CINXE.COM
Search results for: organic dye
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: organic dye</title> <meta name="description" content="Search results for: organic dye"> <meta name="keywords" content="organic dye"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="organic dye" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="organic dye"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2458</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: organic dye</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2458</span> Factors Influencing the Resistance of the Purchase of Organic Food and Market Education Process in Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fety%20Nurlia%20Muzayanah">Fety Nurlia Muzayanah</a>, <a href="https://publications.waset.org/abstracts/search?q=Arif%20Imam%20Suroso"> Arif Imam Suroso</a>, <a href="https://publications.waset.org/abstracts/search?q=Mukhamad%20Najib"> Mukhamad Najib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The market share of organic food in Indonesia just reaches 0.5-2 percents from the entire of agricultural products. The aim of this research is to analyze the relation of gender, work, age and final education toward the buying interest of organic food, to identify the factors influencing the resistance of the purchase of organic food, and to identify the market education process. The analysis result of Structural Equation Modeling (SEM) shows the factors causing the resistance of the purchase of organic food are the negative attitude toward organic food, the lack of affordable in range for organic food product and the lack of awareness toward organic food, while the subjective norms have no significant effect toward the buying interest. The market education process which can be done is the education about the use of the health of organic food, the organic certification and the economic value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=market%20education" title="market education">market education</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20food" title=" organic food"> organic food</a>, <a href="https://publications.waset.org/abstracts/search?q=consumer%20behavior" title=" consumer behavior"> consumer behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20equation%20modeling" title=" structural equation modeling"> structural equation modeling</a> </p> <a href="https://publications.waset.org/abstracts/21708/factors-influencing-the-resistance-of-the-purchase-of-organic-food-and-market-education-process-in-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21708.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">613</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2457</span> Consumer Attitude and Purchase Intention towards Organic Food: Insights from Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muneshia%20Maheshwar">Muneshia Maheshwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Kanwal%20Gul"> Kanwal Gul</a>, <a href="https://publications.waset.org/abstracts/search?q=Shakira%20%20Fareed"> Shakira Fareed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ume-Amama%20Areeb%20Gul"> Ume-Amama Areeb Gul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organic food is commonly known for its healthier content without the use of pesticides, herbicides, inorganic fertilizers, antibiotics and growth hormones. The aim of this research is to examine the effect of health consciousness, environmental concern and organic food knowledge on both the intention to buy organic foods and the attitude towards organic foods and the effect of attitude towards organic foods on the intention to buy organic foods in Pakistan. Primary data was used which was collected through adopted questionnaire from previous research. Non- probability convenience sampling was used to select sample size of 200 consumers based on Karachi. The data was analyzed through Descriptive statistics and Multi regression method. The findings of the study showed that the attitude and the intention to buy organic food were affected by health consciousness, environmental concern, and organic food knowledge. The results also revealed that attitude also affects the intention to buy organic food. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=health%20consciousness" title="health consciousness">health consciousness</a>, <a href="https://publications.waset.org/abstracts/search?q=attitude" title=" attitude"> attitude</a>, <a href="https://publications.waset.org/abstracts/search?q=intention%20to%20purchase" title=" intention to purchase"> intention to purchase</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20concern" title=" environmental concern"> environmental concern</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20food%20knowledge" title=" organic food knowledge"> organic food knowledge</a> </p> <a href="https://publications.waset.org/abstracts/78597/consumer-attitude-and-purchase-intention-towards-organic-food-insights-from-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2456</span> Consumer Behavior and Knowledge on Organic Products in Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Warunpun%20Kongsom">Warunpun Kongsom</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaiwat%20Kongsom"> Chaiwat Kongsom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to investigate the awareness, knowledge and consumer behavior towards organic products in Thailand. For this study, a purposive sampling technique was used to identify a sample group of 2,575 consumers over the age of 20 years who intended or made purchases from 1) green shops; 2) supermarkets with branches; and, 3) green markets. A questionnaire was used for data collection across the country. Descriptive statistics were used for data analysis. The results showed that more than 92% of consumers were aware of organic agriculture, but had less knowledge about it. More than 60% of consumers knew that organic agriculture production and processing did not allow the use of chemicals. And about 40% of consumers were confused between the food safety logo and the certified organic logo, and whether GMO was allowed in organic agriculture practice or not. In addition, most consumers perceived that organic agricultural products, good agricultural practice (GAP) products, agricultural chemicals free products, and hydroponic vegetable products had the same standard. In the view of organic consumers, the organic Thailand label was the most seen and reliable among various organic labels. Less than 3% of consumers thought that the International Federation of Organic Agriculture Movements (IFOAM) Global Organic Mark (GOM) was the most seen and reliable. For the behaviors of organic consumers, they purchased organic products mainly at the supermarket and green shop (55.4%), one to two times per month, and with a total expenditure of about 200 to 400 baht each time. The main reason for buying organic products was safety and free from agricultural chemicals. The considered factors in organic product selection were price (29.5%), convenience (22.4%), and a reliable certification system (21.3%). The demands for organic products were mainly rice, vegetables and fruits. Processed organic products were relatively small in quantity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=consumer%20behavior" title="consumer behavior">consumer behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=consumer%20knowledge" title=" consumer knowledge"> consumer knowledge</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20products" title=" organic products"> organic products</a>, <a href="https://publications.waset.org/abstracts/search?q=Thailand" title=" Thailand"> Thailand</a> </p> <a href="https://publications.waset.org/abstracts/47388/consumer-behavior-and-knowledge-on-organic-products-in-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2455</span> An Organic Dye-Based Staining for Plant DNA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beg%C3%BCm%20Terzi">Begüm Terzi</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96zlem%20Ate%C5%9F%20S%C3%B6nmezo%C4%9Flu"> Özlem Ateş Sönmezoğlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kerime%20%C3%96zkay"> Kerime Özkay</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Y%C4%B1ld%C4%B1r%C4%B1m"> Ahmet Yıldırım</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In plant biotechnology, electrophoresis is used to detect nucleic acids. Ethidium bromide (EtBr) is used as an intercalator dye to stain DNA in agarose gel electrophoresis, but this dye is mutagenic and carcinogenic. In this study, a visible, reliable and organic Ruthenium-based dye (N-719) for staining plant DNA in comparison to EtBr. When prestaining and post-staining for gel electrophoresis, N-719 stained both DNA and PCR product bands with the same clarity as EtBr. The organic dye N-719 stained DNA bands as sensitively and as clearly as EtBr. The organic dye was found to have staining activity suitable for the identification of DNA.Consequently, N-719 organic dye can be used to stain and visualize DNA during gel electrophoresis as alternatives to EtBr in plant biotechnology studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agarose%20gel" title="agarose gel">agarose gel</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20staining" title=" DNA staining"> DNA staining</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20dye" title=" organic dye"> organic dye</a>, <a href="https://publications.waset.org/abstracts/search?q=N-719" title=" N-719"> N-719</a> </p> <a href="https://publications.waset.org/abstracts/68758/an-organic-dye-based-staining-for-plant-dna" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2454</span> Simulation and Characterization of Organic Light Emitting Diodes and Organic Photovoltaics Using Physics Based Tool</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20A.%20Shahul%20Hameed">T. A. Shahul Hameed</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Predeep"> P. Predeep</a>, <a href="https://publications.waset.org/abstracts/search?q=Anju%20Iqbal"> Anju Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Baiju"> M. R. Baiju</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Research and development in organic photovoltaic cells and Organic Light Emitting Diodes have gained wider acceptance due to the advent of many advanced techniques to enhance the efficiency and operational hours. Here we report our work on design, simulation and characterizationracterize the bulk heterojunction organic photo cell and polymer light emitting diodes in different layer configurations using ATLAS, a licensed device simulation tool. Bulk heterojuction and multilayer devices were simulated for comparing their performance parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HOMO" title="HOMO">HOMO</a>, <a href="https://publications.waset.org/abstracts/search?q=LUMO" title=" LUMO"> LUMO</a>, <a href="https://publications.waset.org/abstracts/search?q=PLED" title=" PLED"> PLED</a>, <a href="https://publications.waset.org/abstracts/search?q=OPV" title=" OPV"> OPV</a> </p> <a href="https://publications.waset.org/abstracts/18873/simulation-and-characterization-of-organic-light-emitting-diodes-and-organic-photovoltaics-using-physics-based-tool" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18873.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">585</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2453</span> Friction Coefficient of Epiphen Epoxy System Filled with Powder Resulting from the Grinding of Pine Needles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Graur">I. Graur</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Bria"> V. Bria</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Muntenita"> C. Muntenita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent ecological interests have resulted in scientific concerns regarding natural-organic powder composites. Because natural-organic powders are cheap and biodegradable, green composites represent a substantial contribution in polymer science area. The aim of this study is to point out the effect of natural-organic powder resulting from the grinding of pine needles used as a modifying agent for Epiphen epoxy resin and is focused on friction coefficient behavior. A pin-on-disc setup is used for friction coefficient experiments. Epiphen epoxy resin was used with the different ratio of organic powder from the grinding of pine needles. Because of the challenges of natural organic powder, more and more companies are looking at organic composite materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epoxy" title="epoxy">epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20coefficient" title=" friction coefficient"> friction coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20powder" title=" organic powder"> organic powder</a>, <a href="https://publications.waset.org/abstracts/search?q=pine%20needles" title=" pine needles"> pine needles</a> </p> <a href="https://publications.waset.org/abstracts/96794/friction-coefficient-of-epiphen-epoxy-system-filled-with-powder-resulting-from-the-grinding-of-pine-needles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2452</span> The Effect of Fermented Organic Feed into Nutritive Contents of Kampong Chicken Meat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wahyu%20Widodo">Wahyu Widodo</a>, <a href="https://publications.waset.org/abstracts/search?q=Imbang%20Dwi%20Rahayu"> Imbang Dwi Rahayu</a>, <a href="https://publications.waset.org/abstracts/search?q=Adi%20Sutanto"> Adi Sutanto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this research was to analyze the effect of the fermented organic feed to dry matter, ash, organic matter, protein, fat and crude fiber contents of kampong chicken meat. The research had conducted at January until June, 2016. One hundreds chickens were used in this research. Experimental method and completely randomized design were used to support this research. We had 4 treatment namely P0: organic feed without fermentation, P1: Organic feed with fermented rice bran, P2: Organic feed with fermented corn, P3: Organic feed with fermented rice bran and corn with 5 replication. The conclusion was the treatment had not a significant effect in the dry matter, ash, organic matter and protein contents of chicken meat. On the other hand, it had a significant effect in the fat and crude fiber contents of chicken meat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corn" title="corn">corn</a>, <a href="https://publications.waset.org/abstracts/search?q=fermented%20organic%20feed" title=" fermented organic feed"> fermented organic feed</a>, <a href="https://publications.waset.org/abstracts/search?q=nutritive%20contents" title=" nutritive contents"> nutritive contents</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20bran" title=" rice bran"> rice bran</a> </p> <a href="https://publications.waset.org/abstracts/62184/the-effect-of-fermented-organic-feed-into-nutritive-contents-of-kampong-chicken-meat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62184.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2451</span> Pesticide Risk: A Study on the Effectiveness of Organic/Biopesticides in Sustainable Agriculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Berk%20K%C4%B1l%C4%B1%C3%A7">Berk Kılıç</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96mer%20Ayd%C4%B1n"> Ömer Aydın</a>, <a href="https://publications.waset.org/abstracts/search?q=Kerem%20Mestani"> Kerem Mestani</a>, <a href="https://publications.waset.org/abstracts/search?q=Defne%20Uzun"> Defne Uzun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In agriculture and farming, pesticides are frequently used to kill off or fend off any pests (bugs, bacteria, fungi, etc.). However, traditional pesticides have proven to have harmful effects on both the environment and the human body, such as hazards in the endocrine, neurodevelopmental, and reproductive systems. This experiment aims to test the effectiveness of organic/bio-pesticides (environmentally friendly pesticides) compared to traditional pesticides. Black pepper and garlic will be used as biopesticides in this experiment. The results support that organic farming applying organic pesticides operates through non-toxic mechanisms, offering minimal threats to human well-being and the environment. Consequently, consuming organic produce can significantly diminish the dangers associated with pesticide intake. In this study, method is introduced to reduce pesticide-related risks by promoting organic farming techniques within organic/bio-pesticide usage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pesticide" title="pesticide">pesticide</a>, <a href="https://publications.waset.org/abstracts/search?q=garlic" title=" garlic"> garlic</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20pepper" title=" black pepper"> black pepper</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-pesticide" title=" bio-pesticide"> bio-pesticide</a> </p> <a href="https://publications.waset.org/abstracts/179368/pesticide-risk-a-study-on-the-effectiveness-of-organicbiopesticides-in-sustainable-agriculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2450</span> Secondary Compression Behavior of Organic Soils in One-Dimensional Consolidation Tests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rinku%20Varghese">Rinku Varghese</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chandrakaran"> S. Chandrakaran</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Rangaswamy"> K. Rangaswamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The standard one-dimensional consolidation test is used to find the consolidation behaviour of artificially consolidated organic soils. Incremental loading tests were conducted on the clay without and with organic matter. The study was conducted with soil having different organic content keeping all other parameters constant. The tests were conducted on clay and artificially prepared organic soil sample at different vertical pressure. The load increment ratio considered for the test is equal to one. Artificial organic soils are used for the test by adding starch to the clay. The percentage of organic content in starch is determined by adding 5% by weight starch into the clay (inorganic soil) sample and corresponding change in organic content of soil was determined. This was expressed as percentage by weight of starch, and it was found that about 95% organic content in the soil sample. Accordingly percentage of organic content fixed and added to the sample for testing to understand the consolidation behaviour clayey soils with organic content. A detailed study of the results obtained from IL test was investigated. The main items investigated were (i) coefficient of consolidation (cv), (ii) coefficient of volume compression (mv), (iii) coefficient of permeability (k). The consolidation parameter obtained from IL test was used for determining the creep strain and creep parameter and also predicting their variation with vertical stress and organic content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=consolidation" title="consolidation">consolidation</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20compression" title=" secondary compression"> secondary compression</a>, <a href="https://publications.waset.org/abstracts/search?q=creep" title=" creep"> creep</a>, <a href="https://publications.waset.org/abstracts/search?q=starch" title=" starch"> starch</a> </p> <a href="https://publications.waset.org/abstracts/54271/secondary-compression-behavior-of-organic-soils-in-one-dimensional-consolidation-tests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54271.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2449</span> Consumer Behavior in Buying Organic Product: A Case Study of Consumer in the Bangkok Metropolits and Vicinity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Piluntana%20Panpluem">Piluntana Panpluem</a>, <a href="https://publications.waset.org/abstracts/search?q=Monticha%20Putsakum"> Monticha Putsakum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objectives of this study were to investigate 1) consumers’ behaviors in buying organic products; and 2) the relationships between personal factors, cultural factors, social factors, psychological factors and marketing mix factors, and the behavior in buying organic products of consumers in the greater Bangkok metropolitan area. The sample group was 400 consumers at the age of 15 and older, who bought organic agricultural products from green markets and green shops in Bangkok, including its suburbs. The data were collected by using a questionnaire, which were analyzed by descriptive statistics and chi-square test. The results showed that the consumers bought 3 – 4 types of fresh vegetables with a total expenditure of less than 499 Baht each time. They purchased organic products mainly at a supermarket, 2 – 4 times per month, most frequently on Sundays, which took less than 30 minutes of shopping each time. The purpose of the purchase was for self-consuming. Gaining or retaining good health was the reason for the consumption of the products. Additionally, the first considered factor in the organic product selection was the quality. The decisions in purchasing the products were made directly by consumers, who were influenced mainly by advertising media on television. For the relationships among personal, cultural, social, psychological and marketing mix factors, and consumers’ behavior in buying organic products, the results showed the following: 1) personal factors, which were gender, age and educational level, were related to the behavior in terms of “What”, “Why”, and “Where” the consumers bought organic products (p<0.05); 2) cultural factors were related to “Why” the consumers bought organic products (p<0.05); 3) social factors were related to “Where” and “How” the consumers bought organic products (p<0.05); 4) psychological factors were related to “When” the consumers bought organic products (p<0.05). 5) For the marketing mix factors, “Product” was related to “Who participated” in buying, “What” and “Where” the consumers bought organic products (p<0.05), while “Price” was related to “What” and “When” the consumers bought organic products (p<0.05). “Place” was related to “What” and “How” the consumers bought organic products (p<0.05). Furthermore, “Promotion” was related to “What” and “Where” the consumers bought organic products (p<0.05). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=consumer%20behavior" title="consumer behavior">consumer behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20products" title=" organic products"> organic products</a>, <a href="https://publications.waset.org/abstracts/search?q=Bangkok%20Metropolis%20and%20Vicinity" title=" Bangkok Metropolis and Vicinity"> Bangkok Metropolis and Vicinity</a> </p> <a href="https://publications.waset.org/abstracts/24467/consumer-behavior-in-buying-organic-product-a-case-study-of-consumer-in-the-bangkok-metropolits-and-vicinity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2448</span> Efficiency of Modified Granular Activated Carbon Coupled with Membrane Bioreactor for Trace Organic Contaminants Removal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mousaab%20Alrhmoun">Mousaab Alrhmoun</a>, <a href="https://publications.waset.org/abstracts/search?q=Magali%20Casellas"> Magali Casellas</a>, <a href="https://publications.waset.org/abstracts/search?q=Michel%20Baudu"> Michel Baudu</a>, <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Dagot"> Christophe Dagot </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the study is to improve removal of trace organic contaminants dissolved in activated sludge by the process of filtration with membrane bioreactor combined with modified activated carbon, for a maximum removal of organic compounds characterized by low molecular weight. Special treatment was conducted in laboratory on activated carbon. Tow reaction parameters: The pH of aqueous middle and the type of granular activated carbon were very important to improve the removal and to motivate the electrostatic Interactions of organic compounds with modified activated carbon in addition to physical adsorption, ligand exchange or complexation on the surface activated carbon. The results indicate that modified activated carbon has a strong impact in removal 21 of organic contaminants and in percentage of 100% of the process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20micropolluants" title=" organic micropolluants"> organic micropolluants</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20bioreactor" title=" membrane bioreactor"> membrane bioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon" title=" carbon"> carbon</a> </p> <a href="https://publications.waset.org/abstracts/3910/efficiency-of-modified-granular-activated-carbon-coupled-with-membrane-bioreactor-for-trace-organic-contaminants-removal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3910.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2447</span> Choosing Local Organic Food: Consumer Motivations and Ethical Spaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Artur%20Saraiva">Artur Saraiva</a>, <a href="https://publications.waset.org/abstracts/search?q=Moritz%20von%20Schwedler"> Moritz von Schwedler</a>, <a href="https://publications.waset.org/abstracts/search?q=Em%C3%ADlia%20Fernandes"> Emília Fernandes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the organic sector has increased significantly. However, with the ‘conventionalization’ of these products, it has been questioned whether these products have been losing their original vision. Accordingly, this research based on 31 phenomenological interviews with committed organic consumers in urban and rural areas of Portugal, aims to analyse how ethical motivations and ecological awareness are related to organic food consumption. The content thematic analysis highlights aspects related to society and environmental concerns. On an individual level, the importance of internal coherence, peace of mind and balance that these consumers find in the consumption of local organic products was stressed. For these consumers, local organic products consumption made for significant changes in their lives, aiding in the establishment of a green identity, and involves a certain philosophy of life. This vision of an organic lifestyle is grounded in a political and ecological perspective, beyond the usual organic definition, as a ‘post-organic era’. The paper contributes to better understand how an ideological environmental discourse allows highlighting the relationship between consumers’ environmental concerns and the politics of food, resulting in a possible transition to new sustainable consumption practices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20consumption" title="organic consumption">organic consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=localism" title=" localism"> localism</a>, <a href="https://publications.waset.org/abstracts/search?q=content%20thematic%20analysis" title=" content thematic analysis"> content thematic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=pro-environmental%20discourse" title=" pro-environmental discourse"> pro-environmental discourse</a>, <a href="https://publications.waset.org/abstracts/search?q=political%20consumption" title=" political consumption"> political consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=Portugal" title=" Portugal"> Portugal</a> </p> <a href="https://publications.waset.org/abstracts/77263/choosing-local-organic-food-consumer-motivations-and-ethical-spaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2446</span> Perceptions of Farmers against Liquid Fertilizer Benefits of Beef Cattle Urine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sitti%20Nurani%20Sirajuddin">Sitti Nurani Sirajuddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ikrar%20Moh.%20Saleh"> Ikrar Moh. Saleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Kasmiyati%20Kasim"> Kasmiyati Kasim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to know the perception of livestock farmers on the use of liquid organic fertilizer from urine of cattle at Sinjai Regency, South Sulawesi Province. The choice of location for a farmer group manufactures and markets liquid organic fertilizer from cattle urine. This research was conducted in May to July 2013.The population were all livestock farmers who use organic liquid fertilizer from cattle urine samples while livestock farmers who are directly involved in the manufacture of liquid organic fertilizer totaled 42 people. Data were collected through observation and interview. Data were analyzed descriptively. The results showed that the perception of livestock farmers of using liquid organic fertilizer from cattle urine provide additional revenue benefits, cost minimization farming, reducing environmental pollution which not contrary to the customs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquid%20organic%20fertilizer" title="liquid organic fertilizer">liquid organic fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=perceptions" title=" perceptions"> perceptions</a>, <a href="https://publications.waset.org/abstracts/search?q=farmers" title=" farmers"> farmers</a>, <a href="https://publications.waset.org/abstracts/search?q=beef%20cattle" title=" beef cattle"> beef cattle</a> </p> <a href="https://publications.waset.org/abstracts/34105/perceptions-of-farmers-against-liquid-fertilizer-benefits-of-beef-cattle-urine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2445</span> On-Farm Research on Organic Fruits Production in the Eastern Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sali%20Chinsathit">Sali Chinsathit</a>, <a href="https://publications.waset.org/abstracts/search?q=Haruthai%20Kaenla"> Haruthai Kaenla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organic agriculture has become a major policy theme for agricultural development in Thailand since October 2005. Organic farming is enlisted as an important national agenda, to promote safe food and national export, and many government authorities have initiated projects and activities centered on organic farming promotion. Currently, Thailand has the market share of about 32 million US$ a year by exporting organic products of rice, vegetables, tea, fruits and a few medicinal herbs. There is high potential in organic crop production as there is the tropical environment promoting crop growth and leader farmer in organic farming. However, organic sector is relatively small (0.2%) comparing with conventional agricultural area, since there are many factors affecting farmers’ adoption and success in organic farming. The objective of this project was to get the organic production technology for at least 3 organic crops. The treatment and method were complied with Thai Organic Standard, and were mainly concerned on increase plant biodiversity and soil improvement by using organic fertilizer and bio-extract from fish, egg, plant and fruits. The bio-logical control, plant-extracts, and cultural practices were used to control insect pests and diseases of 3 crops including mangosteen (Garcinia mangostana L.), longkong (Aglaia dookoo Griff.) and banana (Musa (AA group)). The experiments were carried out at research centers of Department of Agriculture and farmers’ farms in Rayong and Chanthaburi provinces from 2009 to 2013. We found that both locations, plant biodiversity by intercropping mangosteen or longkong with banana and soil improvement with composts and bio-extract from fish could increased yield and farmers’ income by 6,835 US$/ha/year. Farmers got knowledge from these technologies to produce organic crops. The organic products were sold both in domestic and international countries. The organic production technologies were also environmental friendly and could be used as an alternative way for farmers in Thailand. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=banana" title="banana">banana</a>, <a href="https://publications.waset.org/abstracts/search?q=longkong" title=" longkong"> longkong</a>, <a href="https://publications.waset.org/abstracts/search?q=mangosteen" title=" mangosteen"> mangosteen</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20farming" title=" organic farming"> organic farming</a> </p> <a href="https://publications.waset.org/abstracts/26777/on-farm-research-on-organic-fruits-production-in-the-eastern-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26777.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2444</span> Production and Market of Certified Organic Products in Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chaiwat%20Kongsom">Chaiwat Kongsom</a>, <a href="https://publications.waset.org/abstracts/search?q=Vitoon%20Panyakul"> Vitoon Panyakul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to assess the production and market of certified organic products in Thailand. A purposive sampling technique was used to identify a sample group of 154 organic entrepreneurs for the study. A survey and in-depth interview were employed for data collection. Also, secondary data from organic agriculture certification body and publications was collected. Then descriptive statistics and content analysis technique were used to describe about production and market of certified organic products in Thailand. Results showed that there were 9,218 farmers on 213,183.68 Rai (83,309.2 acre) of certified organic agriculture land (0.29% of national agriculture land). A total of 57.8% of certified organic agricultural lands were certified by the international certification body. Organic farmers produced around 71,847 tons/year and worth around THB 1,914 million (Euro 47.92 million). Excluding primary producers, 471 operators involved in the Thai organic supply chains, including processors, exporters, distributors, green shops, modern trade shops (supermarket shop), farmer’s markets and food establishments were included. Export market was the major market channel and most of organic products were exported to Europe and North America. The total Thai organic market in 2014 was estimated to be worth around THB 2,331.55 million (Euro 58.22 million), of which, 77.9% was for export and 22.06% was for the domestic market. The largest exports of certified organic products were processed foods (66.1% of total export value), followed by organic rice (30.4%). In the domestic market, modern trade was the largest sale channel, accounting for 59.48% of total domestic sales, followed by green shop (29.47%) and food establishment (5.85%). To become a center of organic farming and trading within ASEAN, the Thai organic sector needs to have more policy support in regard to agricultural chemicals, GMO, and community land title. In addition, appropriate strategies need to be developed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=certified%20organic%20products" title="certified organic products">certified organic products</a>, <a href="https://publications.waset.org/abstracts/search?q=production" title=" production"> production</a>, <a href="https://publications.waset.org/abstracts/search?q=market" title=" market"> market</a>, <a href="https://publications.waset.org/abstracts/search?q=Thailand" title=" Thailand"> Thailand</a> </p> <a href="https://publications.waset.org/abstracts/47382/production-and-market-of-certified-organic-products-in-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47382.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2443</span> Comparison of Non-Organic (Suspended and Solved) Solids Removal with and without Sediments in Treatment of an Industrial Wastewater with and without Ozonation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Hajiali">Amir Hajiali</a>, <a href="https://publications.waset.org/abstracts/search?q=Gevorg%20P.%20Pirumyan"> Gevorg P. Pirumyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, removal of Non-Organic Suspended Solids and Non-Organic Solved Solids with and without sediment in treatment of an industrial wastewater system before and after ozonation was studied and compared. The most hazardous part of these substances is monomers of chlorophenolic combinations which in biological reactors in a liquid phase could be absorbed much easier and with a high velocity. These monomers and particularly monomers with high molecular weights are seen a lot in such wastewater treatment systems. After the treatment, the measured non-organic solved and suspended solids contents in the cyclic ozonation-biotreatment system compared to the non-organic solved and suspended solids values in the treatment method without ozonation. Sedimentation was the other factor which was considered in this experiment.The solids removals were measured with and without sediments. The comparison revealed that the remarkable efficiency of the cyclic ozonation-biotreatment system in removing the non-organic solids both with and without sediments is extremely considerable. Results of the experiments showed that ozone can be dramatically effective for solving most organic materials in activated sludge in such a wastewater or for making them mineral. Moreover, bio dissolubility increase related to the solved materials was reported. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-organic%20solids" title="non-organic solids">non-organic solids</a>, <a href="https://publications.waset.org/abstracts/search?q=ozonation" title=" ozonation"> ozonation</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title=" wastewater treatment"> wastewater treatment</a> </p> <a href="https://publications.waset.org/abstracts/84580/comparison-of-non-organic-suspended-and-solved-solids-removal-with-and-without-sediments-in-treatment-of-an-industrial-wastewater-with-and-without-ozonation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2442</span> De-Commoditisation of Food: How Organic Farmers from the Madrid Region Reconnect Products and Places through Web Marketing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salvatore%20Pinna">Salvatore Pinna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growth of organic farming practices in the last few decades is continuing to stimulate the international debate about this alternative food market. As a part of a PhD project research about embeddedness in Alternative Food Networks (AFNs), this paper focuses on the promotional aspects of organic farms websites from the Madrid region. As a theoretical tool, some knowledge categories drawn on the geographic studies literature are used to classify the many ideas expressed in the web pages. By analysing texts and pictures of 30 websites, the study aims to question how and to what extent actors from organic world communicate to the potential customers their personal beliefs about farming practices, products qualities, and ecological and social benefits. Moreover, the paper raises the question of whether organic farming laws and regulations lack of completeness about the social and cultural aspects of food. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternative%20food%20networks" title="alternative food networks">alternative food networks</a>, <a href="https://publications.waset.org/abstracts/search?q=de-commoditisation" title=" de-commoditisation"> de-commoditisation</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20farming" title=" organic farming"> organic farming</a>, <a href="https://publications.waset.org/abstracts/search?q=madrid" title=" madrid"> madrid</a>, <a href="https://publications.waset.org/abstracts/search?q=reconnection%20of%20food" title=" reconnection of food"> reconnection of food</a> </p> <a href="https://publications.waset.org/abstracts/26744/de-commoditisation-of-food-how-organic-farmers-from-the-madrid-region-reconnect-products-and-places-through-web-marketing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26744.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2441</span> Fire Effects on Soil Properties of Meshchera Plain, Russia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anna%20Tsibart">Anna Tsibart</a>, <a href="https://publications.waset.org/abstracts/search?q=Timur%20Koshovskii"> Timur Koshovskii</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The properties of soils affected by the wildfires of 2002, 2010, and 2012 in Meshchera plain (Moscow region, Russia) were considered in a current research. The formation of ash horizons instead of organic peat horizons was detected both in histosols and histic podzols. The increase of pH and magnetic susceptibility was observed in soil profiles. Significant burning out of organic matter was observed, but already two years after the fire the new stage of organic matter accumulation started. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wildfires" title="wildfires">wildfires</a>, <a href="https://publications.waset.org/abstracts/search?q=peat%20soils" title=" peat soils"> peat soils</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20matter" title=" organic matter"> organic matter</a>, <a href="https://publications.waset.org/abstracts/search?q=Meshchera%20plain" title=" Meshchera plain"> Meshchera plain</a> </p> <a href="https://publications.waset.org/abstracts/20498/fire-effects-on-soil-properties-of-meshchera-plain-russia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">656</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2440</span> A Study of Farming Earthworms Commercial with Organic Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phrutsaya%20Piyanusorn">Phrutsaya Piyanusorn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to study the artificial barriers and potential restrictions. Aspects of farming, marketing and cost oriented commercial farming earthworms with organic waste. To promote the use of waste recycling and reduce the amount of organic waste that must be disposed. And to create added value this research focuses on qualitative and quantitative research. By earthworm farms surveyed collected insights to analyse the strengths, weaknesses, including problems, conditions and limitations. To get more updates, which covers the cost of marketing and farm management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=farmin%20earthworms" title="farmin earthworms">farmin earthworms</a>, <a href="https://publications.waset.org/abstracts/search?q=commercial" title=" commercial"> commercial</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20waste" title=" organic waste"> organic waste</a>, <a href="https://publications.waset.org/abstracts/search?q=marketing%20management" title=" marketing management"> marketing management</a> </p> <a href="https://publications.waset.org/abstracts/5215/a-study-of-farming-earthworms-commercial-with-organic-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2439</span> Synthesis and Application of an Organic Dye in Nanostructure Solar Cells Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Hoseinnezhad">M. Hoseinnezhad</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Gharanjig"> K. Gharanjig</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two organic dyes comprising carbazole as the electron donors and cyanoacetic acid moieties as the electron acceptors were synthesized. The organic dye was prepared by standard reaction from carbazole as the starting material. To this end, carbazole was reacted with bromobenzene and further oxidation and reacted with cyanoacetic acid. The obtained organic dye was purified and characterized using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (<sup>1</sup>HNMR), carbon nuclear magnetic resonance (<sup>13</sup>CNMR) and elemental analysis. The influence of heteroatom on carbazole donors and cyno substitution on the acid acceptor is evidenced by spectral and electrochemical photovoltaic experiments. Finally, light fastness properties for organic dye were investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dye-sensitized%20solar%20cells" title="dye-sensitized solar cells">dye-sensitized solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=indoline%20dye" title=" indoline dye"> indoline dye</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructure" title=" nanostructure"> nanostructure</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation%20potential" title=" oxidation potential"> oxidation potential</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a> </p> <a href="https://publications.waset.org/abstracts/83510/synthesis-and-application-of-an-organic-dye-in-nanostructure-solar-cells-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2438</span> Investigation of Clubroot Disease Occurrence under Chemical and Organic Soil Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zakirul%20Islam">Zakirul Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Yugo%20Kumokawa"> Yugo Kumokawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Quoc%20Thinh%20Tran"> Quoc Thinh Tran</a>, <a href="https://publications.waset.org/abstracts/search?q=Motoki%20Kubo"> Motoki Kubo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Clubroot is a disease of cruciferous plant caused by soil born pathogen Plasmodiophora brassicae and can significantly limit the production through rapid spreading. The present study was designed to investigate the effect of cultivation practices (chemical and organic soils) on clubroot disease development in Brassica rapa. Disease index and root bacterial composition were investigated for both chemical and organic soils. The bacterial biomass and diversity in organic soil were higher than those in chemical soil. Disease severity was distinct for two different cultivation methods. The number of endophytic bacteria decreased in the infected root for both soils. The increased number of endophytic bacterial number led to reduce the proliferation of pathogen spore inside the root and thus reduced the disease severity in organic plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clubroot%20disease" title="clubroot disease">clubroot disease</a>, <a href="https://publications.waset.org/abstracts/search?q=bacterial%20biomass" title=" bacterial biomass"> bacterial biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20infection" title=" root infection"> root infection</a>, <a href="https://publications.waset.org/abstracts/search?q=disease%20index" title=" disease index"> disease index</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20cultivation" title=" chemical cultivation"> chemical cultivation</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20cultivation" title=" organic cultivation"> organic cultivation</a> </p> <a href="https://publications.waset.org/abstracts/169607/investigation-of-clubroot-disease-occurrence-under-chemical-and-organic-soil-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2437</span> The Effect of Acid Treatment of PEDOT: PSS Anode for Organic Solar Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Borazan">Ismail Borazan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayse%20Celik%20Bedeloglu"> Ayse Celik Bedeloglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Demir"> Ali Demir</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Carroll"> David Carroll</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this project, PEDOT:PSS layer was treated with formic acid, sulphuric acid, and hydrochloric acid, methanol, acetone, and dichlorobenzene:methanol. The resistivity measurements with 2-probes were carried out and the best-chosen method was employed to make an organic solar cell device. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20solar%20cells" title="organic solar cells">organic solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=PEDOT%3APSS" title=" PEDOT:PSS"> PEDOT:PSS</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20electrodes" title=" polymer electrodes"> polymer electrodes</a>, <a href="https://publications.waset.org/abstracts/search?q=resistivity" title=" resistivity "> resistivity </a> </p> <a href="https://publications.waset.org/abstracts/27067/the-effect-of-acid-treatment-of-pedot-pss-anode-for-organic-solar-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27067.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">814</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2436</span> Physical and Chemical Properties during Home Composting of Municipal Organic Solid Waste in Jordan and Production of Organic Fertilizer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Munir%20Rusan">Munir Rusan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Municipal waste management (MWM) represents a cornerstone in the effort to preserve the environment, which guarantees a healthy living environment for communities. MWM is directly affected by population growth and population density, urbanization, and tourism. In Jordan, MWM is currently managed by transferring and dumping waste into landfills. Landfills are mostly saturated and cannot receive any more waste. Besides, the organic waste, which accounts for 50% of municipal waste, will be naturally fermented in the landfills creating an unpleasant odor and emits greenhouse gases as well as generate organic leachates that are harmful to the environment. Organic waste can be aerobically composted and generate organic fertilizer called compost. Compost is very beneficial to soil and plant growth and, in general, to the ecosystem. Home composting is very common in most developed countries, but unfortunately, in developing countries such as Jordan, such an approach is not practiced and is not even socially well acceptable. The objective of this study was to evaluate the physical and chemical properties of home composting materials and to produce compost for further use as a soil amendment. The effect of compost soil application on the soil-plant system was evaluated. The soil application of the compost resulted in enhancing soil organic matter and soil N, P, and K content. The plant growth was also improved quantitatively and qualitatively. It was concluded that composting of municipal organic solid waste and soil application of the compost has a significant positive impact on the environment and soil-plant productivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composting" title="composting">composting</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20solid%20waste" title=" organic solid waste"> organic solid waste</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=plant" title=" plant"> plant</a> </p> <a href="https://publications.waset.org/abstracts/164293/physical-and-chemical-properties-during-home-composting-of-municipal-organic-solid-waste-in-jordan-and-production-of-organic-fertilizer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2435</span> Soil Respiration Rate of Laurel-Leaved and Cryptomeria japonica Forests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayuko%20Itsuki">Ayuko Itsuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Sachiyo%20Aburatani"> Sachiyo Aburatani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We assessed the ecology of the organic and mineral soil layers of laurel-leaved (BB-1) and Cryptomeria japonica (BB-2 and Pw) forests in the Kasugayama Hill Primeval Forest (Nara, Japan). The soil respiration rate was higher in the deeper horizons (F and H) of organic layers than in those of mineral soil layers, suggesting organic layers may be where active microbial metabolism occurs. Respiration rates in the soil of BB-1, BB-2 and Pw forests were closely similar at 5 and 10°C. However, the soil respiration rate increased in proportion to temperatures of 15°C or above. We therefore consider the activity of soil microorganisms to markedly decrease at temperatures below 10°C. At a temperature of 15°C or above, the soil respiration rate in the BB-1 organic layers was higher than in those of the BB-2 and Pw organic layers, due to differences in forest vegetation that appeared to influence several salient soil properties, particularly pH and the carbon (C) and nitrogen (N) content of the F and H horizons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forest%20soil" title="forest soil">forest soil</a>, <a href="https://publications.waset.org/abstracts/search?q=mineralization%20rate" title=" mineralization rate"> mineralization rate</a>, <a href="https://publications.waset.org/abstracts/search?q=heterotroph" title=" heterotroph"> heterotroph</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20respiration%20rate" title=" soil respiration rate"> soil respiration rate</a> </p> <a href="https://publications.waset.org/abstracts/10278/soil-respiration-rate-of-laurel-leaved-and-cryptomeria-japonica-forests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2434</span> Organic Agriculture in Pakistan: Opportunities, Challenges, and Future Directions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sher%20Ali">Sher Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organic agriculture has gained significant momentum globally as a sustainable and environmentally friendly farming practice. In Pakistan, amidst growing concerns about food security, environmental degradation, and health issues related to conventional farming methods, the adoption of organic agriculture presents a promising pathway for agricultural development. This abstract aims to provide an overview of the status, opportunities, challenges, and future directions of organic agriculture in Pakistan. It delves into the current state of organic farming practices, including the extent of adoption, key crops cultivated, and the regulatory framework governing organic certification. Furthermore, the abstract discusses the unique opportunities that Pakistan offers for organic agriculture, such as its diverse agro-climatic zones, rich biodiversity, and traditional farming knowledge. It highlights successful initiatives and case studies that showcase the potential of organic farming to improve rural livelihoods, enhance food security, and promote sustainable agricultural practices. However, the abstract also addresses the challenges hindering the widespread adoption of organic agriculture in Pakistan, ranging from limited awareness and technical know-how among farmers to inadequate infrastructure and market linkages. It emphasizes the need for supportive policies, capacity-building programs, and investment in research and extension services to overcome these challenges and promote the growth of the organic agriculture sector. Lastly, the abstract outlines future directions and recommendations for advancing organic agriculture in Pakistan, including strategies for scaling up production, strengthening certification mechanisms, and fostering collaboration among stakeholders. By shedding light on the opportunities, challenges, and potential of organic agriculture in Pakistan, this abstract aims to contribute to the discourse on sustainable farming practices at the upcoming Agro Conference in the USA. It invites participants to engage in dialogue, share experiences, and explore avenues for collaboration toward promoting organic agriculture for a healthier, more resilient food system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture" title="agriculture">agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=challenges" title=" challenges"> challenges</a>, <a href="https://publications.waset.org/abstracts/search?q=organic" title=" organic"> organic</a>, <a href="https://publications.waset.org/abstracts/search?q=Pakistan" title=" Pakistan"> Pakistan</a> </p> <a href="https://publications.waset.org/abstracts/186060/organic-agriculture-in-pakistan-opportunities-challenges-and-future-directions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">52</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2433</span> Sarvathobhadram-Organic Initiative: Cooperative Model for Resilient Agriculture by Adopting System of Rice Intensification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sreeni%20K.%20R.">Sreeni K. R.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sarvathobhadram-Organic–Farmers Cooperative was helpful in supporting small and marginal farmers in customizing, adapting, and tailoring the system to their specific requirements. The Farmers Club, which has 50 members, was founded in May 2020 to create additional cash while also encouraging farmers to shift to organic farming. The club's mission is to ensure food security, livelihood, and entrepreneurship in the Anthikad Block Panchayat. The project addressed climate change and resilience, collaborating with government departments and utilizing convergence to maximize the schemes accessible to farmers in panchayath. The transformation was sluggish initially, but it accelerated over time, indicating that farmers have variable levels of satisfaction based on a variety of circumstances. This paper examines the changing trend in the area after adopting organic farming using the SRI method, the increase in production, and the success of the convergence method. It also attempts to find out various constraints faced by farmers during the paradigm shift from conventional methods to organic, and the results have proven that SRI should be considered as a potential cultivation method for all farmer's groups (Padasekharam). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarvathobhadram-Organic" title="Sarvathobhadram-Organic">Sarvathobhadram-Organic</a>, <a href="https://publications.waset.org/abstracts/search?q=Thanniyam%20gram%20Panchayat" title=" Thanniyam gram Panchayat"> Thanniyam gram Panchayat</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20Joythi%20rice" title=" organic Joythi rice"> organic Joythi rice</a>, <a href="https://publications.waset.org/abstracts/search?q=convergence%20method" title=" convergence method"> convergence method</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeevamirtham" title=" Jeevamirtham"> Jeevamirtham</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20methods" title=" natural methods"> natural methods</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20of%20rice%20intensification" title=" system of rice intensification"> system of rice intensification</a> </p> <a href="https://publications.waset.org/abstracts/159970/sarvathobhadram-organic-initiative-cooperative-model-for-resilient-agriculture-by-adopting-system-of-rice-intensification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2432</span> Contribution of Different Farming Systems to Soil and Ecological Health in Trans Nzoia County, Kenya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Janeth%20Chepkemoi">Janeth Chepkemoi</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Onwonga"> Richard Onwonga</a>, <a href="https://publications.waset.org/abstracts/search?q=Noel%20Templer"> Noel Templer</a>, <a href="https://publications.waset.org/abstracts/search?q=Elkana%20Kipkoech"> Elkana Kipkoech</a>, <a href="https://publications.waset.org/abstracts/search?q=Angela%20Gitau"> Angela Gitau</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conventional agriculture is one of the leading causes of land degradation, threatening the sustainability of food production. Organic farming promotes practices that have the potential of feeding the world while also promoting ecological health. A study was therefore carried out with the aim of conceptualizing how such farming systems are contributing to ecological health in Trans Nzoia County. 71 farmers were interviewed and data was collected on parameters such as land preparation, agroforestry, soil fertility management, soil and water conservation, and pests and diseases. A soil sample was also collected from each farm for laboratory analysis. Data collected were analyzed using Microsoft Excel and SPSS version 21. Results showed that 66% of the respondents practiced organic farming whereas 34% practiced conventional farming. Intercropping and crop rotations were the most common cropping systems and the most preferred land preparation tools among both organic and conventional farmers were tractors and hand hoes. Organic farms fared better in agroforestry, organic soil amendments, land and water conservation, and soil chemical properties. Pests and disease, however, affected organic farms more than conventional. The average nitrogen (%), K (Cmol/ kg and P (ppm) of organic soils were 0.26, 0.7 and 26.18 respectively, conventional soils were 0.21, 0.66 and 22.85. Soil organic carbon content of organic farms averaged a higher percentage of 2.07% as compared to 1.91 for the conventional. In conclusion, most farmers in Trans Nzoia County had transitioned into ecologically friendly farming practices that improved the quality and health of the soil and therefore promoted its sustainability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20farming" title="organic farming">organic farming</a>, <a href="https://publications.waset.org/abstracts/search?q=conventional%20farming" title=" conventional farming"> conventional farming</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20health" title=" ecological health"> ecological health</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20health" title=" soil health"> soil health</a> </p> <a href="https://publications.waset.org/abstracts/152003/contribution-of-different-farming-systems-to-soil-and-ecological-health-in-trans-nzoia-county-kenya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152003.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2431</span> Using Sea Cucumber for Mitigation of Marine Pollution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Al-Yaqout">A. Al-Yaqout</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Al-Alawi"> A. Al-Alawi</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Al-Said"> T. Al-Said</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Al-Enezi"> E. Al-Enezi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Al-Roumi"> M. Al-Roumi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kuwait’s marine environment suffers from increased organic pollution. Sea cucumbers play an important role in the marine environment. They create a healthier environment for many types of benthic micro-organisms through their slow movement and feeding mechanism on micro-organisms and organic material. A preliminary study has been conducted in Kuwait Institute for Scientific Research to assess the possibility of using sea cucumbers for mitigation of the coastal pollution. Sediments were collected from locations identified to be heavily loaded with organic pollutants. Ten aquaria glass tanks, 65x 40x 30cm will be supplied with 10 cm height (14 kg) of the sediments added in each tank and filled with 70 L of filtered seawater. Two species were used in this study, Stichopus hermanni, and Holothuria atra. Water and sediment samples were analyzed weekly. The results showed promising possibility for using sea cucumber to lower the organic load in sediments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20pollution" title="organic pollution">organic pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=sea%20cucumbers" title=" sea cucumbers"> sea cucumbers</a>, <a href="https://publications.waset.org/abstracts/search?q=mitigation" title=" mitigation"> mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=Stichopus%20hermanni" title=" Stichopus hermanni"> Stichopus hermanni</a>, <a href="https://publications.waset.org/abstracts/search?q=Holothuria%20atra" title=" Holothuria atra"> Holothuria atra</a> </p> <a href="https://publications.waset.org/abstracts/73933/using-sea-cucumber-for-mitigation-of-marine-pollution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73933.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2430</span> Absorption Control of Organic Solar Cells under LED Light for High Efficiency Indoor Power System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Premkumar%20Vincent">Premkumar Vincent</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyeok%20Kim"> Hyeok Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Hyuk%20Bae"> Jin-Hyuk Bae</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organic solar cells have high potential which enables these to absorb much weaker light than 1-sun in indoor environment. They also have several practical advantages, such as flexibility, cost-advantage, and semi-transparency that can have superiority in indoor solar energy harvesting. We investigate organic solar cells based on poly(3-hexylthiophene) (P3HT) and indene-C60 bisadduct (ICBA) for indoor application while Finite Difference Time Domain (FDTD) simulations were run to find the optimized structure. This may provide the highest short-circuit current density to acquire high efficiency under indoor illumination. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indoor%20solar%20cells" title="indoor solar cells">indoor solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20light%20harvesting" title=" indoor light harvesting"> indoor light harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20solar%20cells" title=" organic solar cells"> organic solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=P3HT%3AICBA" title=" P3HT:ICBA"> P3HT:ICBA</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a> </p> <a href="https://publications.waset.org/abstracts/75834/absorption-control-of-organic-solar-cells-under-led-light-for-high-efficiency-indoor-power-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75834.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2429</span> Impact of Organic Architecture in Building Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zainab%20Yahaya%20Suleiman">Zainab Yahaya Suleiman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Physical fitness, as one of the most important keys to a healthy wellbeing, is the basis of dynamic and creative intellectual activity. As a result, the fitness world is expanding every day. It is believed that a fitness centre is a place of healing and also the natural environment is vital to speedy recovery. The aim of this paper is to propose and designs a suitable location for a fitness centre in Batagarawa metropolis. Batagarawa city is enriched with four tertiary institutions with diverse commerce and culture but lacks the facility of a well-equipped fitness centre. The proposed fitness centre intends to be an organically sound centre that will make use of principles of organic architecture to create a new pleasant environment between man and his environments. Organic architecture is the science of designing a building within pleasant natural resources and features surrounding the environment. It is regarded as visual poetry and reinterpretation of nature’s principles; as well as embodies a settlement of person, place, and materials. Using organic architecture, the design was interlaced with the dynamic, organic and monumental features surrounding the environment. The city has inadequate/no facility that is considered organic where one can keep fit in a friendly, conducive and adequate location. Thus, the need for establishing a fitness centre to cater for this need cannot be over-emphasised. Conclusively, a fitness centre will be an added advantage to this fast growing centre of learning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20architecture" title="organic architecture">organic architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=fitness%20center" title=" fitness center"> fitness center</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20resources" title=" natural resources"> natural resources</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20features" title=" natural features"> natural features</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20design" title=" building design"> building design</a> </p> <a href="https://publications.waset.org/abstracts/49919/impact-of-organic-architecture-in-building-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20dye&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20dye&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20dye&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20dye&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20dye&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20dye&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20dye&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20dye&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20dye&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20dye&page=81">81</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20dye&page=82">82</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20dye&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>