ballistic Missile System (ABMS) on Power Dynamics of the World</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fehmeen%20Anwar">Fehmeen Anwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ujala%20Liaqat"> Ujala Liaqat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For over half a century, U.S. and the Soviet Union have been at daggers drawn with each other. Both leading powers of the world have been struggling hard to surpass each other in military and other technological fields. This neck-to-neck competition turned in favour of U.S. in the early 1990s when USSR had to face economic stagnation and later dismemberment of several of its states. The predominance of U.S. is still evident to date, rather it continues to grow. With this proposed defence program i.e. Anti-Ballistic Missile System, the U.S. will have a considerable chance of intercepting any nuclear strike by Russia, which re-asserts U.S. dominance in the region and creating a security dilemma for Russia and other states. The question is whether America’s recent nuclear deterrence project is merely to counter nuclear threats from Iran and North Korea or is it purely directed towards Russia, thus ensuring complete military supremacy in the world. Although U.S professes to direct its Anti-Ballistic Missile System (ABMS) against the axis of evil (Iran and North Korea), yet the deployment of this system in the East European territory undermines the Russian nuclear strategic capability, as this enables U.S. to initiate an attack and guard itself from retaliatory strike, thus disturbing the security equilibrium in Europe. The implications of this program can lead to power imbalance which can lead to the emergence of fundamentally different paradigm of international politics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anti-Ballistic%20Missile%20System%20%28ABMS%29" title="Anti-Ballistic Missile System (ABMS)">Anti-Ballistic Missile System (ABMS)</a>, <a href="https://publications.waset.org/abstracts/search?q=cold-war" title=" cold-war"> cold-war</a>, <a href="https://publications.waset.org/abstracts/search?q=axis%20of%20evil" title=" axis of evil"> axis of evil</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20dynamics" title=" power dynamics"> power dynamics</a> </p> <a href="https://publications.waset.org/abstracts/10134/impact-of-americas-anti-ballistic-missile-system-abms-on-power-dynamics-of-the-world" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11087</span> Effect of the Firing Cycle on the Microstructure and Mechanical Properties of High Steel Barrel Fabricated by Forging Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=El%20Oualid%20Mokhnache">El Oualid Mokhnache</a>, <a href="https://publications.waset.org/abstracts/search?q=Noureddine%20Ramdani"> Noureddine Ramdani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The choice of gun barrel materials is crucial to ensure the maximum high rate of fire. The high rate of fire causes wear-out damage and shuts off mechanical properties (hardness, strength, wear resistance, etc.) and ballistic properties (bullet speed, dispersion and precision, longevity of barrel, etc). To overcome these kinds of problems, a deep understanding of the effect of the firing cycle on the mechanical and ballistic properties of the barrel is regarded as crucial to improving its characteristics. In the present work, a real experimental test of firing by using a high steel barrel with 7.62x39 ammunition was carried. Microstructural observations by using SEM were investigated. Hardness evolution through the barrel of both barrels labeled as reference barrels and as fired barrels were compared and discussed. Ballistic properties during the firing test, including speed of projectile and precision dispersion, are revealed and discussed as well. The aim of the present communication is about to discuss the relationship between pressure distribution versus mechanical properties through the wall barrel. Ballistic properties, including speed of the projectile, dispersion, and precision results during the shooting process, were investigated. Microstructure observations of the as-rifled barrel in comparison with the as-reference barrel were performed as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=barrel" title="barrel">barrel</a>, <a href="https://publications.waset.org/abstracts/search?q=ballistic" title=" ballistic"> ballistic</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure" title=" pressure"> pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure%20evolution" title=" microstructure evolution"> microstructure evolution</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a> </p> <a href="https://publications.waset.org/abstracts/179066/effect-of-the-firing-cycle-on-the-microstructure-and-mechanical-properties-of-high-steel-barrel-fabricated-by-forging-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179066.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11086</span> The Effect of Composite Hybridization on the Back Face Deformation of Armor Plates </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Attef%20Kouadria">Attef Kouadria</a>, <a href="https://publications.waset.org/abstracts/search?q=Yehya%20Bouteghrine"> Yehya Bouteghrine</a>, <a href="https://publications.waset.org/abstracts/search?q=Amar%20Manaa"> Amar Manaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarek%20Mouats"> Tarek Mouats</a>, <a href="https://publications.waset.org/abstracts/search?q=Djalel%20Eddine%20Tria"> Djalel Eddine Tria</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Abdelhafid%20Ghouti"> Hamid Abdelhafid Ghouti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Personal protection systems have been used in several forms for centuries. The need for light-weight composite structures has been in great demand due to their weight and high mechanical properties ratios in comparison to heavy and cumbersome steel plates. In this regard, lighter ceramic plates with a backing plate made of high strength polymeric fibers, mostly aramids, are widely used for protection against ballistic threats. This study aims to improve the ballistic performance of ceramic/composite plates subjected to ballistic impact by reducing the back face deformation (BFD) measured after each test. A new hybridization technique was developed in this investigation to increase the energy absorption capabilities of the backing plates. The hybridization consists of combining different types of aramid fabrics with different linear densities of aramid fibers (Dtex) and areal densities with an epoxy resin to form the backing plate. Therefore, several composite structures architectures were prepared and tested. For better understanding the effect of the hybridization, a serial of tensile, compression, and shear tests were conducted to determine the mechanical properties of the homogeneous composite materials prepared from different fabrics. It was found that the hybridization allows the backing plate to combine between the mechanical properties of the used fabrics. Aramid fabrics with higher Dtex were found to increase the mechanical strength of the backing plate, while those with lower Dtex found to enhance the lateral wave dispersion ratio due to their lower areal density. Therefore, the back face deformation was significantly reduced in comparison to a homogeneous composite plate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aramid%20fabric" title="aramid fabric">aramid fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=ballistic%20impact" title=" ballistic impact"> ballistic impact</a>, <a href="https://publications.waset.org/abstracts/search?q=back%20face%20deformation" title=" back face deformation"> back face deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20armor" title=" body armor"> body armor</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20testing" title=" mechanical testing"> mechanical testing</a> </p> <a href="https://publications.waset.org/abstracts/127222/the-effect-of-composite-hybridization-on-the-back-face-deformation-of-armor-plates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127222.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11085</span> Ballistic Performance of Magnesia Panels and Modular Wall Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khin%20Thandar%20Soe">Khin Thandar Soe</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Stephen%20Pulham"> Mark Stephen Pulham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ballistic building materials play a crucial role in ensuring the safety of the occupants within protective structures. Traditional options like Ordinary Portland Cement (OPC)-based walls, including reinforced concrete walls, precast concrete walls, masonry walls, and concrete blocks, are frequently employed for ballistic protection, but they have several drawbacks such as being thick, heavy, costly, and challenging to construct. On the other hand, glass and composite materials offer lightweight and easier construction alternatives, but they come with a high price tag. There has been no reported test data on magnesium-based ballistic wall panels or modular wall systems so far. This paper presents groundbreaking small arms test data related to the development of the world’s first magnesia cement ballistic wall panels and modular wall system. Non-hydraulic magnesia cement exhibits several superior properties, such as lighter weight, flexibility, acoustics, and fire performance, compared to the traditional Portland Cement. However, magnesia cement is hydrophilic and may degrade in prolonged contact with water. In this research, modified magnesia cement for water resistant and durability from UBIQ Technology is applied. The specimens are made of a modified magnesia cement formula and prepared in the Laboratory of UBIQ Technology Pty Ltd. The specimens vary in thickness, and the tests cover various small arms threats in compliance with standards AS/NZS2343 and UL752 and are performed up to the maximum threat level of Classification R2 (NATO) and UL-Level 8(NATO) by the Accredited Test Centre, BMT (Ballistic and Mechanical Testing, VIC, Australia). In addition, the results of the test conducted on the specimens subjected to the small 12mm diameter steel ball projectile impact generated by a gas gun are also presented and discussed in this paper. Gas gun tests were performed in UNSW@ADFA, Canberra, Australia. The tested results of the magnesia panels and wall systems are compared with one of concrete and other wall panels documented in the literature. The conclusion drawn is that magnesia panels and wall systems exhibit several advantages over traditional OPC-based wall systems, and they include being lighter, thinner, and easier to construct, all while providing equivalent protection against threats. This makes magnesia cement-based materials a compelling choice of application where efficiency and performance are critical to create a protective environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ballistics" title="ballistics">ballistics</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20arms" title=" small arms"> small arms</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20gun" title=" gas gun"> gas gun</a>, <a href="https://publications.waset.org/abstracts/search?q=projectile" title=" projectile"> projectile</a>, <a href="https://publications.waset.org/abstracts/search?q=impact" title=" impact"> impact</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20panels" title=" wall panels"> wall panels</a>, <a href="https://publications.waset.org/abstracts/search?q=modular" title=" modular"> modular</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesia%20cement" title=" magnesia cement"> magnesia cement</a> </p> <a href="https://publications.waset.org/abstracts/182932/ballistic-performance-of-magnesia-panels-and-modular-wall-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182932.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11084</span> The Ductile Fracture of Armor Steel Targets Subjected to Ballistic Impact and Perforation: Calibration of Four Damage Criteria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imen%20Asma%20Mbarek">Imen Asma Mbarek</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexis%20Rusinek"> Alexis Rusinek</a>, <a href="https://publications.waset.org/abstracts/search?q=Etienne%20Petit"> Etienne Petit</a>, <a href="https://publications.waset.org/abstracts/search?q=Guy%20Sutter"> Guy Sutter</a>, <a href="https://publications.waset.org/abstracts/search?q=Gautier%20List"> Gautier List</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the past two decades, the automotive, aerospace and army industries have been paying an increasing attention to Finite Elements (FE) numerical simulations of the fracture process of their structures. Thanks to the numerical simulations, it is nowadays possible to analyze several problems involving costly and dangerous extreme loadings safely and at a reduced cost such as blast or ballistic impact problems. The present paper is concerned with ballistic impact and perforation problems involving ductile fracture of thin armor steel targets. The target fracture process depends usually on various parameters: the projectile nose shape, the target thickness and its mechanical properties as well as the impact conditions (friction, oblique/normal impact...). In this work, the investigations are concerned with the normal impact of a conical head-shaped projectile on thin armor steel targets. The main aim is to establish a comparative study of four fracture criteria that are commonly used in the fracture process simulations of structures subjected to extreme loadings such as ballistic impact and perforation. Usually, the damage initiation results from a complex physical process that occurs at the micromechanical scale. On a macro scale and according to the following fracture models, the variables on which the fracture depends are mainly the stress triaxiality ƞ, the strain rate, temperature T, and eventually the Lode angle parameter Ɵ. The four failure criteria are: the critical strain to failure model, the Johnson-Cook model, the Wierzbicki model and the Modified Hosford-Coulomb model MHC. Using the SEM, the observations of the fracture facies of tension specimen and of armor steel targets impacted at low and high incident velocities show that the fracture of the specimens is a ductile fracture. The failure mode of the targets is petalling with crack propagation and the fracture facies are covered with micro-cavities. The parameters of each ductile fracture model have been identified for three armor steels and the applicability of each criterion was evaluated using experimental investigations coupled to numerical simulations. Two loading paths were investigated in this study, under a wide range of strain rates. Namely, quasi-static and intermediate uniaxial tension and quasi-static and dynamic double shear testing allow covering various values of stress triaxiality ƞ and of the Lode angle parameter Ɵ. All experiments were conducted on three different armor steel specimen under quasi-static strain rates ranging from 10-4 to 10-1 1/s and at three different temperatures ranging from 297K to 500K, allowing drawing the influence of temperature on the fracture process. Intermediate tension testing was coupled to dynamic double shear experiments conducted on the Hopkinson tube device, allowing to spot the effect of high strain rate on the damage evolution and the crack propagation. The aforementioned fracture criteria are implemented into the FE code ABAQUS via VUMAT subroutine and they were coupled to suitable constitutive relations allow having reliable results of ballistic impact problems simulation. The calibration of the four damage criteria as well as a concise evaluation of the applicability of each criterion are detailed in this work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=armor%20steels" title="armor steels">armor steels</a>, <a href="https://publications.waset.org/abstracts/search?q=ballistic%20impact" title=" ballistic impact"> ballistic impact</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20criteria" title=" damage criteria"> damage criteria</a>, <a href="https://publications.waset.org/abstracts/search?q=ductile%20fracture" title=" ductile fracture"> ductile fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a> </p> <a href="https://publications.waset.org/abstracts/63160/the-ductile-fracture-of-armor-steel-targets-subjected-to-ballistic-impact-and-perforation-calibration-of-four-damage-criteria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11083</span> Terminal Ballistic Analysis of Non-Filled and Water-Filled Tank</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Aziz">M. R. Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Kuntjoro"> W. Kuntjoro</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20V.%20David"> N. V. David</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the ballistic terminal study of the non-filled and water-filled aluminum tank. The objective was to determine the failure stages for both cases. The tank was impacted by fragment simulating projectile (FSP) with 260 m/s for non-filled and 972 m/s for water-filled. The aluminum tank was 3 mm thick, 150 mm wide and 750 mm long. The ends of the tank were closed with two polymethyl methacrylate (PMMA) windows. The test was conducted at the Science and Technology Research Institute for Defense (STRIDE) Batu Arang, Selangor, Malaysia. The results showed four main stages for non-filled tank, which were first contact between FSP and the tank, partially perforated, fully perforated with FSP and plug still intact and lastly fully perforated with FSP and plug separated. Meanwhile, for the water-filled tank, there were seven main stages, which were first contact between FSP and the tank, partial perforation, full perforation, drag phase, cavity phase, bounce wave event and the collapse of the cavity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fragment%20simulating%20projectile" title="fragment simulating projectile">fragment simulating projectile</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20speed%20camera" title=" high speed camera"> high speed camera</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20test" title=" tensile test"> tensile test</a>, <a href="https://publications.waset.org/abstracts/search?q=terminal%20ballistic" title=" terminal ballistic"> terminal ballistic</a> </p> <a href="https://publications.waset.org/abstracts/4371/terminal-ballistic-analysis-of-non-filled-and-water-filled-tank" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11082</span> Explosion Mechanics of Aluminum Plates Subjected to the Combined Effect of Blast Wave and Fragment Impact Loading: A Multicase Computational Modeling Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atoui%20Oussama">Atoui Oussama</a>, <a href="https://publications.waset.org/abstracts/search?q=Maazoun%20Azer"> Maazoun Azer</a>, <a href="https://publications.waset.org/abstracts/search?q=Belkassem%20Bachir"> Belkassem Bachir</a>, <a href="https://publications.waset.org/abstracts/search?q=Pyl%20Lincy"> Pyl Lincy</a>, <a href="https://publications.waset.org/abstracts/search?q=Lecompte%20David"> Lecompte David</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For many decades, researchers have been focused on understanding the dynamic behavior of different structures and materials subjected to fragment impact or blast loads separately. The explosion mechanics, as well as the impact physics studies dealing with the numerical modeling of the response of protective structures under the synergistic effect of a blast wave and the impact of fragments, are quite limited in the literature. This article numerically evaluates the nonlinear dynamic behavior and damage mechanisms of Aluminum plates EN AW-1050A- H24 under different combined loading scenarios varied by the sequence of the applied loads using the commercial software LS-DYNA. For one hand, with respect to the terminal ballistic field investigations, a Lagrangian (LAG) formulation is used to evaluate the different failure modes of the target material in case of a fragment impact. On the other hand, with respect to the blast field analysis, an Arbitrary Lagrangian-Eulerian (ALE) formulation is considered to study the fluid-structure interaction (FSI) of the shock wave and the plate in case of a blast loading. Four different loading scenarios are considered: (1) only blast loading, (2) only fragment impact, (3) blast loading followed by a fragment impact and (4) a fragment impact followed by blast loading. From the numerical results, it was observed that when the impact load is applied to the plate prior to the blast load, it suffers more severe damage due to the hole enlargement phenomenon and the effects of crack propagation on the circumference of the damaged zone. Moreover, it was found that the hole from the fragment impact loading was enlarged to about three times in diameter as compared to the diameter of the projectile. The validation of the proposed computational model is based in part on previous experimental data obtained by the authors and in the other part on experimental data obtained from the literature. A good correspondence between the numerical and experimental results is found. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20analysis" title="computational analysis">computational analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=combined%20loading" title=" combined loading"> combined loading</a>, <a href="https://publications.waset.org/abstracts/search?q=explosion%20mechanics" title=" explosion mechanics"> explosion mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=hole%20enlargement%20phenomenon" title=" hole enlargement phenomenon"> hole enlargement phenomenon</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20physics" title=" impact physics"> impact physics</a>, <a href="https://publications.waset.org/abstracts/search?q=synergistic%20effect" title=" synergistic effect"> synergistic effect</a>, <a href="https://publications.waset.org/abstracts/search?q=terminal%20ballistic" title=" terminal ballistic"> terminal ballistic</a> </p> <a href="https://publications.waset.org/abstracts/135997/explosion-mechanics-of-aluminum-plates-subjected-to-the-combined-effect-of-blast-wave-and-fragment-impact-loading-a-multicase-computational-modeling-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135997.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11081</span> An Analytical Systematic Design Approach to Evaluate Ballistic Performance of Armour Grade AA7075 Aluminium Alloy Using Friction Stir Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lahari%20Ramya%20Pa">Lahari Ramya Pa</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudhakar%20Ib"> Sudhakar Ib</a>, <a href="https://publications.waset.org/abstracts/search?q=Madhu%20Vc"> Madhu Vc</a>, <a href="https://publications.waset.org/abstracts/search?q=Madhusudhan%20Reddy%20Gd"> Madhusudhan Reddy Gd</a>, <a href="https://publications.waset.org/abstracts/search?q=Srinivasa%20Rao%20E."> Srinivasa Rao E.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Selection of suitable armor materials for defense applications is very crucial with respect to increasing mobility of the systems as well as maintaining safety. Therefore, determining the material with the lowest possible areal density that resists the predefined threat successfully is required in armor design studies. A number of light metal and alloys are come in to forefront especially to substitute the armour grade steels. AA5083 aluminium alloy which fit in to the military standards imposed by USA army is foremost nonferrous alloy to consider for possible replacement of steel to increase the mobility of armour vehicles and enhance fuel economy. Growing need of AA5083 aluminium alloy paves a way to develop supplement aluminium alloys maintaining the military standards. It has been witnessed that AA 2xxx aluminium alloy, AA6xxx aluminium alloy and AA7xxx aluminium alloy are the potential material to supplement AA5083 aluminium alloy. Among those cited aluminium series alloys AA7xxx aluminium alloy (heat treatable) possesses high strength and can compete with armour grade steels. Earlier investigations revealed that layering of AA7xxx aluminium alloy can prevent spalling of rear portion of armour during ballistic impacts. Hence, present investigation deals with fabrication of hard layer (made of boron carbide) i.e. layer on AA 7075 aluminium alloy using friction stir processing with an intention of blunting the projectile in the initial impact and backing tough portion(AA7xxx aluminium alloy) to dissipate residual kinetic energy. An analytical approach has been adopted to unfold the ballistic performance of projectile. Penetration of projectile inside the armour has been resolved by considering by strain energy model analysis. Perforation shearing areas i.e. interface of projectile and armour is taken in to account for evaluation of penetration inside the armour. Fabricated surface composites (targets) were tested as per the military standard (JIS.0108.01) in a ballistic testing tunnel at Defence Metallurgical Research Laboratory (DMRL), Hyderabad in standardized testing conditions. Analytical results were well validated with experimental obtained one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AA7075%20aluminium%20alloy" title="AA7075 aluminium alloy">AA7075 aluminium alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20stir%20processing" title=" friction stir processing"> friction stir processing</a>, <a href="https://publications.waset.org/abstracts/search?q=boron%20carbide" title=" boron carbide"> boron carbide</a>, <a href="https://publications.waset.org/abstracts/search?q=ballistic%20performance" title=" ballistic performance"> ballistic performance</a>, <a href="https://publications.waset.org/abstracts/search?q=target" title=" target"> target</a> </p> <a href="https://publications.waset.org/abstracts/21635/an-analytical-systematic-design-approach-to-evaluate-ballistic-performance-of-armour-grade-aa7075-aluminium-alloy-using-friction-stir-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21635.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11080</span> Sequential Padding: A Method to Improve the Impact Resistance in Body Armor Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ankita%20Srivastava">Ankita Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhupendra%20S.%20Butola"> Bhupendra S. Butola</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhijit%20Majumdar"> Abhijit Majumdar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Application of shear thickening fluid (STF) has been proved to increase the impact resistance performance of the textile structures to further use it as a body armor material. In the present research, STF was applied on Kevlar woven fabric to make the structure lightweight and flexible while improving its impact resistance performance. It was observed that getting a fair amount of add-on of STF on Kevlar fabric is difficult as Kevlar fabric comes with a pre-coating of PTFE which hinders its absorbency. Hence, a method termed as sequential padding is developed in the present study to improve the add-on of STF on Kevlar fabric. Contrary to the conventional process, where Kevlar fabric is treated with STF once using any one pressure, in sequential padding method, the Kevlar fabrics were treated twice in a sequential manner using combination of two pressures together in a sample. 200 GSM Kevlar fabrics were used in the present study. STF was prepared by adding PEG with 70% (w/w) nano-silica concentration. Ethanol was added with the STF at a fixed ratio to reduce viscosity. A high-speed homogenizer was used to make the dispersion. Total nine STF treated Kevlar fabric samples were prepared by using varying combinations and sequences of three levels of padding pressure {0.5, 1.0 and 2.0 bar). The fabrics were dried at 80°C for 40 minutes in a hot air oven to evaporate ethanol. Untreated and STF treated fabrics were tested for add-on%. Impact resistance performance of samples was also tested on dynamic impact tester at a fixed velocity of 6 m/s. Further, to observe the impact resistance performance in actual condition, low velocity ballistic test with 165 m/s velocity was also performed to confirm the results of impact resistance test. It was observed that both add-on% and impact energy absorption of Kevlar fabrics increases significantly with sequential padding process as compared to untreated as well as single stage padding process. It was also determined that impact energy absorption is significantly better in STF treated Kevlar fabrics when 1st padding pressure is higher, and 2nd padding pressure is lower. It is also observed that impact energy absorption of sequentially padded Kevlar fabric shows almost 125% increase in ballistic impact energy absorption (40.62 J) as compared to untreated fabric (18.07 J).The results are owing to the fact that the treatment of fabrics at high pressure during the first padding is responsible for uniform distribution of STF within the fabric structures. While padding with second lower pressure ensures the high add-on of STF for over-all improvement in the impact resistance performance of the fabric. Therefore, it is concluded that sequential padding process may help to improve the impact performance of body armor materials based on STF treated Kevlar fabrics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=body%20armor" title="body armor">body armor</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20resistance" title=" impact resistance"> impact resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevlar" title=" Kevlar"> Kevlar</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20thickening%20fluid" title=" shear thickening fluid"> shear thickening fluid</a> </p> <a href="https://publications.waset.org/abstracts/92928/sequential-padding-a-method-to-improve-the-impact-resistance-in-body-armor-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92928.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11079</span> Development and Characterization of Re-Entrant Auxetic Fibrous Structures for Application in Ballistic Composites </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rui%20Magalh%C3%A3es">Rui Magalhães</a>, <a href="https://publications.waset.org/abstracts/search?q=Sohel%20Rana"> Sohel Rana</a>, <a href="https://publications.waset.org/abstracts/search?q=Raul%20Fangueiro"> Raul Fangueiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Clara%20Gon%C3%A7alves"> Clara Gonçalves</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20Nunes"> Pedro Nunes</a>, <a href="https://publications.waset.org/abstracts/search?q=Gustavo%20Dias"> Gustavo Dias</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Auxetic fibrous structures and composites with negative Poisson’s ratio (NPR) have huge potential for application in ballistic protection due to their high energy absorption and excellent impact resistance. In the present research, re-entrant lozenge auxetic fibrous structures were produced through weft knitting technology using high performance polyamide and para-aramid fibres. Fabric structural parameters (e.g. loop length) and machine parameters (e.g. take down load) were varied in order to investigate their influence on the auxetic behaviours of the produced structures. These auxetic structures were then impregnated with two types of polymeric resins (epoxy and polyester) to produce composite materials, which were subsequently characterized for the auxetic behaviour. It was observed that the knitted fabrics produced using the polyamide yarns exhibited NPR over a wide deformation range, which was strongly dependant on the loop length and take down load. The polymeric composites produced from the auxetic fabrics also showed good auxetic property, which was superior in case of the polyester matrix. The experimental results suggested that these composites made from the auxetic fibrous structures can be properly designed to find potential use in the body amours for personal protection applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auxetic%20fabrics" title="auxetic fabrics">auxetic fabrics</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20performance" title=" high performance"> high performance</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20absorption" title=" energy absorption"> energy absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20resistance" title=" impact resistance"> impact resistance</a> </p> <a href="https://publications.waset.org/abstracts/89742/development-and-characterization-of-re-entrant-auxetic-fibrous-structures-for-application-in-ballistic-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11078</span> Reinforcing Effects of Natural Micro-Particles on the Dynamic Impact Behaviour of Hybrid Bio-Composites Made of Short Kevlar Fibers Reinforced Thermoplastic Composite Armor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edison%20E.%20Haro">Edison E. Haro</a>, <a href="https://publications.waset.org/abstracts/search?q=Akindele%20G.%20Odeshi"> Akindele G. Odeshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jerzy%20A.%20Szpunar"> Jerzy A. Szpunar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hybrid bio-composites are developed for use in protective armor through positive hybridization offered by reinforcement of high-density polyethylene (HDPE) with Kevlar short fibers and palm wood micro-fillers. The manufacturing process involved a combination of extrusion and compression molding techniques. The mechanical behavior of Kevlar fiber reinforced HDPE with and without palm wood filler additions are compared. The effect of the weight fraction of the added palm wood micro-fillers is also determined. The Young modulus was found to increase as the weight fraction of organic micro-particles increased. However, the flexural strength decreased with increasing weight fraction of added micro-fillers. The interfacial interactions between the components were investigated using scanning electron microscopy. The influence of the size, random alignment and distribution of the natural micro-particles was evaluated. Ballistic impact and dynamic shock loading tests were performed to determine the optimum proportion of Kevlar short fibers and organic micro-fillers needed to improve impact strength of the HDPE. These results indicate a positive hybridization by deposition of organic micro-fillers on the surface of short Kevlar fibers used in reinforcing the thermoplastic matrix leading to enhancement of the mechanical strength and dynamic impact behavior of these materials. Therefore, these hybrid bio-composites can be promising materials for different applications against high velocity impacts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20bio-composites" title="hybrid bio-composites">hybrid bio-composites</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20nano-fillers" title=" organic nano-fillers"> organic nano-fillers</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20shocking%20loading" title=" dynamic shocking loading"> dynamic shocking loading</a>, <a href="https://publications.waset.org/abstracts/search?q=ballistic%20impacts" title=" ballistic impacts"> ballistic impacts</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20absorption" title=" energy absorption"> energy absorption</a> </p> <a href="https://publications.waset.org/abstracts/109084/reinforcing-effects-of-natural-micro-particles-on-the-dynamic-impact-behaviour-of-hybrid-bio-composites-made-of-short-kevlar-fibers-reinforced-thermoplastic-composite-armor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11077</span> Effects of Repeated High Loadings on the Performance of Adhesively-Bonded Single Lap Joints</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Orkun%20Yavuz">Orkun Yavuz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ferhat%20Kadio%C4%9Flu"> Ferhat Kadioğlu</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Emin%20Ercan"> M. Emin Ercan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to investigate the effects of repeated high loadings on the performance of adhesively-bonded Single Lap Joints (SLJs) by employing both experimental and numerical approaches. A projectile with a mass of 1.25 gr and density of 11.3 gr/cm3 was fired at the joints with a velocity of about 280 m/s using a specially designed experimental set-up, and the impact was recorded via a high-speed camera. The SLJs were manufactured from 6061 aluminum adherend (AA6061) material and an adhesive film. The joints, which have an adherend thickness of 4 mm and overlap length of 15 mm, were subjected to up to 3 shots for the ballistic test, followed by quasi-static tensile testing. The impacted joints, then, were compared to the non-impacted and one-shot impacted ones, which was a subject of investigation carried out before. It was found that while the joints subjected to 2 shots mechanically deteriorated, those subjected to 3 shots experienced a complete failure at the end of the experiment. A numerical study was also conducted using an ABAQUS package program. While the adherends were modelled using the Johnson-Cook deformation parameters, an elastoplastic behavior of the adhesive was used as input data in the analyses. It seems the experimental results confirm the numerical ones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ballistic%20tests" title="ballistic tests">ballistic tests</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesive%20joints" title=" adhesive joints"> adhesive joints</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=SLJ" title=" SLJ"> SLJ</a> </p> <a href="https://publications.waset.org/abstracts/180863/effects-of-repeated-high-loadings-on-the-performance-of-adhesively-bonded-single-lap-joints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/180863.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11076</span> Burnback Analysis of Star Grain Using Level-Set Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Yasin">Ali Yasin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Kamran"> Ali Kamran</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Safdar"> Muhammad Safdar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to reduce the hefty cost involved in terms of time and project cost, the development and application of advanced numerical tools to address the burn-back analysis problem in solid rocket motor design and development is the need of time. Several advanced numerical schemes have been developed in recent times, but their usage in the design of propellant grain of solid rocket motors is very rare. In this paper, an advanced numerical technique named the Level-Set method has been utilized for the burn-back analysis of star grain to study the effect of geometrical parameters on ballistic performance indicators such as solid loading, neutrality, and sliver percentage. In the level set technique, simple finite difference methods may fail quickly and require more sophisticated non-oscillatory schemes for feasible long-time simulation. For internal ballistic calculations, a simplified equilibrium pressure method is utilized. Preliminary results of the operative conditions, for all the combustion time, of star grain burn-back using level set techniques are compared with published results using CAD technique to test the developed numerical model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solid%20rocket%20motor" title="solid rocket motor">solid rocket motor</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20ballistic" title=" internal ballistic"> internal ballistic</a>, <a href="https://publications.waset.org/abstracts/search?q=level-set%20technique" title=" level-set technique"> level-set technique</a>, <a href="https://publications.waset.org/abstracts/search?q=star%20grain" title=" star grain"> star grain</a> </p> <a href="https://publications.waset.org/abstracts/156519/burnback-analysis-of-star-grain-using-level-set-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156519.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11075</span> The Effect of Size, Thickness, and Type of the Bonding Interlayer on Bullet Proof Glass as per EN 1063</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rabinder%20Singh%20Bharj">Rabinder Singh Bharj</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Kumar"> Sandeep Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This investigation presents preparation of sample and analysis of results of ballistic impact test as per EN 1063 on the size, thickness, number, position, and type of the bonding interlayer Polyvinyl Butyral, Poly Carbonate and Poly Urethane on bullet proof glass. It was observed that impact energy absorbed by bullet proof glass increases with the increase of the total thickness from 33mm to 42mm to 51mm for all the three samples respectively. Absorption impact energy is greater for samples with more number of bonding interlayers than with the number of glass layers for uniform increase in total sample thickness. There is no effect on the absorption impact energy with the change in position of the bonding interlayer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorbed%20energy" title="absorbed energy">absorbed energy</a>, <a href="https://publications.waset.org/abstracts/search?q=bullet%20proof%20glass" title=" bullet proof glass"> bullet proof glass</a>, <a href="https://publications.waset.org/abstracts/search?q=laminated%20glass" title=" laminated glass"> laminated glass</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20glass" title=" safety glass"> safety glass</a> </p> <a href="https://publications.waset.org/abstracts/6184/the-effect-of-size-thickness-and-type-of-the-bonding-interlayer-on-bullet-proof-glass-as-per-en-1063" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6184.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11074</span> The Ballistics Case Study of the Enrica Lexie Incident </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diego%20Abbo">Diego Abbo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> On February 15, 2012 off the Indian coast of Kerala, in position 091702N-0760180E by the oil tanker Enrica Lexie, flying the Italian flag, bursts of 5.56 x45 caliber shots were fired from assault rifles AR/70 Italian-made Beretta towards the Indian fisher boat St. Anthony. The shots that hit the St. Anthony fishing boat were six, of which two killed the Indian fishermen <em>Ajesh Pink</em> and <em>Valentine Jelestine</em>. From the analysis concerning the kinematic engagement of the two ships and from the autopsy and ballistic results of the Indian judicial authorities it is possible to reconstruct the trajectories of the six aforementioned shots. This essay reconstructs the trajectories of the six shots that cannot be of direct shooting but have undergone a rebound on the water. The investigation carried out scientifically demonstrates the rebound of the blows on the water, the gyrostatic deviation due to the rebound and the tumbling effect always due to the rebound as regards intermediate ballistics. In consideration of the four shots that directly impacted the fishing vessel, the current examination proves, with scientific value, that the trajectories could not be downwards but upwards. Also, the trajectory of two shots that hit to death the two fishermen could not be downwards but only upwards. In fact, this paper demonstrates, with scientific value: The loss of speed of the projectiles due to the rebound on the water; The tumbling effect in the ballistic medium within the two victims; The permanent cavities subject to the injury ballistics and the related ballistic trauma that prevented homeostasis causing bleeding in one case; The thermo-hardening deformation of the bullet found in Valentine Jelestine's skull; The upward and non-downward trajectories. The paper constitutes a tool in forensic ballistics in that it manages to reconstruct, from the final spot of the projectiles fired, all phases of ballistics like the internal one of the weapons that fired, the intermediate one, the terminal one and the penetrative structural one. In general terms the ballistics reconstruction is based on measurable parameters whose entity is contained with certainty within a lower and upper limit. Therefore, quantities that refer to angles, speed, impact energy and firing position of the shooter can be identified within the aforementioned limits. Finally, the investigation into the internal bullet track, obtained from any autopsy examination, offers a significant “lesson learned” but overall a starting point to contain or mitigate bleeding as a rescue from future gunshot wounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=impact%20physics" title="impact physics">impact physics</a>, <a href="https://publications.waset.org/abstracts/search?q=intermediate%20ballistics" title=" intermediate ballistics"> intermediate ballistics</a>, <a href="https://publications.waset.org/abstracts/search?q=terminal%20ballistics" title=" terminal ballistics"> terminal ballistics</a>, <a href="https://publications.waset.org/abstracts/search?q=tumbling%20effect" title=" tumbling effect"> tumbling effect</a> </p> <a href="https://publications.waset.org/abstracts/127765/the-ballistics-case-study-of-the-enrica-lexie-incident" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11073</span> Ballistics of Main Seat Ejection Cartridges for Aircraft Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20A.%20Parate">B. A. Parate</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20D.%20Deodhar"> K. D. Deodhar</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20K.%20Dixit"> V. K. Dixit</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20V.%20Rao"> V. V. Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article outlines the ballistics of main seat ejection cartridges for aircraft application. The ballistics of main seat ejection cartridges plays a vital role during the ejection of the pilot in an emergency. The ballistic parameters such as maximum pressure, time is taken to reach the maximum pressure, and time required to reach half the maximum pressure contributes to the spinal injury of the pilot. Therefore, the evaluations of these parameters are very critical during various stages of development. Elaborate testing was carried out for main seat ejection cartridges on seat ejection tower (SET) at different operating temperatures considering physiological limits. As these trials are cumbersome in nature, a vented vessel (VV) testing facility was devised to lay down the performance parameters at hot and cold temperature conditions. Single base (SB) propellant having hepta-tubular configuration is selected as the main filling. Gun powder plays the role of a booster based on ballistic requirements. The evaluation methodology of various performance parameters of main seat ejection cartridges is explained in this paper. Physiological parameters such as maximum seat ejection velocity, acceleration, and rate of rising of acceleration are also experimentally determined on seat ejection tower. All the parameters are observed well within physiological limits. This paper addresses the internal ballistic of main seat ejection cartridges, propellant selection, its calculation, and evaluation of various performance parameters for an aircraft application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ballistics%20of%20seat%20ejection" title="ballistics of seat ejection">ballistics of seat ejection</a>, <a href="https://publications.waset.org/abstracts/search?q=ejection%20seat" title=" ejection seat"> ejection seat</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20generator" title=" gas generator"> gas generator</a>, <a href="https://publications.waset.org/abstracts/search?q=gun%20propulsion" title=" gun propulsion"> gun propulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=main%20seat%20ejection%20cartridges" title=" main seat ejection cartridges"> main seat ejection cartridges</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20pressure" title=" maximum pressure"> maximum pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20parameters" title=" performance parameters"> performance parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=propellant" title=" propellant"> propellant</a>, <a href="https://publications.waset.org/abstracts/search?q=progressive%20burning%20and%20vented%20vessel" title=" progressive burning and vented vessel"> progressive burning and vented vessel</a> </p> <a href="https://publications.waset.org/abstracts/131210/ballistics-of-main-seat-ejection-cartridges-for-aircraft-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11072</span> Fingerprint on Ballistic after Shooting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Narong%20Kulnides">Narong Kulnides</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research involved fingerprints on ballistics after shooting. Two objectives of research were as follows; (1) to study the duration of the existence of latent fingerprints on .38, .45, 9 mm and .223 cartridge case after shooting, and (2) to compare the effectiveness of the detection of latent fingerprints by Black Powder, Super Glue, Perma Blue and Gun Bluing. The latent fingerprint appearance were studied on .38, .45, 9 mm. and .223 cartridge cases before and after shooting with Black Powder, Super Glue, Perma Blue and Gun Bluing. The detection times were 3 minute, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78 and 84 hours respectively. As a result of the study, it can be conclude that: (1) Before shooting, the detection of latent fingerprints on 38, .45, and 9 mm. and .223 cartridge cases with Black Powder, Super Glue, Perma Blue and Gun Bluing can detect the fingerprints at all detection times. (2) After shooting, the detection of latent fingerprints on .38, .45, 9 mm. and .223 cartridge cases with Black Powder, Super Glue did not appear. The detection of latent fingerprints on .38, .45, 9 mm. cartridge cases with Perma Blue and Gun Bluing were found 100% of the time and the detection of latent fingerprints on .223 cartridge cases with Perma Blue and Gun Bluing were found 40% and 46.67% of the time, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ballistic" title="ballistic">ballistic</a>, <a href="https://publications.waset.org/abstracts/search?q=fingerprint" title=" fingerprint"> fingerprint</a>, <a href="https://publications.waset.org/abstracts/search?q=shooting" title=" shooting"> shooting</a>, <a href="https://publications.waset.org/abstracts/search?q=detection%20times" title=" detection times"> detection times</a> </p> <a href="https://publications.waset.org/abstracts/10363/fingerprint-on-ballistic-after-shooting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11071</span> Feasibility Study of Particle Image Velocimetry in the Muzzle Flow Fields during the Intermediate Ballistic Phase</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moumen%20Abdelhafidh">Moumen Abdelhafidh</a>, <a href="https://publications.waset.org/abstracts/search?q=Stribu%20Bogdan"> Stribu Bogdan</a>, <a href="https://publications.waset.org/abstracts/search?q=Laboureur%20Delphine"> Laboureur Delphine</a>, <a href="https://publications.waset.org/abstracts/search?q=Gallant%20Johan"> Gallant Johan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hendrick%20Patrick"> Hendrick Patrick</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is part of an ongoing effort to improve the understanding of phenomena occurring during the intermediate ballistic phase, such as muzzle flows. A thorough comprehension of muzzle flow fields is essential for optimizing muzzle device and projectile design. This flow characterization has heretofore been almost entirely limited to local and intrusive measurement techniques such as pressure measurements using pencil probes. Consequently, the body of quantitative experimental data is limited, so is the number of numerical codes validated in this field. The objective of the work presented here is to demonstrate the applicability of the Particle Image Velocimetry (PIV) technique in the challenging environment of the propellant flow of a .300 blackout weapon to provide accurate velocity measurements. The key points of a successful PIV measurement are the selection of the particle tracer, their seeding technique, and their tracking characteristics. We have experimentally investigated the aforementioned points by evaluating the resistance, gas dispersion, laser light reflection as well as the response to a step change across the Mach disk for five different solid tracers using two seeding methods. To this end, an experimental setup has been performed and consisted of a PIV system, the combustion chamber pressure measurement, classical high-speed schlieren visualization, and an aerosol spectrometer. The latter is used to determine the particle size distribution in the muzzle flow. The experimental results demonstrated the ability of PIV to accurately resolve the salient features of the propellant flow, such as the under the expanded jet and vortex rings, as well as the instantaneous velocity field with maximum centreline velocities of more than 1000 m/s. Besides, naturally present unburned particles in the gas and solid ZrO₂ particles with a nominal size of 100 nm, when coated on the propellant powder, are suitable as tracers. However, the TiO₂ particles intended to act as a tracer, surprisingly not only melted but also functioned as a combustion accelerator and decreased the number of particles in the propellant gas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intermediate%20ballistic" title="intermediate ballistic">intermediate ballistic</a>, <a href="https://publications.waset.org/abstracts/search?q=muzzle%20flow%20fields" title=" muzzle flow fields"> muzzle flow fields</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20image%20velocimetry" title=" particle image velocimetry"> particle image velocimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=propellant%20gas" title=" propellant gas"> propellant gas</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size%20distribution" title=" particle size distribution"> particle size distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=under%20expanded%20jet" title=" under expanded jet"> under expanded jet</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20particle%20tracers" title=" solid particle tracers"> solid particle tracers</a> </p> <a href="https://publications.waset.org/abstracts/135991/feasibility-study-of-particle-image-velocimetry-in-the-muzzle-flow-fields-during-the-intermediate-ballistic-phase" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135991.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11070</span> Three-Dimensional, Non-Linear Finite Element Analysis of Bullet Penetration through Thin AISI 4340 Steel Target Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20Soni">Abhishek Soni</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kumaraswamy"> A. Kumaraswamy</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Mahesh"> M. S. Mahesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bullet penetration in steel plate is investigated with the help of three-dimensional, non-linear, transient, dynamic, finite elements analysis using explicit time integration code LSDYNA. The effect of large strain, strain-rate and temperature at very high velocity regime was studied from number of simulations of semi-spherical nose shape bullet penetration through single layered circular plate with 2 mm thickness at impact velocities of 500, 1000, and 1500 m/s with the help of Johnson Cook material model. Mie-Gruneisen equation of state is used in conjunction with Johnson Cook material model to determine pressure-volume relationship at various points of interests. Two material models viz. Plastic-Kinematic and Johnson- Cook resulted in different deformation patterns in steel plate. It is observed from the simulation results that the velocity drop and loss of kinetic energy occurred very quickly up to perforation of plate, after that the change in velocity and changes in kinetic energy are negligibly small. The physics behind this kind of behaviour is presented in the paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AISI%204340%20steel" title="AISI 4340 steel">AISI 4340 steel</a>, <a href="https://publications.waset.org/abstracts/search?q=ballistic%20impact%20simulation" title=" ballistic impact simulation"> ballistic impact simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=bullet%20penetration" title=" bullet penetration"> bullet penetration</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20FEM" title=" non-linear FEM"> non-linear FEM</a> </p> <a href="https://publications.waset.org/abstracts/82589/three-dimensional-non-linear-finite-element-analysis-of-bullet-penetration-through-thin-aisi-4340-steel-target-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11069</span> Impact Characteristics of Fragile Cover Based on Numerical Simulation and Experimental Verification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dejin%20Chen">Dejin Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Lin"> Bin Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaohui%20LI"> Xiaohui LI</a>, <a href="https://publications.waset.org/abstracts/search?q=Haobin%20Tian"> Haobin Tian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to acquire stable impact performance of cover, the factors influencing the impact force of the cover were analyzed and researched. The influence of impact factors such as impact velocity, impact weight and fillet radius of warhead was studied by Orthogonal experiment. Through the range analysis and numerical simulation, the results show that the impact velocity has significant influences on impact force of cover. The impact force decreases with the increase of impact velocity and impact weight. The test results are similar to the numerical simulation. The cover broke up into four parts along the groove. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fragile%20cover" title="fragile cover">fragile cover</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20force" title=" impact force"> impact force</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy%20foam" title=" epoxy foam"> epoxy foam</a> </p> <a href="https://publications.waset.org/abstracts/136873/impact-characteristics-of-fragile-cover-based-on-numerical-simulation-and-experimental-verification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136873.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11068</span> Quadriceps Muscle Activity in Response to Slow and Fast Perturbations following Fatiguing Exercise</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nosratollah%20Hedayatpour">Nosratollah Hedayatpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Reza%20Taheri"> Hamid Reza Taheri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehrdad%20Fathi"> Mehrdad Fathi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Quadriceps femoris muscle is frequently involved in various movements e.g., jumping, landing) during sport and/or daily activities. During ballistic movement when individuals are faced with unexpected knee perturbation, fast twitch muscle fibers contribute to force production to stabilize knee joint. Fast twitch muscle fiber is more susceptible to fatigue and therefor may reduce the ability of the quadriceps muscle to stabilize knee joint during fast perturbation. Aim: The aim of this study was to investigate the effect of fatigue on postural response of the knee extensor muscles to fast and slow perturbations. Methods: Fatigue was induced to the quadriceps muscle using a KinCom Isokinetic Dynamometer (Chattanooga, TN). Bipolar surface electromyography (EMG) signals were simultaneously recorded from quadriceps components (vastus medialis, rectus femoris, and vastus lateralis) during pre- and post-fatigue postural perturbation performed at two different velocities of 120 ms and 250 mes. Results: One-way ANOVA showed that maximal voluntary knee extension force and time to task failure, and associated EMG activities were significantly reduced after fatiguing knee exercise (P< 0.05). Two-ways ANOVA also showed that ARV of EMG during backward direction was significantly larger than forward direction (P< 0.05), and during fast-perturbation it was significantly higher than slow-perturbation (P< 0.05). Moreover, ARV of EMG was significantly reduced during post fatigue perturbation, with the largest reduction identified for fast-perturbation compared with slow perturbation (P< 0.05). Conclusion: A larger reduction in muscle activity of the quadriceps muscle was observed during post fatigue fast-perturbation to stabilize knee joint, most likely due to preferential recruitment of fast twitch muscle fiber which are more susceptible to fatigue. This may partly explain that why knee injuries is common after fast ballistic movement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electromyography" title="electromyography">electromyography</a>, <a href="https://publications.waset.org/abstracts/search?q=fast-slow%20perturbations" title=" fast-slow perturbations"> fast-slow perturbations</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=quadriceps%20femoris%20muscle" title=" quadriceps femoris muscle"> quadriceps femoris muscle</a> </p> <a href="https://publications.waset.org/abstracts/10440/quadriceps-muscle-activity-in-response-to-slow-and-fast-perturbations-following-fatiguing-exercise" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10440.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">523</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11067</span> A Preliminary Study on the Effects of Lung Impact on Ballistic Thoracic Trauma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amy%20Pullen">Amy Pullen</a>, <a href="https://publications.waset.org/abstracts/search?q=Samantha%20Rodrigues"> Samantha Rodrigues</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Kieser"> David Kieser</a>, <a href="https://publications.waset.org/abstracts/search?q=Brian%20Shaw"> Brian Shaw</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the study was to determine if a projectile interacting with the lungs increases the severity of injury in comparison to a projectile interacting with the ribs or intercostal muscle. This comparative study employed a 10% gelatine based model with either porcine ribs or balloons embedded to represent a lung. Four sample groups containing five samples were evaluated; these were control (plain gel), intercostal impact, rib impact, and lung impact. Two ammunition natures were evaluated at a range of 10m; these were 5.56x45mm and 7.62x51mm. Aspects of projectile behavior were quantified including exiting projectile weight, location of yawing, projectile fragmentation and distribution, location and area of the temporary cavity, permanent cavity formation, and overall energy deposition. Major findings included the cavity showing a higher percentage of the projectile weight exit the block than the intercostal and ribs, but similar to the control for the 5.56mm ammunition. However, for the 7.62mm ammunition, the lung was shown to have a higher percentage of the projectile weight exit the block than the control, intercostal and ribs. The total weight of projectile fragments as a function of penetration depth revealed large fluctuations and significant intra-group variation for both ammunition natures. Despite the lack of a clear trend, both plots show that the lung leads to greater projectile fragments exiting the model. The lung was shown to have a later center of the temporary cavity than the control, intercostal and ribs for both ammunition types. It was also shown to have a similar temporary cavity volume to the control, intercostal and ribs for the 5.56mm ammunition and a similar temporary cavity to the intercostal for the 7.62mm ammunition The lung was shown to leave a similar projectile tract than the control, intercostal and ribs for both ammunition types. It was also shown to have larger shear planes than the control and the intercostal, but similar to the ribs for the 5.56mm ammunition, whereas it was shown to have smaller shear planes than the control but similar shear planes to the intercostal and ribs for the 7.62mm ammunition. The lung was shown to have less energy deposited than the control, intercostal and ribs for both ammunition types. This comparative study provides insights into the influence of the lungs on thoracic gunshot trauma. It indicates that the lungs limits projectile deformation and causes a later onset of yawing and subsequently limits the energy deposited along the wound tract creating a deeper and smaller cavity. This suggests that lung impact creates an altered pattern of local energy deposition within the target which will affect the severity of trauma. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ballistics" title="ballistics">ballistics</a>, <a href="https://publications.waset.org/abstracts/search?q=lung" title=" lung"> lung</a>, <a href="https://publications.waset.org/abstracts/search?q=trauma" title=" trauma"> trauma</a>, <a href="https://publications.waset.org/abstracts/search?q=wounding" title=" wounding"> wounding</a> </p> <a href="https://publications.waset.org/abstracts/106200/a-preliminary-study-on-the-effects-of-lung-impact-on-ballistic-thoracic-trauma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106200.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ballistic%20impact&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ballistic%20impact&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ballistic%20impact&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ballistic%20impact&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ballistic%20impact&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ballistic%20impact&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ballistic%20impact&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ballistic%20impact&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ballistic%20impact&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ballistic%20impact&page=369">369</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ballistic%20impact&page=370">370</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ballistic%20impact&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>