CINXE.COM
Abstracts | Mathematical and Computational Sciences
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Abstracts | Mathematical and Computational Sciences</title> <meta name="description" content="Abstracts | Mathematical and Computational Sciences"> <meta name="keywords" content="Abstracts | Mathematical and Computational Sciences"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value=""> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1437</div> </div> </div> </div> <div class="mt-3 text-center"> <h1 class="mb-1" style="font-size:1.2rem;">World Academy of Science, Engineering and Technology</h1> <h2 class="mb-1" style="font-size:1.1rem;">[Mathematical and Computational Sciences]</h2> <h3 class="mb-1" style="font-size:1rem;">Online ISSN : 1307-6892</h3> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1227</span> Application of Mathematics in Real-Life Situation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abubakar%20Attahiru">Abubakar Attahiru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mathematics plays an important role in the real situation. The development of the study of mathematics is a result of the needs of man to survive and interact with one another in society. Mathematics is the universal language that is applied in almost every aspect of life. Mathematics gives us a way to understand patterns, define relationships, and predict the future. The changes in the content and methods of studying mathematics follow the trends in societal needs and developments. Also, the developments in mathematics affect the developments in society. Generally, education helps to develop society while the activities and needs of the society dictate e educational policy of any society. Among all the academic subjects studied at school, mathematics has distinctly contributed more to the objectives of general education of man than any other subject. This is a result of the applications of mathematics to all spheres of human endeavors’. This paper looks at the meaning of the basic concepts of mathematics, science, and technology, the application of mathematics in a real-life situation, and their relationships with society. The paper also shows how mathematics, science, and technology affect the existence and development of society and how society determines the nature of mathematics studied in society through its educational system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=application" title="application">application</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematics" title=" mathematics"> mathematics</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20life" title=" real life"> real life</a>, <a href="https://publications.waset.org/abstracts/search?q=situation" title=" situation"> situation</a> </p> <a href="https://publications.waset.org/abstracts/158601/application-of-mathematics-in-real-life-situation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158601.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1226</span> Magnetohemodynamic of Blood Flow Having Impact of Radiative Flux Due to Infrared Magnetic Hyperthermia: Spectral Relaxation Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ebenezer%20O.%20Ige">Ebenezer O. Ige</a>, <a href="https://publications.waset.org/abstracts/search?q=Funmilayo%20H.%20Oyelami"> Funmilayo H. Oyelami</a>, <a href="https://publications.waset.org/abstracts/search?q=Joshua%20Olutayo-Irheren"> Joshua Olutayo-Irheren</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20T.%20Okunlola"> Joseph T. Okunlola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hyperthermia therapy is an adjuvant procedure during which perfused body tissues is subjected to elevated range of temperature in bid to achieve improved drug potency and efficacy of cancer treatment. While a selected class of hyperthermia techniques is shouldered on the thermal radiations derived from single-sourced electro-radiation measures, there are deliberations on conjugating dual radiation field sources in an attempt to improve the delivery of therapy procedure. This paper numerically explores the thermal effectiveness of combined infrared hyperemia having nanoparticle recirculation in the vicinity of imposed magnetic field on subcutaneous strata of a model lesion as ablation scheme. An elaborate Spectral relaxation method (SRM) was formulated to handle equation of coupled momentum and thermal equilibrium in the blood-perfused tissue domain of a spongy fibrous tissue. Thermal diffusion regimes in the presence of external magnetic field imposition were described leveraging on the renowned Roseland diffusion approximation to delineate the impact of radiative flux within the computational domain. The contribution of tissue sponginess was examined using mechanics of pore-scale porosity over a selected of clinical informed scenarios. Our observations showed for a substantial depth of spongy lesion, magnetic field architecture constitute the control regimes of hemodynamics in the blood-tissue interface while facilitating thermal transport across the depth of the model lesion. This parameter-indicator could be utilized to control the dispensing of hyperthermia treatment in intravenous perfused tissue. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spectra%20relaxation%20scheme" title="spectra relaxation scheme">spectra relaxation scheme</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20equilibrium" title=" thermal equilibrium"> thermal equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=Roseland%20diffusion%20approximation" title=" Roseland diffusion approximation"> Roseland diffusion approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperthermia%20therapy" title=" hyperthermia therapy"> hyperthermia therapy</a> </p> <a href="https://publications.waset.org/abstracts/158541/magnetohemodynamic-of-blood-flow-having-impact-of-radiative-flux-due-to-infrared-magnetic-hyperthermia-spectral-relaxation-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1225</span> Virtual Assessment of Measurement Error in the Fractional Flow Reserve</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keltoum%20Chahour">Keltoum Chahour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mickael%20Binois"> Mickael Binois</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to a lack of standardization during the invasive fractional flow reserve (FFR) procedure, the index is subject to many sources of uncertainties. In this paper, we investigate -through simulation- the effect of the (FFR) device position and configuration on the obtained value of the (FFR) fraction. For this purpose, we use computational fluid dynamics (CFD) in a 3D domain corresponding to a diseased arterial portion. The (FFR) pressure captor is introduced inside it with a given length and coefficient of bending to capture the (FFR) value. To get over the computational limitations, basically, the time of the simulation is about 2h 15min for one (FFR) value; we generate a Gaussian Process (GP) model for (FFR) prediction. The (GP) model indicates good accuracy and demonstrates the effective error in the measurement created by the random configuration of the pressure captor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractional%20flow%20reserve" title="fractional flow reserve">fractional flow reserve</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20processes" title=" Gaussian processes"> Gaussian processes</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=drift" title=" drift"> drift</a> </p> <a href="https://publications.waset.org/abstracts/158055/virtual-assessment-of-measurement-error-in-the-fractional-flow-reserve" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158055.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1224</span> Diagonal Vector Autoregressive Models and Their Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Usoro%20Anthony%20E.">Usoro Anthony E.</a>, <a href="https://publications.waset.org/abstracts/search?q=Udoh%20Emediong"> Udoh Emediong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diagonal Vector Autoregressive Models are special classes of the general vector autoregressive models identified under certain conditions, where parameters are restricted to the diagonal elements in the coefficient matrices. Variance, autocovariance, and autocorrelation properties of the upper and lower diagonal VAR models are derived. The new set of VAR models is verified with empirical data and is found to perform favourably with the general VAR models. The advantage of the diagonal models over the existing models is that the new models are parsimonious, given the reduction in the interactive coefficients of the general VAR models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=VAR%20models" title="VAR models">VAR models</a>, <a href="https://publications.waset.org/abstracts/search?q=diagonal%20VAR%20models" title=" diagonal VAR models"> diagonal VAR models</a>, <a href="https://publications.waset.org/abstracts/search?q=variance" title=" variance"> variance</a>, <a href="https://publications.waset.org/abstracts/search?q=autocovariance" title=" autocovariance"> autocovariance</a>, <a href="https://publications.waset.org/abstracts/search?q=autocorrelations" title=" autocorrelations"> autocorrelations</a> </p> <a href="https://publications.waset.org/abstracts/157980/diagonal-vector-autoregressive-models-and-their-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1223</span> The Effectiveness of a Hybrid Diffie-Hellman-RSA-Advanced Encryption Standard Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdellahi%20Cheikh">Abdellahi Cheikh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the emergence of quantum computers with very powerful capabilities, the security of the exchange of shared keys between two interlocutors poses a big problem in terms of the rapid development of technologies such as computing power and computing speed. Therefore, the Diffie-Hellmann (DH) algorithm is more vulnerable than ever. No mechanism guarantees the security of the key exchange, so if an intermediary manages to intercept it, it is easy to intercept. In this regard, several studies have been conducted to improve the security of key exchange between two interlocutors, which has led to interesting results. The modification made on our model Diffie-Hellman-RSA-AES (DRA), which encrypts the information exchanged between two users using the three-encryption algorithms DH, RSA and AES, by using stenographic photos to hide the contents of the p, g and ClesAES values that are sent in an unencrypted state at the level of DRA model to calculate each user's public key. This work includes a comparative study between the DRA model and all existing solutions, as well as the modification made to this model, with an emphasis on the aspect of reliability in terms of security. This study presents a simulation to demonstrate the effectiveness of the modification made to the DRA model. The obtained results show that our model has a security advantage over the existing solution, so we made these changes to reinforce the security of the DRA model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diffie-Hellmann" title="Diffie-Hellmann">Diffie-Hellmann</a>, <a href="https://publications.waset.org/abstracts/search?q=DRA" title=" DRA"> DRA</a>, <a href="https://publications.waset.org/abstracts/search?q=RSA" title=" RSA"> RSA</a>, <a href="https://publications.waset.org/abstracts/search?q=advanced%20encryption%20standard" title=" advanced encryption standard"> advanced encryption standard</a> </p> <a href="https://publications.waset.org/abstracts/157930/the-effectiveness-of-a-hybrid-diffie-hellman-rsa-advanced-encryption-standard-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1222</span> Graph Neural Network-Based Classification for Disease Prediction in Health Care Heterogeneous Data Structures of Electronic Health Record</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raghavi%20C.%20Janaswamy">Raghavi C. Janaswamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the healthcare sector, heterogenous data elements such as patients, diagnosis, symptoms, conditions, observation text from physician notes, and prescriptions form the essentials of the Electronic Health Record (EHR). The data in the form of clear text and images are stored or processed in a relational format in most systems. However, the intrinsic structure restrictions and complex joins of relational databases limit the widespread utility. In this regard, the design and development of realistic mapping and deep connections as real-time objects offer unparallel advantages. Herein, a graph neural network-based classification of EHR data has been developed. The patient conditions have been predicted as a node classification task using a graph-based open source EHR data, Synthea Database, stored in Tigergraph. The Synthea DB dataset is leveraged due to its closer representation of the real-time data and being voluminous. The graph model is built from the EHR heterogeneous data using python modules, namely, pyTigerGraph to get nodes and edges from the Tigergraph database, PyTorch to tensorize the nodes and edges, PyTorch-Geometric (PyG) to train the Graph Neural Network (GNN) and adopt the self-supervised learning techniques with the AutoEncoders to generate the node embeddings and eventually perform the node classifications using the node embeddings. The model predicts patient conditions ranging from common to rare situations. The outcome is deemed to open up opportunities for data querying toward better predictions and accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electronic%20health%20record" title="electronic health record">electronic health record</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20neural%20network" title=" graph neural network"> graph neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20data" title=" heterogeneous data"> heterogeneous data</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a> </p> <a href="https://publications.waset.org/abstracts/157840/graph-neural-network-based-classification-for-disease-prediction-in-health-care-heterogeneous-data-structures-of-electronic-health-record" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157840.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1221</span> Confidence Envelopes for Parametric Model Selection Inference and Post-Model Selection Inference</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20M.%20L.%20Nadeesha%20Jayaweera">I. M. L. Nadeesha Jayaweera</a>, <a href="https://publications.waset.org/abstracts/search?q=Adao%20Alex%20Trindade"> Adao Alex Trindade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In choosing a candidate model in likelihood-based modeling via an information criterion, the practitioner is often faced with the difficult task of deciding just how far up the ranked list to look. Motivated by this pragmatic necessity, we construct an uncertainty band for a generalized (model selection) information criterion (GIC), defined as a criterion for which the limit in probability is identical to that of the normalized log-likelihood. This includes common special cases such as AIC & BIC. The method starts from the asymptotic normality of the GIC for the joint distribution of the candidate models in an independent and identically distributed (IID) data framework and proceeds by deriving the (asymptotically) exact distribution of the minimum. The calculation of an upper quantile for its distribution then involves the computation of multivariate Gaussian integrals, which is amenable to efficient implementation via the R package "mvtnorm". The performance of the methodology is tested on simulated data by checking the coverage probability of nominal upper quantiles and compared to the bootstrap. Both methods give coverages close to nominal for large samples, but the bootstrap is two orders of magnitude slower. The methodology is subsequently extended to two other commonly used model structures: regression and time series. In the regression case, we derive the corresponding asymptotically exact distribution of the minimum GIC invoking Lindeberg-Feller type conditions for triangular arrays and are thus able to similarly calculate upper quantiles for its distribution via multivariate Gaussian integration. The bootstrap once again provides a default competing procedure, and we find that similar comparison performance metrics hold as for the IID case. The time series case is complicated by far more intricate asymptotic regime for the joint distribution of the model GIC statistics. Under a Gaussian likelihood, the default in most packages, one needs to derive the limiting distribution of a normalized quadratic form for a realization from a stationary series. Under conditions on the process satisfied by ARMA models, a multivariate normal limit is once again achieved. The bootstrap can, however, be employed for its computation, whence we are once again in the multivariate Gaussian integration paradigm for upper quantile evaluation. Comparisons of this bootstrap-aided semi-exact method with the full-blown bootstrap once again reveal a similar performance but faster computation speeds. One of the most difficult problems in contemporary statistical methodological research is to be able to account for the extra variability introduced by model selection uncertainty, the so-called post-model selection inference (PMSI). We explore ways in which the GIC uncertainty band can be inverted to make inferences on the parameters. This is being attempted in the IID case by pivoting the CDF of the asymptotically exact distribution of the minimum GIC. For inference one parameter at a time and a small number of candidate models, this works well, whence the attained PMSI confidence intervals are wider than the MLE-based Wald, as expected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=model%20selection%20inference" title="model selection inference">model selection inference</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20information%20criteria" title=" generalized information criteria"> generalized information criteria</a>, <a href="https://publications.waset.org/abstracts/search?q=post%20model%20selection" title=" post model selection"> post model selection</a>, <a href="https://publications.waset.org/abstracts/search?q=Asymptotic%20Theory" title=" Asymptotic Theory"> Asymptotic Theory</a> </p> <a href="https://publications.waset.org/abstracts/157622/confidence-envelopes-for-parametric-model-selection-inference-and-post-model-selection-inference" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1220</span> Complex Dynamics of a Four Species Food-Web Model: An Analysis through Beddington-Deangelis Functional Response in the Presence of Additional Food</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surbhi%20Rani">Surbhi Rani</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunita%20Gakkhar"> Sunita Gakkhar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The four-dimensional food web system consisting of two prey species for a generalist middle predator and a top predator is proposed and investigated. The middle predator is predating both the prey species with a modified Holling type-II functional response. The food web model is found to be well-posed, bounded, and dissipative. The proposed model's essential dynamical features are studied in terms of local stability. The four species' survival is explored, and persistence conditions are established. The numerical simulations reveal the persistence in the form of a chaotic attractor or stable focus. The conclusion is that providing additional food to the middle predator may help to control the food chain's chaos. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=predator-prey%20model" title="predator-prey model">predator-prey model</a>, <a href="https://publications.waset.org/abstracts/search?q=existence%20of%20equilibrium%20points" title=" existence of equilibrium points"> existence of equilibrium points</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20stability" title=" local stability"> local stability</a>, <a href="https://publications.waset.org/abstracts/search?q=chaos" title=" chaos"> chaos</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulations" title=" numerical simulations"> numerical simulations</a> </p> <a href="https://publications.waset.org/abstracts/157515/complex-dynamics-of-a-four-species-food-web-model-an-analysis-through-beddington-deangelis-functional-response-in-the-presence-of-additional-food" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157515.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1219</span> An Audit of Climate Change and Sustainability Teaching in Medical School</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Tiachachat">M. Tiachachat</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mihoubi"> M. Mihoubi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Bell polynomials are special polynomials in combinatorial analysis that have a wide range of applications in mathematics. They have interested many authors. The exponential partial Bell polynomials have been well reduced to some special combinatorial sequences. Numerous researchers had already been interested in the above polynomials, as evidenced by many articles in the literature. Inspired by this work, in this work, we propose a family of special polynomials named after the 2-successive partial Bell polynomials. Using the combinatorial approach, we prove the properties of these numbers, derive several identities, and discuss some special cases. This family includes well-known numbers and polynomials such as Stirling numbers, Bell numbers and polynomials, and so on. We investigate their properties by employing generating functions <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2-associated%20r-Stirling%20numbers" title="2-associated r-Stirling numbers">2-associated r-Stirling numbers</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20exponential%20partial%20Bell%20polynomials" title=" the exponential partial Bell polynomials"> the exponential partial Bell polynomials</a>, <a href="https://publications.waset.org/abstracts/search?q=generating%20function" title=" generating function"> generating function</a>, <a href="https://publications.waset.org/abstracts/search?q=combinatorial%20interpretation" title=" combinatorial interpretation"> combinatorial interpretation</a> </p> <a href="https://publications.waset.org/abstracts/157494/an-audit-of-climate-change-and-sustainability-teaching-in-medical-school" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1218</span> Mathematical Modelling of Spatial Distribution of Covid-19 Outbreak Using Diffusion Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kayode%20Oshinubi">Kayode Oshinubi</a>, <a href="https://publications.waset.org/abstracts/search?q=Brice%20Kammegne"> Brice Kammegne</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacques%20Demongeot"> Jacques Demongeot</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of mathematical tools like Partial Differential Equations and Ordinary Differential Equations have become very important to predict the evolution of a viral disease in a population in order to take preventive and curative measures. In December 2019, a novel variety of Coronavirus (SARS-CoV-2) was identified in Wuhan, Hubei Province, China causing a severe and potentially fatal respiratory syndrome, i.e., COVID-19. Since then, it has become a pandemic declared by World Health Organization (WHO) on March 11, 2020 which has spread around the globe. A reaction-diffusion system is a mathematical model that describes the evolution of a phenomenon subjected to two processes: a reaction process in which different substances are transformed, and a diffusion process that causes a distribution in space. This article provides a mathematical study of the Susceptible, Exposed, Infected, Recovered, and Vaccinated population model of the COVID-19 pandemic by the bias of reaction-diffusion equations. Both local and global asymptotic stability conditions for disease-free and endemic equilibria are determined using the Lyapunov function are considered and the endemic equilibrium point exists and is stable if it satisfies Routh–Hurwitz criteria. Also, adequate conditions for the existence and uniqueness of the solution of the model have been proved. We showed the spatial distribution of the model compartments when the basic reproduction rate $\mathcal{R}_0 < 1$ and $\mathcal{R}_0 > 1$ and sensitivity analysis is performed in order to determine the most sensitive parameters in the proposed model. We demonstrate the model's effectiveness by performing numerical simulations. We investigate the impact of vaccination and the significance of spatial distribution parameters in the spread of COVID-19. The findings indicate that reducing contact with an infected person and increasing the proportion of susceptible people who receive high-efficacy vaccination will lessen the burden of COVID-19 in the population. To the public health policymakers, we offered a better understanding of the COVID-19 management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title="COVID-19">COVID-19</a>, <a href="https://publications.waset.org/abstracts/search?q=SEIRV%20epidemic%20model" title=" SEIRV epidemic model"> SEIRV epidemic model</a>, <a href="https://publications.waset.org/abstracts/search?q=reaction-diffusion%20equation" title=" reaction-diffusion equation"> reaction-diffusion equation</a>, <a href="https://publications.waset.org/abstracts/search?q=basic%20reproduction%20number" title=" basic reproduction number"> basic reproduction number</a>, <a href="https://publications.waset.org/abstracts/search?q=vaccination" title=" vaccination"> vaccination</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20distribution" title=" spatial distribution"> spatial distribution</a> </p> <a href="https://publications.waset.org/abstracts/157219/mathematical-modelling-of-spatial-distribution-of-covid-19-outbreak-using-diffusion-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157219.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1217</span> Chebyshev Wavelets and Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emanuel%20Guariglia">Emanuel Guariglia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we deal with Chebyshev wavelets. We analyze their properties computing their Fourier transform. Moreover, we discuss the differential properties of Chebyshev wavelets due the connection coefficients. The differential properties of Chebyshev wavelets, expressed by the connection coefficients (also called refinable integrals), are given by finite series in terms of the Kronecker delta. Moreover, we treat the p-order derivative of Chebyshev wavelets and compute its Fourier transform. Finally, we expand the mother wavelet in Taylor series with an application both in fractional calculus and fractal geometry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chebyshev%20wavelets" title="Chebyshev wavelets">Chebyshev wavelets</a>, <a href="https://publications.waset.org/abstracts/search?q=Fourier%20transform" title=" Fourier transform"> Fourier transform</a>, <a href="https://publications.waset.org/abstracts/search?q=connection%20coefficients" title=" connection coefficients"> connection coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=Taylor%20series" title=" Taylor series"> Taylor series</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20fractional%20derivative" title=" local fractional derivative"> local fractional derivative</a>, <a href="https://publications.waset.org/abstracts/search?q=Cantor%20set" title=" Cantor set"> Cantor set</a> </p> <a href="https://publications.waset.org/abstracts/157194/chebyshev-wavelets-and-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1216</span> Vehicle to Vehicle Communication: Collision Avoidance Scenarios</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Emad">Ahmed Emad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Salah"> Ahmed Salah</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelrahman%20Magdy"> Abdelrahman Magdy</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20Rashid"> Omar Rashid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Adel"> Mohammed Adel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research paper discusses vehicle-to-vehicle technology as an important application of linear algebra. This communication technology represents an efficient and promising application to help to ensure the safety of the drivers by warning them when a crash possibility is close. The major link that combines our topic with linear algebra is the Laplacian matrix. Some main definitions used in the V2V were illustrated, such as VANET and its characteristics. The V2V technology could be applied in different applications with different traffic scenarios and various ways to warn car drivers. These scenarios were simulated programs such as MATLAB and Python to test how the V2V system would respond to the different scenarios and warn the car drivers exposed to the threat of collisions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=V2V%20communication" title="V2V communication">V2V communication</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20to%20vehicle%20scenarios" title=" vehicle to vehicle scenarios"> vehicle to vehicle scenarios</a>, <a href="https://publications.waset.org/abstracts/search?q=VANET" title=" VANET"> VANET</a>, <a href="https://publications.waset.org/abstracts/search?q=FCW" title=" FCW"> FCW</a>, <a href="https://publications.waset.org/abstracts/search?q=EEBL" title=" EEBL"> EEBL</a>, <a href="https://publications.waset.org/abstracts/search?q=IMA" title=" IMA"> IMA</a>, <a href="https://publications.waset.org/abstracts/search?q=Laplacian%20matrix" title=" Laplacian matrix"> Laplacian matrix</a> </p> <a href="https://publications.waset.org/abstracts/156914/vehicle-to-vehicle-communication-collision-avoidance-scenarios" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1215</span> Notes on Frames in Weighted Hardy Spaces and Generalized Weighted Composition Operators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shams%20Alyusof">Shams Alyusof</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is to enrich the studies of the frames due to their prominent role in pure mathematics as well as in applied mathematics and many applications in computer science and engineering. Recently, there are remarkable studies of operators that preserve frames on some spaces, and this research could be considered as an extension of such studies. Indeed, this paper is to we characterize weighted composition operators that preserve frames in weighted Hardy spaces on the open unit disk. Moreover, it shows that this characterization does not apply to generalized weighted composition operators on such spaces. Nevertheless, this study could be extended to provide more specific characterizations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frames" title="frames">frames</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20weighted%20composition%20operators" title=" generalized weighted composition operators"> generalized weighted composition operators</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20Hardy%20spaces" title=" weighted Hardy spaces"> weighted Hardy spaces</a>, <a href="https://publications.waset.org/abstracts/search?q=analytic%20functions" title=" analytic functions"> analytic functions</a> </p> <a href="https://publications.waset.org/abstracts/156372/notes-on-frames-in-weighted-hardy-spaces-and-generalized-weighted-composition-operators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1214</span> Step into the Escalator’s Fractal Behavior by Using the Poincare Map</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Albadri">Ali Albadri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Step band in an escalator moves in a cyclic periodic pattern. Similarly, most if not all of the components and sub-assemblies in the escalator operate in the same way. If you mark up one step in the step band of an escalator and stand next to the escalator, on the incline, to watch the marked-up step when it passes by, you ask yourself, does the marked up step behaves exactly the same way during each revolution when it passes you by again and again? We can say that; there is some similarity in this example and the example when an astronomer watches planets in the sky, and he or she asks himself or herself, does each planet intersects the plan of observation in the same position for every pantry rotation? For a fact, we know for the answer to the second example is no, because scientist, astronomers, and mathematicians have proven that planets deviate from their paths to take new paths during their planetary moves, albeit with minimal change. But what about the answer to the question in the first example? considering that there is increase in the wear and tear of components with time in the step, in the step band, in the tracks and in many other places in the escalator. There is also the accumulation of fatigue in the components and sub-assemblies. This research is part of many studies which we are conducting to address the answer for the question in the first example. We have been using the fractal dimension as a quantities tool and the Poincare map as a qualitative tool. This study has shown that the fractal dimension value and the shape and distribution of the orbits in the Poincare map has significant correlation with the quality of the mechanical components and sub-assemblies in the escalator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractal%20dimension" title="fractal dimension">fractal dimension</a>, <a href="https://publications.waset.org/abstracts/search?q=Poincare%20map" title=" Poincare map"> Poincare map</a>, <a href="https://publications.waset.org/abstracts/search?q=rugby%20ball%20orbit" title=" rugby ball orbit"> rugby ball orbit</a>, <a href="https://publications.waset.org/abstracts/search?q=worm%20orbit" title=" worm orbit"> worm orbit</a> </p> <a href="https://publications.waset.org/abstracts/156296/step-into-the-escalators-fractal-behavior-by-using-the-poincare-map" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156296.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1213</span> Singular Stochastic Control Model with Carrying Capacity of Population Management Policy for Squirrels in Durian Orchards</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sasiwimol%20Auepong">Sasiwimol Auepong</a>, <a href="https://publications.waset.org/abstracts/search?q=Raywat%20Tanadkithirun"> Raywat Tanadkithirun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, the problem that squirrels ruin durian, which is an economical fruit in Thailand, is considered. We seek the strategy for the durian farmers to eliminate the squirrels under the consideration that squirrels also provide ecosystem service. The population dynamics of squirrels are constructed to have carrying capacity since we consider the population in a confined area. A performance index indicating the total benefit of a given elimination strategy is provided. It comprises the cost of countermeasures, the loss of resources, and the ecosystem service provided by squirrels. The optimal performance index is numerically solved through the variational inequality using the finite difference method. The optimal strategy to control the squirrel population is also given numerically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=controlled%20stochastic%20differential%20equation" title="controlled stochastic differential equation">controlled stochastic differential equation</a>, <a href="https://publications.waset.org/abstracts/search?q=durian" title=" durian"> durian</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20difference%20method" title=" finite difference method"> finite difference method</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20index" title=" performance index"> performance index</a>, <a href="https://publications.waset.org/abstracts/search?q=singular%20stochastic%20control%20model" title=" singular stochastic control model"> singular stochastic control model</a>, <a href="https://publications.waset.org/abstracts/search?q=squirrel" title=" squirrel"> squirrel</a> </p> <a href="https://publications.waset.org/abstracts/155950/singular-stochastic-control-model-with-carrying-capacity-of-population-management-policy-for-squirrels-in-durian-orchards" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1212</span> The Logistics Equation and Fractal Dimension in Escalators Operations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Albadri">Ali Albadri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The logistics equation has never been used or studied in scientific fields outside the field of ecology. It has never been used to understand the behavior of a dynamic system of mechanical machines, like an escalator. We have studied the compatibility of the logistic map against real measurements from an escalator. This study has proven that there is good compatibility between the logistics equation and the experimental measurements. It has discovered the potential of a relationship between the fractal dimension and the non-linearity parameter, R, in the logistics equation. The fractal dimension increases as the R parameter (non-linear parameter) increases. It implies that the fractal dimension increases as the phase of the life span of the machine move from the steady/stable phase to the periodic double phase to a chaotic phase. The fractal dimension and the parameter R can be used as a tool to verify and check the health of machines. We have come up with a theory that there are three areas of behaviors, which they can be classified during the life span of a machine, a steady/stable stage, a periodic double stage, and a chaotic stage. The level of attention to the machine differs depending on the stage that the machine is in. The rate of faults in a machine increases as the machine moves through these three stages. During the double period and the chaotic stages, the number of faults starts to increase and become less predictable. The rate of predictability improves as our monitoring of the changes in the fractal dimension and the parameter R improves. The principles and foundations of our theory in this work have and will have a profound impact on the design of systems, on the way of operation of systems, and on the maintenance schedules of the systems. The systems can be mechanical, electrical, or electronic. The discussed methodology in this paper will give businesses the chance to be more careful at the design stage and planning for maintenance to control costs. The findings in this paper can be implied and used to correlate the three stages of a mechanical system to more in-depth mechanical parameters like wear and fatigue life. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=logistcs%20map" title="logistcs map">logistcs map</a>, <a href="https://publications.waset.org/abstracts/search?q=bifurcation%20map" title=" bifurcation map"> bifurcation map</a>, <a href="https://publications.waset.org/abstracts/search?q=fractal%20dimension" title=" fractal dimension"> fractal dimension</a>, <a href="https://publications.waset.org/abstracts/search?q=logistics%20equation" title=" logistics equation"> logistics equation</a> </p> <a href="https://publications.waset.org/abstracts/155661/the-logistics-equation-and-fractal-dimension-in-escalators-operations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155661.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1211</span> Vibration of Nanobeam Subjected to Constant Magnetic Field and Ramp-Type Thermal Loading under Non-Fourier Heat Conduction Law of Lord-Shulman</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamdy%20M.%20Youssef">Hamdy M. Youssef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, the usual Euler–Bernoulli nanobeam has been modeled in the context of Lord-Shulman thermoelastic theorem, which contains non-Fourier heat conduction law. The nanobeam has been subjected to a constant magnetic field and ramp-type thermal loading. The Laplace transform definition has been applied to the governing equations, and the solutions have been obtained by using a direct approach. The inversions of the Laplace transform have been calculated numerically by using Tzou approximation method. The solutions have been applied to a nanobeam made of silicon nitride. The distributions of the temperature increment, lateral deflection, strain, stress, and strain-energy density have been represented in figures with different values of the magnetic field intensity and ramp-time heat parameter. The value of the magnetic field intensity and ramp-time heat parameter have significant effects on all the studied functions, and they could be used as tuners to control the energy which has been generated through the nanobeam. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanobeam" title="nanobeam">nanobeam</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration" title=" vibration"> vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=constant%20magnetic%20field" title=" constant magnetic field"> constant magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=ramp-type%20thermal%20loading" title=" ramp-type thermal loading"> ramp-type thermal loading</a>, <a href="https://publications.waset.org/abstracts/search?q=non-Fourier%20heat%20conduction%20law" title=" non-Fourier heat conduction law"> non-Fourier heat conduction law</a> </p> <a href="https://publications.waset.org/abstracts/155279/vibration-of-nanobeam-subjected-to-constant-magnetic-field-and-ramp-type-thermal-loading-under-non-fourier-heat-conduction-law-of-lord-shulman" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155279.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1210</span> The Analysis of the Two Dimensional Huxley Equation Using the Galerkin Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pius%20W.%20Molo%20Chin">Pius W. Molo Chin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Real life problems such as the Huxley equation are always modeled as nonlinear differential equations. These problems need accurate and reliable methods for their solutions. In this paper, we propose a nonstandard finite difference method in time and the Galerkin combined with the compactness method in the space variables. This coupled method, is used to analyze a two dimensional Huxley equation for the existence and uniqueness of the continuous solution of the problem in appropriate spaces to be defined. We proceed to design a numerical scheme consisting of the aforementioned method and show that the scheme is stable. We further show that the stable scheme converges with the rate which is optimal in both the L2 as well as the H1-norms. Furthermore, we show that the scheme replicates the decaying qualities of the exact solution. Numerical experiments are presented with the help of an example to justify the validity of the designed scheme. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huxley%20equations" title="Huxley equations">Huxley equations</a>, <a href="https://publications.waset.org/abstracts/search?q=non-standard%20finite%20difference%20method" title=" non-standard finite difference method"> non-standard finite difference method</a>, <a href="https://publications.waset.org/abstracts/search?q=Galerkin%20method" title=" Galerkin method"> Galerkin method</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20rate%20of%20convergence" title=" optimal rate of convergence"> optimal rate of convergence</a> </p> <a href="https://publications.waset.org/abstracts/155210/the-analysis-of-the-two-dimensional-huxley-equation-using-the-galerkin-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1209</span> Spatially Encoded Hyperspectral Compressive Microscope for Broadband VIS/NIR Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luk%C3%A1%C5%A1%20Klein">Lukáš Klein</a>, <a href="https://publications.waset.org/abstracts/search?q=Karel%20%C5%BD%C3%ADdek"> Karel Žídek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hyperspectral imaging counts among the most frequently used multidimensional sensing methods. While there are many approaches to capturing a hyperspectral data cube, optical compression is emerging as a valuable tool to reduce the setup complexity and the amount of data storage needed. Hyperspectral compressive imagers have been created in the past; however, they have primarily focused on relatively narrow sections of the electromagnetic spectrum. A broader spectral study of samples can provide helpful information, especially for applications involving the harmonic generation and advanced material characterizations. We demonstrate a broadband hyperspectral microscope based on the single-pixel camera principle. Captured spatially encoded data are processed to reconstruct a hyperspectral cube in a combined visible and near-infrared spectrum (from 400 to 2500 nm). Hyperspectral cubes can be reconstructed with a spectral resolution of up to 3 nm and spatial resolution of up to 7 µm (subject to diffraction) with a high compressive ratio. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20imaging" title="compressive imaging">compressive imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperspectral%20imaging" title=" hyperspectral imaging"> hyperspectral imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=near-infrared%20spectrum" title=" near-infrared spectrum"> near-infrared spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=single-pixel%20camera" title=" single-pixel camera"> single-pixel camera</a>, <a href="https://publications.waset.org/abstracts/search?q=visible%20spectrum" title=" visible spectrum"> visible spectrum</a> </p> <a href="https://publications.waset.org/abstracts/155053/spatially-encoded-hyperspectral-compressive-microscope-for-broadband-visnir-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155053.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1208</span> The Duties of the Immortals and the Name of Anauša or Anušiya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Behzad%20Moeini%20Sam">Behzad Moeini Sam</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Mohammadi%20Avandi"> Sara Mohammadi Avandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the reasons for the success of the Achaemenids was the innovation and precise organization used in the administrative and military fields. Of course, these organizations had their roots in the previous governments that had changed in these borrowings. The units of the Achaemenid army are also among the cases that have their origins in the ancient East. In this article, the attempt is to find the sources of the Immortal Army based on the writings of old and current authors and archaeological documents, and the name mentioned by Herodotus and rejected by some authors. Of course, linguistic sources have also been used for better conclusions than the indicated sources. It emphasizes linguistic data to lead to a better deduction. Thus, it was included that ‘anauša’ is more probable than anušiya. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=army" title="army">army</a>, <a href="https://publications.waset.org/abstracts/search?q=immortal" title=" immortal"> immortal</a>, <a href="https://publications.waset.org/abstracts/search?q=ten%20thousand" title=" ten thousand"> ten thousand</a>, <a href="https://publications.waset.org/abstracts/search?q=Anau%C5%A1a" title=" Anauša"> Anauša</a>, <a href="https://publications.waset.org/abstracts/search?q=Anu%C5%A1iya" title=" Anušiya"> Anušiya</a> </p> <a href="https://publications.waset.org/abstracts/155000/the-duties-of-the-immortals-and-the-name-of-anausa-or-anusiya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1207</span> Artificial Intelligence Technologies Used in Healthcare: Its Implication on the Healthcare Workforce and Applications in the Diagnosis of Diseases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rowanda%20Daoud%20Ahmed">Rowanda Daoud Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mansoor%20Abdulhak"> Mansoor Abdulhak</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Azeem%20Afzal"> Muhammad Azeem Afzal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sezer%20Filiz"> Sezer Filiz</a>, <a href="https://publications.waset.org/abstracts/search?q=Usama%20Ahmad%20Mughal"> Usama Ahmad Mughal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses important aspects of AI in the healthcare domain. The increase of data in healthcare both in size and complexity, opens more room for artificial intelligence applications. Our focus is to review the main AI methods within the scope of the health care domain. The results of the review show that recommendations for diagnosis and recommendations for treatment, patent engagement, and administrative tasks are the key applications of AI in healthcare. Understanding the potential of AI methods in the domain of healthcare would benefit healthcare practitioners and will improve patient outcomes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AI%20in%20healthcare" title="AI in healthcare">AI in healthcare</a>, <a href="https://publications.waset.org/abstracts/search?q=technologies%20of%20AI" title=" technologies of AI"> technologies of AI</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=future%20of%20AI%20in%20healthcare" title=" future of AI in healthcare"> future of AI in healthcare</a> </p> <a href="https://publications.waset.org/abstracts/154786/artificial-intelligence-technologies-used-in-healthcare-its-implication-on-the-healthcare-workforce-and-applications-in-the-diagnosis-of-diseases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154786.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1206</span> Finding Data Envelopment Analysis Targets Using Multi-Objective Programming in DEA-R with Stochastic Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Shamsi">R. Shamsi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Sharifi"> F. Sharifi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we obtain the projection of inefficient units in data envelopment analysis (DEA) in the case of stochastic inputs and outputs using the multi-objective programming (MOP) structure. In some problems, the inputs might be stochastic while the outputs are deterministic, and vice versa. In such cases, we propose a multi-objective DEA-R model because in some cases (e.g., when unnecessary and irrational weights by the BCC model reduce the efficiency score), an efficient decision-making unit (DMU) is introduced as inefficient by the BCC model, whereas the DMU is considered efficient by the DEA-R model. In some other cases, only the ratio of stochastic data may be available (e.g., the ratio of stochastic inputs to stochastic outputs). Thus, we provide a multi-objective DEA model without explicit outputs and prove that the input-oriented MOP DEA-R model in the invariable return to scale case can be replaced by the MOP-DEA model without explicit outputs in the variable return to scale and vice versa. Using the interactive methods for solving the proposed model yields a projection corresponding to the viewpoint of the DM and the analyst, which is nearer to reality and more practical. Finally, an application is provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DEA-R" title="DEA-R">DEA-R</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective%20programming" title=" multi-objective programming"> multi-objective programming</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20data" title=" stochastic data"> stochastic data</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20envelopment%20analysis" title=" data envelopment analysis"> data envelopment analysis</a> </p> <a href="https://publications.waset.org/abstracts/154613/finding-data-envelopment-analysis-targets-using-multi-objective-programming-in-dea-r-with-stochastic-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1205</span> Evolution under Length Constraints for Convolutional Neural Networks Architecture Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ousmane%20Youme">Ousmane Youme</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean%20Marie%20Dembele"> Jean Marie Dembele</a>, <a href="https://publications.waset.org/abstracts/search?q=Eugene%20Ezin"> Eugene Ezin</a>, <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Cambier"> Christophe Cambier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the convolutional neural networks (CNN) architectures designed by evolution algorithms have proven to be competitive with handcrafted architectures designed by experts. However, these algorithms need a lot of computational power, which is beyond the capabilities of most researchers and engineers. To overcome this problem, we propose an evolution architecture under length constraints. It consists of two algorithms: a search length strategy to find an optimal space and a search architecture strategy based on a genetic algorithm to find the best individual in the optimal space. Our algorithms drastically reduce resource costs and also keep good performance. On the Cifar-10 dataset, our framework presents outstanding performance with an error rate of 5.12% and only 4.6 GPU a day to converge to the optimal individual -22 GPU a day less than the lowest cost automatic evolutionary algorithm in the peer competition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CNN%20architecture" title="CNN architecture">CNN architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=evolution%20algorithm" title=" evolution algorithm"> evolution algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=length%20constraints" title=" length constraints"> length constraints</a> </p> <a href="https://publications.waset.org/abstracts/154373/evolution-under-length-constraints-for-convolutional-neural-networks-architecture-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154373.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1204</span> Integral Domains and Alexandroff Topology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shai%20Sarussi">Shai Sarussi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Let S be an integral domain which is not a field, let F be its field of fractions, and let A be an F-algebra. An S-subalgebra R of A is called S-nice if R ∩ F = S and F R = A. A topological space whose set of open sets is closed under arbitrary intersections is called an Alexandroff space. Inspired by the well-known Zariski-Riemann space and the Zariski topology on the set of prime ideals of a commutative ring, we define a topology on the set of all S-nice subalgebras of A. Consequently, we get an interplay between Algebra and topology, that gives us a better understanding of the S-nice subalgebras of A. It is shown that every irreducible subset of S-nice subalgebras of A has a supremum; and a characterization of the irreducible components is given, in terms of maximal S-nice subalgebras of A. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexandroff%20topology" title="Alexandroff topology">Alexandroff topology</a>, <a href="https://publications.waset.org/abstracts/search?q=integral%20domains" title=" integral domains"> integral domains</a>, <a href="https://publications.waset.org/abstracts/search?q=Zariski-Riemann%20space" title=" Zariski-Riemann space"> Zariski-Riemann space</a>, <a href="https://publications.waset.org/abstracts/search?q=S-nice%20subalgebras" title=" S-nice subalgebras"> S-nice subalgebras</a> </p> <a href="https://publications.waset.org/abstracts/154343/integral-domains-and-alexandroff-topology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154343.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1203</span> A Comparison of Methods for Estimating Dichotomous Treatment Effects: A Simulation Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jacqueline%20Y.%20Thompson">Jacqueline Y. Thompson</a>, <a href="https://publications.waset.org/abstracts/search?q=Sam%20Watson"> Sam Watson</a>, <a href="https://publications.waset.org/abstracts/search?q=Lee%20Middleton"> Lee Middleton</a>, <a href="https://publications.waset.org/abstracts/search?q=Karla%20Hemming"> Karla Hemming</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: The odds ratio (estimated via logistic regression) is a well-established and common approach for estimating covariate-adjusted binary treatment effects when comparing a treatment and control group with dichotomous outcomes. Its popularity is primarily because of its stability and robustness to model misspecification. However, the situation is different for the relative risk and risk difference, which are arguably easier to interpret and better suited to specific designs such as non-inferiority studies. So far, there is no equivalent, widely acceptable approach to estimate an adjusted relative risk and risk difference when conducting clinical trials. This is partly due to the lack of a comprehensive evaluation of available candidate methods. Methods/Approach: A simulation study is designed to evaluate the performance of relevant candidate methods to estimate relative risks to represent conditional and marginal estimation approaches. We consider the log-binomial, generalised linear models (GLM) with iteratively weighted least-squares (IWLS) and model-based standard errors (SE); log-binomial GLM with convex optimisation and model-based SEs; log-binomial GLM with convex optimisation and permutation tests; modified-Poisson GLM IWLS and robust SEs; log-binomial generalised estimation equations (GEE) and robust SEs; marginal standardisation and delta method SEs; and marginal standardisation and permutation test SEs. Independent and identically distributed datasets are simulated from a randomised controlled trial to evaluate these candidate methods. Simulations are replicated 10000 times for each scenario across all possible combinations of sample sizes (200, 1000, and 5000), outcomes (10%, 50%, and 80%), and covariates (ranging from -0.05 to 0.7) representing weak, moderate or strong relationships. Treatment effects (ranging from 0, -0.5, 1; on the log-scale) will consider null (H0) and alternative (H1) hypotheses to evaluate coverage and power in realistic scenarios. Performance measures (bias, mean square error (MSE), relative efficiency, and convergence rates) are evaluated across scenarios covering a range of sample sizes, event rates, covariate prognostic strength, and model misspecifications. Potential Results, Relevance & Impact: There are several methods for estimating unadjusted and adjusted relative risks. However, it is unclear which method(s) is the most efficient, preserves type-I error rate, is robust to model misspecification, or is the most powerful when adjusting for non-prognostic and prognostic covariates. GEE estimations may be biased when the outcome distributions are not from marginal binary data. Also, it seems that marginal standardisation and convex optimisation may perform better than GLM IWLS log-binomial. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binary%20outcomes" title="binary outcomes">binary outcomes</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20methods" title=" statistical methods"> statistical methods</a>, <a href="https://publications.waset.org/abstracts/search?q=clinical%20trials" title=" clinical trials"> clinical trials</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20study" title=" simulation study"> simulation study</a> </p> <a href="https://publications.waset.org/abstracts/154314/a-comparison-of-methods-for-estimating-dichotomous-treatment-effects-a-simulation-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154314.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1202</span> Large Neural Networks Learning From Scratch With Very Few Data and Without Explicit Regularization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christoph%20Linse">Christoph Linse</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Martinetz"> Thomas Martinetz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent findings have shown that Neural Networks generalize also in over-parametrized regimes with zero training error. This is surprising, since it is completely against traditional machine learning wisdom. In our empirical study we fortify these findings in the domain of fine-grained image classification. We show that very large Convolutional Neural Networks with millions of weights do learn with only a handful of training samples and without image augmentation, explicit regularization or pretraining. We train the architectures ResNet018, ResNet101 and VGG19 on subsets of the difficult benchmark datasets Caltech101, CUB_200_2011, FGVCAircraft, Flowers102 and StanfordCars with 100 classes and more, perform a comprehensive comparative study and draw implications for the practical application of CNNs. Finally, we show that VGG19 with 140 million weights learns to distinguish airplanes and motorbikes with up to 95% accuracy using only 20 training samples per class. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20networks" title="convolutional neural networks">convolutional neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=fine-grained%20image%20classification" title=" fine-grained image classification"> fine-grained image classification</a>, <a href="https://publications.waset.org/abstracts/search?q=generalization" title=" generalization"> generalization</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20recognition" title=" image recognition"> image recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=over-parameterized" title=" over-parameterized"> over-parameterized</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20data%20sets" title=" small data sets"> small data sets</a> </p> <a href="https://publications.waset.org/abstracts/154011/large-neural-networks-learning-from-scratch-with-very-few-data-and-without-explicit-regularization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1201</span> Mostar Type Indices and QSPR Analysis of Octane Isomers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Roopa%20Sri">B. Roopa Sri</a>, <a href="https://publications.waset.org/abstracts/search?q=Y%20Lakshmi%20Naidu"> Y Lakshmi Naidu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chemical Graph Theory (CGT) is the branch of mathematical chemistry in which molecules are modeled to study their physicochemical properties using molecular descriptors. Amongst these descriptors, topological indices play a vital role in predicting the properties by defining the graph topology of the molecule. Recently, the bond-additive topological index known as the Mostar index has been proposed. In this paper, we compute the Mostar-type indices of octane isomers and use the data obtained to perform QSPR analysis. Furthermore, we show the correlation between the Mostar type indices and the properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20graph%20theory" title="chemical graph theory">chemical graph theory</a>, <a href="https://publications.waset.org/abstracts/search?q=mostar%20type%20indices" title=" mostar type indices"> mostar type indices</a>, <a href="https://publications.waset.org/abstracts/search?q=octane%20isomers" title=" octane isomers"> octane isomers</a>, <a href="https://publications.waset.org/abstracts/search?q=qspr%20analysis" title=" qspr analysis"> qspr analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=topological%20index" title=" topological index"> topological index</a> </p> <a href="https://publications.waset.org/abstracts/153959/mostar-type-indices-and-qspr-analysis-of-octane-isomers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153959.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1200</span> Solving Mean Field Problems: A Survey of Numerical Methods and Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amal%20Machtalay">Amal Machtalay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this survey, we aim to review the rapidly growing literature on numerical methods to solve different forms of mean field problems, namely mean field games (MFG), mean field controls (MFC), potential MFGs, and master equations, as well as their corresponding recent applications. Here, we distinguish two families of numerical methods: iterative methods based on mesh generation and those called mesh-free, normally related to neural networking and learning frameworks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mean-field%20games" title="mean-field games">mean-field games</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20schemes" title=" numerical schemes"> numerical schemes</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20differential%20equations" title=" partial differential equations"> partial differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20systems" title=" complex systems"> complex systems</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/153744/solving-mean-field-problems-a-survey-of-numerical-methods-and-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153744.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1199</span> Parallel Random Number Generation for the Modern Supercomputer Architectures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roman%20Snytsar">Roman Snytsar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pseudo-random numbers are often used in scientific computing such as the Monte Carlo Simulations or the Quantum Inspired Optimization. Requirements for a parallel random number generator running in the modern multi-core vector environment are more stringent than those for sequential random number generators. As well as passing the usual quality tests, the output of the parallel random number generator must be verifiable and reproducible throughout the concurrent execution. We propose a family of vectorized Permuted Congruential Generators. Implementations are available for multiple modern vector modern computer architectures. Besides demonstrating good single core performance, the generators scale easily across many processor cores and multiple distributed nodes. We provide performance and parallel speedup analysis and comparisons between the implementations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pseudo-random%20numbers" title="pseudo-random numbers">pseudo-random numbers</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20optimization" title=" quantum optimization"> quantum optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=SIMD" title=" SIMD"> SIMD</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20computing" title=" parallel computing"> parallel computing</a> </p> <a href="https://publications.waset.org/abstracts/152951/parallel-random-number-generation-for-the-modern-supercomputer-architectures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1198</span> Modified Form of Margin Based Angular Softmax Loss for Speaker Verification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jamshaid%20ul%20Rahman">Jamshaid ul Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Akhter%20Ali"> Akhter Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Adnan%20Manzoor"> Adnan Manzoor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Learning-based systems have received increasing interest in recent years; recognition structures, including end-to-end speak recognition, are one of the hot topics in this area. A famous work on end-to-end speaker verification by using Angular Softmax Loss gained significant importance and is considered useful to directly trains a discriminative model instead of the traditional adopted i-vector approach. The margin-based strategy in angular softmax is beneficial to learn discriminative speaker embeddings where the random selection of margin values is a big issue in additive angular margin and multiplicative angular margin. As a better solution in this matter, we present an alternative approach by introducing a bit similar form of an additive parameter that was originally introduced for face recognition, and it has a capacity to adjust automatically with the corresponding margin values and is applicable to learn more discriminative features than the Softmax. Experiments are conducted on the part of Fisher dataset, where it observed that the additive parameter with angular softmax to train the front-end and probabilistic linear discriminant analysis (PLDA) in the back-end boosts the performance of the structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20parameter" title="additive parameter">additive parameter</a>, <a href="https://publications.waset.org/abstracts/search?q=angular%20softmax" title=" angular softmax"> angular softmax</a>, <a href="https://publications.waset.org/abstracts/search?q=speaker%20verification" title=" speaker verification"> speaker verification</a>, <a href="https://publications.waset.org/abstracts/search?q=PLDA" title=" PLDA"> PLDA</a> </p> <a href="https://publications.waset.org/abstracts/152915/modified-form-of-margin-based-angular-softmax-loss-for-speaker-verification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152915.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/mathematical-and-computational-sciences?page=7" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/mathematical-and-computational-sciences?page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/mathematical-and-computational-sciences?page=2">2</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/mathematical-and-computational-sciences?page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/mathematical-and-computational-sciences?page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/mathematical-and-computational-sciences?page=7">7</a></li> <li class="page-item active"><span class="page-link">8</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/mathematical-and-computational-sciences?page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/mathematical-and-computational-sciences?page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/mathematical-and-computational-sciences?page=11">11</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/mathematical-and-computational-sciences?page=47">47</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/mathematical-and-computational-sciences?page=48">48</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/mathematical-and-computational-sciences?page=9" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>