CINXE.COM

Search results for: N₂O analogy

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: N₂O analogy</title> <meta name="description" content="Search results for: N₂O analogy"> <meta name="keywords" content="N₂O analogy"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="N₂O analogy" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="N₂O analogy"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 80</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: N₂O analogy</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">80</span> Effects of Analogy Method on Children&#039;s Learning: Practice of Rainbow Experiments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hediye%20Saglam">Hediye Saglam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research has been carried out to bring in the 6 acquisitions in the 2014 Preschool Teaching Programme of the Turkish Ministry of Education through the method of analogy. This research is practiced based on the experimental pattern with pre-test and final test controlling groups. The working group of the study covers the group between 5-6 ages. The study takes 5 weeks including the 2 weeks spent for pre-test and the final test. It is conducted with the preschool teacher who gives the lesson along with the researcher in the in-class and out-of-class rainbow experiments of the students for 5 weeks. 'One Sample T Test' is used for the evaluation of the pre-test and final test. SPSS 17 programme is applied for the analysis of the data. Results: As an outcome of the study it is observed that analogy method affects children’s learning of the rainbow. For this very reason teachers should receive inservice training for different methods and techniques like analogy. This method should be included in preschool education programme and should be applied by teachers more often. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acquisitions%20of%20preschool%20education%20programme" title="acquisitions of preschool education programme">acquisitions of preschool education programme</a>, <a href="https://publications.waset.org/abstracts/search?q=analogy%20method" title=" analogy method"> analogy method</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-test%2Ffinal%20test" title=" pre-test/final test"> pre-test/final test</a>, <a href="https://publications.waset.org/abstracts/search?q=rainbow%20experiments" title=" rainbow experiments"> rainbow experiments</a> </p> <a href="https://publications.waset.org/abstracts/34151/effects-of-analogy-method-on-childrens-learning-practice-of-rainbow-experiments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">79</span> A Phenomenological Approach to Computational Modeling of Analogy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Eduardo%20Garc%C3%ADa-Mendiola">José Eduardo García-Mendiola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, a phenomenological approach to computational modeling of analogy processing is carried out. The paper goes through the consideration of the structure of the analogy, based on the possibility of sustaining the genesis of its elements regarding Husserl's genetic theory of association. Among particular processes which take place in order to get analogical inferences, there is one which arises crucial for enabling efficient base cases retrieval through long-term memory, namely analogical transference grounded on familiarity. In general, it has been argued that analogical reasoning is a way by which a conscious agent tries to determine or define a certain scope of objects and relationships between them using previous knowledge of other familiar domain of objects and relations. However, looking for a complete description of analogy process, a deeper consideration of phenomenological nature is required in so far, its simulation by computational programs is aimed. Also, one would get an idea of how complex it would be to have a fully computational account of the analogy elements. In fact, familiarity is not a result of a mere chain of repetitions of objects or events but generated insofar as the object/attribute or event in question is integrable inside a certain context that is taking shape as functionalities and functional approaches or perspectives of the object are being defined. Its familiarity is generated not by the identification of its parts or objective determinations as if they were isolated from those functionalities and approaches. Rather, at the core of such a familiarity between entities of different kinds lays the way they are functionally encoded. So, and hoping to make deeper inroads towards these topics, this essay allows us to consider that cognitive-computational perspectives can visualize, from the phenomenological projection of the analogy process reviewing achievements already obtained as well as exploration of new theoretical-experimental configurations towards implementation of analogy models in specific as well as in general purpose machines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analogy" title="analogy">analogy</a>, <a href="https://publications.waset.org/abstracts/search?q=association" title=" association"> association</a>, <a href="https://publications.waset.org/abstracts/search?q=encoding" title=" encoding"> encoding</a>, <a href="https://publications.waset.org/abstracts/search?q=retrieval" title=" retrieval"> retrieval</a> </p> <a href="https://publications.waset.org/abstracts/128371/a-phenomenological-approach-to-computational-modeling-of-analogy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">78</span> The Analogy of Visual Arts and Visual Literacy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lindelwa%20Pepu">Lindelwa Pepu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Visual Arts and Visual Literacy are defined with distinction from one another. Visual Arts are known for art forms such as drawing, painting, and photography, just to name a few. At the same time, Visual Literacy is known for learning through images. The Visual Literacy phenomenon may be attributed to the use of images was first established for creating memories and enjoyment. As time evolved, images became the center and essential means of making contact between people. Gradually, images became a means for interpreting and understanding words through visuals, that being Visual Arts. The purpose of this study is to present the analogy of the two terms Visual Arts and Visual Literacy, which are defined and compared through early practicing visual artists as well as relevant researchers to reveal how they interrelate with one another. This is a qualitative study that uses an interpretive approach as it seeks to understand and explain the interest of the study. The results reveal correspondence of the analogy between the two terms through various writers of early and recent years. This study recommends the significance of the two terms and the role they play in relation to other fields of study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=visual%20arts" title="visual arts">visual arts</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20literacy" title=" visual literacy"> visual literacy</a>, <a href="https://publications.waset.org/abstracts/search?q=pictures" title=" pictures"> pictures</a>, <a href="https://publications.waset.org/abstracts/search?q=images" title=" images"> images</a> </p> <a href="https://publications.waset.org/abstracts/165940/the-analogy-of-visual-arts-and-visual-literacy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">77</span> Cognitive Model of Analogy Based on Operation of the Brain Cells: Glial, Axons and Neurons</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ozgu%20Hafizoglu">Ozgu Hafizoglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Analogy is an essential tool of human cognition that enables connecting diffuse and diverse systems with attributional, deep structural, casual relations that are essential to learning, to innovation in artificial worlds, and to discovery in science. Cognitive Model of Analogy (CMA) leads and creates information pattern transfer within and between domains and disciplines in science. This paper demonstrates the Cognitive Model of Analogy (CMA) as an evolutionary approach to scientific research. The model puts forward the challenges of deep uncertainty about the future, emphasizing the need for flexibility of the system in order to enable reasoning methodology to adapt to changing conditions. In this paper, the model of analogical reasoning is created based on brain cells, their fractal, and operational forms within the system itself. Visualization techniques are used to show correspondences. Distinct phases of the problem-solving processes are divided thusly: encoding, mapping, inference, and response. The system is revealed relevant to brain activation considering each of these phases with an emphasis on achieving a better visualization of the brain cells: glial cells, axons, axon terminals, and neurons, relative to matching conditions of analogical reasoning and relational information. It’s found that encoding, mapping, inference, and response processes in four-term analogical reasoning are corresponding with the fractal and operational forms of brain cells: glial, axons, and neurons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analogy" title="analogy">analogy</a>, <a href="https://publications.waset.org/abstracts/search?q=analogical%20reasoning" title=" analogical reasoning"> analogical reasoning</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20model" title=" cognitive model"> cognitive model</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20and%20glials" title=" brain and glials "> brain and glials </a> </p> <a href="https://publications.waset.org/abstracts/125988/cognitive-model-of-analogy-based-on-operation-of-the-brain-cells-glial-axons-and-neurons" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125988.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">76</span> Bound State Problems and Functional Differential Geometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Srednyak">S. Srednyak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study a class of functional partial differential equations(FPDEs). This class is suggested by Quantum Field Theory. We derive general properties of solutions to such equations. In particular, we demonstrate that they lead to systems of coupled integral equations with singular kernels. We show that solutions to such hierarchies can be sought among functions with regular singularities at a countable set of subvarieties of the physical space. We also develop a formal analogy of basic constructions of differential geometry on functional manifolds, as this is necessary for in depth study of FPDEs. We also consider the case of linear overdetermined systems of functional differential equations and show that it can be completely solved in terms of formal solutions of a functional equation that is a functional analogy of a system of determined algebraic equations. This development leads us to formally define the functional analogy of algebraic geometry, which we call functional algebraic geometry. We study basic properties of functional algebraic varieties. In particular, we investigate the case of a formally discrete set of solutions. We also define and study functional analogy of discriminants. In the case of fully determined systems such that the defining functionals have regular singularities, we demonstrate that formal solutions can be sought in the class of functions with regular singularities. This case provides a practical way to apply our results to physics problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=functional%20equations" title="functional equations">functional equations</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20field%20theory" title=" quantum field theory"> quantum field theory</a>, <a href="https://publications.waset.org/abstracts/search?q=holomorphic%20functions" title=" holomorphic functions"> holomorphic functions</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Mills%20mass%20gap%20problem" title=" Yang Mills mass gap problem"> Yang Mills mass gap problem</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20chaos" title=" quantum chaos"> quantum chaos</a> </p> <a href="https://publications.waset.org/abstracts/173716/bound-state-problems-and-functional-differential-geometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">75</span> The Role of Piaget&#039;s Theory in Conjecture via Analogical Reasoning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Supratman%20Ahman%20Maedi">Supratman Ahman Maedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The construction of knowledge is the goal of learning. The purpose of this research is to know how the role of Piaget theory in allegation via analogy reasoning. This study uses Think out loads when troubleshooting. To explore conjecturing via analogical reasoning is given the question of open analogy. The result: conjecture via analogical reasoning has been done by students in the construction of knowledge, in conjecture there are differences in thinking flow depending on the basic knowledge of the students, in the construction of knowledge occurs assimilation and accommodation problems, strategies and relationships. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analogical%20reasoning" title="analogical reasoning">analogical reasoning</a>, <a href="https://publications.waset.org/abstracts/search?q=conjecturing" title=" conjecturing"> conjecturing</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20construction" title=" knowledge construction"> knowledge construction</a>, <a href="https://publications.waset.org/abstracts/search?q=Piaget%27s%20theory" title=" Piaget&#039;s theory"> Piaget&#039;s theory</a> </p> <a href="https://publications.waset.org/abstracts/76360/the-role-of-piagets-theory-in-conjecture-via-analogical-reasoning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> Brain Connectome of Glia, Axons, and Neurons: Cognitive Model of Analogy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ozgu%20Hafizoglu">Ozgu Hafizoglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An analogy is an essential tool of human cognition that enables connecting diffuse and diverse systems with physical, behavioral, principal relations that are essential to learning, discovery, and innovation. The Cognitive Model of Analogy (CMA) leads and creates patterns of pathways to transfer information within and between domains in science, just as happens in the brain. The connectome of the brain shows how the brain operates with mental leaps between domains and mental hops within domains and the way how analogical reasoning mechanism operates. This paper demonstrates the CMA as an evolutionary approach to science, technology, and life. The model puts forward the challenges of deep uncertainty about the future, emphasizing the need for flexibility of the system in order to enable reasoning methodology to adapt to changing conditions in the new era, especially post-pandemic. In this paper, we will reveal how to draw an analogy to scientific research to discover new systems that reveal the fractal schema of analogical reasoning within and between the systems like within and between the brain regions. Distinct phases of the problem-solving processes are divided thusly: stimulus, encoding, mapping, inference, and response. Based on the brain research so far, the system is revealed to be relevant to brain activation considering each of these phases with an emphasis on achieving a better visualization of the brain’s mechanism in macro context; brain and spinal cord, and micro context: glia and neurons, relative to matching conditions of analogical reasoning and relational information, encoding, mapping, inference and response processes, and verification of perceptual responses in four-term analogical reasoning. Finally, we will relate all these terminologies with these mental leaps, mental maps, mental hops, and mental loops to make the mental model of CMA clear. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analogy" title="analogy">analogy</a>, <a href="https://publications.waset.org/abstracts/search?q=analogical%20reasoning" title=" analogical reasoning"> analogical reasoning</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20connectome" title=" brain connectome"> brain connectome</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20model" title=" cognitive model"> cognitive model</a>, <a href="https://publications.waset.org/abstracts/search?q=neurons%20and%20glia" title=" neurons and glia"> neurons and glia</a>, <a href="https://publications.waset.org/abstracts/search?q=mental%20leaps" title=" mental leaps"> mental leaps</a>, <a href="https://publications.waset.org/abstracts/search?q=mental%20hops" title=" mental hops"> mental hops</a>, <a href="https://publications.waset.org/abstracts/search?q=mental%20loops" title=" mental loops"> mental loops</a> </p> <a href="https://publications.waset.org/abstracts/148821/brain-connectome-of-glia-axons-and-neurons-cognitive-model-of-analogy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148821.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> Direct Displacement-Based Design Procedure for Performance-Based Seismic Design of Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haleh%20Hamidpour">Haleh Hamidpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since the seismic damageability of structures is controlled by the inelastic deformation capacities of structural elements, seismic design of structure based on force analogy methods is not appropriate. In recent year, the basic approach of design codes have been changed from force-based approach to displacement-based. In this regard, a Direct Displacement-Based Design (DDBD) and a Performance-Based Plastic Design (PBPD) method are proposed. In this study, the efficiency of these two methods on seismic performance of structures is evaluated through a sample 12-story reinforced concrete moment frame. The building is designed separately based on the DDBD and the PBPD methods. Once again the structure is designed by the traditional force analogy method according to the FEMA P695 regulation. Different design method results in different structural elements. Seismic performance of these three structures is evaluated through nonlinear static and nonlinear dynamic analysis. The results show that the displacement-based design methods accommodate the intended performance objectives better than the traditional force analogy method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=direct%20performance-based%20design" title="direct performance-based design">direct performance-based design</a>, <a href="https://publications.waset.org/abstracts/search?q=ductility%20demands" title=" ductility demands"> ductility demands</a>, <a href="https://publications.waset.org/abstracts/search?q=inelastic%20seismic%20performance" title=" inelastic seismic performance"> inelastic seismic performance</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20mechanism" title=" yield mechanism"> yield mechanism</a> </p> <a href="https://publications.waset.org/abstracts/51079/direct-displacement-based-design-procedure-for-performance-based-seismic-design-of-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> Computational Fluid Dynamics Modeling of Physical Mass Transfer of CO₂ by N₂O Analogy Using One Fluid Formulation in OpenFOAM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phanindra%20Prasad%20Thummala">Phanindra Prasad Thummala</a>, <a href="https://publications.waset.org/abstracts/search?q=Umran%20Tezcan%20Un"> Umran Tezcan Un</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Ozan%20Celik"> Ahmet Ozan Celik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Removal of CO₂ by MEA (monoethanolamine) in structured packing columns depends highly on the gas-liquid interfacial area and film thickness (liquid load). CFD (computational fluid dynamics) is used to find the interfacial area, film thickness and their impact on mass transfer in gas-liquid flow effectively in any column geometry. In general modeling approaches used in CFD derive mass transfer parameters from standard correlations based on penetration or surface renewal theories. In order to avoid the effect of assumptions involved in deriving the correlations and model the mass transfer based solely on fluid properties, state of art approaches like one fluid formulation is useful. In this work, the one fluid formulation was implemented and evaluated for modeling the physical mass transfer of CO₂ by N₂O analogy in OpenFOAM CFD software. N₂O analogy avoids the effect of chemical reactions on absorption and allows studying the amount of CO₂ physical mass transfer possible in a given geometry. The computational domain in the current study was a flat plate with gas and liquid flowing in the countercurrent direction. The effect of operating parameters such as flow rate, the concentration of MEA and angle of inclination on the physical mass transfer is studied in detail. Liquid side mass transfer coefficients obtained by simulations are compared to the correlations available in the literature and it was found that the one fluid formulation was effectively capturing the effects of interface surface instabilities on mass transfer coefficient with higher accuracy. The high mesh refinement near the interface region was found as a limiting reason for utilizing this approach on large-scale simulations. Overall, the one fluid formulation is found more promising for CFD studies involving the CO₂ mass transfer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=one%20fluid%20formulation" title="one fluid formulation">one fluid formulation</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20absorption" title=" CO₂ absorption"> CO₂ absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20mass%20transfer%20coefficient" title=" liquid mass transfer coefficient"> liquid mass transfer coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=OpenFOAM" title=" OpenFOAM"> OpenFOAM</a>, <a href="https://publications.waset.org/abstracts/search?q=N%E2%82%82O%20analogy" title=" N₂O analogy "> N₂O analogy </a> </p> <a href="https://publications.waset.org/abstracts/90092/computational-fluid-dynamics-modeling-of-physical-mass-transfer-of-co2-by-n2o-analogy-using-one-fluid-formulation-in-openfoam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90092.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> Electrical Equivalent Analysis of Micro Cantilever Beams for Sensing Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20G.%20Sheeparamatti">B. G. Sheeparamatti</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20S.%20Kadadevarmath"> J. S. Kadadevarmath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microcantilevers are the basic MEMS devices, which can be used as sensors, actuators, and electronics can be easily built into them. The detection principle of microcantilever sensors is based on the measurement of change in cantilever deflection or change in its resonance frequency. The objective of this work is to explore the analogies between the mechanical and electrical equivalent of microcantilever beams. Normally scientists and engineers working in MEMS use expensive software like CoventorWare, IntelliSuite, ANSYS/Multiphysics, etc. This paper indicates the need of developing the electrical equivalent of the MEMS structure and with that, one can have a better insight on important parameters, and their interrelation of the MEMS structure. In this work, considering the mechanical model of the microcantilever, the equivalent electrical circuit is drawn and using a force-voltage analogy, it is analyzed with circuit simulation software. By doing so, one can gain access to a powerful set of intellectual tools that have been developed for understanding electrical circuits. Later the analysis is performed using ANSYS/Multiphysics - software based on finite element method (FEM). It is observed that both mechanical and electrical domain results for a rectangular microcantilevers are in agreement with each other. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20equivalent%20circuit%20analogy" title="electrical equivalent circuit analogy">electrical equivalent circuit analogy</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM%20analysis" title=" FEM analysis"> FEM analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20cantilevers" title=" micro cantilevers"> micro cantilevers</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20sensors" title=" micro sensors"> micro sensors</a> </p> <a href="https://publications.waset.org/abstracts/32960/electrical-equivalent-analysis-of-micro-cantilever-beams-for-sensing-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32960.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> Role-Governed Categorization and Category Learning as a Result from Structural Alignment: The RoleMap Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yolina%20A.%20Petrova">Yolina A. Petrova</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgi%20I.%20Petkov"> Georgi I. Petkov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents a symbolic model for category learning and categorization (called <em>RoleMap</em>). Unlike the other models which implement learning in a separate working mode, role-governed category learning and categorization emerge in <em>RoleMap</em> while it does its usual reasoning. The model is based on several basic mechanisms known as reflecting the sub-processes of analogy-making. It steps on the assumption that in their everyday life people constantly compare what they experience and what they know. Various commonalities between the incoming information (current experience) and the stored one (long-term memory) emerge from those comparisons. Some of those commonalities are considered to be highly important, and they are transformed into concepts for further use. This process denotes the category learning. When there is missing knowledge in the incoming information (i.e. the perceived object is still not recognized), the model makes anticipations about what is missing, based on the similar episodes from its long-term memory. Various such anticipations may emerge for different reasons. However, with time only one of them wins and is transformed into a category member. This process denotes the act of categorization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analogy-making" title="analogy-making">analogy-making</a>, <a href="https://publications.waset.org/abstracts/search?q=categorization" title=" categorization"> categorization</a>, <a href="https://publications.waset.org/abstracts/search?q=category%20learning" title=" category learning"> category learning</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20modeling" title=" cognitive modeling"> cognitive modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=role-governed%20categories" title=" role-governed categories"> role-governed categories</a> </p> <a href="https://publications.waset.org/abstracts/94200/role-governed-categorization-and-category-learning-as-a-result-from-structural-alignment-the-rolemap-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94200.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> Applying the Crystal Model Approach on Light Nuclei for Calculating Radii and Density Distribution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Amar">A. Amar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new model, namely the crystal model, has been modified to calculate the radius and density distribution of light nuclei up to ⁸Be. The crystal model has been modified according to solid-state physics, which uses the analogy between nucleon distribution and atoms distribution in the crystal. The model has analytical analysis to calculate the radius where the density distribution of light nuclei has obtained from analogy of crystal lattice. The distribution of nucleons over crystal has been discussed in a general form. The equation that has been used to calculate binding energy was taken from the solid-state model of repulsive and attractive force. The numbers of the protons were taken to control repulsive force, where the atomic number was responsible for the attractive force. The parameter has been calculated from the crystal model was found to be proportional to the radius of the nucleus. The density distribution of light nuclei was taken as a summation of two clusters distribution as in ⁶Li=alpha+deuteron configuration. A test has been done on the data obtained for radius and density distribution using double folding for d+⁶,⁷Li with M3Y nucleon-nucleon interaction. Good agreement has been obtained for both the radius and density distribution of light nuclei. The model failed to calculate the radius of ⁹Be, so modifications should be done to overcome discrepancy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nuclear%20physics" title="nuclear physics">nuclear physics</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20lattice" title=" nuclear lattice"> nuclear lattice</a>, <a href="https://publications.waset.org/abstracts/search?q=study%20nucleus%20as%20crystal" title=" study nucleus as crystal"> study nucleus as crystal</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20nuclei%20till%20to%20%E2%81%B8Be" title=" light nuclei till to ⁸Be"> light nuclei till to ⁸Be</a> </p> <a href="https://publications.waset.org/abstracts/142183/applying-the-crystal-model-approach-on-light-nuclei-for-calculating-radii-and-density-distribution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> Deconstruction of the Term &#039;Shaman&#039; in the Metaphorical Pair &#039;Artist as a Shaman&#039;</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilona%20Ivova%20Anachkova">Ilona Ivova Anachkova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The analogy between the artist and the shaman as both being practitioners that more easily recognize and explore spiritual matters, and thus contribute to the society in a unique way has been implied in both Modernity and Postmodernity. The Romantic conception of the shaman as a great artist who helps common men see and understand messages of a higher consciousness has been employed throughout Modernity and is active even now. This paper deconstructs the term ‘shaman’ in the metaphorical analogy ‘artist – shaman’ that was developed more fully in Modernity in different artistic and scientific discourses. The shaman is a figure that to a certain extent adequately reflects the late modern and postmodern holistic views on the world. Such views aim at distancing from traditional religious and overly rationalistic discourses. However, the term ‘shaman’ can be well substituted by other concepts such as the priest, for example. The concept ‘shaman’ is based on modern ethnographic and historical investigations. Its later philosophical, psychological and artistic appropriations designate the role of the artist as a spiritual and cultural leader. However, the artist and the shaman are not fully interchangeable terms. The figure of the shaman in ‘primitive’ societies has performed many social functions that are now delegated to different institutions and positions. The shaman incorporates the functions of a judge, a healer. He is a link to divine entities. He is the creative, aspiring human being that has heightened sensitivity to the world in both its spiritual and material aspects. Building the metaphorical analogy between the shaman and the artist comes in many ways. Both are seen as healers of the society, having propensity towards connection to spiritual entities, or being more inclined to creativity than others. The ‘shaman’ however is a fashionable word for a spiritual person used perhaps because of the anti-traditionalist religious modern and postmodern views. The figure of the priest is associated with a too rational, theoretical and detached attitude towards spiritual matters, while the practices of the shaman and the artist are considered engaged with spirituality on a deeper existential level. The term ‘shaman’ however does not have priority of other words/figures that can explore and deploy spiritual aspects of reality. Having substituted the term ‘shaman’ in the pair ‘artist as a shaman’ with ‘the priest’ or literally ‘anybody,' we witness destruction of spiritual hierarchies and come to the view that everybody is responsible for their own spiritual and creative evolution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artist%20as%20a%20shaman" title="artist as a shaman">artist as a shaman</a>, <a href="https://publications.waset.org/abstracts/search?q=creativity" title=" creativity"> creativity</a>, <a href="https://publications.waset.org/abstracts/search?q=extended%20theory%20of%20art" title=" extended theory of art"> extended theory of art</a>, <a href="https://publications.waset.org/abstracts/search?q=functions%20of%20art" title=" functions of art"> functions of art</a>, <a href="https://publications.waset.org/abstracts/search?q=priest%20as%20an%20artist" title=" priest as an artist"> priest as an artist</a> </p> <a href="https://publications.waset.org/abstracts/77054/deconstruction-of-the-term-shaman-in-the-metaphorical-pair-artist-as-a-shaman" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> Augmented Reality for Maintenance Operator for Problem Inspections</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chong-Yang%20Qiao">Chong-Yang Qiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Teeravarunyou%20Sakol"> Teeravarunyou Sakol</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Current production-oriented factories need maintenance operators to work in shifts monitoring and inspecting complex systems and different equipment in the situation of mechanical breakdown. Augmented reality (AR) is an emerging technology that embeds data into the environment for situation awareness to help maintenance operators make decisions and solve problems. An application was designed to identify the problem of steam generators and inspection centrifugal pumps. The objective of this research was to find the best medium of AR and type of problem solving strategies among analogy, focal object method and mean-ends analysis. Two scenarios of inspecting leakage were temperature and vibration. Two experiments were used in usability evaluation and future innovation, which included decision-making process and problem-solving strategy. This study found that maintenance operators prefer build-in magnifier to zoom the components (55.6%), 3D exploded view to track the problem parts (50%), and line chart to find the alter data or information (61.1%). There is a significant difference in the use of analogy (44.4%), focal objects (38.9%) and mean-ends strategy (16.7%). The marked differences between maintainers and operators are of the application of a problem solving strategy. However, future work should explore multimedia information retrieval which supports maintenance operators for decision-making. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=augmented%20reality" title="augmented reality">augmented reality</a>, <a href="https://publications.waset.org/abstracts/search?q=situation%20awareness" title=" situation awareness"> situation awareness</a>, <a href="https://publications.waset.org/abstracts/search?q=decision-making" title=" decision-making"> decision-making</a>, <a href="https://publications.waset.org/abstracts/search?q=problem-solving" title=" problem-solving"> problem-solving</a> </p> <a href="https://publications.waset.org/abstracts/54110/augmented-reality-for-maintenance-operator-for-problem-inspections" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> The Impact of the Lexical Quality Hypothesis and the Self-Teaching Hypothesis on Reading Ability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anastasios%20Ntousas">Anastasios Ntousas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the following paper is to analyze the relationship between the lexical quality and the self-teaching hypothesis and their impact on the reading ability. The following questions emerged, is there a correlation between the effective reading experience that the lexical quality hypothesis proposes and the self-teaching hypothesis, would the ability to read by analogy facilitate and create stable, synchronized four-word representational, and would word morphological knowledge be a possible extension of the self-teaching hypothesis. The lexical quality hypothesis speculates that words include four representational attributes, phonology, orthography, morpho-syntax, and meaning. Those four-word representations work together to make word reading an effective task. A possible lack of knowledge in one of the representations might disrupt reading comprehension. The degree that the four-word features connect together makes high and low lexical word quality representations. When the four-word representational attributes connect together effectively, readers have a high lexical quality of words; however, when they hardly have a strong connection with each other, readers have a low lexical quality of words. Furthermore, the self-teaching hypothesis proposes that phonological recoding enables printed word learning. Phonological knowledge and reading experience facilitate the acquisition and consolidation of specific-word orthographies. The reading experience is related to strong reading comprehension. The more readers have contact with texts, the better readers they become. Therefore, their phonological knowledge, as the self-teaching hypothesis suggests, might have a facilitative impact on the consolidation of the orthographical, morphological-syntax and meaning representations of unknown words. The phonology of known words might activate effectively the rest of the representational features of words. Readers use their existing phonological knowledge of similarly spelt words to pronounce unknown words; a possible transference of this ability to read by analogy will appear with readers’ morphological knowledge. Morphemes might facilitate readers’ ability to pronounce and spell new unknown words in which they do not have lexical access. Readers will encounter unknown words with similarly phonemes and morphemes but with different meanings. Knowledge of phonology and morphology might support and increase reading comprehension. There was a careful selection, discussion of theoretical material and comparison of the two existing theories. Evidence shows that morphological knowledge improves reading ability and comprehension, so morphological knowledge might be a possible extension of the self-teaching hypothesis, the fundamental skill to read by analogy can be implemented to the consolidation of word – specific orthographies via readers’ morphological knowledge, and there is a positive correlation between effective reading experience and self-teaching hypothesis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=morphology" title="morphology">morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=orthography" title=" orthography"> orthography</a>, <a href="https://publications.waset.org/abstracts/search?q=reading%20ability" title=" reading ability"> reading ability</a>, <a href="https://publications.waset.org/abstracts/search?q=reading%20comprehension" title=" reading comprehension"> reading comprehension</a> </p> <a href="https://publications.waset.org/abstracts/110608/the-impact-of-the-lexical-quality-hypothesis-and-the-self-teaching-hypothesis-on-reading-ability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110608.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> Econophysical Approach on Predictability of Financial Crisis: The 2001 Crisis of Turkey and Argentina Case</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arzu%20K.%20Kamberli">Arzu K. Kamberli</a>, <a href="https://publications.waset.org/abstracts/search?q=Tolga%20Ulusoy"> Tolga Ulusoy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Technological developments and the resulting global communication have made the 21st century when large capitals are moved from one end to the other via a button. As a result, the flow of capital inflows has accelerated, and capital inflow has brought with it crisis-related infectiousness. Considering the irrational human behavior, the financial crisis in the world under the influence of the whole world has turned into the basic problem of the countries and increased the interest of the researchers in the reasons of the crisis and the period in which they lived. Therefore, the complex nature of the financial crises and its linearly unexplained structure have also been included in the new discipline, econophysics. As it is known, although financial crises have prediction mechanisms, there is no definite information. In this context, in this study, using the concept of electric field from the electrostatic part of physics, an early econophysical approach for global financial crises was studied. The aim is to define a model that can take place before the financial crises, identify financial fragility at an earlier stage and help public and private sector members, policy makers and economists with an econophysical approach. 2001 Turkey crisis has been assessed with data from Turkish Central Bank which is covered between 1992 to 2007, and for 2001 Argentina crisis, data was taken from IMF and the Central Bank of Argentina from 1997 to 2007. As an econophysical method, an analogy is used between the Gauss's law used in the calculation of the electric field and the forecasting of the financial crisis. The concept of Φ (Financial Flux) has been adopted for the pre-warning of the crisis by taking advantage of this analogy, which is based on currency movements and money mobility. For the first time used in this study Φ (Financial Flux) calculations obtained by the formula were analyzed by Matlab software, and in this context, in 2001 Turkey and Argentina Crisis for Φ (Financial Flux) crisis of values has been confirmed to give pre-warning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=econophysics" title="econophysics">econophysics</a>, <a href="https://publications.waset.org/abstracts/search?q=financial%20crisis" title=" financial crisis"> financial crisis</a>, <a href="https://publications.waset.org/abstracts/search?q=Gauss%27s%20Law" title=" Gauss&#039;s Law"> Gauss&#039;s Law</a>, <a href="https://publications.waset.org/abstracts/search?q=physics" title=" physics"> physics</a> </p> <a href="https://publications.waset.org/abstracts/109920/econophysical-approach-on-predictability-of-financial-crisis-the-2001-crisis-of-turkey-and-argentina-case" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> Effect of Rolling Shear Modulus and Geometric Make up on the Out-Of-Plane Bending Performance of Cross-Laminated Timber Panel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md%20Tanvir%20Rahman">Md Tanvir Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahbube%20Subhani"> Mahbube Subhani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmud%20Ashraf"> Mahmud Ashraf</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Kremer"> Paul Kremer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cross-laminated timber (CLT) is made from layers of timber boards orthogonally oriented in the thickness direction, and due to this, CLT can withstand bi-axial bending in contrast with most other engineered wood products such as laminated veneer lumber (LVL) and glued laminated timber (GLT). Wood is cylindrically anisotropic in nature and is characterized by significantly lower elastic modulus and shear modulus in the planes perpendicular to the fibre direction, and is therefore classified as orthotropic material and is thus characterized by 9 elastic constants which are three elastic modulus in longitudinal direction, tangential direction and radial direction, three shear modulus in longitudinal tangential plane, longitudinal radial plane and radial tangential plane and three Poisson’s ratio. For simplification, timber materials are generally assumed to be transversely isotropic, reducing the number of elastic properties characterizing it to 5, where the longitudinal plane and radial planes are assumed to be planes of symmetry. The validity of this assumption was investigated through numerical modelling of CLT with both orthotropic mechanical properties and transversely isotropic material properties for three softwood species, which are Norway spruce, Douglas fir, Radiata pine, and three hardwood species, namely Victorian ash, Beech wood, and Aspen subjected to uniformly distributed loading under simply supported boundary condition. It was concluded that assuming the timber to be transversely isotropic results in a negligible error in the order of 1 percent. It was also observed that along with longitudinal elastic modulus, ratio of longitudinal shear modulus (GL) and rolling shear modulus (GR) has a significant effect on a deflection for CLT panels of lower span to depth ratio. For softwoods such as Norway spruce and Radiata pine, the ratio of longitudinal shear modulus, GL to rolling shear modulus GR is reported to be in the order of 12 to 15 times in literature. This results in shear flexibility in transverse layers leading to increased deflection under out-of-plane loading. The rolling shear modulus of hardwoods has been found to be significantly higher than those of softwoods, where the ratio between longitudinal shear modulus to rolling shear modulus as low as 4. This has resulted in a significant rise in research into the manufacturing of CLT from entirely from hardwood, as well as from a combination of softwood and hardwoods. The commonly used beam theory to analyze the performance of CLT panels under out-of-plane loads are the Shear analogy method, Gamma method, and k-method. The shear analogy method has been found to be the most effective method where shear deformation is significant. The effect of the ratio of longitudinal shear modulus and rolling shear modulus of cross-layer on the deflection of CLT under uniformly distributed load with respect to its length to depth ratio was investigated using shear analogy method. It was observed that shear deflection is reduced significantly as the ratio of the shear modulus of the longitudinal layer and rolling shear modulus of cross-layer decreases. This indicates that there is significant room for improvement of the bending performance of CLT through developing hybrid CLT from a mix of softwood and hardwood. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rolling%20shear%20modulus" title="rolling shear modulus">rolling shear modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20deflection" title=" shear deflection"> shear deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=ratio%20of%20shear%20modulus%20and%20rolling%20shear%20modulus" title=" ratio of shear modulus and rolling shear modulus"> ratio of shear modulus and rolling shear modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=timber" title=" timber"> timber</a> </p> <a href="https://publications.waset.org/abstracts/116656/effect-of-rolling-shear-modulus-and-geometric-make-up-on-the-out-of-plane-bending-performance-of-cross-laminated-timber-panel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116656.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> Condition for Plasma Instability and Stability Approaches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ratna%20Sen">Ratna Sen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As due to very high temperature of Plasma it is very difficult to confine it for sufficient time so that nuclear fusion reactions to take place, As we know Plasma escapes faster than the binary collision rates. We studied the ball analogy and the ‘energy principle’ and calculated the total potential energy for the whole Plasma. If δ ⃗w is negative, that is decrease in potential energy then the plasma will be unstable. We also discussed different approaches of stability analysis such as Nyquist Method, MHD approximation and Vlasov approach of plasma stability. So that by using magnetic field configurations we can able to create a stable Plasma in Tokamak for generating energy for future generations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=jello" title="jello">jello</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field%20configuration" title=" magnetic field configuration"> magnetic field configuration</a>, <a href="https://publications.waset.org/abstracts/search?q=MHD%20approximation" title=" MHD approximation"> MHD approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20principle" title=" energy principle"> energy principle</a> </p> <a href="https://publications.waset.org/abstracts/50172/condition-for-plasma-instability-and-stability-approaches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Linguistic Analysis of Argumentation Structures in Georgian Political Speeches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mariam%20Matiashvili">Mariam Matiashvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Argumentation is an integral part of our daily communications - formal or informal. Argumentative reasoning, techniques, and language tools are used both in personal conversations and in the business environment. Verbalization of the opinions requires the use of extraordinary syntactic-pragmatic structural quantities - arguments that add credibility to the statement. The study of argumentative structures allows us to identify the linguistic features that make the text argumentative. Knowing what elements make up an argumentative text in a particular language helps the users of that language improve their skills. Also, natural language processing (NLP) has become especially relevant recently. In this context, one of the main emphases is on the computational processing of argumentative texts, which will enable the automatic recognition and analysis of large volumes of textual data. The research deals with the linguistic analysis of the argumentative structures of Georgian political speeches - particularly the linguistic structure, characteristics, and functions of the parts of the argumentative text - claims, support, and attack statements. The research aims to describe the linguistic cues that give the sentence a judgmental/controversial character and helps to identify reasoning parts of the argumentative text. The empirical data comes from the Georgian Political Corpus, particularly TV debates. Consequently, the texts are of a dialogical nature, representing a discussion between two or more people (most often between a journalist and a politician). The research uses the following approaches to identify and analyze the argumentative structures Lexical Classification & Analysis - Identify lexical items that are relevant in argumentative texts creating process - Creating the lexicon of argumentation (presents groups of words gathered from a semantic point of view); Grammatical Analysis and Classification - means grammatical analysis of the words and phrases identified based on the arguing lexicon. Argumentation Schemas - Describe and identify the Argumentation Schemes that are most likely used in Georgian Political Speeches. As a final step, we analyzed the relations between the above mentioned components. For example, If an identified argument scheme is “Argument from Analogy”, identified lexical items semantically express analogy too, and they are most likely adverbs in Georgian. As a result, we created the lexicon with the words that play a significant role in creating Georgian argumentative structures. Linguistic analysis has shown that verbs play a crucial role in creating argumentative structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=georgian" title="georgian">georgian</a>, <a href="https://publications.waset.org/abstracts/search?q=argumentation%20schemas" title=" argumentation schemas"> argumentation schemas</a>, <a href="https://publications.waset.org/abstracts/search?q=argumentation%20structures" title=" argumentation structures"> argumentation structures</a>, <a href="https://publications.waset.org/abstracts/search?q=argumentation%20lexicon" title=" argumentation lexicon"> argumentation lexicon</a> </p> <a href="https://publications.waset.org/abstracts/159226/linguistic-analysis-of-argumentation-structures-in-georgian-political-speeches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159226.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> Condensation of Vapor in the Presence of Non-Condensable Gas on a Vertical Tube</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shengjun%20Zhang">Shengjun Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xu%20Cheng"> Xu Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng%20Shen"> Feng Shen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The passive containment cooling system (PCCS) is widely used in the advanced nuclear reactor in case of the loss of coolant accident (LOCA) and the main steam line break accident (MSLB). The internal heat exchanger is one of the most important equipment in the PCCS and its heat transfer characteristic determines the performance of the system. In this investigation, a theoretical model is presented for predicting the heat and mass transfer which accompanies condensation. The conduction through the liquid condensate is considered and the interface temperature is defined by iteration. The parameter in the correlation to describe the suction effect should be further determined through experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-condensable%20gas" title="non-condensable gas">non-condensable gas</a>, <a href="https://publications.waset.org/abstracts/search?q=condensation" title=" condensation"> condensation</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20coefficient" title=" heat transfer coefficient"> heat transfer coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20and%20mass%20transfer%20analogy" title=" heat and mass transfer analogy"> heat and mass transfer analogy</a> </p> <a href="https://publications.waset.org/abstracts/62526/condensation-of-vapor-in-the-presence-of-non-condensable-gas-on-a-vertical-tube" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> Exploring the Potential of Bio-Inspired Lattice Structures for Dynamic Applications in Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Axel%20Thallemer">Axel Thallemer</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksandar%20Kostadinov"> Aleksandar Kostadinov</a>, <a href="https://publications.waset.org/abstracts/search?q=Abel%20Fam"> Abel Fam</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20Teo"> Alex Teo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For centuries, the forming processes in nature served as a source of inspiration for both architects and designers. It seems as most human artifacts are based on ideas which stem from the observation of the biological world and its principles of growth. As a fact, in the cultural history of Homo faber, materials have been mostly used in their solid state: From hand axe to computer mouse, the principle of employing matter has not changed ever since the first creation. In the scope of history only recently and by the help of additive-generative fabrication processes through Computer Aided Design (CAD), designers were enabled to deconstruct solid artifacts into an outer skin and an internal lattice structure. The intention behind this approach is to create a new topology which reduces resources and integrates functions into an additively manufactured component. However, looking at the currently employed lattice structures, it is very clear that those lattice structure geometries have not been thoroughly designed, but rather taken out of basic-geometry libraries which are usually provided by the CAD. In the here presented study, a group of 20 industrial design students created new and unique lattice structures using natural paragons as their models. The selected natural models comprise both the animate and inanimate world, with examples ranging from the spiraling of narwhal tusks, off-shooting of mangrove roots, minimal surfaces of soap bubbles, up to the rhythmical arrangement of molecular geometry, like in the case of SiOC (Carbon-Rich Silicon Oxicarbide). This ideation process leads to a design of a geometric cell, which served as a basic module for the lattice structure, whereby the cell was created in visual analogy to its respective natural model. The spatial lattices were fabricated additively in mostly [X]3 by [Y]3 by [Z]3 units’ volumes using selective powder bed melting in polyamide with (z-axis) 50 mm and 100 µm resolution and subdued to mechanical testing of their elastic zone in a biomedical laboratory. The results demonstrate that additively manufactured lattice structures can acquire different properties when they are designed in analogy to natural models. Several of the lattices displayed the ability to store and return kinetic energy, while others revealed a structural failure which can be exploited for purposes where a controlled collapse of a structure is required. This discovery allows for various new applications of functional lattice structures within industrially created objects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-inspired" title="bio-inspired">bio-inspired</a>, <a href="https://publications.waset.org/abstracts/search?q=biomimetic" title=" biomimetic"> biomimetic</a>, <a href="https://publications.waset.org/abstracts/search?q=lattice%20structures" title=" lattice structures"> lattice structures</a>, <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title=" additive manufacturing"> additive manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/85006/exploring-the-potential-of-bio-inspired-lattice-structures-for-dynamic-applications-in-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85006.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> Modeling and Simulation of a CMOS-Based Analog Function Generator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Madina%20Hamiane">Madina Hamiane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modelling and simulation of an analogy function generator is presented based on a polynomial expansion model. The proposed function generator model is based on a 10th order polynomial approximation of any of the required functions. The polynomial approximations of these functions can then be implemented using basic CMOS circuit blocks. In this paper, a circuit model is proposed that can simultaneously generate many different mathematical functions. The circuit model is designed and simulated with HSPICE and its performance is demonstrated through the simulation of a number of non-linear functions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modelling%20and%20simulation" title="modelling and simulation">modelling and simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=analog%20function%20generator" title=" analog function generator"> analog function generator</a>, <a href="https://publications.waset.org/abstracts/search?q=polynomial%20approximation" title=" polynomial approximation"> polynomial approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=CMOS%20transistors" title=" CMOS transistors"> CMOS transistors</a> </p> <a href="https://publications.waset.org/abstracts/7108/modeling-and-simulation-of-a-cmos-based-analog-function-generator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Discovering the Dimension of Abstractness: Structure-Based Model that Learns New Categories and Categorizes on Different Levels of Abstraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Georgi%20I.%20Petkov">Georgi I. Petkov</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20I.%20Vankov"> Ivan I. Vankov</a>, <a href="https://publications.waset.org/abstracts/search?q=Yolina%20A.%20Petrova"> Yolina A. Petrova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A structure-based model of category learning and categorization at different levels of abstraction is presented. The model compares different structures and expresses their similarity implicitly in the forms of mappings. Based on this similarity, the model can categorize different targets either as members of categories that it already has or creates new categories. The model is novel using two threshold parameters to evaluate the structural correspondence. If the similarity between two structures exceeds the higher threshold, a new sub-ordinate category is created. Vice versa, if the similarity does not exceed the higher threshold but does the lower one, the model creates a new category on higher level of abstraction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analogy-making" title="analogy-making">analogy-making</a>, <a href="https://publications.waset.org/abstracts/search?q=categorization" title=" categorization"> categorization</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20of%20categories" title=" learning of categories"> learning of categories</a>, <a href="https://publications.waset.org/abstracts/search?q=abstraction" title=" abstraction"> abstraction</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20structure" title=" hierarchical structure"> hierarchical structure</a> </p> <a href="https://publications.waset.org/abstracts/94222/discovering-the-dimension-of-abstractness-structure-based-model-that-learns-new-categories-and-categorizes-on-different-levels-of-abstraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94222.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> Rhetoric and Renarrative Structure of Digital Images in Trans-Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yang%20Geng">Yang Geng</a>, <a href="https://publications.waset.org/abstracts/search?q=Anqi%20Zhao"> Anqi Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The misreading theory of Harold Bloom provides a new diachronic perspective as an approach to the consistency between rhetoric of digital technology, dynamic movement of digital images and uncertain meaning of text. Reinterpreting the diachroneity of 'intertextuality' in the context of misreading theory extended the range of the 'intermediality' of transmedia to the intense tension between digital images and symbolic images throughout history of images. With the analogy between six categories of revisionary ratios and six steps of digital transformation, digital rhetoric might be illustrated as a linear process reflecting dynamic, intensive relations between digital moving images and original static images. Finally, it was concluded that two-way framework of the rhetoric of transformation of digital images and reversed served as a renarrative structure to revive static images by reconnecting them with digital moving images. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rhetoric" title="rhetoric">rhetoric</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20art" title=" digital art"> digital art</a>, <a href="https://publications.waset.org/abstracts/search?q=intermediality" title=" intermediality"> intermediality</a>, <a href="https://publications.waset.org/abstracts/search?q=misreading%20theory" title=" misreading theory"> misreading theory</a> </p> <a href="https://publications.waset.org/abstracts/100230/rhetoric-and-renarrative-structure-of-digital-images-in-trans-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100230.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> Morphology of Cartographic Words: A Perspective from Chinese Characters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xinyu%20Gong">Xinyu Gong</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhilin%20Li"> Zhilin Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Xintao%20Liu"> Xintao Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Maps are a means of communication. Cartographic language involves established theories of natural language for understanding maps. “Cartographic words’, or “map symbols”, are crucial elements of cartographic language. Personalized mapping is increasingly popular, with growing demands for customized map-making by the general public. Automated symbol-making and customization play a key role in personalized mapping. However, formal representations for the automated construction of map symbols are still lacking. In natural language, the process of word and sentence construction can be formalized. Through the analogy between natural language and graphical language, formal representations of natural language construction can be used as a reference for constructing cartographic language. We selected Chinese character structures (i.e., S <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=personalized%20mapping" title="personalized mapping">personalized mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=Chinese%20character" title=" Chinese character"> Chinese character</a>, <a href="https://publications.waset.org/abstracts/search?q=cartographic%20language" title=" cartographic language"> cartographic language</a>, <a href="https://publications.waset.org/abstracts/search?q=map%20symbols" title=" map symbols"> map symbols</a> </p> <a href="https://publications.waset.org/abstracts/131340/morphology-of-cartographic-words-a-perspective-from-chinese-characters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131340.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Aerodynamic Sound from a Sawtooth Plate with Different Thickness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siti%20Ruhliah%20Lizarose%20Samion">Siti Ruhliah Lizarose Samion</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Sukri%20Mat%20Ali"> Mohamed Sukri Mat Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of sawtooth plate thickness on the aerodynamic noise generated in flow at a Reynolds number of 150 is numerically investigated. Two types of plate thickness (hthick=0.2D and hthin=0.02D) are proposed. Flow simulations are carried out using Direct Numerical Simulation, whereas the calculation of aerodynamic noise radiated from the flow is solved using Curle’s equation. It is found that the flow behavior of thin sawtooth plate, consisting counter-rotating-vortices, is more complex than that of the thick plate. This then explains well the generated sound in both plates cases. Sound generated from thin plat is approximately 0.5 dB lower than the thick plate. Findings from current study provide better understanding of the flow and noise behavior in edge serrations via understanding the case of a sawtooth plate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20sound" title="aerodynamic sound">aerodynamic sound</a>, <a href="https://publications.waset.org/abstracts/search?q=bluff%20body" title=" bluff body"> bluff body</a>, <a href="https://publications.waset.org/abstracts/search?q=sawtooth%20plate" title=" sawtooth plate"> sawtooth plate</a>, <a href="https://publications.waset.org/abstracts/search?q=Curle%20analogy" title=" Curle analogy"> Curle analogy</a> </p> <a href="https://publications.waset.org/abstracts/62349/aerodynamic-sound-from-a-sawtooth-plate-with-different-thickness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62349.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Cardiovascular Modeling Software Tools in Medicine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Fernandez">J. Fernandez</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Fernandez%20de%20Canete"> R. Fernandez de Canete</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Perea-Paizal"> J. Perea-Paizal</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20C.%20Ramos-Diaz"> J. C. Ramos-Diaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The high prevalence of cardiovascular diseases has provoked a raising interest in the development of mathematical models in order to evaluate the cardiovascular function both under physiological and pathological conditions. In this paper, a physical model of the cardiovascular system with intrinsic regulation is presented and implemented by using the object-oriented Modelica simulation software tools.&nbsp; For this task, a multi-compartmental system previously validated with physiological data has been built, based on the interconnection of cardiovascular elements such as resistances, capacitances and pumping among others, by following an electrohydraulic analogy. The results obtained under both physiological and pathological scenarios provide an easy interpretative key to analyze the hemodynamic behavior of the patient. The described approach represents a valuable tool in the teaching of physiology for graduate medical and nursing students among others. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cardiovascular%20system" title="cardiovascular system">cardiovascular system</a>, <a href="https://publications.waset.org/abstracts/search?q=MODELICA%20simulation%20software" title=" MODELICA simulation software"> MODELICA simulation software</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20modelling" title=" physical modelling"> physical modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=teaching%20tool" title=" teaching tool"> teaching tool</a> </p> <a href="https://publications.waset.org/abstracts/72982/cardiovascular-modeling-software-tools-in-medicine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72982.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Discrimination Between Bacillus and Alicyclobacillus Isolates in Apple Juice by Fourier Transform Infrared Spectroscopy and Multivariate Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Murada%20Alholy">Murada Alholy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mengshi%20Lin"> Mengshi Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20Alhaj"> Omar Alhaj</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Abugoush"> Mahmoud Abugoush</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alicyclobacillus is a causative agent of spoilage in pasteurized and heat-treated apple juice products. Differentiating between this genus and the closely related Bacillus is crucially important. In this study, Fourier transform infrared spectroscopy (FT-IR) was used to identify and discriminate between four Alicyclobacillus strains and four Bacillus isolates inoculated individually into apple juice. Loading plots over the range of 1350 and 1700 cm-1 reflected the most distinctive biochemical features of Bacillus and Alicyclobacillus. Multivariate statistical methods (e.g. principal component analysis (PCA) and soft independent modeling of class analogy (SIMCA)) were used to analyze the spectral data. Distinctive separation of spectral samples was observed. This study demonstrates that FT-IR spectroscopy in combination with multivariate analysis could serve as a rapid and effective tool for fruit juice industry to differentiate between Bacillus and Alicyclobacillus and to distinguish between species belonging to these two genera. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alicyclobacillus" title="alicyclobacillus">alicyclobacillus</a>, <a href="https://publications.waset.org/abstracts/search?q=bacillus" title=" bacillus"> bacillus</a>, <a href="https://publications.waset.org/abstracts/search?q=FT-IR" title=" FT-IR"> FT-IR</a>, <a href="https://publications.waset.org/abstracts/search?q=spectroscopy" title=" spectroscopy"> spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=PCA" title=" PCA"> PCA</a> </p> <a href="https://publications.waset.org/abstracts/29542/discrimination-between-bacillus-and-alicyclobacillus-isolates-in-apple-juice-by-fourier-transform-infrared-spectroscopy-and-multivariate-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Adopting a Systematically Planned Humour Pedagogical Approach to Increase Student Engagement in Higher Education</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rita%20Gill%20Singh">Rita Gill Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20Chun%20Koon"> Alex Chun Koon</a>, <a href="https://publications.waset.org/abstracts/search?q=Cindy%20Sing%20Bik%20Ngai"> Cindy Sing Bik Ngai</a>, <a href="https://publications.waset.org/abstracts/search?q=Joanna%20Wen%20Ying%20Ho"> Joanna Wen Ying Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Mei%20Li%20Khong"> Mei Li Khong</a>, <a href="https://publications.waset.org/abstracts/search?q=Enoch%20Chan"> Enoch Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=Terrence%20Lau"> Terrence Lau</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although humour is viewed as a beneficial element in teaching, there has been little attempt to systematize humour in teaching, possibly because it is difficult to teach someone to be humorous. This study integrated planned humour pedagogical approach into teaching and learning activities and examined the effect of systematically planned humour on students’ engagement and learning in different courses. Specifically, appropriate types of humour (i.e. analogy, absurdity and wordplay) and incorporation methods and frequency were systematically integrated into the lessons of courses at some higher education institutions in Hong Kong. The results showed that the planned humour pedagogical approach increased student engagement, as well as enhanced learning and motivation while reducing students’ stress. The pedagogical implications of this study will be useful for researchers, practitioners, and educators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=higher%20education" title="higher education">higher education</a>, <a href="https://publications.waset.org/abstracts/search?q=pedagogy" title=" pedagogy"> pedagogy</a>, <a href="https://publications.waset.org/abstracts/search?q=humour" title=" humour"> humour</a>, <a href="https://publications.waset.org/abstracts/search?q=student%20engagement" title=" student engagement"> student engagement</a>, <a href="https://publications.waset.org/abstracts/search?q=learning" title=" learning"> learning</a>, <a href="https://publications.waset.org/abstracts/search?q=motivation" title=" motivation"> motivation</a> </p> <a href="https://publications.waset.org/abstracts/184448/adopting-a-systematically-planned-humour-pedagogical-approach-to-increase-student-engagement-in-higher-education" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184448.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Desktop High-Speed Aerodynamics by Shallow Water Analogy in a Tin Box for Engineering Students</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Etsuo%20Morishita">Etsuo Morishita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we show shallow water in a tin box as an analogous simulation tool for high-speed aerodynamics education and research. It is customary that we use a water tank to create shallow water flow. While a flow in a water tank is not necessarily uniform and is sometimes wavy, we can visualize a clear supercritical flow even when we move a body manually in stationary water in a simple shallow tin box. We can visualize a blunt shock wave around a moving circular cylinder together with a shock pattern around a diamond airfoil. Another interesting analogous experiment is a hydrodynamic shock tube with water and tea. We observe the contact surface clearly due to color difference of the two liquids those are invisible in the real gas dynamics experiment. We first revisit the similarities between high-speed aerodynamics and shallow water hydraulics. Several educational and research experiments are then introduced for engineering students. Shallow water experiments in a tin box simulate properly the high-speed flows. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics%20compressible%20flow" title="aerodynamics compressible flow">aerodynamics compressible flow</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20dynamics" title=" gas dynamics"> gas dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulics" title=" hydraulics"> hydraulics</a>, <a href="https://publications.waset.org/abstracts/search?q=shock%20wave" title=" shock wave"> shock wave</a> </p> <a href="https://publications.waset.org/abstracts/68545/desktop-high-speed-aerodynamics-by-shallow-water-analogy-in-a-tin-box-for-engineering-students" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=N%E2%82%82O%20analogy&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=N%E2%82%82O%20analogy&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=N%E2%82%82O%20analogy&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10