CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–14 of 14 results for author: <span class="mathjax">Ruiz-del-Solar, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cs" aria-role="search"> Searching in archive <strong>cs</strong>. <a href="/search/?searchtype=author&query=Ruiz-del-Solar%2C+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Ruiz-del-Solar, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Ruiz-del-Solar%2C+J&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Ruiz-del-Solar, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.07449">arXiv:2409.07449</a> <span> [<a href="https://arxiv.org/pdf/2409.07449">pdf</a>, <a href="https://arxiv.org/format/2409.07449">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> </div> <p class="title is-5 mathjax"> Autonomous loading of ore piles with Load-Haul-Dump machines using Deep Reinforcement Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Salas%2C+R">Rodrigo Salas</a>, <a href="/search/cs?searchtype=author&query=Leiva%2C+F">Francisco Leiva</a>, <a href="/search/cs?searchtype=author&query=Ruiz-del-Solar%2C+J">Javier Ruiz-del-Solar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.07449v1-abstract-short" style="display: inline;"> This work presents a deep reinforcement learning-based approach to train controllers for the autonomous loading of ore piles with a Load-Haul-Dump (LHD) machine. These controllers must perform a complete loading maneuver, filling the LHD's bucket with material while avoiding wheel drift, dumping material, or getting stuck in the pile. The training process is conducted entirely in simulation, using… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07449v1-abstract-full').style.display = 'inline'; document.getElementById('2409.07449v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.07449v1-abstract-full" style="display: none;"> This work presents a deep reinforcement learning-based approach to train controllers for the autonomous loading of ore piles with a Load-Haul-Dump (LHD) machine. These controllers must perform a complete loading maneuver, filling the LHD's bucket with material while avoiding wheel drift, dumping material, or getting stuck in the pile. The training process is conducted entirely in simulation, using a simple environment that leverages the Fundamental Equation of Earth-Moving Mechanics so as to achieve a low computational cost. Two different types of policies are trained: one with a hybrid action space and another with a continuous action space. The RL-based policies are evaluated both in simulation and in the real world using a scaled LHD and a scaled muck pile, and their performance is compared to that of a heuristics-based controller and human teleoperation. Additional real-world experiments are performed to assess the robustness of the RL-based policies to measurement errors in the characterization of the piles. Overall, the RL-based controllers show good performance in the real world, achieving fill factors between 71-94%, and less wheel drift than the other baselines during the loading maneuvers. A video showing the training environment and the learned behavior in simulation, as well as some of the performed experiments in the real world, can be found in https://youtu.be/jOpA1rkwhDY. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07449v1-abstract-full').style.display = 'none'; document.getElementById('2409.07449v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 19 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.19629">arXiv:2405.19629</a> <span> [<a href="https://arxiv.org/pdf/2405.19629">pdf</a>, <a href="https://arxiv.org/format/2405.19629">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> YotoR-You Only Transform One Representation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Villa%2C+J+I+D">Jos茅 Ignacio D铆az Villa</a>, <a href="/search/cs?searchtype=author&query=Loncomilla%2C+P">Patricio Loncomilla</a>, <a href="/search/cs?searchtype=author&query=Ruiz-del-Solar%2C+J">Javier Ruiz-del-Solar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.19629v1-abstract-short" style="display: inline;"> This paper introduces YotoR (You Only Transform One Representation), a novel deep learning model for object detection that combines Swin Transformers and YoloR architectures. Transformers, a revolutionary technology in natural language processing, have also significantly impacted computer vision, offering the potential to enhance accuracy and computational efficiency. YotoR combines the robust Swi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19629v1-abstract-full').style.display = 'inline'; document.getElementById('2405.19629v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.19629v1-abstract-full" style="display: none;"> This paper introduces YotoR (You Only Transform One Representation), a novel deep learning model for object detection that combines Swin Transformers and YoloR architectures. Transformers, a revolutionary technology in natural language processing, have also significantly impacted computer vision, offering the potential to enhance accuracy and computational efficiency. YotoR combines the robust Swin Transformer backbone with the YoloR neck and head. In our experiments, YotoR models TP5 and BP4 consistently outperform YoloR P6 and Swin Transformers in various evaluations, delivering improved object detection performance and faster inference speeds than Swin Transformer models. These results highlight the potential for further model combinations and improvements in real-time object detection with Transformers. The paper concludes by emphasizing the broader implications of YotoR, including its potential to enhance transformer-based models for image-related tasks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19629v1-abstract-full').style.display = 'none'; document.getElementById('2405.19629v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> I.2.10 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.09760">arXiv:2405.09760</a> <span> [<a href="https://arxiv.org/pdf/2405.09760">pdf</a>, <a href="https://arxiv.org/format/2405.09760">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> </div> <p class="title is-5 mathjax"> Combining RL and IL using a dynamic, performance-based modulation over learning signals and its application to local planning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Leiva%2C+F">Francisco Leiva</a>, <a href="/search/cs?searchtype=author&query=Ruiz-del-Solar%2C+J">Javier Ruiz-del-Solar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.09760v1-abstract-short" style="display: inline;"> This paper proposes a method to combine reinforcement learning (RL) and imitation learning (IL) using a dynamic, performance-based modulation over learning signals. The proposed method combines RL and behavioral cloning (IL), or corrective feedback in the action space (interactive IL/IIL), by dynamically weighting the losses to be optimized, taking into account the backpropagated gradients used to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09760v1-abstract-full').style.display = 'inline'; document.getElementById('2405.09760v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.09760v1-abstract-full" style="display: none;"> This paper proposes a method to combine reinforcement learning (RL) and imitation learning (IL) using a dynamic, performance-based modulation over learning signals. The proposed method combines RL and behavioral cloning (IL), or corrective feedback in the action space (interactive IL/IIL), by dynamically weighting the losses to be optimized, taking into account the backpropagated gradients used to update the policy and the agent's estimated performance. In this manner, RL and IL/IIL losses are combined by equalizing their impact on the policy's updates, while modulating said impact such that IL signals are prioritized at the beginning of the learning process, and as the agent's performance improves, the RL signals become progressively more relevant, allowing for a smooth transition from pure IL/IIL to pure RL. The proposed method is used to learn local planning policies for mobile robots, synthesizing IL/IIL signals online by means of a scripted policy. An extensive evaluation of the application of the proposed method to this task is performed in simulations, and it is empirically shown that it outperforms pure RL in terms of sample efficiency (achieving the same level of performance in the training environment utilizing approximately 4 times less experiences), while consistently producing local planning policies with better performance metrics (achieving an average success rate of 0.959 in an evaluation environment, outperforming pure RL by 12.5% and pure IL by 13.9%). Furthermore, the obtained local planning policies are successfully deployed in the real world without performing any major fine tuning. The proposed method can extend existing RL algorithms, and is applicable to other problems for which generating IL/IIL signals online is feasible. A video summarizing some of the real world experiments that were conducted can be found in https://youtu.be/mZlaXn9WGzw. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09760v1-abstract-full').style.display = 'none'; document.getElementById('2405.09760v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.05174">arXiv:2103.05174</a> <span> [<a href="https://arxiv.org/pdf/2103.05174">pdf</a>, <a href="https://arxiv.org/format/2103.05174">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> </div> </div> <p class="title is-5 mathjax"> Learning to Play Soccer From Scratch: Sample-Efficient Emergent Coordination through Curriculum-Learning and Competition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Samtani%2C+P">Pavan Samtani</a>, <a href="/search/cs?searchtype=author&query=Leiva%2C+F">Francisco Leiva</a>, <a href="/search/cs?searchtype=author&query=Ruiz-del-Solar%2C+J">Javier Ruiz-del-Solar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.05174v1-abstract-short" style="display: inline;"> This work proposes a scheme that allows learning complex multi-agent behaviors in a sample efficient manner, applied to 2v2 soccer. The problem is formulated as a Markov game, and solved using deep reinforcement learning. We propose a basic multi-agent extension of TD3 for learning the policy of each player, in a decentralized manner. To ease learning, the task of 2v2 soccer is divided in three st… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.05174v1-abstract-full').style.display = 'inline'; document.getElementById('2103.05174v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.05174v1-abstract-full" style="display: none;"> This work proposes a scheme that allows learning complex multi-agent behaviors in a sample efficient manner, applied to 2v2 soccer. The problem is formulated as a Markov game, and solved using deep reinforcement learning. We propose a basic multi-agent extension of TD3 for learning the policy of each player, in a decentralized manner. To ease learning, the task of 2v2 soccer is divided in three stages: 1v0, 1v1 and 2v2. The process of learning in multi-agent stages (1v1 and 2v2) uses agents trained on a previous stage as fixed opponents. In addition, we propose using experience sharing, a method that shares experience from a fixed opponent, trained in a previous stage, for training the agent currently learning, and a form of frame-skipping, to raise performance significantly. Our results show that high quality soccer play can be obtained with our approach in just under 40M interactions. A summarized video of the resulting game play can be found in https://youtu.be/f25l1j1U9RM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.05174v1-abstract-full').style.display = 'none'; document.getElementById('2103.05174v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.05256">arXiv:1908.05256</a> <span> [<a href="https://arxiv.org/pdf/1908.05256">pdf</a>, <a href="https://arxiv.org/format/1908.05256">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Continuous Control for High-Dimensional State Spaces: An Interactive Learning Approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=P%C3%A9rez-Dattari%2C+R">Rodrigo P茅rez-Dattari</a>, <a href="/search/cs?searchtype=author&query=Celemin%2C+C">Carlos Celemin</a>, <a href="/search/cs?searchtype=author&query=Ruiz-del-Solar%2C+J">Javier Ruiz-del-Solar</a>, <a href="/search/cs?searchtype=author&query=Kober%2C+J">Jens Kober</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.05256v1-abstract-short" style="display: inline;"> Deep Reinforcement Learning (DRL) has become a powerful methodology to solve complex decision-making problems. However, DRL has several limitations when used in real-world problems (e.g., robotics applications). For instance, long training times are required and cannot be accelerated in contrast to simulated environments, and reward functions may be hard to specify/model and/or to compute. Moreove… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.05256v1-abstract-full').style.display = 'inline'; document.getElementById('1908.05256v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.05256v1-abstract-full" style="display: none;"> Deep Reinforcement Learning (DRL) has become a powerful methodology to solve complex decision-making problems. However, DRL has several limitations when used in real-world problems (e.g., robotics applications). For instance, long training times are required and cannot be accelerated in contrast to simulated environments, and reward functions may be hard to specify/model and/or to compute. Moreover, the transfer of policies learned in a simulator to the real-world has limitations (reality gap). On the other hand, machine learning methods that rely on the transfer of human knowledge to an agent have shown to be time efficient for obtaining well performing policies and do not require a reward function. In this context, we analyze the use of human corrective feedback during task execution to learn policies with high-dimensional state spaces, by using the D-COACH framework, and we propose new variants of this framework. D-COACH is a Deep Learning based extension of COACH (COrrective Advice Communicated by Humans), where humans are able to shape policies through corrective advice. The enhanced version of D-COACH, which is proposed in this paper, largely reduces the time and effort of a human for training a policy. Experimental results validate the efficiency of the D-COACH framework in three different problems (simulated and with real robots), and show that its enhanced version reduces the human training effort considerably, and makes it feasible to learn policies within periods of time in which a DRL agent do not reach any improvement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.05256v1-abstract-full').style.display = 'none'; document.getElementById('1908.05256v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 8 figures, IEEE International Conference on Robotics and Automation (ICRA 2019)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 68T05; 68T40; 93C85 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.12493">arXiv:1811.12493</a> <span> [<a href="https://arxiv.org/pdf/1811.12493">pdf</a>, <a href="https://arxiv.org/format/1811.12493">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> </div> <p class="title is-5 mathjax"> Playing Soccer without Colors in the SPL: A Convolutional Neural Network Approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Leiva%2C+F">Francisco Leiva</a>, <a href="/search/cs?searchtype=author&query=Cruz%2C+N">Nicol谩s Cruz</a>, <a href="/search/cs?searchtype=author&query=Bugue%C3%B1o%2C+I">Ignacio Bugue帽o</a>, <a href="/search/cs?searchtype=author&query=Ruiz-del-Solar%2C+J">Javier Ruiz-del-Solar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.12493v1-abstract-short" style="display: inline;"> The goal of this paper is to propose a vision system for humanoid robotic soccer that does not use any color information. The main features of this system are: (i) real-time operation in the NAO robot, and (ii) the ability to detect the ball, the robots, their orientations, the lines and key field features robustly. Our ball detector, robot detector, and robot's orientation detector obtain the hig… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.12493v1-abstract-full').style.display = 'inline'; document.getElementById('1811.12493v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.12493v1-abstract-full" style="display: none;"> The goal of this paper is to propose a vision system for humanoid robotic soccer that does not use any color information. The main features of this system are: (i) real-time operation in the NAO robot, and (ii) the ability to detect the ball, the robots, their orientations, the lines and key field features robustly. Our ball detector, robot detector, and robot's orientation detector obtain the highest reported detection rates. The proposed vision system is tested in a SPL field with several NAO robots under realistic and highly demanding conditions. The obtained results are: robot detection rate of 94.90%, ball detection rate of 97.10%, and a completely perceived orientation rate of 99.88% when the observed robot is static, and 95.52% when the observed robot is moving. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.12493v1-abstract-full').style.display = 'none'; document.getElementById('1811.12493v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures. Presented in RoboCup Symposium 2018. Final version will appear in Springer</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.08414">arXiv:1811.08414</a> <span> [<a href="https://arxiv.org/pdf/1811.08414">pdf</a>, <a href="https://arxiv.org/format/1811.08414">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/978-3-030-27544-0_3">10.1007/978-3-030-27544-0_3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Visual SLAM-based Localization and Navigation for Service Robots: The Pepper Case </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=G%C3%B3mez%2C+C">Cristopher G贸mez</a>, <a href="/search/cs?searchtype=author&query=Mattamala%2C+M">Mat铆as Mattamala</a>, <a href="/search/cs?searchtype=author&query=Resink%2C+T">Tim Resink</a>, <a href="/search/cs?searchtype=author&query=Ruiz-del-Solar%2C+J">Javier Ruiz-del-Solar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.08414v1-abstract-short" style="display: inline;"> We propose a Visual-SLAM based localization and navigation system for service robots. Our system is built on top of the ORB-SLAM monocular system but extended by the inclusion of wheel odometry in the estimation procedures. As a case study, the proposed system is validated using the Pepper robot, whose short-range LIDARs and RGB-D camera do not allow the robot to self-localize in large environment… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.08414v1-abstract-full').style.display = 'inline'; document.getElementById('1811.08414v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.08414v1-abstract-full" style="display: none;"> We propose a Visual-SLAM based localization and navigation system for service robots. Our system is built on top of the ORB-SLAM monocular system but extended by the inclusion of wheel odometry in the estimation procedures. As a case study, the proposed system is validated using the Pepper robot, whose short-range LIDARs and RGB-D camera do not allow the robot to self-localize in large environments. The localization system is tested in navigation tasks using Pepper in two different environments: a medium-size laboratory, and a large-size hall. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.08414v1-abstract-full').style.display = 'none'; document.getElementById('1811.08414v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures. Presented in RoboCup Symposium 2018. Final version will appear in Springer</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.08352">arXiv:1811.08352</a> <span> [<a href="https://arxiv.org/pdf/1811.08352">pdf</a>, <a href="https://arxiv.org/format/1811.08352">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> </div> <p class="title is-5 mathjax"> Near Real-Time Object Recognition for Pepper based on Deep Neural Networks Running on a Backpack </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Reyes%2C+E">Esteban Reyes</a>, <a href="/search/cs?searchtype=author&query=G%C3%B3mez%2C+C">Cristopher G贸mez</a>, <a href="/search/cs?searchtype=author&query=Norambuena%2C+E">Esteban Norambuena</a>, <a href="/search/cs?searchtype=author&query=Ruiz-del-Solar%2C+J">Javier Ruiz-del-Solar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.08352v1-abstract-short" style="display: inline;"> The main goal of the paper is to provide Pepper with a near real-time object recognition system based on deep neural networks. The proposed system is based on YOLO (You Only Look Once), a deep neural network that is able to detect and recognize objects robustly and at a high speed. In addition, considering that YOLO cannot be run in the Pepper's internal computer in near real-time, we propose to u… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.08352v1-abstract-full').style.display = 'inline'; document.getElementById('1811.08352v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.08352v1-abstract-full" style="display: none;"> The main goal of the paper is to provide Pepper with a near real-time object recognition system based on deep neural networks. The proposed system is based on YOLO (You Only Look Once), a deep neural network that is able to detect and recognize objects robustly and at a high speed. In addition, considering that YOLO cannot be run in the Pepper's internal computer in near real-time, we propose to use a Backpack for Pepper, which holds a Jetson TK1 card and a battery. By using this card, Pepper is able to robustly detect and recognize objects in images of 320x320 pixels at about 5 frames per second. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.08352v1-abstract-full').style.display = 'none'; document.getElementById('1811.08352v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of 22th RoboCup International Symposium, Montreal, Canada, 2018</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proceedings of 22th RoboCup International Symposium, Montreal, Canada, 2018 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.00466">arXiv:1810.00466</a> <span> [<a href="https://arxiv.org/pdf/1810.00466">pdf</a>, <a href="https://arxiv.org/format/1810.00466">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Interactive Learning with Corrective Feedback for Policies based on Deep Neural Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=P%C3%A9rez-Dattari%2C+R">Rodrigo P茅rez-Dattari</a>, <a href="/search/cs?searchtype=author&query=Celemin%2C+C">Carlos Celemin</a>, <a href="/search/cs?searchtype=author&query=Ruiz-del-Solar%2C+J">Javier Ruiz-del-Solar</a>, <a href="/search/cs?searchtype=author&query=Kober%2C+J">Jens Kober</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.00466v1-abstract-short" style="display: inline;"> Deep Reinforcement Learning (DRL) has become a powerful strategy to solve complex decision making problems based on Deep Neural Networks (DNNs). However, it is highly data demanding, so unfeasible in physical systems for most applications. In this work, we approach an alternative Interactive Machine Learning (IML) strategy for training DNN policies based on human corrective feedback, with a method… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.00466v1-abstract-full').style.display = 'inline'; document.getElementById('1810.00466v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.00466v1-abstract-full" style="display: none;"> Deep Reinforcement Learning (DRL) has become a powerful strategy to solve complex decision making problems based on Deep Neural Networks (DNNs). However, it is highly data demanding, so unfeasible in physical systems for most applications. In this work, we approach an alternative Interactive Machine Learning (IML) strategy for training DNN policies based on human corrective feedback, with a method called Deep COACH (D-COACH). This approach not only takes advantage of the knowledge and insights of human teachers as well as the power of DNNs, but also has no need of a reward function (which sometimes implies the need of external perception for computing rewards). We combine Deep Learning with the COrrective Advice Communicated by Humans (COACH) framework, in which non-expert humans shape policies by correcting the agent's actions during execution. The D-COACH framework has the potential to solve complex problems without much data or time required. Experimental results validated the efficiency of the framework in three different problems (two simulated, one with a real robot), with state spaces of low and high dimensions, showing the capacity to successfully learn policies for continuous action spaces like in the Car Racing and Cart-Pole problems faster than with DRL. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.00466v1-abstract-full').style.display = 'none'; document.getElementById('1810.00466v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures, 1 table, conference (ISER 2018)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 68T05; 68T40; 93C85 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.10862">arXiv:1803.10862</a> <span> [<a href="https://arxiv.org/pdf/1803.10862">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> A Survey on Deep Learning Methods for Robot Vision </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Ruiz-del-Solar%2C+J">Javier Ruiz-del-Solar</a>, <a href="/search/cs?searchtype=author&query=Loncomilla%2C+P">Patricio Loncomilla</a>, <a href="/search/cs?searchtype=author&query=Soto%2C+N">Naiomi Soto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.10862v1-abstract-short" style="display: inline;"> Deep learning has allowed a paradigm shift in pattern recognition, from using hand-crafted features together with statistical classifiers to using general-purpose learning procedures for learning data-driven representations, features, and classifiers together. The application of this new paradigm has been particularly successful in computer vision, in which the development of deep learning methods… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.10862v1-abstract-full').style.display = 'inline'; document.getElementById('1803.10862v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.10862v1-abstract-full" style="display: none;"> Deep learning has allowed a paradigm shift in pattern recognition, from using hand-crafted features together with statistical classifiers to using general-purpose learning procedures for learning data-driven representations, features, and classifiers together. The application of this new paradigm has been particularly successful in computer vision, in which the development of deep learning methods for vision applications has become a hot research topic. Given that deep learning has already attracted the attention of the robot vision community, the main purpose of this survey is to address the use of deep learning in robot vision. To achieve this, a comprehensive overview of deep learning and its usage in computer vision is given, that includes a description of the most frequently used neural models and their main application areas. Then, the standard methodology and tools used for designing deep-learning based vision systems are presented. Afterwards, a review of the principal work using deep learning in robot vision is presented, as well as current and future trends related to the use of deep learning in robotics. This survey is intended to be a guide for the developers of robot vision systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.10862v1-abstract-full').style.display = 'none'; document.getElementById('1803.10862v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 68T45 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.06702">arXiv:1706.06702</a> <span> [<a href="https://arxiv.org/pdf/1706.06702">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Using Convolutional Neural Networks in Robots with Limited Computational Resources: Detecting NAO Robots while Playing Soccer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Cruz%2C+N">Nicol谩s Cruz</a>, <a href="/search/cs?searchtype=author&query=Lobos-Tsunekawa%2C+K">Kenzo Lobos-Tsunekawa</a>, <a href="/search/cs?searchtype=author&query=Ruiz-del-Solar%2C+J">Javier Ruiz-del-Solar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.06702v1-abstract-short" style="display: inline;"> The main goal of this paper is to analyze the general problem of using Convolutional Neural Networks (CNNs) in robots with limited computational capabilities, and to propose general design guidelines for their use. In addition, two different CNN based NAO robot detectors that are able to run in real-time while playing soccer are proposed. One of the detectors is based on the XNOR-Net and the other… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.06702v1-abstract-full').style.display = 'inline'; document.getElementById('1706.06702v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.06702v1-abstract-full" style="display: none;"> The main goal of this paper is to analyze the general problem of using Convolutional Neural Networks (CNNs) in robots with limited computational capabilities, and to propose general design guidelines for their use. In addition, two different CNN based NAO robot detectors that are able to run in real-time while playing soccer are proposed. One of the detectors is based on the XNOR-Net and the other on the SqueezeNet. Each detector is able to process a robot object-proposal in ~1ms, with an average number of 1.5 proposals per frame obtained by the upper camera of the NAO. The obtained detection rate is ~97%. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.06702v1-abstract-full').style.display = 'none'; document.getElementById('1706.06702v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in the RoboCup Symposium 2017. Final version will be published at Springer</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.06696">arXiv:1706.06696</a> <span> [<a href="https://arxiv.org/pdf/1706.06696">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/978-3-030-00308-1_25">10.1007/978-3-030-00308-1_25 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The NAO Backpack: An Open-hardware Add-on for Fast Software Development with the NAO Robot </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Mattamala%2C+M">Mat铆as Mattamala</a>, <a href="/search/cs?searchtype=author&query=Olave%2C+G">Gonzalo Olave</a>, <a href="/search/cs?searchtype=author&query=Gonz%C3%A1lez%2C+C">Clayder Gonz谩lez</a>, <a href="/search/cs?searchtype=author&query=Hasb%C3%BAn%2C+N">Nicol谩s Hasb煤n</a>, <a href="/search/cs?searchtype=author&query=Ruiz-del-Solar%2C+J">Javier Ruiz-del-Solar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.06696v1-abstract-short" style="display: inline;"> We present an open-source accessory for the NAO robot, which enables to test computationally demanding algorithms in an external platform while preserving robot's autonomy and mobility. The platform has the form of a backpack, which can be 3D printed and replicated, and holds an ODROID XU4 board to process algorithms externally with ROS compatibility. We provide also a software bridge between the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.06696v1-abstract-full').style.display = 'inline'; document.getElementById('1706.06696v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.06696v1-abstract-full" style="display: none;"> We present an open-source accessory for the NAO robot, which enables to test computationally demanding algorithms in an external platform while preserving robot's autonomy and mobility. The platform has the form of a backpack, which can be 3D printed and replicated, and holds an ODROID XU4 board to process algorithms externally with ROS compatibility. We provide also a software bridge between the B-Human's framework and ROS to have access to the robot's sensors close to real-time. We tested the platform in several robotics applications such as data logging, visual SLAM, and robot vision with deep learning techniques. The CAD model, hardware specifications and software are available online for the benefit of the community: https://github.com/uchile-robotics/nao-backpack <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.06696v1-abstract-full').style.display = 'none'; document.getElementById('1706.06696v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in the RoboCup Symposium 2017. Final version will be published at Springer</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.06695">arXiv:1706.06695</a> <span> [<a href="https://arxiv.org/pdf/1706.06695">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Toward Real-Time Decentralized Reinforcement Learning using Finite Support Basis Functions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Lobos-Tsunekawa%2C+K">Kenzo Lobos-Tsunekawa</a>, <a href="/search/cs?searchtype=author&query=Leottau%2C+D+L">David L. Leottau</a>, <a href="/search/cs?searchtype=author&query=Ruiz-del-Solar%2C+J">Javier Ruiz-del-Solar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.06695v1-abstract-short" style="display: inline;"> This paper addresses the design and implementation of complex Reinforcement Learning (RL) behaviors where multi-dimensional action spaces are involved, as well as the need to execute the behaviors in real-time using robotic platforms with limited computational resources and training times. For this purpose, we propose the use of decentralized RL, in combination with finite support basis functions… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.06695v1-abstract-full').style.display = 'inline'; document.getElementById('1706.06695v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.06695v1-abstract-full" style="display: none;"> This paper addresses the design and implementation of complex Reinforcement Learning (RL) behaviors where multi-dimensional action spaces are involved, as well as the need to execute the behaviors in real-time using robotic platforms with limited computational resources and training times. For this purpose, we propose the use of decentralized RL, in combination with finite support basis functions as alternatives to Gaussian RBF, in order to alleviate the effects of the curse of dimensionality on the action and state spaces respectively, and to reduce the computation time. As testbed, a RL based controller for the in-walk kick in NAO robots, a challenging and critical problem for soccer robotics, is used. The reported experiments show empirically that our solution saves up to 99.94% of execution time and 98.82% of memory consumption during execution, without diminishing performance compared to classical approaches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.06695v1-abstract-full').style.display = 'none'; document.getElementById('1706.06695v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in the RoboCup Symposium 2017. Final version will be published at Springer</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.06694">arXiv:1706.06694</a> <span> [<a href="https://arxiv.org/pdf/1706.06694">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> </div> <p class="title is-5 mathjax"> Recognition of Grasp Points for Clothes Manipulation under unconstrained Conditions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Mart%C3%ADnez%2C+L+M">Luz Mar铆a Mart铆nez</a>, <a href="/search/cs?searchtype=author&query=Ruiz-del-Solar%2C+J">Javier Ruiz-del-Solar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.06694v1-abstract-short" style="display: inline;"> In this work a system for recognizing grasp points in RGB-D images is proposed. This system is intended to be used by a domestic robot when deploying clothes lying at a random position on a table. By taking into consideration that the grasp points are usually near key parts of clothing, such as the waist of pants or the neck of a shirt. The proposed system attempts to detect these key parts first,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.06694v1-abstract-full').style.display = 'inline'; document.getElementById('1706.06694v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.06694v1-abstract-full" style="display: none;"> In this work a system for recognizing grasp points in RGB-D images is proposed. This system is intended to be used by a domestic robot when deploying clothes lying at a random position on a table. By taking into consideration that the grasp points are usually near key parts of clothing, such as the waist of pants or the neck of a shirt. The proposed system attempts to detect these key parts first, using a local multivariate contour that adapts its shape accordingly. Then, the proposed system applies the Vessel Enhancement filter to identify wrinkles in the clothes, allowing to compute a roughness index for the clothes. Finally, by mixing (i) the key part contours and (ii) the roughness information obtained by the vessel filter, the system is able to recognize grasp points for unfolding a piece of clothing. The recognition system is validated using realistic RGB-D images of different cloth types. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.06694v1-abstract-full').style.display = 'none'; document.getElementById('1706.06694v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in the RoboCup Symposium 2017. Final version will be published at Springer</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>