CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 73 results for author: <span class="mathjax">Doiron-Leyraud, N</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Doiron-Leyraud%2C+N">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Doiron-Leyraud, N"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Doiron-Leyraud%2C+N&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Doiron-Leyraud, N"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Doiron-Leyraud%2C+N&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Doiron-Leyraud%2C+N&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Doiron-Leyraud%2C+N&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.08546">arXiv:2211.08546</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.08546">pdf</a>, <a href="https://arxiv.org/format/2211.08546">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.054434">10.1103/PhysRevB.107.054434 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Heat conduction in herbertsmithite: field dependence at the onset of the quantum spin liquid regime </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Barth%C3%A9lemy%2C+Q">Q. Barth茅lemy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lefran%C3%A7ois%2C+%C3%89">脡. Lefran莽ois</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baglo%2C+J">J. Baglo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bourgeois-Hope%2C+P">P. Bourgeois-Hope</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chatterjee%2C+D">D. Chatterjee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leflo%C3%AFc%2C+P">P. Leflo茂c</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vel%C3%A1zquez%2C+M">M. Vel谩zquez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bal%C3%A9dent%2C+V">V. Bal茅dent</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernu%2C+B">B. Bernu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bert%2C+F">F. Bert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mendels%2C+P">P. Mendels</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">L. Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.08546v3-abstract-short" style="display: inline;"> We report thermal conductivity measurements on single crystals of herbertsmithite, over a wide range of temperatures (0.05-120 K) in magnetic fields up to 15 T. We also report measurements of the thermal Hall effect, found to be vanishingly small. At high temperatures, in the paramagnetic regime, the thermal conductivity has a negligible field dependence. Upon cooling and the development of correl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.08546v3-abstract-full').style.display = 'inline'; document.getElementById('2211.08546v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.08546v3-abstract-full" style="display: none;"> We report thermal conductivity measurements on single crystals of herbertsmithite, over a wide range of temperatures (0.05-120 K) in magnetic fields up to 15 T. We also report measurements of the thermal Hall effect, found to be vanishingly small. At high temperatures, in the paramagnetic regime, the thermal conductivity has a negligible field dependence. Upon cooling and the development of correlations, the onset of a clear monotonic field dependence below about 20 K signals a new characteristic temperature scale that may reflect the subtle crossover towards the quantum spin liquid regime. Deconfined spinons, if present, are not detected and phonons, as the main carriers of heat, are strongly scattered by the intrinsic spin excitations and the magnetic defects. In view of the colossal fields required to affect the intrinsic spins, most of the field-induced evolution is attributed to the progressive polarization of some magnetic defects. By elaborating a phenomenological model, we extract the magnetization of these main scattering centers which does not resemble the Brillouin function for free spins 1/2, requiring to go beyond the paradigm of isolated paramagnetic spins. Besides, the onset of a nonmonotonic field dependence below about 2 K underlines the existence of another characteristic temperature scale, previously highlighted with other measurements, and sheds new light on the phase diagram of herbertsmithite down to the lowest temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.08546v3-abstract-full').style.display = 'none'; document.getElementById('2211.08546v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 107, 054434 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.05233">arXiv:2205.05233</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.05233">pdf</a>, <a href="https://arxiv.org/format/2205.05233">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.13.031010">10.1103/PhysRevX.13.031010 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> No nematicity at the onset temperature of the pseudogap phase in the cuprate superconductor YBCO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Grissonnanche%2C+G">G. Grissonnanche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cyr-Choini%C3%A8re%2C+O">O. Cyr-Choini猫re</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Day%2C+J">J. Day</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">R. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">L. Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.05233v2-abstract-short" style="display: inline;"> Electronic nematicity is the spontaneous loss of rotational symmetry in a metal, without breaking translational symmetry. In the cuprate superconductors, there is experimental evidence for nematicity, but its origin remains unclear. Here we investigate the onset of nematicity in the transport of charge by means of electric and thermoelectric measurements in underdoped YBa$_{\rm 2}$Cu$_{\rm 3}$O&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.05233v2-abstract-full').style.display = 'inline'; document.getElementById('2205.05233v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.05233v2-abstract-full" style="display: none;"> Electronic nematicity is the spontaneous loss of rotational symmetry in a metal, without breaking translational symmetry. In the cuprate superconductors, there is experimental evidence for nematicity, but its origin remains unclear. Here we investigate the onset of nematicity in the transport of charge by means of electric and thermoelectric measurements in underdoped YBa$_{\rm 2}$Cu$_{\rm 3}$O$_{\rm y}$, performed by passing the current (electrical or thermal) first along the $a$ axis then the $b$ axis of the orthorhombic structure in the same crystal, with a hole doping $p = 0.12$. Upon cooling, we observe no additional in-plane anisotropy -- beyond the background anisotropy due to the CuO chains -- in either the resistivity $蟻$ or the Seebeck coefficient $S$ as the temperature $T^{\star}$~for the onset of the pseudogap phase is crossed. We conclude that the pseudogap phase of cuprates is not nematic. However, at temperatures much lower than $T^{\star}$, a strong additional anisotropy is observed, most clearly in the Peltier coefficient $伪= S / 蟻$. We interpret it as nematicity associated with the development of charge order. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.05233v2-abstract-full').style.display = 'none'; document.getElementById('2205.05233v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review X 13, 031010 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.05035">arXiv:2203.05035</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.05035">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-022-01763-0">10.1038/s41567-022-01763-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electrons with Planckian scattering obey standard orbital motion in a magnetic field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ataei%2C+A">A. Ataei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gourgout%2C+A">A. Gourgout</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grissonnanche%2C+G">G. Grissonnanche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">L. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baglo%2C+J">J. Baglo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boulanger%2C+M">M-E. Boulanger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lalibert%C3%A9%2C+F">F. Lalibert茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Badoux%2C+S">S. Badoux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oliviero%2C+V">V. Oliviero</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Benhabib%2C+S">S. Benhabib</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vignolles%2C+D">D. Vignolles</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J+-">J. -S. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ono%2C+S">S. Ono</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takagi%2C+H">H. Takagi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Proust%2C+C">C. Proust</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">L. Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.05035v1-abstract-short" style="display: inline;"> In various &#34;strange&#34; metals, electrons undergo Planckian dissipation, a strong and anomalous scattering that grows linearly with temperature, in contrast to the quadratic temperature dependence expected from the standard theory of metals. In some cuprates and pnictides, a linear dependence of the resistivity on magnetic field has also been considered anomalous - possibly an additional facet of Pla&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.05035v1-abstract-full').style.display = 'inline'; document.getElementById('2203.05035v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.05035v1-abstract-full" style="display: none;"> In various &#34;strange&#34; metals, electrons undergo Planckian dissipation, a strong and anomalous scattering that grows linearly with temperature, in contrast to the quadratic temperature dependence expected from the standard theory of metals. In some cuprates and pnictides, a linear dependence of the resistivity on magnetic field has also been considered anomalous - possibly an additional facet of Planckian dissipation. Here we show that the resistivity of the cuprate strange metals Nd-LSCO and LSCO is quantitatively consistent with the standard Boltzmann theory of electron motion in a magnetic field, in all aspects - field strength, field direction, temperature, and disorder level. The linear field dependence is found to be simply the consequence of scattering rate anisotropy. We conclude that Planckian dissipation is anomalous in its temperature dependence but not in its field dependence. The scattering rate in these cuprates does not depend on field, which means their Planckian dissipation is robust against fields up to at least 85 T. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.05035v1-abstract-full').style.display = 'none'; document.getElementById('2203.05035v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 18, 1420-1424 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.05493">arXiv:2111.05493</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.05493">pdf</a>, <a href="https://arxiv.org/format/2111.05493">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.12.021025">10.1103/PhysRevX.12.021025 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence of a Phonon Hall Effect in the Kitaev Spin Liquid Candidate $伪$-RuCl$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lefran%C3%A7ois%2C+%C3%89">脡. Lefran莽ois</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grissonnanche%2C+G">G. Grissonnanche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baglo%2C+J">J. Baglo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lampen-Kelley%2C+P">P. Lampen-Kelley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+J">J. Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balz%2C+C">C. Balz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mandrus%2C+D">D. Mandrus</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nagler%2C+S+E">S. E. Nagler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+S">S. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+Y">Young-June Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">L. Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.05493v1-abstract-short" style="display: inline;"> The material $伪$-RuCl$_3$ has been the subject of intense scrutiny as a potential Kitaev quantum spin liquid, predicted to display Majorana fermions as low energy excitations. In practice, $伪$-RuCl$_3$ undergoes a transition to a state with antiferromagnetic order below a temperature $T_{\rm N}$ $\approx$ 7 K, but this order can be suppressed by applying an external in-plane magnetic field of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.05493v1-abstract-full').style.display = 'inline'; document.getElementById('2111.05493v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.05493v1-abstract-full" style="display: none;"> The material $伪$-RuCl$_3$ has been the subject of intense scrutiny as a potential Kitaev quantum spin liquid, predicted to display Majorana fermions as low energy excitations. In practice, $伪$-RuCl$_3$ undergoes a transition to a state with antiferromagnetic order below a temperature $T_{\rm N}$ $\approx$ 7 K, but this order can be suppressed by applying an external in-plane magnetic field of $H_\parallel$ = 7 T. Whether a quantum spin liquid phase exists just above that field is still an open question, but the reported observation of a quantized thermal Hall conductivity at $H_\parallel$ $&gt;$ 7 T by Kasahara and co-workers $\big[$Kasahara ${\it et \ al}$., Nature ${\bf 559}$, 227 (2018)$\big]$ has been interpreted as evidence of itinerant Majorana fermions in the Kitaev quantum spin liquid state. In this study, we re-examine the origin of the thermal Hall conductivity $魏_{\rm xy}$ in $伪$-RuCl$_3$. Our measurements of $魏_{\rm xy}$($T$) on several different crystals yield a temperature dependence very similar to that of the phonon-dominated longitudinal thermal conductivity $魏_{\rm xx}$($T$), for which the natural explanation is that $魏_{\rm xy}$ is also mostly carried by phonons. Upon cooling, $魏_{\rm xx}$ peaks at $T \simeq$ 20 K, then drops until $T_{\rm N}$, whereupon it suddenly increases again. The abrupt increase below $T_{\rm N}$ is attributed to a sudden reduction in the scattering of phonons by low-energy spin fluctuations as these become partially gapped when the system orders. The fact that $魏_{\rm xy}$ also increases suddenly below $T_{\rm N}$ is strong evidence that the thermal Hall effect in $伪$-RuCl$_3$ is also carried predominantly by phonons. This implies that any quantized signal from Majorana edge modes would have to come on top of a sizable -- and sample-dependent -- phonon background. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.05493v1-abstract-full').style.display = 'none'; document.getElementById('2111.05493v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 12, 021025 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.05959">arXiv:2106.05959</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.05959">pdf</a>, <a href="https://arxiv.org/format/2106.05959">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.12.011037">10.1103/PhysRevX.12.011037 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Seebeck coefficient in a cuprate superconductor: particle-hole asymmetry in the strange metal phase and Fermi surface transformation in the pseudogap phase </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gourgout%2C+A">A. Gourgout</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grissonnanche%2C+G">G. Grissonnanche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lalibert%C3%A9%2C+F">F. Lalibert茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ataei%2C+A">A. Ataei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">L. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Verret%2C+S">S. Verret</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J+-">J. -S. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">J. Mravlje</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Georges%2C+A">A. Georges</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">L. Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.05959v3-abstract-short" style="display: inline;"> We report measurements of the Seebeck effect in both the $ab$ plane ($S_{\rm a}$) and along the $c$ axis ($S_{\rm c}$) of the cuprate superconductor La$_{1.6-x}$Nd$_{0.4}$Sr$_{x}$CuO$_4$ (Nd-LSCO), performed in magnetic fields large enough to suppress superconductivity down to low temperature. We use the Seebeck coefficient as a probe of the particle-hole asymmetry of the electronic structure acro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.05959v3-abstract-full').style.display = 'inline'; document.getElementById('2106.05959v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.05959v3-abstract-full" style="display: none;"> We report measurements of the Seebeck effect in both the $ab$ plane ($S_{\rm a}$) and along the $c$ axis ($S_{\rm c}$) of the cuprate superconductor La$_{1.6-x}$Nd$_{0.4}$Sr$_{x}$CuO$_4$ (Nd-LSCO), performed in magnetic fields large enough to suppress superconductivity down to low temperature. We use the Seebeck coefficient as a probe of the particle-hole asymmetry of the electronic structure across the pseudogap critical doping $p^{\star} = 0.23$. Outside the pseudogap phase, at $p = 0.24 &gt; p^{\star}$, we observe a positive and essentially isotropic Seebeck coefficient as $T \rightarrow 0$. That $S &gt; 0$ at $p = 0.24$ is at odds with expectations given the electronic band structure of Nd-LSCO above $p^{\star}$ and its known electron-like Fermi surface. We can reconcile this observation by invoking an energy-dependent scattering rate with a particle-hole asymmetry, possibly rooted in the non-Fermi liquid nature of cuprates just above $p^{\star}$. Inside the pseudogap phase, for $ p &lt; p^{\star}$, $S_{\rm a}$ is seen to rise at low temperature as previously reported, consistent with the drop in carrier density $n$ from $n \simeq 1 + p$ to $n \simeq p$ across $p^{\star}$ as inferred from other transport properties. In stark contrast, $S_{\rm c}$ at low temperature becomes negative below $p^{\star}$, a novel signature of the pseudogap phase. The sudden drop in $S_{\rm c}$ reveals a change in the electronic structure of Nd-LSCO upon crossing $p^{\star}$. We can exclude a profound change of the scattering across $p^{\star}$ and conclude that the change in the out-of-plane Seebeck coefficient originates from a transformation of the Fermi surface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.05959v3-abstract-full').style.display = 'none'; document.getElementById('2106.05959v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review X 12, 011037 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.10484">arXiv:2012.10484</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.10484">pdf</a>, <a href="https://arxiv.org/format/2012.10484">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.3.023066">10.1103/PhysRevResearch.3.023066 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effect of pressure on the pseudogap and charge-density-wave phases of the cuprate La$_{1.6-x}$Nd$_{0.4}$Sr$_x$CuO$_4$ probed by thermopower measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gourgout%2C+A">A. Gourgout</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ataei%2C+A">A. Ataei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boulanger%2C+M+-">M. -E. Boulanger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Badoux%2C+S">S. Badoux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Th%C3%A9riault%2C+S">S. Th茅riault</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Graf%2C+D">D. Graf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J+-">J. -S. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pyon%2C+S">S. Pyon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takayama%2C+T">T. Takayama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takagi%2C+H">H. Takagi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">Nicolas Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">Louis Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.10484v1-abstract-short" style="display: inline;"> We report thermopower measurements under hydrostatic pressure on the cuprate superconductor La$_{1.6-x}$Nd$_{0.4}$Sr$_x$CuO$_4$ (Nd-LSCO), at low-temperature in the normal state accessed by suppressing superconductivity with a magnetic field up to $H = 31$ T. Using a newly developed AC thermopower measurement technique suitable for high pressure and high field, we track the pressure evolution of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.10484v1-abstract-full').style.display = 'inline'; document.getElementById('2012.10484v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.10484v1-abstract-full" style="display: none;"> We report thermopower measurements under hydrostatic pressure on the cuprate superconductor La$_{1.6-x}$Nd$_{0.4}$Sr$_x$CuO$_4$ (Nd-LSCO), at low-temperature in the normal state accessed by suppressing superconductivity with a magnetic field up to $H = 31$ T. Using a newly developed AC thermopower measurement technique suitable for high pressure and high field, we track the pressure evolution of the Seebeck coefficient $S$. At ambient pressure and low temperature, $S/T$ was recently found to suddenly increase in Nd-LSCO at the pseudogap critical doping $p^{\star} = 0.23$, consistent with a drop in carrier density $n$ from $n = 1 + p$ above $p^{\star}$ to $n = p$ below. Under a pressure of 2.0 GPa, we observe that this jump in $S/T$ is suppressed. This confirms a previous pressure study based on electrical resistivity and Hall effect which found $dp^{\star}/dP \simeq - 0.01$ holes/GPa, thereby reinforcing the interpretation that this effect is driven by the pressure-induced shift of the van Hove point. It implies that the pseudogap only exists when the Fermi surface is hole-like, which puts strong constraints on theories of the pseudogap phase. We also report thermopower measurements on Nd-LSCO and La$_{1.8-x}$Eu$_{0.2}$Sr$_x$CuO$_4$ in the charge density-wave phase near $p \sim 1/8$, which reveals a weakening of this phase under pressure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.10484v1-abstract-full').style.display = 'none'; document.getElementById('2012.10484v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 3, 023066 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.14927">arXiv:2011.14927</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.14927">pdf</a>, <a href="https://arxiv.org/format/2011.14927">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.155102">10.1103/PhysRevB.103.155102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermopower across the phase diagram of the cuprate La$_{1.6-x}$Nd$_{0.4}$Sr$_x$CuO$_4$ : signatures of the pseudogap and charge-density-wave phases </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Collignon%2C+C">C. Collignon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ataei%2C+A">A. Ataei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gourgout%2C+A">A. Gourgout</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Badoux%2C+S">S. Badoux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lizaire%2C+M">M. Lizaire</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Legros%2C+A">A. Legros</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Licciardello%2C+S">S. Licciardello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wiedmann%2C+S">S. Wiedmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+J+-">J. -Q. Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J+-">J. -S. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Q">Q. Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gaulin%2C+B+D">B. D. Gaulin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">Nicolas Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">Louis Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.14927v2-abstract-short" style="display: inline;"> The Seebeck coefficient (thermopower) $S$ of the cuprate superconductor La$_{1.6-x}$Nd$_{0.4}$Sr$_x$CuO$_4$ was measured across its doping phase diagram (from $p = 0.12$ to $p = 0.25$), at various temperatures down to $T \simeq 2$ K, in the normal state accessed by suppressing superconductivity with a magnetic field up to $H = 37.5$ T. The magnitude of $S/T$ in the $T=0$ limit is found to suddenly&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.14927v2-abstract-full').style.display = 'inline'; document.getElementById('2011.14927v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.14927v2-abstract-full" style="display: none;"> The Seebeck coefficient (thermopower) $S$ of the cuprate superconductor La$_{1.6-x}$Nd$_{0.4}$Sr$_x$CuO$_4$ was measured across its doping phase diagram (from $p = 0.12$ to $p = 0.25$), at various temperatures down to $T \simeq 2$ K, in the normal state accessed by suppressing superconductivity with a magnetic field up to $H = 37.5$ T. The magnitude of $S/T$ in the $T=0$ limit is found to suddenly increase, by a factor $\simeq 5$, when the doping is reduced below $p^{\star} = 0.23$, the critical doping for the onset of the pseudogap phase. This confirms that the pseudogap phase causes a large reduction of the carrier density $n$, consistent with a drop from $n = 1 + p$ above $p^{\star}$ to $n = p$ below $p^{\star}$, as previously inferred from measurements of the Hall coefficient, resistivity and thermal conductivity. When the doping is reduced below $p = 0.19$, a qualitative change is observed whereby $S/T$ decreases as $T \to 0$, eventually to reach negative values at $T=0$. In prior work on other cuprates, negative values of $S/T$ at $T \to 0$ were shown to result from a reconstruction of the Fermi surface caused by charge-density-wave (CDW) order. We therefore identify $p_{\rm CDW} \simeq 0.19$ as the critical doping beyond which there is no CDW-induced Fermi surface reconstruction. The fact that $p_{\rm CDW}$ is well separated from $p^{\star}$ reveals that there is a doping range below $p^{\star}$ where the transport signatures of the pseudogap phase are unaffected by CDW correlations, as previously found in YBa$_2$Cu$_3$O$_y$ and La$_{2-x}$Sr$_x$CuO$_4$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.14927v2-abstract-full').style.display = 'none'; document.getElementById('2011.14927v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Present version includes a comparison with new x-ray data on Nd-LSCO by Gupta et al., arXiv:2012.08450. 13 pages, 12 figures, includes SM file</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 155102 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.13692">arXiv:2008.13692</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.13692">pdf</a>, <a href="https://arxiv.org/format/2008.13692">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.014515">10.1103/PhysRevB.104.014515 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Transport signatures of the pseudogap critical point in the cuprate superconductor Bi$_2$Sr$_{2-x}$La$_x$CuO$_{6+未}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lizaire%2C+M">M. Lizaire</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Legros%2C+A">A. Legros</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gourgout%2C+A">A. Gourgout</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Benhabib%2C+S">S. Benhabib</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Badoux%2C+S">S. Badoux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lalibert%C3%A9%2C+F">F. Lalibert茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boulanger%2C+M+-">M. -E. Boulanger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ataei%2C+A">A. Ataei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grissonnanche%2C+G">G. Grissonnanche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBoeuf%2C+D">D. LeBoeuf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Licciardello%2C+S">S. Licciardello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wiedmann%2C+S">S. Wiedmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ono%2C+S">S. Ono</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Raffy%2C+H">H. Raffy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kawasaki%2C+S">S. Kawasaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+G+-">G. -Q. Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Proust%2C+C">C. Proust</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">L. Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.13692v3-abstract-short" style="display: inline;"> Five transport coefficients of the cuprate superconductor Bi$_2$Sr$_{2-x}$La$_x$CuO$_{6+未}$ were measured in the normal state down to low temperature, reached by applying a magnetic field (up to 66T) large enough to suppress superconductivity. The electrical resistivity, Hall coefficient, thermal conductivity, Seebeck coefficient and thermal Hall conductivity were measured in two overdoped single&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.13692v3-abstract-full').style.display = 'inline'; document.getElementById('2008.13692v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.13692v3-abstract-full" style="display: none;"> Five transport coefficients of the cuprate superconductor Bi$_2$Sr$_{2-x}$La$_x$CuO$_{6+未}$ were measured in the normal state down to low temperature, reached by applying a magnetic field (up to 66T) large enough to suppress superconductivity. The electrical resistivity, Hall coefficient, thermal conductivity, Seebeck coefficient and thermal Hall conductivity were measured in two overdoped single crystals, with La concentration $x = 0.2$ ($T_{\rm c}=18$K) and $x = 0.0$ ($T_{\rm c}=10$K). The samples have dopings $p$ very close to the critical doping $p^{\star}$ where the pseudogap phase ends. The resistivity displays a linear dependence on temperature whose slope is consistent with Planckian dissipation. The Hall number $n_{\rm H}$ decreases with reduced $p$, consistent with a drop in carrier density from $n = 1+p$ above $p^{\star}$ to $n=p$ below $p^{\star}$. This drop in $n_{\rm H}$ is concomitant with a sharp drop in the density of states inferred from prior NMR Knight shift measurements. The thermal conductivity satisfies the Wiedemann-Franz law, showing that the pseudogap phase at $T = 0$ is a metal whose fermionic excitations carry heat and charge as do conventional electrons. The Seebeck coefficient diverges logarithmically at low temperature, a signature of quantum criticality. The thermal Hall conductivity becomes negative at low temperature, showing that phonons are chiral in the pseudogap phase. Given the observation of these same properties in other, very different cuprates, our study provides strong evidence for the universality of these five signatures of the pseudogap phase and its critical point. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.13692v3-abstract-full').style.display = 'none'; document.getElementById('2008.13692v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Added references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 104, 014515 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.00111">arXiv:2003.00111</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.00111">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-020-0965-y">10.1038/s41567-020-0965-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phonons become chiral in the pseudogap phase of cuprates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Grissonnanche%2C+G">G. Grissonnanche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Th%C3%A9riault%2C+S">S. Th茅riault</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gourgout%2C+A">A. Gourgout</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boulanger%2C+M+-">M. -E. Boulanger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lefran%C3%A7ois%2C+E">E. Lefran莽ois</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ataei%2C+A">A. Ataei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lalibert%C3%A9%2C+F">F. Lalibert茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dion%2C+M">M. Dion</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J+-">J. -S. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pyon%2C+S">S. Pyon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takayama%2C+T">T. Takayama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takagi%2C+H">H. Takagi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">L. Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.00111v2-abstract-short" style="display: inline;"> The nature of the pseudogap phase of cuprates remains a major puzzle. One of its new signatures is a large negative thermal Hall conductivity $魏_{\rm xy}$, which appears for dopings $p$ below the pseudogap critical doping $p^*$, but whose origin is as yet unknown. Because this large $魏_{\rm xy}$ is observed even in the undoped Mott insulator La$_2$CuO$_4$, it cannot come from charge carriers, thes&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.00111v2-abstract-full').style.display = 'inline'; document.getElementById('2003.00111v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.00111v2-abstract-full" style="display: none;"> The nature of the pseudogap phase of cuprates remains a major puzzle. One of its new signatures is a large negative thermal Hall conductivity $魏_{\rm xy}$, which appears for dopings $p$ below the pseudogap critical doping $p^*$, but whose origin is as yet unknown. Because this large $魏_{\rm xy}$ is observed even in the undoped Mott insulator La$_2$CuO$_4$, it cannot come from charge carriers, these being localized at $p = 0$. Here we show that the thermal Hall conductivity of La$_2$CuO$_4$ is roughly isotropic, being nearly the same for heat transport parallel and normal to the CuO$_2$ planes, i.e. $魏_{\rm zy}(T) \approx 魏_{\rm xy} (T)$. This shows that the Hall response must come from phonons, these being the only heat carriers able to move as easily normal and parallel to the planes . At $p &gt; p^*$, in both La$_{\rm 1.6-x}$Nd$_{\rm 0.4}$Sr$_x$CuO$_4$ and La$_{\rm 1.8-x}$Eu$_{\rm 0.2}$Sr$_x$CuO$_4$ with $p = 0.24$, we observe no c-axis Hall signal, i.e. $魏_{\rm zy}(T) = 0$, showing that phonons have zero Hall response outside the pseudogap phase. The phonon Hall response appears immediately below $p^* = 0.23$, as confirmed by the large $魏_{\rm zy}(T)$ signal we find in La$_{1.6-x}$Nd$_{\rm 0.4}$Sr$_x$CuO$_4$ with $p = 0.21$. The microscopic mechanism by which phonons become chiral in cuprates remains to be identified. This mechanism must be intrinsic - from a coupling of phonons to their electronic environment - rather than extrinsic, from structural defects or impurities, as these are the same on both sides of $p^*$. This intrinsic phonon Hall effect provides a new window on quantum materials and it may explain the thermal Hall signal observed in other topologically nontrivial insulators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.00111v2-abstract-full').style.display = 'none'; document.getElementById('2003.00111v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 16, 1108 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.08126">arXiv:1910.08126</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.08126">pdf</a>, <a href="https://arxiv.org/format/1910.08126">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Link between magnetism and resistivity upturn in cuprates: a thermal conductivity study of La$_{2-x}$Sr$_x$CuO$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bourgeois-Hope%2C+P">P. Bourgeois-Hope</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S+Y">S. Y. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lalibert%C3%A9%2C+F">F. Lalibert茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Badoux%2C+S">S. Badoux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hayden%2C+S+M">S. M. Hayden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Momono%2C+N">N. Momono</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kurosawa%2C+T">T. Kurosawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamada%2C+K">K. Yamada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takagi%2C+H">H. Takagi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">Nicolas Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">Louis Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.08126v1-abstract-short" style="display: inline;"> A key unexplained feature of cuprate superconductors is the upturn in their normal state electrical resistivity $蟻(T)$ seen at low temperature inside the pseudogap phase. We examined this issue via measurements of the thermal conductivity $魏(T)$ down to 50 mK and in fields up to 17 T on the cuprate La$_{2-x}$Sr$_x$CuO$_4$ at dopings $p = 0.13$, 0.136, 0.143 and 0.18. At $p$ = 0.136, 0.143, and 0.1&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.08126v1-abstract-full').style.display = 'inline'; document.getElementById('1910.08126v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.08126v1-abstract-full" style="display: none;"> A key unexplained feature of cuprate superconductors is the upturn in their normal state electrical resistivity $蟻(T)$ seen at low temperature inside the pseudogap phase. We examined this issue via measurements of the thermal conductivity $魏(T)$ down to 50 mK and in fields up to 17 T on the cuprate La$_{2-x}$Sr$_x$CuO$_4$ at dopings $p = 0.13$, 0.136, 0.143 and 0.18. At $p$ = 0.136, 0.143, and 0.18, we observe an initial increase of the electronic thermal conductivity $魏_0/T$ as a function of field, as expected in a $d$-wave superconductor. For $p$ = 0.136 and 0.143, further increasing the field then leads to a decrease of $魏_0/T$, which correlates with the onset of spin density-wave order as observed in neutron scattering experiments on the same samples. This decrease of $魏_0/T$ with field is imposed by the Wiedemann-Franz law and the high value of the resistivity in the high-field normal state of these samples. Our study therefore provides a direct link between magnetism and the resistivity upturn in the pseudogap phase of cuprates. We discuss this scenario in the broader context of other cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.08126v1-abstract-full').style.display = 'none'; document.getElementById('1910.08126v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 Figures, includes Supplementary Material</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.10402">arXiv:1904.10402</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.10402">pdf</a>, <a href="https://arxiv.org/format/1904.10402">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.9.041051">10.1103/PhysRevX.9.041051 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermal conductivity of the quantum spin liquid candidate EtMe3Sb[Pd(dmit)2]2: No evidence of mobile gapless excitations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bourgeois-Hope%2C+P">P. Bourgeois-Hope</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lalibert%C3%A9%2C+F">F. Lalibert茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lefran%C3%A7ois%2C+E">E. Lefran莽ois</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grissonnanche%2C+G">G. Grissonnanche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Cotret%2C+S+R">S. Ren茅 de Cotret</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gordon%2C+R">R. Gordon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kitou%2C+S">S. Kitou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sawa%2C+H">H. Sawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+H">H. Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kato%2C+R">R. Kato</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">L. Taillefer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.10402v3-abstract-short" style="display: inline;"> The thermal conductivity $魏$ of the quasi-2D organic spin-liquid candidate EtMe$_3$Sb[Pd(dmit)$_2$]$_2$ (dmit-131) was measured at low temperatures, down to 0.07 K. We observe a vanishingly small residual linear term $魏_0/T$, in $魏/T$ vs $T$ as $T \to 0$. This shows that the low-energy excitations responsible for the sizeable residual linear term $纬$ in the specific heat $C$, seen in $C/T$ vs $T$&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.10402v3-abstract-full').style.display = 'inline'; document.getElementById('1904.10402v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.10402v3-abstract-full" style="display: none;"> The thermal conductivity $魏$ of the quasi-2D organic spin-liquid candidate EtMe$_3$Sb[Pd(dmit)$_2$]$_2$ (dmit-131) was measured at low temperatures, down to 0.07 K. We observe a vanishingly small residual linear term $魏_0/T$, in $魏/T$ vs $T$ as $T \to 0$. This shows that the low-energy excitations responsible for the sizeable residual linear term $纬$ in the specific heat $C$, seen in $C/T$ vs $T$ as $T \to 0,$ are localized. We conclude that there are no mobile gapless excitations in this spin liquid candidate, in contrast with a prior study of dmit-131 that reported a large $魏_0/T$ value [Yamashita et al., Science 328, 1246 (2010)]. Our study shows that dmit-131 is in fact similar to $魏$-(BEDT-TTF)$_2$Cu$_2$(CN)$_3$, another quasi-2D organic spin-liquid candidate where a vanishingly small $魏_0/T$ and a sizeable $纬$ are seen. We attribute heat conduction in these organic insulators without magnetic order to phonons undergoing strong spin-phonon scattering, as observed in several other spin-liquid materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.10402v3-abstract-full').style.display = 'none'; document.getElementById('1904.10402v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This revision includes a response to Yamashita&#39;s paper [M. Yamashita, Journal of the Physical Society of Japan 88, 083702 (2019)], data on a new sample, two new figures (Figs. 5 and 8), and a Supplementary Material (available upon request)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 9, 041051 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.03104">arXiv:1901.03104</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.03104">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-019-1375-0">10.1038/s41586-019-1375-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Giant thermal Hall conductivity from neutral excitations in the pseudogap phase of cuprates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Grissonnanche%2C+G">Ga毛l Grissonnanche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Legros%2C+A">Ana毛lle Legros</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Badoux%2C+S">Sven Badoux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lefran%C3%A7ois%2C+E">Etienne Lefran莽ois</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zatko%2C+V">Victor Zatko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lizaire%2C+M">Maude Lizaire</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lalibert%C3%A9%2C+F">Francis Lalibert茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gourgout%2C+A">Adrien Gourgout</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J">Jianshi Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pyon%2C+S">Sunseng Pyon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takayama%2C+T">Tomohiro Takayama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takagi%2C+H">Hidenori Takagi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ono%2C+S">Shimpei Ono</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">Nicolas Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">Louis Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.03104v1-abstract-short" style="display: inline;"> The nature of the pseudogap phase of cuprates remains a major puzzle. Although there are indications that this phase breaks various symmetries, there is no consensus on its fundamental nature. Although Fermi-surface, transport and thermodynamic signatures of the pseudogap phase are reminiscent of a transition into a phase with antiferromagnetic order, there is no evidence for an associated long-ra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.03104v1-abstract-full').style.display = 'inline'; document.getElementById('1901.03104v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.03104v1-abstract-full" style="display: none;"> The nature of the pseudogap phase of cuprates remains a major puzzle. Although there are indications that this phase breaks various symmetries, there is no consensus on its fundamental nature. Although Fermi-surface, transport and thermodynamic signatures of the pseudogap phase are reminiscent of a transition into a phase with antiferromagnetic order, there is no evidence for an associated long-range magnetic order. Here we report measurements of the thermal Hall conductivity $魏_{\rm xy}$ in the normal state of four different cuprates (Nd-LSCO, Eu-LSCO, LSCO, and Bi2201) and show that a large negative $魏_{\rm xy}$ signal is a property of the pseudogap phase, appearing with the onset of that phase at the critical doping $p^*$. Since it is not due to charge carriers -- as it persists when the material becomes an insulator, at low doping -- or magnons -- as it exists in the absence of magnetic order -- or phonons -- since skew scattering is very weak, we attribute this $魏_{\rm xy}$ signal to exotic neutral excitations, presumably with spin chirality. The thermal Hall conductivity in the pseudogap phase of cuprates is reminiscent of that found in insulators with spin-liquid states. In the Mott insulator LCO, it attains the highest known magnitude of any insulator. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.03104v1-abstract-full').style.display = 'none'; document.getElementById('1901.03104v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures + 5 supplemental figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 571, 376 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.06853">arXiv:1805.06853</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.06853">pdf</a>, <a href="https://arxiv.org/format/1805.06853">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.167002">10.1103/PhysRevLett.121.167002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unusual interplay between superconductivity and field-induced charge order in YBa2Cu3Oy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kacmarcik%2C+J">J. Kacmarcik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vinograd%2C+I">I. Vinograd</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michon%2C+B">B. Michon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rydh%2C+A">A. Rydh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Demuer%2C+A">A. Demuer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+R">R. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mayaffre%2C+H">H. Mayaffre</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">R. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W">W. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">L. Taillefer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Julien%2C+M+-">M. -H. Julien</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marcenat%2C+C">C. Marcenat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klein%2C+T">T. Klein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.06853v1-abstract-short" style="display: inline;"> We present a detailed study of the temperature (T) and magnetic field (H) dependence of the electronic density of states (DOS) at the Fermi level, as deduced from specific heat and Knight shift measurements in underdoped YBa2Cu3Oy. We find that the DOS becomes field-independent above a characteristic field H_{DOS} and that the H_{DOS}(T) line displays an unusual inflection near the onset of the lo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.06853v1-abstract-full').style.display = 'inline'; document.getElementById('1805.06853v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.06853v1-abstract-full" style="display: none;"> We present a detailed study of the temperature (T) and magnetic field (H) dependence of the electronic density of states (DOS) at the Fermi level, as deduced from specific heat and Knight shift measurements in underdoped YBa2Cu3Oy. We find that the DOS becomes field-independent above a characteristic field H_{DOS} and that the H_{DOS}(T) line displays an unusual inflection near the onset of the long range 3D charge-density wave order. The unusual S-shape of H_{DOS}(T) is suggestive of two mutually-exclusive orders that eventually establish a form of cooperation in order to coexist at low T. On theoretical grounds, such a collaboration could result from the stabilisation of a pair-density wave state, which calls for further investigations in this region of the phase diagram <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.06853v1-abstract-full').style.display = 'none'; document.getElementById('1805.06853v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 167002 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.04589">arXiv:1805.04589</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.04589">pdf</a>, <a href="https://arxiv.org/format/1805.04589">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.8.041010">10.1103/PhysRevX.8.041010 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Wiedemann-Franz law and abrupt change in conductivity across the pseudogap critical point of a cuprate superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Michon%2C+B">B. Michon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ataei%2C+A">A. Ataei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bourgeois-Hope%2C+P">P. Bourgeois-Hope</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Collignon%2C+C">C. Collignon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S+Y">S. Y. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Badoux%2C+S">S. Badoux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gourgout%2C+A">A. Gourgout</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lalibert%C3%A9%2C+F">F. Lalibert茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J+-">J. -S. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">Nicolas Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">Louis Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.04589v2-abstract-short" style="display: inline;"> The thermal conductivity $魏$ of the cuprate superconductor La$_{1.6-x}$Nd$_{0.4}$Sr$_x$CuO$_4$ was measured down to 50 mK in seven crystals with doping from $p=0.12$ to $p=0.24$, both in the superconducting state and in the magnetic field-induced normal state. We obtain the electronic residual linear term $魏_0/T$ as $T \to 0$ across the pseudogap critical point $p^{\star}= 0.23$. In the normal sta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.04589v2-abstract-full').style.display = 'inline'; document.getElementById('1805.04589v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.04589v2-abstract-full" style="display: none;"> The thermal conductivity $魏$ of the cuprate superconductor La$_{1.6-x}$Nd$_{0.4}$Sr$_x$CuO$_4$ was measured down to 50 mK in seven crystals with doping from $p=0.12$ to $p=0.24$, both in the superconducting state and in the magnetic field-induced normal state. We obtain the electronic residual linear term $魏_0/T$ as $T \to 0$ across the pseudogap critical point $p^{\star}= 0.23$. In the normal state, we observe an abrupt drop in $魏_0/T$ upon crossing below $p^{\star}$, consistent with a drop in carrier density $n$ from $1 + p$ to $p$, the signature of the pseudogap phase inferred from the Hall coefficient. A similar drop in $魏_0/T$ is observed at $H=0$, showing that the pseudogap critical point and its signatures are unaffected by the magnetic field. In the normal state, the Wiedemann-Franz law, $魏_0/T=L_0/蟻(0)$, is obeyed at all dopings, including at the critical point where the electrical resistivity $蟻(T)$ is $T$-linear down to $T \to 0$. We conclude that the non-superconducting ground state of the pseudogap phase at $T=0$ is a metal whose fermionic excitations carry heat and charge as conventional electrons do. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.04589v2-abstract-full').style.display = 'none'; document.getElementById('1805.04589v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, including Supplementary Material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 8, 041010 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.02512">arXiv:1805.02512</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.02512">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-018-0334-2">10.1038/s41567-018-0334-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Universal $T$-linear resistivity and Planckian limit in overdoped cuprates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Legros%2C+A">A. Legros</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Benhabib%2C+S">S. Benhabib</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tabis%2C+W">W. Tabis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lalibert%C3%A9%2C+F">F. Lalibert茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dion%2C+M">M. Dion</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lizaire%2C+M">M. Lizaire</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vignolle%2C+B">B. Vignolle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vignolles%2C+D">D. Vignolles</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Raffy%2C+H">H. Raffy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z+Z">Z. Z. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Auban-Senzier%2C+P">P. Auban-Senzier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fournier%2C+P">P. Fournier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Colson%2C+D">D. Colson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">L. Taillefer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Proust%2C+C">C. Proust</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.02512v1-abstract-short" style="display: inline;"> The perfectly linear temperature dependence of the electrical resistivity observed as $T \rightarrow$ 0 in a variety of metals close to a quantum critical point is a major puzzle of condensed matter physics . Here we show that $T$-linear resistivity as $T \rightarrow$ 0 is a generic property of cuprates, associated with a universal scattering rate. We measured the low-temperature resistivity of th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.02512v1-abstract-full').style.display = 'inline'; document.getElementById('1805.02512v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.02512v1-abstract-full" style="display: none;"> The perfectly linear temperature dependence of the electrical resistivity observed as $T \rightarrow$ 0 in a variety of metals close to a quantum critical point is a major puzzle of condensed matter physics . Here we show that $T$-linear resistivity as $T \rightarrow$ 0 is a generic property of cuprates, associated with a universal scattering rate. We measured the low-temperature resistivity of the bi-layer cuprate Bi2212 and found that it exhibits a $T$-linear dependence with the same slope as in the single-layer cuprates Bi2201, Nd-LSCO and LSCO, despite their very different Fermi surfaces and structural, superconducting and magnetic properties. We then show that the $T$-linear coefficient (per CuO$_2$ plane), $A_1$, is given by the universal relation $A_1 T_F = h / 2e^2$, where $e$ is the electron charge, $h$ is the Planck constant and $T_F$ is the Fermi temperature. This relation, obtained by assuming that the scattering rate 1 / $蟿$ of charge carriers reaches the Planckian limit whereby $\hbar / 蟿= k_B T$, works not only for hole-doped cuprates but also for electron-doped cuprates despite the different nature of their quantum critical point and strength of their electron correlations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.02512v1-abstract-full').style.display = 'none'; document.getElementById('1805.02512v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">main + SI</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 15, 142 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.08502">arXiv:1804.08502</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1804.08502">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-019-0932-x">10.1038/s41586-019-0932-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermodynamic signatures of quantum criticality in cuprates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Michon%2C+B">B. Michon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Girod%2C+C">C. Girod</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Badoux%2C+S">S. Badoux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ka%C4%8Dmar%C4%8D%C3%ADk%2C+J">J. Ka膷mar膷铆k</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Q">Q. Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dragomir%2C+M">M. Dragomir</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dabkowska%2C+H+A">H. A. Dabkowska</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gaulin%2C+B+D">B. D. Gaulin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J+-">J. -S. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pyon%2C+S">S. Pyon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takayama%2C+T">T. Takayama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takagi%2C+H">H. Takagi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Verret%2C+S">S. Verret</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marcenat%2C+C">C. Marcenat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">L. Taillefer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klein%2C+T">T. Klein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.08502v1-abstract-short" style="display: inline;"> The three central phenomena of cuprate superconductors are linked by a common doping $p^{\star}$, where the enigmatic pseudogap phase ends, around which the superconducting phase forms a dome, and at which the resistivity exhibits an anomalous linear dependence on temperature as $T \to 0$. However, the fundamental nature of $p^{\star}$ remains unclear, in particular whether it marks a true quantum&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.08502v1-abstract-full').style.display = 'inline'; document.getElementById('1804.08502v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.08502v1-abstract-full" style="display: none;"> The three central phenomena of cuprate superconductors are linked by a common doping $p^{\star}$, where the enigmatic pseudogap phase ends, around which the superconducting phase forms a dome, and at which the resistivity exhibits an anomalous linear dependence on temperature as $T \to 0$. However, the fundamental nature of $p^{\star}$ remains unclear, in particular whether it marks a true quantum phase transition. We have measured the specific heat $C$ of the cuprates Eu-LSCO and Nd-LSCO at low temperature in magnetic fields large enough to suppress superconductivity, over a wide doping range across $p^{\star}$. As a function of doping, we find that the electronic term $C_{\rm el}$ is strongly peaked at $p^{\star}$, where it exhibits a $-T$log$T$ dependence as $T \to 0$. These are the classic signatures of a quantum critical point, as observed in heavy-fermion and iron-based superconductors where their antiferromagnetic phase ends. We conclude that the pseudogap phase of cuprates ends at a quantum critical point, whose associated fluctuations are most likely involved in the $d$-wave pairing and the anomalous scattering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.08502v1-abstract-full').style.display = 'none'; document.getElementById('1804.08502v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Includes Supplementary Information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 567, 218 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.05113">arXiv:1712.05113</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.05113">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-017-02122-x">10.1038/s41467-017-02122-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pseudogap phase of cuprate superconductors confined by Fermi surface topology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cyr-Choini%C3%A8re%2C+O">O. Cyr-Choini猫re</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Badoux%2C+S">S. Badoux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ataei%2C+A">A. Ataei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Collignon%2C+C">C. Collignon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gourgout%2C+A">A. Gourgout</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dufour-Beaus%C3%A9jour%2C+S">S. Dufour-Beaus茅jour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tafti%2C+F+F">F. F. Tafti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lalibert%C3%A9%2C+F">F. Lalibert茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boulanger%2C+M+-">M. -E. Boulanger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matusiak%2C+M">M. Matusiak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Graf%2C+D">D. Graf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+M">M. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J+-">J. -S. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Momono%2C+N">N. Momono</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kurosawa%2C+T">T. Kurosawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takagi%2C+H">H. Takagi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">Louis Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.05113v1-abstract-short" style="display: inline;"> The properties of cuprate high-temperature superconductors are largely shaped by competing phases whose nature is often a mystery. Chiefly among them is the pseudogap phase, which sets in at a doping $p^*$ that is material-dependent. What determines $p^*$ is currently an open question. Here we show that the pseudogap cannot open on an electron-like Fermi surface, and can only exist below the dopin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.05113v1-abstract-full').style.display = 'inline'; document.getElementById('1712.05113v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.05113v1-abstract-full" style="display: none;"> The properties of cuprate high-temperature superconductors are largely shaped by competing phases whose nature is often a mystery. Chiefly among them is the pseudogap phase, which sets in at a doping $p^*$ that is material-dependent. What determines $p^*$ is currently an open question. Here we show that the pseudogap cannot open on an electron-like Fermi surface, and can only exist below the doping $p_{FS}$ at which the large Fermi surface goes from hole-like to electron-like, so that $p^*$ $\leq$ $p_{FS}$. We derive this result from high-magnetic-field transport measurements in La$_{1.6-x}$Nd$_{0.4}$Sr$_x$CuO$_4$ under pressure, which reveal a large and unexpected shift of $p^*$ with pressure, driven by a corresponding shift in $p_{FS}$. This necessary condition for pseudogap formation, imposed by details of the Fermi surface, is a strong constraint for theories of the pseudogap phase. Our finding that $p^*$ can be tuned with a modest pressure opens a new route for experimental studies of the pseudogap. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.05113v1-abstract-full').style.display = 'none'; document.getElementById('1712.05113v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 5 figures, 7 supplemental figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 8, 2044 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.10456">arXiv:1709.10456</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.10456">pdf</a>, <a href="https://arxiv.org/format/1709.10456">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.97.245141">10.1103/PhysRevB.97.245141 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Field-dependent heat transport in the Kondo insulator SmB6 : phonons scattered by magnetic impurities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Boulanger%2C+M">M-E. Boulanger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lalibert%C3%A9%2C+F">F. Lalibert茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dion%2C+M">M. Dion</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Badoux%2C+S">S. Badoux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Phelan%2C+W+A">W. A. Phelan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koohpayeh%2C+S+M">S. M. Koohpayeh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fuhrman%2C+W+T">W. T. Fuhrman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chamorro%2C+J+R">J. R. Chamorro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McQueen%2C+T+M">T. M. McQueen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">X. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nakajima%2C+Y">Y. Nakajima</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Metz%2C+T">T. Metz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paglione%2C+J">J. Paglione</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">L. Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.10456v3-abstract-short" style="display: inline;"> The thermal conductivity $魏$ of the Kondo insulator SmB$_6$ was measured at low temperature, down to 70 mK, in magnetic fields up to 15 T, on single crystals grown using both the floating-zone and the flux methods. The residual linear term $魏_0/T$ at $T \to 0$ is found to be zero in all samples, for all magnetic fields, in agreement with previous studies. There is therefore no clear evidence of fe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.10456v3-abstract-full').style.display = 'inline'; document.getElementById('1709.10456v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.10456v3-abstract-full" style="display: none;"> The thermal conductivity $魏$ of the Kondo insulator SmB$_6$ was measured at low temperature, down to 70 mK, in magnetic fields up to 15 T, on single crystals grown using both the floating-zone and the flux methods. The residual linear term $魏_0/T$ at $T \to 0$ is found to be zero in all samples, for all magnetic fields, in agreement with previous studies. There is therefore no clear evidence of fermionic heat carriers. In contrast to some prior data, we observe a large enhancement of $魏(T)$ with increasing field. The effect of field is anisotropic, depending on the relative orientation of field and heat current (parallel or perpendicular), and with respect to the cubic crystal structure. We interpret our data in terms of heat transport predominantly by phonons, which are scattered by magnetic impurities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.10456v3-abstract-full').style.display = 'none'; document.getElementById('1709.10456v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">publish version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 97, 245141 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1704.03829">arXiv:1704.03829</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1704.03829">pdf</a>, <a href="https://arxiv.org/format/1704.03829">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.7.031042">10.1103/PhysRevX.7.031042 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anisotropy of the Seebeck Coefficient in the Cuprate Superconductor YBa$_{2}$Cu$_{3}$O$_{y}$: Fermi-Surface Reconstruction by Bidirectional Charge Order </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cyr-Choini%C3%A8re%2C+O">O. Cyr-Choini猫re</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Badoux%2C+S">S. Badoux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grissonnanche%2C+G">G. Grissonnanche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michon%2C+B">B. Michon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Afshar%2C+S+A+A">S. A. A. Afshar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fortier%2C+S">S. Fortier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBoeuf%2C+D">D. LeBoeuf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Graf%2C+D">D. Graf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Day%2C+J">J. Day</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">R. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">Louis Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1704.03829v1-abstract-short" style="display: inline;"> The Seebeck coefficient $S$ of the cuprate YBa$_{2}$Cu$_{3}$O$_{y}$ was measured in magnetic fields large enough to suppress superconductivity, at hole dopings $p = 0.11$ and $p = 0.12$, for heat currents along the $a$ and $b$ directions of the orthorhombic crystal structure. For both directions, $S/T$ decreases and becomes negative at low temperature, a signature that the Fermi surface undergoes&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.03829v1-abstract-full').style.display = 'inline'; document.getElementById('1704.03829v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1704.03829v1-abstract-full" style="display: none;"> The Seebeck coefficient $S$ of the cuprate YBa$_{2}$Cu$_{3}$O$_{y}$ was measured in magnetic fields large enough to suppress superconductivity, at hole dopings $p = 0.11$ and $p = 0.12$, for heat currents along the $a$ and $b$ directions of the orthorhombic crystal structure. For both directions, $S/T$ decreases and becomes negative at low temperature, a signature that the Fermi surface undergoes a reconstruction due to broken translational symmetry. Above a clear threshold field, a strong new feature appears in $S_{\rm b}$, for conduction along the $b$ axis only. We attribute this feature to the onset of 3D-coherent unidirectional charge-density-wave modulations seen by x-ray diffraction, also along the $b$ axis only. Because these modulations have a sharp onset temperature well below the temperature where $S/T$ starts to drop towards negative values, we infer that they are not the cause of Fermi-surface reconstruction. Instead, the reconstruction must be caused by the quasi-2D bidirectional modulations that develop at significantly higher temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.03829v1-abstract-full').style.display = 'none'; document.getElementById('1704.03829v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 7, 031042 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.06927">arXiv:1703.06927</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1703.06927">pdf</a>, <a href="https://arxiv.org/format/1703.06927">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.97.064502">10.1103/PhysRevB.97.064502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pseudogap temperature $T^\star$ of cuprate superconductors from the Nernst effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cyr-Choini%C3%A8re%2C+O">O. Cyr-Choini猫re</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Daou%2C+R">R. Daou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lalibert%C3%A9%2C+F">F. Lalibert茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Collignon%2C+C">C. Collignon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Badoux%2C+S">S. Badoux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBoeuf%2C+D">D. LeBoeuf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+J">J. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ramshaw%2C+B+J">B. J. Ramshaw</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">R. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+J+-">J. -Q. Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+J+-">J. -G. Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J+-">J. -S. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goodenough%2C+J+B">J. B. Goodenough</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pyon%2C+S">S. Pyon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takayama%2C+T">T. Takayama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takagi%2C+H">H. Takagi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">Louis Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.06927v2-abstract-short" style="display: inline;"> We use the Nernst effect to delineate the boundary of the pseudogap phase in the temperature-doping phase diagram of cuprate superconductors. New data for the Nernst coefficient $谓(T)$ of YBa$_{2}$Cu$_{3}$O$_{y}$ (YBCO), La$_{1.8-x}$Eu$_{0.2}$Sr$_x$CuO$_4$ (Eu-LSCO) and La$_{1.6-x}$Nd$_{0.4}$Sr$_x$CuO$_4$ (Nd-LSCO) are presented and compared with previous data including La$_{2-x}$Sr$_x$CuO$_4$ (LS&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.06927v2-abstract-full').style.display = 'inline'; document.getElementById('1703.06927v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.06927v2-abstract-full" style="display: none;"> We use the Nernst effect to delineate the boundary of the pseudogap phase in the temperature-doping phase diagram of cuprate superconductors. New data for the Nernst coefficient $谓(T)$ of YBa$_{2}$Cu$_{3}$O$_{y}$ (YBCO), La$_{1.8-x}$Eu$_{0.2}$Sr$_x$CuO$_4$ (Eu-LSCO) and La$_{1.6-x}$Nd$_{0.4}$Sr$_x$CuO$_4$ (Nd-LSCO) are presented and compared with previous data including La$_{2-x}$Sr$_x$CuO$_4$ (LSCO). The temperature $T_谓$ at which $谓/T$ deviates from its high-temperature behaviour is found to coincide with the temperature at which the resistivity deviates from its linear-$T$ dependence, which we take as the definition of the pseudogap temperature $T^\star$- in agreement with gap opening detected in ARPES data. We track $T^\star$ as a function of doping and find that it decreases linearly vs $p$ in all four materials, having the same value in the three LSCO-based cuprates, irrespective of their different crystal structures. At low $p$, $T^\star$ is higher than the onset temperature of the various orders observed in underdoped cuprates, suggesting that these orders are secondary instabilities of the pseudogap phase. A linear extrapolation of $T^\star(p)$ to $p=0$ yields $T^\star(p\to 0)\simeq T_N(0)$, the N茅el temperature for the onset of antiferromagnetic order at $p=0$, suggesting that there is a link between pseudogap and antiferromagnetism. With increasing $p$, $T^\star(p)$ extrapolates linearly to zero at $p\simeq p_{\rm c2}$, the critical doping below which superconductivity emerges at high doping, suggesting that the conditions which favour pseudogap formation also favour pairing. We also use the Nernst effect to investigate how far superconducting fluctuations extend above $T_{\rm c}$, as a function of doping, and find that a narrow fluctuation regime tracks $T_{\rm c}$, and not $T^\star$. This confirms that the pseudogap phase is not a form of precursor superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.06927v2-abstract-full').style.display = 'none'; document.getElementById('1703.06927v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages and 26 figures including Appendix</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 97, 064502 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.05693">arXiv:1607.05693</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1607.05693">pdf</a>, <a href="https://arxiv.org/format/1607.05693">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.95.224517">10.1103/PhysRevB.95.224517 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fermi-surface transformation across the pseudogap critical point of the cuprate superconductor La$_{1.6-x}$Nd$_{0.4}$Sr$_{x}$CuO$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Collignon%2C+C">C. Collignon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Badoux%2C+S">S. Badoux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Afshar%2C+S+A+A">S. A. A. Afshar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michon%2C+B">B. Michon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Laliberte%2C+F">F. Laliberte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cyr-Choiniere%2C+O">O. Cyr-Choiniere</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J+-">J. -S. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Licciardello%2C+S">S. Licciardello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wiedmann%2C+S">S. Wiedmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">Louis Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.05693v2-abstract-short" style="display: inline;"> The electrical resistivity $蟻$ and Hall coefficient R$_H$ of the tetragonal single-layer cuprate Nd-LSCO were measured in magnetic fields up to $H = 37.5$ T, large enough to access the normal state at $T \to 0$, for closely spaced dopings $p$ across the pseudogap critical point at $p^\star = 0.235$. Below $p^\star$, both coefficients exhibit an upturn at low temperature, which gets more pronounced&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.05693v2-abstract-full').style.display = 'inline'; document.getElementById('1607.05693v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.05693v2-abstract-full" style="display: none;"> The electrical resistivity $蟻$ and Hall coefficient R$_H$ of the tetragonal single-layer cuprate Nd-LSCO were measured in magnetic fields up to $H = 37.5$ T, large enough to access the normal state at $T \to 0$, for closely spaced dopings $p$ across the pseudogap critical point at $p^\star = 0.235$. Below $p^\star$, both coefficients exhibit an upturn at low temperature, which gets more pronounced with decreasing $p$. Taken together, these upturns show that the normal-state carrier density $n$ at $T = 0$ drops upon entering the pseudogap phase. Quantitatively, it goes from $n = 1 + p$ at $p = 0.24$ to $n = p$ at $p = 0.20$. By contrast, the mobility does not change appreciably, as revealed by the magneto-resistance. The transition has a width in doping and some internal structure, whereby R$_H$ responds more slowly than $蟻$ to the opening of the pseudogap. We attribute this difference to a Fermi surface that supports both hole-like and electron-like carriers in the interval $0.2 &lt; p &lt; p^\star$, with compensating contributions to R$_H$. Our data are in excellent agreement with recent high-field data on YBCO and LSCO. The quantitative consistency across three different cuprates shows that a drop in carrier density from $1 + p$ to $p$ is a universal signature of the pseudogap transition at $T=0$. We discuss the implication of these findings for the nature of the pseudogap phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.05693v2-abstract-full').style.display = 'none'; document.getElementById('1607.05693v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 95, 224517 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.04936">arXiv:1606.04936</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1606.04936">pdf</a>, <a href="https://arxiv.org/ps/1606.04936">ps</a>, <a href="https://arxiv.org/format/1606.04936">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.7.011032">10.1103/PhysRevX.7.011032 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Vertical line nodes in the superconducting gap structure of Sr2RuO4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hassinger%2C+E">Elena Hassinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bourgeois-Hope%2C+P">Patrick Bourgeois-Hope</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+H">Haruka Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Cotret%2C+S+R">Samuel Rene de Cotret</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grissonnanche%2C+G">Gael Grissonnanche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Anwar%2C+M+S">M. Shahbaz Anwar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maeno%2C+Y">Yoshiteru Maeno</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">Nicolas Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">Louis Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.04936v2-abstract-short" style="display: inline;"> There is strong experimental evidence that the superconductor Sr2RuO4 has a chiral p-wave order parameter. This symmetry does not require that the associated gap has nodes, yet specific heat, ultrasound and thermal conductivity measurements indicate the presence of nodes in the superconducting gap structure of Sr2RuO4. Theoretical scenarios have been proposed to account for the existence of accide&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.04936v2-abstract-full').style.display = 'inline'; document.getElementById('1606.04936v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.04936v2-abstract-full" style="display: none;"> There is strong experimental evidence that the superconductor Sr2RuO4 has a chiral p-wave order parameter. This symmetry does not require that the associated gap has nodes, yet specific heat, ultrasound and thermal conductivity measurements indicate the presence of nodes in the superconducting gap structure of Sr2RuO4. Theoretical scenarios have been proposed to account for the existence of accidental nodes or deep accidental minima within a p-wave state. To elucidate the nodal structure of the gap, it is essential to know whether the lines of nodes (or minima) are vertical (parallel to the tetragonal c axis) or horizontal (perpendicular to the c axis). Here, we report thermal conductivity measurements on single crystals of Sr2RuO4 down to 50 mK for currents parallel and perpendicular to the c axis. We find that there is substantial quasiparticle transport in the T = 0 limit for both current directions. A magnetic field H immediately excites quasiparticles with velocities both in the basal plane and in the c direction. Our data down to Tc/30 and down to Hc/100 show no evidence that the nodes are in fact deep minima. Relative to the normal state, the thermal conductivity of the superconducting state is found to be very similar for the two current directions, from H = 0 to H = Hc2. These findings show that the gap structure of Sr2RuO4 consists of vertical line nodes. Given that the c-axis dispersion (warping) of the Fermi surface in Sr2RuO4 varies strongly from surface to surface, the small a-c anisotropy suggests that the line nodes are present on all three sheets of the Fermi surface. If imposed by symmetry, vertical line nodes would be inconsistent with a p-wave order parameter for Sr2RuO4. To reconcile the gap structure revealed by our data with a p-wave state, a mechanism must be found that produces accidental line nodes in Sr2RuO4. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.04936v2-abstract-full').style.display = 'none'; document.getElementById('1606.04936v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted for publication in PRX, an extra figure has been added to compare the effect of impurity scattering on p-wave vs d-wave states</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 7, 011032 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.04491">arXiv:1606.04491</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1606.04491">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Origin of the metal-to-insulator crossover in cuprate superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Laliberte%2C+F">F. Laliberte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tabis%2C+W">W. Tabis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Badoux%2C+S">S. Badoux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vignolle%2C+B">B. Vignolle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Destraz%2C+D">D. Destraz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Momono%2C+N">N. Momono</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kurosawa%2C+T">T. Kurosawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamada%2C+K">K. Yamada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takagi%2C+H">H. Takagi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Proust%2C+C">C. Proust</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">Louis Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.04491v1-abstract-short" style="display: inline;"> Superconductivity in cuprates peaks in the doping regime between a metal at high p and an insulator at low p. Understanding how the material evolves from metal to insulator is a fundamental and open question. Early studies in high magnetic fields revealed that below some critical doping an insulator-like upturn appears in the resistivity of cuprates at low temperature, but its origin has remained&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.04491v1-abstract-full').style.display = 'inline'; document.getElementById('1606.04491v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.04491v1-abstract-full" style="display: none;"> Superconductivity in cuprates peaks in the doping regime between a metal at high p and an insulator at low p. Understanding how the material evolves from metal to insulator is a fundamental and open question. Early studies in high magnetic fields revealed that below some critical doping an insulator-like upturn appears in the resistivity of cuprates at low temperature, but its origin has remained a puzzle. Here we propose that this &#39;metal-to-insulator crossover&#39; is due to a drop in carrier density n associated with the onset of the pseudogap phase at a critical doping p*. We use high-field resistivity measurements on LSCO to show that the upturns are quantitatively consistent with a drop from n=1+p above p* to n=p below p*, in agreement with high-field Hall data in YBCO. We demonstrate how previously reported upturns in the resistivity of LSCO, YBCO and Nd-LSCO are explained by the same universal mechanism: a drop in carrier density by 1.0 hole per Cu atom. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.04491v1-abstract-full').style.display = 'none'; document.getElementById('1606.04491v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures, Supplementary material (12 pages, 7 figures)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.06917">arXiv:1603.06917</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1603.06917">pdf</a>, <a href="https://arxiv.org/format/1603.06917">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.117.097003">10.1103/PhysRevLett.117.097003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermal Conductivity of the Iron-Based Superconductor FeSe : Nodeless Gap with Strong Two-Band Character </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bourgeois-Hope%2C+P">P. Bourgeois-Hope</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chi%2C+S">S. Chi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">R. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wolf%2C+T">T. Wolf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meingast%2C+C">C. Meingast</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">Louis Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.06917v1-abstract-short" style="display: inline;"> The thermal conductivity of the iron-based superconductor FeSe was measured at temperatures down to 50 mK in magnetic fields up to 17 T. In zero magnetic field, the electronic residual linear term in the T = 0 limit, 魏_0/T, is vanishingly small. Application of a magnetic field H causes no increase in 魏_0/T initially. Those two observations show that there are no zero-energy quasiparticles that car&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.06917v1-abstract-full').style.display = 'inline'; document.getElementById('1603.06917v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.06917v1-abstract-full" style="display: none;"> The thermal conductivity of the iron-based superconductor FeSe was measured at temperatures down to 50 mK in magnetic fields up to 17 T. In zero magnetic field, the electronic residual linear term in the T = 0 limit, 魏_0/T, is vanishingly small. Application of a magnetic field H causes no increase in 魏_0/T initially. Those two observations show that there are no zero-energy quasiparticles that carry heat and therefore no nodes in the superconducting gap of FeSe. The full field dependence of 魏_0/T has the classic shape of a two-band superconductor, such as MgB2: it rises exponentially at very low field, with a characteristic field H* &lt;&lt; Hc2, and then more slowly up to the upper critical field Hc2. This shows that the superconducting gap is very small on one of the pockets in the Fermi surface of FeSe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.06917v1-abstract-full').style.display = 'none'; document.getElementById('1603.06917v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 117, 097003 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1602.03914">arXiv:1602.03914</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1602.03914">pdf</a>, <a href="https://arxiv.org/format/1602.03914">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.93.214519">10.1103/PhysRevB.93.214519 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Doping evolution of the superconducting gap structure in the underdoped iron arsenide Ba1-xKxFe2As2 revealed by thermal conductivity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Reid%2C+J+-">J. -Ph. Reid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tanatar%2C+M+A">M. A. Tanatar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+X+G">X. G. Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shakeripour%2C+H">H. Shakeripour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Cotret%2C+S+R">S. Ren茅 de Cotret</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Juneau-Fecteau%2C+A">A. Juneau-Fecteau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+J">J. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+B">B. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+H+-">H. -H. Wen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+H">H. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prozorov%2C+R">R. Prozorov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">Louis Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1602.03914v1-abstract-short" style="display: inline;"> The thermal conductivity kappa of the iron-arsenide superconductor Ba1-xKxFe2As2 was measured for heat currents parallel and perpendicular to the tetragonal c axis at temperatures down to 50 mK and in magnetic fields up to 15 T. Measurements were performed on samples with compositions ranging from optimal doping (x = 0.34; Tc = 39 K) down to dopings deep into the region where antiferromagnetic ord&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.03914v1-abstract-full').style.display = 'inline'; document.getElementById('1602.03914v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1602.03914v1-abstract-full" style="display: none;"> The thermal conductivity kappa of the iron-arsenide superconductor Ba1-xKxFe2As2 was measured for heat currents parallel and perpendicular to the tetragonal c axis at temperatures down to 50 mK and in magnetic fields up to 15 T. Measurements were performed on samples with compositions ranging from optimal doping (x = 0.34; Tc = 39 K) down to dopings deep into the region where antiferromagnetic order coexists with superconductivity (x = 0.16; Tc = 7 K). In zero field, there is no residual linear term in kappa(T) as T goes to 0 at any doping, whether for in-plane or inter-plane transport. This shows that there are no nodes in the superconducting gap. However, as x decreases into the range of coexistence with antiferromagnetism, the residual linear term grows more and more rapidly with applied magnetic field. This shows that the superconducting energy gap develops minima at certain locations on the Fermi surface and these minima deepen with decreasing x. We propose that the minima in the gap structure arise when the Fermi surface of Ba1-xKxFe2As2 is reconstructed by the antiferromagnetic order. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.03914v1-abstract-full').style.display = 'none'; document.getElementById('1602.03914v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 93, 214519 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1512.05912">arXiv:1512.05912</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1512.05912">pdf</a>, <a href="https://arxiv.org/ps/1512.05912">ps</a>, <a href="https://arxiv.org/format/1512.05912">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.93.144401">10.1103/PhysRevB.93.144401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Expansion of the tetragonal magnetic phase with pressure in the iron-arsenide superconductor Ba{1-x}KxFe2As2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hassinger%2C+E">E. Hassinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gredat%2C+G">G. Gredat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valade%2C+F">F. Valade</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Cotret%2C+S+R">S. Rene de Cotret</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cyr-Choiniere%2C+O">O. Cyr-Choiniere</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Juneau-Fecteau%2C+A">A. Juneau-Fecteau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reid%2C+J+-">J. -Ph. Reid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+H">H. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tanatar%2C+M+A">M. A. Tanatar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prozorov%2C+R">R. Prozorov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+B">B. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+H+-">H. -H. Wen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">Louis Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1512.05912v1-abstract-short" style="display: inline;"> In the temperature-concentration phase diagram of most iron-based superconductors, antiferromagnetic order is gradually suppressed to zero at a critical point, and a dome of superconductivity forms around that point. The nature of the magnetic phase and its fluctuations is of fundamental importance for elucidating the pairing mechanism. In Ba{1-x}KxFe2As2 and Ba{1-x}NaxFe2As2, it has recently beco&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.05912v1-abstract-full').style.display = 'inline'; document.getElementById('1512.05912v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1512.05912v1-abstract-full" style="display: none;"> In the temperature-concentration phase diagram of most iron-based superconductors, antiferromagnetic order is gradually suppressed to zero at a critical point, and a dome of superconductivity forms around that point. The nature of the magnetic phase and its fluctuations is of fundamental importance for elucidating the pairing mechanism. In Ba{1-x}KxFe2As2 and Ba{1-x}NaxFe2As2, it has recently become clear that the usual stripe-like magnetic phase, of orthorhombic symmetry, gives way to a second magnetic phase, of tetragonal symmetry, near the critical point, between x = 0.24 and x = 0.28. Here we report measurements of the electrical resistivity of Ba{1-x}KxFe2As2 under applied hydrostatic pressures up to 2.75 GPa, for x = 0.22, 0.24 and 0.28. We track the onset of the tetragonal magnetic phase using the sharp anomaly it produces in the resistivity. In the temperature-concentration phase diagram of Ba{1-x}KxFe2As2, we find that pressure greatly expands the tetragonal magnetic phase, while the stripe-like phase shrinks. This raises the interesting possibility that the fluctuations of the former phase might be involved in the pairing mechanism responsible for the superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.05912v1-abstract-full').style.display = 'none'; document.getElementById('1512.05912v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 93, 144401 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1512.00292">arXiv:1512.00292</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1512.00292">pdf</a>, <a href="https://arxiv.org/ps/1512.00292">ps</a>, <a href="https://arxiv.org/format/1512.00292">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.6.021004">10.1103/PhysRevX.6.021004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Critical Doping for the Onset of Fermi-Surface Reconstruction by Charge-Density-Wave Order in the Cuprate Superconductor La$ _{2-x} $Sr$_{x} $CuO$ _{4}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Badoux%2C+S">S. Badoux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Afshar%2C+S+A+A">S. A. A. Afshar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michon%2C+B">B. Michon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ouellet%2C+A">A. Ouellet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fortier%2C+S">S. Fortier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBoeuf%2C+D">D. LeBoeuf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Croft%2C+T+P">T. P. Croft</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lester%2C+C">C. Lester</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hayden%2C+S+M">S. M. Hayden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takagi%2C+H">H. Takagi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamada%2C+K">K. Yamada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Graf%2C+D">D. Graf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">Louis Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1512.00292v2-abstract-short" style="display: inline;"> The Seebeck coefficient $S$ of the cuprate superconductor La$ _{2-x} $Sr$_{x} $CuO$ _{4}$ (LSCO) was measured in magnetic fields large enough to access the normal state at low temperatures, for a range of Sr concentrations from $x = 0.07$ to $x = 0.15$. For $x = 0.11$, 0.12, 0.125 and 0.13, $S/T$ decreases upon cooling to become negative at low temperatures. The same behavior is observed in the Ha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.00292v2-abstract-full').style.display = 'inline'; document.getElementById('1512.00292v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1512.00292v2-abstract-full" style="display: none;"> The Seebeck coefficient $S$ of the cuprate superconductor La$ _{2-x} $Sr$_{x} $CuO$ _{4}$ (LSCO) was measured in magnetic fields large enough to access the normal state at low temperatures, for a range of Sr concentrations from $x = 0.07$ to $x = 0.15$. For $x = 0.11$, 0.12, 0.125 and 0.13, $S/T$ decreases upon cooling to become negative at low temperatures. The same behavior is observed in the Hall coefficient $R_{H}(T)$. In analogy with other hole-doped cuprates at similar hole concentrations $p$, the negative $S$ and $R_{H}$ show that the Fermi surface of LSCO undergoes a reconstruction caused by the onset of charge-density-wave modulations. Such modulations have indeed been detected in LSCO by X-ray diffraction in precisely the same doping range. Our data show that in LSCO this Fermi-surface reconstruction is confined to $0.085 &lt; p &lt; 0.15$. We argue that in the field-induced normal state of LSCO, charge-density-wave order ends at a critical doping $p_{\rm CDW} = 0.15 \pm 0.005$, well below the pseudogap critical doping $p^\star \simeq 0.19$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.00292v2-abstract-full').style.display = 'none'; document.getElementById('1512.00292v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 6, 021004 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.08162">arXiv:1511.08162</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1511.08162">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nature16983">10.1038/nature16983 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Change of carrier density at the pseudogap critical point of a cuprate superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Badoux%2C+S">S. Badoux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tabis%2C+W">W. Tabis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lalibert%C3%A9%2C+F">F. Lalibert茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grissonnanche%2C+G">G. Grissonnanche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vignolle%2C+B">B. Vignolle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vignolles%2C+D">D. Vignolles</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%A9ard%2C+J">J. B茅ard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">R. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">Louis Taillefer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Proust%2C+C">Cyril Proust</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.08162v1-abstract-short" style="display: inline;"> The pseudogap is a central puzzle of cuprate superconductors. Its connection to the Mott insulator at low doping $p$ remains ambiguous and its relation to the charge order that reconstructs the Fermi surface at intermediate $p$ is still unclear. Here we use measurements of the Hall coefficient in magnetic fields up to 88 T to show that Fermi-surface reconstruction by charge order in YBa$_2$Cu$_3$O&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.08162v1-abstract-full').style.display = 'inline'; document.getElementById('1511.08162v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.08162v1-abstract-full" style="display: none;"> The pseudogap is a central puzzle of cuprate superconductors. Its connection to the Mott insulator at low doping $p$ remains ambiguous and its relation to the charge order that reconstructs the Fermi surface at intermediate $p$ is still unclear. Here we use measurements of the Hall coefficient in magnetic fields up to 88 T to show that Fermi-surface reconstruction by charge order in YBa$_2$Cu$_3$O$_y$ ends sharply at a critical doping $p = 0.16$, distinctly lower than the pseudogap critical point at $p^* = 0.19$. This shows that pseudogap and charge order are separate phenomena. We then find that the change of carrier density from $n = 1 + p$ in the conventional metal at high p to $n = p$ at low $p$ - a signature of the lightly doped cuprates - starts at $p^*$. This shows that pseudogap and antiferromagnetic Mott insulator are linked. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.08162v1-abstract-full').style.display = 'none'; document.getElementById('1511.08162v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 531, 210 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1508.05486">arXiv:1508.05486</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1508.05486">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Onset field for Fermi-surface reconstruction in the cuprate superconductor YBCO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Grissonnanche%2C+G">G. Grissonnanche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Laliberte%2C+F">F. Laliberte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dufour-Beausejour%2C+S">S. Dufour-Beausejour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Riopel%2C+A">A. Riopel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Badoux%2C+S">S. Badoux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Caouette-Mansour%2C+M">M. Caouette-Mansour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matusiak%2C+M">M. Matusiak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Juneau-Fecteau%2C+A">A. Juneau-Fecteau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bourgeois-Hope%2C+P">P. Bourgeois-Hope</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cyr-Choiniere%2C+O">O. Cyr-Choiniere</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baglo%2C+J+C">J. C. Baglo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ramshaw%2C+B+J">B. J. Ramshaw</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">R. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kramer%2C+S">S. Kramer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBoeuf%2C+D">D. LeBoeuf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Graf%2C+D">D. Graf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">Louis Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1508.05486v1-abstract-short" style="display: inline;"> Quantum oscillations and negative Hall and Seebeck coefficients at low temperature and high magnetic field have shown the Fermi surface of underdoped cuprates to contain a small closed electron pocket. It is thought to result from a reconstruction by charge order, but whether it is the order seen by NMR and ultrasound above a threshold field or the short-range modulations seen by X-ray diffraction&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.05486v1-abstract-full').style.display = 'inline'; document.getElementById('1508.05486v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1508.05486v1-abstract-full" style="display: none;"> Quantum oscillations and negative Hall and Seebeck coefficients at low temperature and high magnetic field have shown the Fermi surface of underdoped cuprates to contain a small closed electron pocket. It is thought to result from a reconstruction by charge order, but whether it is the order seen by NMR and ultrasound above a threshold field or the short-range modulations seen by X-ray diffraction in zero field is unclear. Here we use measurements of the thermal Hall conductivity in YBCO to show that Fermi-surface reconstruction occurs only above a sharply defined onset field, equal to the transition field seen in ultrasound. This reveals that electrons do not experience long-range broken translational symmetry in the zero-field ground state, and hence in zero field there is no quantum critical point for the onset of charge order as a function of doping. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.05486v1-abstract-full').style.display = 'none'; document.getElementById('1508.05486v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages and 5 figures in Main text + 9 pages and 6 figures in Supplementary material</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1504.06972">arXiv:1504.06972</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1504.06972">pdf</a>, <a href="https://arxiv.org/format/1504.06972">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.92.224502">10.1103/PhysRevB.92.224502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two types of nematicity in the phase diagram of the cuprate superconductor YBa$_2$Cu$_3$O$_y$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cyr-Choini%C3%A8re%2C+O">O. Cyr-Choini猫re</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grissonnanche%2C+G">G. Grissonnanche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Badoux%2C+S">S. Badoux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Day%2C+J">J. Day</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">R. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">Louis Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1504.06972v3-abstract-short" style="display: inline;"> Nematicity has emerged as a key feature of cuprate superconductors, but its link to other fundamental properties such as superconductivity, charge order and the pseudogap remains unclear. Here we use measurements of transport anisotropy in YBa$_2$Cu$_3$O$_y$ to distinguish two types of nematicity. The first is associated with short-range charge-density-wave modulations in a doping region near&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.06972v3-abstract-full').style.display = 'inline'; document.getElementById('1504.06972v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1504.06972v3-abstract-full" style="display: none;"> Nematicity has emerged as a key feature of cuprate superconductors, but its link to other fundamental properties such as superconductivity, charge order and the pseudogap remains unclear. Here we use measurements of transport anisotropy in YBa$_2$Cu$_3$O$_y$ to distinguish two types of nematicity. The first is associated with short-range charge-density-wave modulations in a doping region near $p = 0.12$. It is detected in the Nernst coefficient, but not in the resistivity. The second type prevails at lower doping, where there are spin modulations but no charge modulations. In this case, the onset of in-plane anisotropy - detected in both the Nernst coefficient and the resistivity - follows a line in the temperature-doping phase diagram that tracks the pseudogap energy. We discuss two possible scenarios for the latter nematicity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.06972v3-abstract-full').style.display = 'none'; document.getElementById('1504.06972v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 April, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages and 7 figures. Main text and supplementary material now combined into single article</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 92, 224502 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.07572">arXiv:1503.07572</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1503.07572">pdf</a>, <a href="https://arxiv.org/format/1503.07572">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.93.064513">10.1103/PhysRevB.93.064513 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Wiedemann-Franz law in the underdoped cuprate superconductor YBa2Cu3Oy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Grissonnanche%2C+G">G. Grissonnanche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Laliberte%2C+F">F. Laliberte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dufour-Beausejour%2C+S">S. Dufour-Beausejour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matusiak%2C+M">M. Matusiak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Badoux%2C+S">S. Badoux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tafti%2C+F+F">F. F. Tafti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michon%2C+B">B. Michon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Riopel%2C+A">A. Riopel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cyr-Choiniere%2C+O">O. Cyr-Choiniere</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baglo%2C+J+C">J. C. Baglo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ramshaw%2C+B+J">B. J. Ramshaw</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">R. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kramer%2C+S">S. Kramer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBoeuf%2C+D">D. LeBoeuf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Graf%2C+D">D. Graf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">L. Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.07572v2-abstract-short" style="display: inline;"> The recent detection of charge-density modulations in YBa2Cu3Oy and other cuprate superconductors raises new questions about the normal state of underdoped cuprates. In one class of theories, the modulations are intertwined with pairing in a dual state, expected to persist up to high magnetic fields as a vortex liquid. In support of such a state, specific heat and magnetisation data on YBa2Cu3Oy h&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.07572v2-abstract-full').style.display = 'inline'; document.getElementById('1503.07572v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.07572v2-abstract-full" style="display: none;"> The recent detection of charge-density modulations in YBa2Cu3Oy and other cuprate superconductors raises new questions about the normal state of underdoped cuprates. In one class of theories, the modulations are intertwined with pairing in a dual state, expected to persist up to high magnetic fields as a vortex liquid. In support of such a state, specific heat and magnetisation data on YBa2Cu3Oy have been interpreted in terms of a vortex liquid persisting above the vortex-melting field Hvs at T = 0. Here we report high-field measurements of the electrical and thermal Hall conductivities in YBa2Cu3O6.54 that allow us to probe the Wiedemann-Franz law, a sensitive test of the presence of superconductivity in a metal. In the T = 0 limit, we find that the law is satisfied for fields immediately above Hvs. This rules out the existence of a vortex liquid and it places strict constraints on the nature of the normal state in underdoped cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.07572v2-abstract-full').style.display = 'none'; document.getElementById('1503.07572v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, includes main text and supplementary information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 93, 064513 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.02033">arXiv:1503.02033</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1503.02033">pdf</a>, <a href="https://arxiv.org/format/1503.02033">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.98.064513">10.1103/PhysRevB.98.064513 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sensitivity of $T_{\rm c}$ to pressure and magnetic field in the cuprate superconductor YBa$_{2}$Cu$_{3}$O$_{y}$: evidence of charge order suppression by pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cyr-Choini%C3%A8re%2C+O">O. Cyr-Choini猫re</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBoeuf%2C+D">D. LeBoeuf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Badoux%2C+S">S. Badoux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dufour-Beaus%C3%A9jour%2C+S">S. Dufour-Beaus茅jour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">R. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Graf%2C+D">D. Graf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">Louis Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.02033v2-abstract-short" style="display: inline;"> Cuprate superconductors have a universal tendency to form charge density-wave (CDW) order which competes with superconductivity and is strongest at a doping $p \simeq 0.12$. Here we show that in the archetypal cuprate YBa$_{2}$Cu$_{3}$O$_{y}$ (YBCO) pressure suppresses charge order, but does not affect the pseudogap phase. This is based on transport measurements under pressure, which reveal that t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.02033v2-abstract-full').style.display = 'inline'; document.getElementById('1503.02033v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.02033v2-abstract-full" style="display: none;"> Cuprate superconductors have a universal tendency to form charge density-wave (CDW) order which competes with superconductivity and is strongest at a doping $p \simeq 0.12$. Here we show that in the archetypal cuprate YBa$_{2}$Cu$_{3}$O$_{y}$ (YBCO) pressure suppresses charge order, but does not affect the pseudogap phase. This is based on transport measurements under pressure, which reveal that the onset of the pseudogap at $T^*$ is independent of pressure, while the negative Hall effect, a clear signature of CDW order in YBCO, is suppressed by pressure. We also find that pressure and magnetic field shift the superconducting transition temperature $T_{\rm c}$ of YBCO in the same way as a function of doping - but in opposite directions - and most effectively at $p \simeq 0.12$. This shows that the competition between superconductivity and CDW order can be tuned in two ways, either by suppressing superconductivity with field or suppressing CDW order by pressure. Based on existing high-pressure data and our own work, we observe that when CDW order is fully suppressed at high pressure, the so-called &#34;1/8 anomaly&#34; in the superconducting dome vanishes, revealing a smooth $T_{\rm c}$ dome which now peaks at $p \simeq 0.13$. We propose that this $T_{\rm c}$ dome is shaped by the competing effects of the pseudogap phase below its critical point $p^{\star} \sim 0.19$ and spin order at low doping. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.02033v2-abstract-full').style.display = 'none'; document.getElementById('1503.02033v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">New Hall data added. 11 pages, 9 figures and 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 98, 064513 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.6196">arXiv:1412.6196</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1412.6196">pdf</a>, <a href="https://arxiv.org/format/1412.6196">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.91.054511">10.1103/PhysRevB.91.054511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Universal V-shaped temperature-pressure phase diagram in the iron-based superconductors KFe2As2, RbFe2As2, and CsFe2As2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tafti%2C+F+F">F. F. Tafti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ouellet%2C+A">A. Ouellet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Juneau-Fecteau%2C+A">A. Juneau-Fecteau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Faucher%2C+S">S. Faucher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lapointe-Major%2C+M">M. Lapointe-Major</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+A+F">A. F. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+X+G">X. G. Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X+H">X. H. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">Louis Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.6196v2-abstract-short" style="display: inline;"> We report a sudden reversal in the pressure dependence of Tc in the iron-based superconductor RbFe2As2, at a critical pressure Pc = 11 kbar. Combined with our prior results on KFe2As2 and CsFe2As2, we find a universal V-shaped phase diagram for Tc vs P in these fully hole-doped 122 materials, when measured relative to the critical point (Pc, Tc). From measurements of the upper critical field Hc2(T&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.6196v2-abstract-full').style.display = 'inline'; document.getElementById('1412.6196v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.6196v2-abstract-full" style="display: none;"> We report a sudden reversal in the pressure dependence of Tc in the iron-based superconductor RbFe2As2, at a critical pressure Pc = 11 kbar. Combined with our prior results on KFe2As2 and CsFe2As2, we find a universal V-shaped phase diagram for Tc vs P in these fully hole-doped 122 materials, when measured relative to the critical point (Pc, Tc). From measurements of the upper critical field Hc2(T) under pressure in KFe2As2 and RbFe2As2, we observe the same two-fold jump in (1/Tc)(-dHc2/dT) across Pc, compelling evidence for a sudden change in the structure of the superconducting gap. We argue that this change is due to a transition from one pairing state to another, with different symmetries on either side of Pc. We discuss a possible link between scattering and pairing, and a scenario where a d-wave state favored by high-Q scattering at low pressure changes to a state with s+- symmetry favored by low-Q scattering at high pressure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.6196v2-abstract-full').style.display = 'none'; document.getElementById('1412.6196v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 11 figures, 1 table, Published</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 91, 054511 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1409.2788">arXiv:1409.2788</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1409.2788">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms7034">10.1038/ncomms7034 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence for a small hole pocket in the Fermi surface of underdoped YBa2Cu3Oy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Badoux%2C+S">S. Badoux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Cotret%2C+S+R">S. Rene de Cotret</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lepault%2C+S">S. Lepault</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBoeuf%2C+D">D. LeBoeuf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Laliberte%2C+F">F. Laliberte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hassinger%2C+E">E. Hassinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ramshaw%2C+B+J">B. J. Ramshaw</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">R. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+J+-">J. -H. Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vignolles%2C+D">D. Vignolles</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vignolle%2C+B">B. Vignolle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">L. Taillefer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Proust%2C+C">C. Proust</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1409.2788v2-abstract-short" style="display: inline;"> The Fermi surface of a metal is the fundamental basis from which its properties can be understood. In underdoped cuprate superconductors, the Fermi surface undergoes a reconstruction that produces a small electron pocket, but whether there is another, as yet undetected portion to the Fermi surface is unknown. Establishing the complete topology of the Fermi surface is key to identifying the mechani&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.2788v2-abstract-full').style.display = 'inline'; document.getElementById('1409.2788v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1409.2788v2-abstract-full" style="display: none;"> The Fermi surface of a metal is the fundamental basis from which its properties can be understood. In underdoped cuprate superconductors, the Fermi surface undergoes a reconstruction that produces a small electron pocket, but whether there is another, as yet undetected portion to the Fermi surface is unknown. Establishing the complete topology of the Fermi surface is key to identifying the mechanism responsible for its reconstruction. Here we report the discovery of a second Fermi pocket in underdoped YBa2Cu3Oy, detected as a small quantum oscillation frequency in the thermoelectric response and in the c-axis resistance. The field-angle dependence of the frequency demonstrates that it is a distinct Fermi surface and the normal-state thermopower requires it to be a hole pocket. A Fermi surface consisting of one electron pocket and two hole pockets with the measured areas and masses is consistent with a Fermi-surface reconstruction caused by the charge-density-wave order observed in YBa2Cu3Oy, provided other parts of the reconstructed Fermi surface are removed by a separate mechanism, possibly the pseudogap. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.2788v2-abstract-full').style.display = 'none'; document.getElementById('1409.2788v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 September, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 6, 6034 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1407.1388">arXiv:1407.1388</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1407.1388">pdf</a>, <a href="https://arxiv.org/format/1407.1388">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.91.245136">10.1103/PhysRevB.91.245136 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Berry Phase in Cuprate Superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Szkopek%2C+T">T. Szkopek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pereg-Barnea%2C+T">T. Pereg-Barnea</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Proust%2C+C">C. Proust</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gervais%2C+G">G. Gervais</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1407.1388v2-abstract-short" style="display: inline;"> Geometrical Berry phase is recognized as having profound implications for the properties of electronic systems. Over the last decade, Berry phase has been essential to our understanding of new materials, including graphene and topological insulators. The Berry phase can be accessed via its contribution to the phase mismatch in quantum oscillation experiments, where electrons accumulate a phase as&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.1388v2-abstract-full').style.display = 'inline'; document.getElementById('1407.1388v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1407.1388v2-abstract-full" style="display: none;"> Geometrical Berry phase is recognized as having profound implications for the properties of electronic systems. Over the last decade, Berry phase has been essential to our understanding of new materials, including graphene and topological insulators. The Berry phase can be accessed via its contribution to the phase mismatch in quantum oscillation experiments, where electrons accumulate a phase as they traverse closed cyclotron orbits in momentum space. The high-temperature cuprate superconductors are a class of materials where the Berry phase is thus far unknown despite the large body of existing quantum oscillations data. In this report we present a systematic Berry phase analysis of Shubnikov - de Haas measurements on the hole-doped cuprates YBa$_2$Cu$_3$O$_{y}$, YBa$_2$Cu$_4$O$_8$, HgBa$_2$CuO$_{4 + 未}$, and the electron-doped cuprate Nd$_{2-x}$Ce$_x$CuO$_4$. For the hole-doped materials, a trivial Berry phase of 0 mod $2蟺$ is systematically observed whereas the electron-doped Nd$_{2-x}$Ce$_x$CuO$_4$ exhibits a significant non-zero Berry phase. These observations set constraints on the nature of the high-field normal state of the cuprates and points towards contrasting behaviour between hole-doped and electron-doped materials. We discuss this difference in light of recent developments related to charge density-wave and broken time-reversal symmetry states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.1388v2-abstract-full').style.display = 'none'; document.getElementById('1407.1388v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 July, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">new version with added supplementary information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 91, 245136 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1403.0110">arXiv:1403.0110</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1403.0110">pdf</a>, <a href="https://arxiv.org/ps/1403.0110">ps</a>, <a href="https://arxiv.org/format/1403.0110">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.89.134502">10.1103/PhysRevB.89.134502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sudden reversal in the pressure dependence of Tc in the iron-based superconductor CsFe2As2: A possible link between inelastic scattering and pairing symmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tafti%2C+F+F">F. F. Tafti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Clancy%2C+J+P">J. P. Clancy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lapointe-Major%2C+M">M. Lapointe-Major</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Collignon%2C+C">C. Collignon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Faucher%2C+S">S. Faucher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sears%2C+J">J. Sears</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Juneau-Fecteau%2C+A">A. Juneau-Fecteau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+A+F">A. F. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+X+G">X. G. Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X+H">X. H. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Desgreniers%2C+S">S. Desgreniers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+Y">Young-June Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">Louis Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1403.0110v3-abstract-short" style="display: inline;"> We report a sudden reversal in the pressure dependence of Tc in the iron-based superconductor CsFe2As2, similar to that discovered recently in KFe2As2 [Tafti et al., Nat. Phys. 9, 349 (2013)]. As in KFe2As2, we observe no change in the Hall coefficient at the zero temperature limit, again ruling out a Lifshitz transition across the critical pressure Pc. We interpret the Tc reversal in the two mate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.0110v3-abstract-full').style.display = 'inline'; document.getElementById('1403.0110v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1403.0110v3-abstract-full" style="display: none;"> We report a sudden reversal in the pressure dependence of Tc in the iron-based superconductor CsFe2As2, similar to that discovered recently in KFe2As2 [Tafti et al., Nat. Phys. 9, 349 (2013)]. As in KFe2As2, we observe no change in the Hall coefficient at the zero temperature limit, again ruling out a Lifshitz transition across the critical pressure Pc. We interpret the Tc reversal in the two materials as a phase transition from one pairing state to another, tuned by pressure, and investigate what parameters control this transition. Comparing samples of different residual resistivity, we find that a 6-fold increase in impurity scattering does not shift Pc. From a study of X-ray diffraction on KFe2As2 under pressure, we report the pressure dependence of lattice constants and As-Fe-As bond angle. The pressure dependence of these lattice parameters suggests that Pc should be significantly higher in CsFe2As2 than in KFe2As2, but we find on the contrary that Pc is lower in CsFe2As2. Resistivity measurements under pressure reveal a change of regime across Pc, suggesting a possible link between inelastic scattering and pairing symmetry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.0110v3-abstract-full').style.display = 'none'; document.getElementById('1403.0110v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 March, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 figures, 7 pages, published</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 89, 134502 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1303.3856">arXiv:1303.3856</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1303.3856">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms4280">10.1038/ncomms4280 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct measurement of the upper critical field in a cuprate superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Grissonnanche%2C+G">G. Grissonnanche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cyr-Choiniere%2C+O">O. Cyr-Choiniere</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Laliberte%2C+F">F. Laliberte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Cotret%2C+S+R">S. Rene de Cotret</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Juneau-Fecteau%2C+A">A. Juneau-Fecteau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dufour-Beausejour%2C+S">S. Dufour-Beausejour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Delage%2C+M+-">M. -E. Delage</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBoeuf%2C+D">D. LeBoeuf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+J">J. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ramshaw%2C+B+J">B. J. Ramshaw</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">R. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Adachi%2C+S">S. Adachi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussey%2C+N+E">N. E. Hussey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vignolle%2C+B">B. Vignolle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Proust%2C+C">C. Proust</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutherland%2C+M">M. Sutherland</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kramer%2C+S">S. Kramer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+J+-">J. -H. Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Graf%2C+D">D. Graf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">Louis Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1303.3856v2-abstract-short" style="display: inline;"> The upper critical field Hc2 is a fundamental measure of the pairing strength, yet there is no agreement on its magnitude and doping dependence in cuprate superconductors. We have used thermal conductivity as a direct probe of Hc2 in the cuprates YBa2Cu3Oy and YBa2Cu4O8 to show that there is no vortex liquid at T = 0, allowing us to use high-field resistivity measurements to map out the doping dep&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1303.3856v2-abstract-full').style.display = 'inline'; document.getElementById('1303.3856v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1303.3856v2-abstract-full" style="display: none;"> The upper critical field Hc2 is a fundamental measure of the pairing strength, yet there is no agreement on its magnitude and doping dependence in cuprate superconductors. We have used thermal conductivity as a direct probe of Hc2 in the cuprates YBa2Cu3Oy and YBa2Cu4O8 to show that there is no vortex liquid at T = 0, allowing us to use high-field resistivity measurements to map out the doping dependence of Hc2 across the phase diagram. Hc2(p) exhibits two peaks, each located at a critical point where the Fermi surface undergoes a transformation. The condensation energy obtained directly from Hc2, and previous Hc1 data, undergoes a 20-fold collapse below the higher critical point. These data provide quantitative information on the impact of competing phases in suppressing superconductivity in cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1303.3856v2-abstract-full').style.display = 'none'; document.getElementById('1303.3856v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 March, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">to appear in Nature Communications; Supplementary Information file available upon request</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 5, 3280 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1303.2961">arXiv:1303.2961</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1303.2961">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/NPHYS2617">10.1038/NPHYS2617 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Change of pairing symmetry in the iron-based superconductor KFe2As2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tafti%2C+F+F">F. F. Tafti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Juneau-Fecteau%2C+A">A. Juneau-Fecteau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Delage%2C+M+-">M. -E. Delage</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Cotret%2C+S+R">S. Rene de Cotret</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reid%2C+J+-">J. -Ph. Reid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+A+F">A. F. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+X+-">X. -G. Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X+H">X. H. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">Louis Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1303.2961v3-abstract-short" style="display: inline;"> The pairing mechanism in iron-based superconductors is the subject of ongoing debate. Proximity to an antiferromagnetic phase suggests that pairing is mediated by spin fluctuations, but orbital fluctuations have also been invoked. The former typically favour a pairing state of extended s-wave symmetry with a gap that changes sign between electron and hole Fermi surfaces (s+-), while the latter yie&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1303.2961v3-abstract-full').style.display = 'inline'; document.getElementById('1303.2961v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1303.2961v3-abstract-full" style="display: none;"> The pairing mechanism in iron-based superconductors is the subject of ongoing debate. Proximity to an antiferromagnetic phase suggests that pairing is mediated by spin fluctuations, but orbital fluctuations have also been invoked. The former typically favour a pairing state of extended s-wave symmetry with a gap that changes sign between electron and hole Fermi surfaces (s+-), while the latter yield a standard s-wave state without sign change (s++). Here we show that applying pressure to KFe2As2 induces a change of pairing state. The critical temperature Tc decreases with pressure initially, and then suddenly increases, above a critical pressure Pc. The constancy of the Hall coefficient through Pc rules out a change in the Fermi surface. There is compelling evidence that the pairing state below Pc is d-wave, from bulk measurements at ambient pressure. Above Pc, the high sensitivity to disorder argues for a particular kind of s+- state. The change from d-wave to s-wave is likely to proceed via an unusual s + id state that breaks time-reversal symmetry. The proximity of two distinct pairing states found here experimentally is natural given the near degeneracy of d-wave and s+- states found theoretically. These findings make a compelling case for spin-fluctuation-mediated superconductivity in this key iron-arsenide material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1303.2961v3-abstract-full').style.display = 'none'; document.getElementById('1303.2961v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 March, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 figures, including SI, published in Nature Physics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 9, 349-352 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1302.1943">arXiv:1302.1943</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1302.1943">pdf</a>, <a href="https://arxiv.org/ps/1302.1943">ps</a>, <a href="https://arxiv.org/format/1302.1943">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.87.184504">10.1103/PhysRevB.87.184504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superconductivity in the noncentrosymmetric half-Heusler compound LuPtBi : A possible topological superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tafti%2C+F+F">F. F. Tafti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fujii%2C+T">Takenori Fujii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Juneau-Fecteau%2C+A">A. Juneau-Fecteau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Cotret%2C+S+R">S. Rene de Cotret</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Asamitsu%2C+A">Atsushi Asamitsu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">Louis Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1302.1943v2-abstract-short" style="display: inline;"> We report superconductivity in the ternary half-Heusler compound LuPtBi, with Tc = 1.0 K and Hc2 = 1.6 T. The crystal structure of LuPtBi lacks inversion symmetry, hence the material is a noncentrosymmetric superconductor. Magnetotransport data show semimetallic behavior in the normal state, which is evidence for the importance of spin-orbit interaction. Theoretical calculations indicate that the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1302.1943v2-abstract-full').style.display = 'inline'; document.getElementById('1302.1943v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1302.1943v2-abstract-full" style="display: none;"> We report superconductivity in the ternary half-Heusler compound LuPtBi, with Tc = 1.0 K and Hc2 = 1.6 T. The crystal structure of LuPtBi lacks inversion symmetry, hence the material is a noncentrosymmetric superconductor. Magnetotransport data show semimetallic behavior in the normal state, which is evidence for the importance of spin-orbit interaction. Theoretical calculations indicate that the strong spin-orbit interaction in LuPtBi should cause strong band inversion, making this material a promising candidate for 3D topological superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1302.1943v2-abstract-full').style.display = 'none'; document.getElementById('1302.1943v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 February, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures, Table I revised, discussion of the Pauli limit revised</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 87, 184504 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1210.8411">arXiv:1210.8411</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1210.8411">pdf</a>, <a href="https://arxiv.org/format/1210.8411">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.3.021019">10.1103/PhysRevX.3.021019 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hall, Seebeck, and Nernst Coefficients of Underdoped HgBa2CuO4+d: Fermi-Surface Reconstruction in an Archetypal Cuprate Superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lepault%2C+S">S. Lepault</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cyr-Choiniere%2C+O">O. Cyr-Choiniere</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vignolle%2C+B">B. Vignolle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grissonnanche%2C+G">G. Grissonnanche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Laliberte%2C+F">F. Laliberte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+J">J. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barisic%2C+N">N. Barisic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chan%2C+M+K">M. K. Chan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+L">L. Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+X">X. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Y. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greven%2C+M">M. Greven</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Proust%2C+C">C. Proust</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">L. Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1210.8411v4-abstract-short" style="display: inline;"> Charge density-wave order has been observed in cuprate superconductors whose crystal structure breaks the square symmetry of the CuO2 planes, such as orthorhombic YBa2Cu3Oy (YBCO), but not so far in cuprates that preserve that symmetry, such as tetragonal HgBa2CuO4+d (Hg1201). We have measured the Hall (R_H), Seebeck (S), and Nernst coefficients of underdoped Hg1201 in magnetic fields large enough&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1210.8411v4-abstract-full').style.display = 'inline'; document.getElementById('1210.8411v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1210.8411v4-abstract-full" style="display: none;"> Charge density-wave order has been observed in cuprate superconductors whose crystal structure breaks the square symmetry of the CuO2 planes, such as orthorhombic YBa2Cu3Oy (YBCO), but not so far in cuprates that preserve that symmetry, such as tetragonal HgBa2CuO4+d (Hg1201). We have measured the Hall (R_H), Seebeck (S), and Nernst coefficients of underdoped Hg1201 in magnetic fields large enough to suppress superconductivity. The high-field R_H(T) and S(T) are found to drop with decreasing temperature and become negative, as also observed in YBCO at comparable doping. In YBCO, the negative R_H and S are signatures of a small electron pocket caused by Fermi-surface reconstruction, attributed to charge density-wave modulations observed in the same range of doping and temperature. We deduce that a similar Fermi-surface reconstruction takes place in Hg1201, evidence that density-wave order exists in this material. A striking similarity is also found in the normal-state Nernst coefficient, further supporting this interpretation. Given the model nature of Hg1201, Fermi-surface reconstruction appears to be common to all hole-doped cuprates, suggesting that density-wave order is a fundamental property of these materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1210.8411v4-abstract-full').style.display = 'none'; document.getElementById('1210.8411v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 3, 021019 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1208.4389">arXiv:1208.4389</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1208.4389">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nphys2380">10.1038/nphys2380 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Decrease of upper critical field with underdoping in cuprate superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+J">J. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cyr-Choini%C3%A8re%2C+O">O. Cyr-Choini猫re</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lalibert%C3%A9%2C+F">F. Lalibert茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hassinger%2C+E">E. Hassinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reid%2C+J+-">J. -Ph. Reid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Daou%2C+R">R. Daou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pyon%2C+S">S. Pyon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takayama%2C+T">T. Takayama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takagi%2C+H">H. Takagi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">Louis Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1208.4389v1-abstract-short" style="display: inline;"> The transition temperature Tc of cuprate superconductors falls when the doping p is reduced below a certain optimal value. It is unclear whether this fall is due to strong phase fluctuations or to a decrease in the pairing gap. Different interpretations of photoemission data disagree on the evolution of the pairing gap and different estimates of the upper critical field Hc2 are in sharp contradict&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1208.4389v1-abstract-full').style.display = 'inline'; document.getElementById('1208.4389v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1208.4389v1-abstract-full" style="display: none;"> The transition temperature Tc of cuprate superconductors falls when the doping p is reduced below a certain optimal value. It is unclear whether this fall is due to strong phase fluctuations or to a decrease in the pairing gap. Different interpretations of photoemission data disagree on the evolution of the pairing gap and different estimates of the upper critical field Hc2 are in sharp contradiction. Here we resolve this contradiction by showing that superconducting fluctuations in the underdoped cuprate Eu-LSCO, measured via the Nernst effect, have a characteristic field scale that falls with underdoping. The critical field Hc2 dips at p = 0.11, showing that superconductivity is weak where stripe order is strong. In the archetypal cuprate superconductor YBCO, Hc2 extracted from other measurements has the same doping dependence, also with a minimum at p = 0.11, again where stripe order is present. We conclude that competing states such as stripe order weaken superconductivity and this, rather than phase fluctuations, causes Tc to fall as cuprates become underdoped. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1208.4389v1-abstract-full').style.display = 'none'; document.getElementById('1208.4389v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Supplementary Information file available upon request; Nature Physics (2012)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 8, 751 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1207.5719">arXiv:1207.5719</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1207.5719">pdf</a>, <a href="https://arxiv.org/format/1207.5719">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0953-2048/25/8/084013">10.1088/0953-2048/25/8/084013 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> From d-wave to s-wave pairing in the iron-pnictide superconductor (Ba,K)Fe2As2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Reid%2C+J+-">J. -Ph. Reid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Juneau-Fecteau%2C+A">A. Juneau-Fecteau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gordon%2C+R+T">R. T. Gordon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Cotret%2C+S+R">S. Rene de Cotret</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+X+G">X. G. Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shakeripour%2C+H">H. Shakeripour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+J">J. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tanatar%2C+M+A">M. A. Tanatar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+H">H. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prozorov%2C+R">R. Prozorov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saito%2C+T">T. Saito</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fukazawa%2C+H">H. Fukazawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kohori%2C+Y">Y. Kohori</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kihou%2C+K">K. Kihou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+C+H">C. H. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Iyo%2C+A">A. Iyo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eisaki%2C+H">H. Eisaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+B">B. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+H+-">H. -H. Wen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">Louis Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1207.5719v1-abstract-short" style="display: inline;"> The nature of the pairing state in iron-based superconductors is the subject of much debate. Here we argue that in one material, the stoichiometric iron pnictide KFe2As2, there is overwhelming evidence for a d-wave pairing state, characterized by symmetry-imposed vertical line nodes in the superconducting gap. This evidence is reviewed, with a focus on thermal conductivity and the strong impact of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1207.5719v1-abstract-full').style.display = 'inline'; document.getElementById('1207.5719v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1207.5719v1-abstract-full" style="display: none;"> The nature of the pairing state in iron-based superconductors is the subject of much debate. Here we argue that in one material, the stoichiometric iron pnictide KFe2As2, there is overwhelming evidence for a d-wave pairing state, characterized by symmetry-imposed vertical line nodes in the superconducting gap. This evidence is reviewed, with a focus on thermal conductivity and the strong impact of impurity scattering on the critical temperature Tc. We then compare KFe2As2 to Ba0.6K0.4Fe2As2, obtained by Ba substitution, where the pairing symmetry is s-wave and the Tc is ten times higher. The transition from d-wave to s-wave within the same crystal structure provides a rare opportunity to investigate the connection between band structure and pairing mechanism. We also compare KFe2As2 to the nodal iron-based superconductor LaFePO, for which the pairing symmetry is probably not d-wave, but more likely s-wave with accidental line nodes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1207.5719v1-abstract-full').style.display = 'none'; document.getElementById('1207.5719v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Supercond. Sci. Technol. 25, 084013 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1205.6730">arXiv:1205.6730</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1205.6730">pdf</a>, <a href="https://arxiv.org/ps/1205.6730">ps</a>, <a href="https://arxiv.org/format/1205.6730">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.86.140502">10.1103/PhysRevB.86.140502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> New Phase Induced by Pressure in the Iron-Arsenide Superconductor K-Ba122 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hassinger%2C+E">E. Hassinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gredat%2C+G">G. Gredat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valade%2C+F">F. Valade</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Cotret%2C+S+R">S. Rene de Cotret</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Juneau-Fecteau%2C+A">A. Juneau-Fecteau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reid%2C+J+-">J. -Ph. Reid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+H">H. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tanatar%2C+M+A">M. A. Tanatar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prozorov%2C+R">R. Prozorov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+B">B. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+H+-">H. -H. Wen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">Louis Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1205.6730v2-abstract-short" style="display: inline;"> The electrical resistivity rho of the iron-arsenide superconductor Ba1-xKxFe2As2 was measured in applied pressures up to 2.6 GPa for four underdoped samples, with x = 0.16, 0.18, 0.19 and 0.21. The antiferromagnetic ordering temperature T_N, detected as a sharp anomaly in rho(T), decreases linearly with pressure. At pressures above around 1.0 GPa, a second sharp anomaly is detected at a lower temp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1205.6730v2-abstract-full').style.display = 'inline'; document.getElementById('1205.6730v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1205.6730v2-abstract-full" style="display: none;"> The electrical resistivity rho of the iron-arsenide superconductor Ba1-xKxFe2As2 was measured in applied pressures up to 2.6 GPa for four underdoped samples, with x = 0.16, 0.18, 0.19 and 0.21. The antiferromagnetic ordering temperature T_N, detected as a sharp anomaly in rho(T), decreases linearly with pressure. At pressures above around 1.0 GPa, a second sharp anomaly is detected at a lower temperature T_0, which rises with pressure. We attribute this second anomaly to the onset of a phase that causes a reconstruction of the Fermi surface. This new phase expands with increasing x and it competes with superconductivity. We discuss the possibility that a second spin-density wave orders at T_0, with a Q vector distinct from that of the spin-density wave that sets in at T_N. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1205.6730v2-abstract-full').style.display = 'none'; document.getElementById('1205.6730v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 May, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Two higher K concentrations were added, revealing a steady expansion of the new phase in the T-P phase diagram</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B , 140502 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1204.0490">arXiv:1204.0490</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1204.0490">pdf</a>, <a href="https://arxiv.org/format/1204.0490">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physc.2012.04.040">10.1016/j.physc.2012.04.040 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum critical point for stripe order: An organizing principle of cuprate superconductivity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">Nicolas Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">Louis Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1204.0490v1-abstract-short" style="display: inline;"> A spin density-wave quantum critical point (QCP) is the central organizing principle of organic, iron-pnictide, heavy-fermion and electron-doped cuprate superconductors. It accounts for the superconducting Tc dome, the non-Fermi-liquid resistivity, and the Fermi-surface reconstruction. Outside the magnetically ordered phase above the QCP, scattering and pairing decrease in parallel as the system m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1204.0490v1-abstract-full').style.display = 'inline'; document.getElementById('1204.0490v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1204.0490v1-abstract-full" style="display: none;"> A spin density-wave quantum critical point (QCP) is the central organizing principle of organic, iron-pnictide, heavy-fermion and electron-doped cuprate superconductors. It accounts for the superconducting Tc dome, the non-Fermi-liquid resistivity, and the Fermi-surface reconstruction. Outside the magnetically ordered phase above the QCP, scattering and pairing decrease in parallel as the system moves away from the QCP. Here we argue that a similar scenario, based on a stripe-order QCP, is a central organizing principle of hole-doped cuprate superconductors. Key properties of Eu-LSCO, Nd-LSCO and YBCO are naturally unified, including stripe order itself, its QCP, Fermi-surface reconstruction, the linear-T resistivity, and the nematic character of the pseudogap phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1204.0490v1-abstract-full').style.display = 'none'; document.getElementById('1204.0490v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Written for a special issue of Physica C on &#34;Stripes and electronic liquid crystals</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physica C 481, 161 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1201.3376">arXiv:1201.3376</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1201.3376">pdf</a>, <a href="https://arxiv.org/format/1201.3376">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.109.087001">10.1103/PhysRevLett.109.087001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Universal heat conduction in the iron-arsenide superconductor KFe2As2 : Evidence of a d-wave state </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Reid%2C+J+-">J. -Ph. Reid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tanatar%2C+M+A">M. A. Tanatar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Juneau-Fecteau%2C+A">A. Juneau-Fecteau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gordon%2C+R+T">R. T. Gordon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Cotret%2C+S+R">S. Rene de Cotret</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saito%2C+T">T. Saito</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fukazawa%2C+H">H. Fukazawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kohori%2C+Y">Y. Kohori</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kihou%2C+K">K. Kihou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+C+H">C. H. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Iyo%2C+A">A. Iyo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eisaki%2C+H">H. Eisaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prozorov%2C+R">R. Prozorov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">Louis Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1201.3376v3-abstract-short" style="display: inline;"> The thermal conductivity of the iron-arsenide superconductor KFe2As2 was measured down to 50 mK for a heat current parallel and perpendicular to the tetragonal c-axis. A residual linear term (RLT) at T=0 is observed for both current directions, confirming the presence of nodes in the superconducting gap. Our value of the RLT in the plane is equal to that reported by Dong et al. [Phys. Rev. Lett. 1&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1201.3376v3-abstract-full').style.display = 'inline'; document.getElementById('1201.3376v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1201.3376v3-abstract-full" style="display: none;"> The thermal conductivity of the iron-arsenide superconductor KFe2As2 was measured down to 50 mK for a heat current parallel and perpendicular to the tetragonal c-axis. A residual linear term (RLT) at T=0 is observed for both current directions, confirming the presence of nodes in the superconducting gap. Our value of the RLT in the plane is equal to that reported by Dong et al. [Phys. Rev. Lett. 104, 087005 (2010)] for a sample whose residual resistivity was ten times larger. This independence of the RLT on impurity scattering is the signature of universal heat transport, a property of superconducting states with symmetry-imposed line nodes. This argues against an s-wave state with accidental nodes. It favors instead a d-wave state, an assignment consistent with five additional properties: the magnitude of the critical scattering rate for suppressing Tc to zero; the magnitude of the RLT, and its dependence on current direction and on magnetic field; the temperature dependence of the thermal conductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1201.3376v3-abstract-full').style.display = 'none'; document.getElementById('1201.3376v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 January, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in Physical Review Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Letter 109, 087001 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1105.3323">arXiv:1105.3323</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1105.3323">pdf</a>, <a href="https://arxiv.org/ps/1105.3323">ps</a>, <a href="https://arxiv.org/format/1105.3323">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0953-8984/23/34/345702">10.1088/0953-8984/23/34/345702 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The metallic transport of (TMTSF)_2X organic conductors close to the superconducting phase </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Auban-Senzier%2C+P">Pascale Auban-Senzier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=J%C3%A9rome%2C+D">Denis J茅rome</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">Nicolas Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=De+Cotret%2C+S+R">Samuel Ren茅 De Cotret</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sedeki%2C+A">Abdel Sedeki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bourbonnais%2C+C">Claude Bourbonnais</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">Louis Taillefer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alemany%2C+P">P. Alemany</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canadell%2C+E">Enric Canadell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bechgaard%2C+K">Klaus Bechgaard</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1105.3323v2-abstract-short" style="display: inline;"> Comparing resistivity data of quasi-one dimensional superconductors (TMTSF)_2PF_6 and (TMTSF)_2ClO_4 along the least conducting c*-axis and along the high conductivity a -axis as a function of temperature and pressure, a low temperature regime is observed in which a unique scattering time governs transport along both directions of these anisotropic conductors. However, the pressure dependence of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1105.3323v2-abstract-full').style.display = 'inline'; document.getElementById('1105.3323v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1105.3323v2-abstract-full" style="display: none;"> Comparing resistivity data of quasi-one dimensional superconductors (TMTSF)_2PF_6 and (TMTSF)_2ClO_4 along the least conducting c*-axis and along the high conductivity a -axis as a function of temperature and pressure, a low temperature regime is observed in which a unique scattering time governs transport along both directions of these anisotropic conductors. However, the pressure dependence of the anisotropy implies a large pressure dependence of the interlayer coupling. This is in agreement with the results of first-principles DFT calculations implying methyl group hyperconjugation in the TMTSF molecule. In this low temperature regime, both materials exhibit for rc a temperature dependence aT + bT^2. Taking into account the strong pressure dependence of the anisotropy, the T-linear rc is found to correlate with the suppression of the superconducting Tc, in close analogy with ra data. This work is revealing the domain of existence of the 3D coherent regime in the generic (TMTSF)_2X phase diagram and provides further support for the correlation between T-linear resistivity and superconductivity in non-conventional superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1105.3323v2-abstract-full').style.display = 'none'; document.getElementById('1105.3323v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 May, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Physics Condensed Matter 23 (2011) 345702 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1105.3322">arXiv:1105.3322</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1105.3322">pdf</a>, <a href="https://arxiv.org/ps/1105.3322">ps</a>, <a href="https://arxiv.org/format/1105.3322">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjb/e2010-10571-4">10.1140/epjb/e2010-10571-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Linear-T scattering and pairing from antiferromagnetic fluctuations in the (TMTSF)_2X organic superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">Nicolas Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=De+Cotret%2C+S+R">Samuel Ren茅 De Cotret</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sedeki%2C+A">Abdel Sedeki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bourbonnais%2C+C">Claude Bourbonnais</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">Louis Taillefer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Auban-Senzier%2C+P">Pascale Auban-Senzier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=J%C3%A9rome%2C+D">Denis J茅rome</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bechgaard%2C+K">Klaus Bechgaard</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1105.3322v2-abstract-short" style="display: inline;"> An exhaustive investigation of metallic electronic transport and superconductivity of organic superconductors (TMTSF)_2PF_6 and (TMTSF)_2ClO_4 in the Pressure-Temperature phase diagram between T=0 and 20 K and a theoretical description based on the weak coupling renormalization group method are reported. The analysis of the data reveals a high temperature domain (T\approx 20 K) in which a regular&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1105.3322v2-abstract-full').style.display = 'inline'; document.getElementById('1105.3322v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1105.3322v2-abstract-full" style="display: none;"> An exhaustive investigation of metallic electronic transport and superconductivity of organic superconductors (TMTSF)_2PF_6 and (TMTSF)_2ClO_4 in the Pressure-Temperature phase diagram between T=0 and 20 K and a theoretical description based on the weak coupling renormalization group method are reported. The analysis of the data reveals a high temperature domain (T\approx 20 K) in which a regular T^2 electron-electron Umklapp scattering obeys a Kadowaki-Woods law and a low temperature regime (T&lt; 8 K) where the resistivity is dominated by a linear-in temperature component. In both compounds a correlated behavior exists between the linear transport and the extra nuclear spin-lattice relaxation due to antiferromagnetic fluctuations. In addition, a tight connection is clearly established between linear transport and T_c. We propose a theoretical description of the anomalous resistivity based on a weak coupling renormalization group determination of electron-electron scattering rate. A linear resistivity is found and its origin lies in antiferromagnetic correlations sustained by Cooper pairing via constructive interference. The decay of the linear resistivity term under pressure is correlated with the strength of antiferromagnetic spin correlations and T_c, along with an unusual build-up of the Fermi liquid scattering. The results capture the key features of the low temperature electrical transport in the Bechgaard salts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1105.3322v2-abstract-full').style.display = 'none'; document.getElementById('1105.3322v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 May, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> European Physical Journal B 78, 1 (2010) 23 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1105.2232">arXiv:1105.2232</a> <span>&nbsp;&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Doping-induced vertical line nodes in the superconducting gap of the iron arsenide K-Ba122 from directional thermal conductivity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Reid%2C+J+-">J. -Ph. Reid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tanatar%2C+M+A">M. A. Tanatar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+X+G">X. G. Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shakeripour%2C+H">H. Shakeripour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Cotret%2C+S+R">S. Ren茅 de Cotret</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+J">J. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+B">B. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+H+-">H. -H. Wen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+H">H. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prozorov%2C+R">R. Prozorov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">L. Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1105.2232v2-abstract-short" style="display: inline;"> The thermal conductivity k of the iron-arsenide superconductor K-Ba122 was measured down to 50 mK in a magnetic field up to 15 T, for a heat current parallel and perpendicular to the tetragonal c axis. In the range from optimal doping (x ~ 0.4) down to x = 0.16, there is no residual linear term in k(T) at T = 0, showing that there are no nodes in the superconducting gap anywhere on the Fermi surfa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1105.2232v2-abstract-full').style.display = 'inline'; document.getElementById('1105.2232v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1105.2232v2-abstract-full" style="display: none;"> The thermal conductivity k of the iron-arsenide superconductor K-Ba122 was measured down to 50 mK in a magnetic field up to 15 T, for a heat current parallel and perpendicular to the tetragonal c axis. In the range from optimal doping (x ~ 0.4) down to x = 0.16, there is no residual linear term in k(T) at T = 0, showing that there are no nodes in the superconducting gap anywhere on the Fermi surface. Upon crossing below x = 0.16, a large residual linear term suddenly appears, signaling the onset of nodes in the superconducting gap, most likely vertical line nodes running along the c axis. We discuss two scenarios: 1) accidental nodes in an s-wave gap, resulting from a strong modulation of the gap around the Fermi surface, in which minima deepen rapidly with underdoping; 2) a phase transition from a nodeless s-wave state to a d-wave state, in which nodes are imposed by symmetry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1105.2232v2-abstract-full').style.display = 'none'; document.getElementById('1105.2232v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 May, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This paper has been replaced by arXiv: 1602.03914</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1104.2209">arXiv:1104.2209</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1104.2209">pdf</a>, <a href="https://arxiv.org/format/1104.2209">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.84.054507">10.1103/PhysRevB.84.054507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Isotropic three-dimensional gap in the iron-arsenide superconductor LiFeAs from directional heat transport measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tanatar%2C+M+A">M. A. Tanatar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reid%2C+J+-">J. -Ph. Reid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Cotret%2C+S+R">S. Rene de Cotret</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Laliberte%2C+F">F. Laliberte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hassinger%2C+E">E. Hassinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+J">J. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+H">H. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+K">K. Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Y+J">Yoo Jang Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kwon%2C+Y+S">Yong Seung Kwon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prozorov%2C+R">R. Prozorov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">Louis Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1104.2209v2-abstract-short" style="display: inline;"> The thermal conductivity k of the iron-arsenide superconductor LiFeAs (Tc ~ 18K) was measured in single crystals at temperatures down to T~50mK and in magnetic fields up to H=17T, very close to the upper critical field Hc2~18T. For both directions of the heat current, parallel and perpendicular to the tetragonal c-axis, a negligible residual linear term k/T is found as T -&gt;0, revealing that there&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1104.2209v2-abstract-full').style.display = 'inline'; document.getElementById('1104.2209v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1104.2209v2-abstract-full" style="display: none;"> The thermal conductivity k of the iron-arsenide superconductor LiFeAs (Tc ~ 18K) was measured in single crystals at temperatures down to T~50mK and in magnetic fields up to H=17T, very close to the upper critical field Hc2~18T. For both directions of the heat current, parallel and perpendicular to the tetragonal c-axis, a negligible residual linear term k/T is found as T -&gt;0, revealing that there are no zero-energy quasiparticles in the superconducting state. The increase in k with magnetic field is the same for both current directions and it follows closely the dependence expected for an isotropic superconducting gap. There is no evidence of multi-band character, whereby the gap would be different on different Fermi-surface sheets. These findings show that the superconducting gap in LiFeAs is isotropic in 3D, without nodes or deep minima anywhere on the Fermi surface. Comparison with other iron-pnictide superconductors suggests that a nodeless isotropic gap is a common feature at optimal doping (maximal Tc). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1104.2209v2-abstract-full').style.display = 'none'; document.getElementById('1104.2209v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 April, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 April, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 84, 054507 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1103.3044">arXiv:1103.3044</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1103.3044">pdf</a>, <a href="https://arxiv.org/ps/1103.3044">ps</a>, <a href="https://arxiv.org/format/1103.3044">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.84.014507">10.1103/PhysRevB.84.014507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nernst effect in the cuprate superconductor YBCO: Broken rotational and translational symmetries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+J">J. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">Nicolas Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lalibert%C3%A9%2C+F">Francis Lalibert茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Daou%2C+R">R. Daou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBoeuf%2C+D">David LeBoeuf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ramshaw%2C+B+J">B. J. Ramshaw</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">Ruixing Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Proust%2C+C">Cyril Proust</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheikin%2C+I">I. Sheikin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Behnia%2C+K">K. Behnia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">Louis Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1103.3044v1-abstract-short" style="display: inline;"> The Nernst coefficient of the cuprate superconductor YBa2Cu3Oy was recently shown to become strongly anisotropic within the basal plane when cooled below the pseudogap temperature T*, revealing that the pseudogap phase breaks the four-fold rotational symmetry of the CuO2 planes. Here we report on the evolution of this Nernst anisotropy at low temperature, once superconductivity is suppressed by a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1103.3044v1-abstract-full').style.display = 'inline'; document.getElementById('1103.3044v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1103.3044v1-abstract-full" style="display: none;"> The Nernst coefficient of the cuprate superconductor YBa2Cu3Oy was recently shown to become strongly anisotropic within the basal plane when cooled below the pseudogap temperature T*, revealing that the pseudogap phase breaks the four-fold rotational symmetry of the CuO2 planes. Here we report on the evolution of this Nernst anisotropy at low temperature, once superconductivity is suppressed by a magnetic field. We find that the anisotropy drops rapidly below 80 K, to vanish in the T=0 limit. We show that this loss of anisotropy is due to the emergence of a small high-mobility electron-like pocket in the Fermi surface at low temperature, a reconstruction attributed to a low-temperature state that breaks the translational symmetry of the CuO2 planes. We discuss the sequence of broken symmetries - first rotational, then translational - in terms of an electronic nematic-to-smectic transition such as could arise when unidirectional spin or charge modulations order. We compare YBa2Cu3Oy with iron-pnictide superconductors where the process of (unidirectional) antiferromagnetic ordering gives rises to the same sequence of broken symmetries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1103.3044v1-abstract-full').style.display = 'none'; document.getElementById('1103.3044v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 84, 014507 (2011) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Doiron-Leyraud%2C+N&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Doiron-Leyraud%2C+N&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Doiron-Leyraud%2C+N&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10