CINXE.COM
Search results for: electric propulsion system
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: electric propulsion system</title> <meta name="description" content="Search results for: electric propulsion system"> <meta name="keywords" content="electric propulsion system"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="electric propulsion system" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="electric propulsion system"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 18466</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: electric propulsion system</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18466</span> The LIP’s Electric Propulsion Development for Chinese Spacecraft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Tianping">Zhang Tianping</a>, <a href="https://publications.waset.org/abstracts/search?q=Jia%20Yanhui"> Jia Yanhui</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Juan"> Li Juan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Le"> Yang Le</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Hao"> Yang Hao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Wei"> Yang Wei</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun%20Xiaojing"> Sun Xiaojing</a>, <a href="https://publications.waset.org/abstracts/search?q=Shi%20Kai"> Shi Kai</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Xingda"> Li Xingda</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun%20Yunkui"> Sun Yunkui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lanzhou Institute of Physics (LIP) is the major supplier of electric propulsion subsystems for Chinese satellite platforms. The development statuses of these electric propulsion subsystems were summarized including the LIPS-200 ion electric propulsion subsystem (IEPS) for DFH-3B platform, the LIPS-300 IEPS for DFH-5 and DFH-4SP platform, the LIPS-200+ IEPS for DFH-4E platform and near-earth asteroid exploration spacecraft, the LIPS-100 IEPS for small satellite platform, the LHT-100 hall electric propulsion subsystem (HEPS) for flight test on XY-2 satellite, the LHT-140 HEPS for large LEO spacecraft, the LIPS-400 IEPS for deep space exploration mission and other EPS for other Chinese spacecraft. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ion%20electric%20propulsion" title="ion electric propulsion">ion electric propulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=hall%20electric%20propulsion" title=" hall electric propulsion"> hall electric propulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20platform" title=" satellite platform"> satellite platform</a>, <a href="https://publications.waset.org/abstracts/search?q=LIP" title=" LIP"> LIP</a> </p> <a href="https://publications.waset.org/abstracts/39136/the-lips-electric-propulsion-development-for-chinese-spacecraft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39136.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">728</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18465</span> Electric Propulsion System Development for High Floor Trolley Bus </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asep%20Andi%20Suryandi">Asep Andi Suryandi</a>, <a href="https://publications.waset.org/abstracts/search?q=Katri%20Yulianto"> Katri Yulianto</a>, <a href="https://publications.waset.org/abstracts/search?q=Dewi%20Rianti%20Mandasari"> Dewi Rianti Mandasari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of environmentally friendly vehicles increasingly attracted the attention of almost all countries in the world, including Indonesia. There are various types of environmentally friendly vehicles, such as: electric vehicles, hybrid, and fuel gas. The Electric vehicle has been developed in Indonesia, a private or public vehicle. But many electric vehicles had been developed using the battery as a power source, while the battery technology for electric vehicles still constraints in capacity, dimensions of the battery itself and charging system. Trolley bus is one of the electric buses with the main power source of the network catenary / overhead line with trolley pole as the point of contact. This paper will discuss the design and manufacture electrical system in Trolleybus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=trolley%20bus" title="trolley bus">trolley bus</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20propulsion%20system" title=" electric propulsion system"> electric propulsion system</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacture" title=" manufacture"> manufacture</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title=" electric vehicle"> electric vehicle</a> </p> <a href="https://publications.waset.org/abstracts/71367/electric-propulsion-system-development-for-high-floor-trolley-bus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18464</span> Electric Propulsion Systems in Aerospace Applications - Energy Balance Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Tulwin">T. Tulwin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20G%C4%99ca"> M. Gęca</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Sochaczewski"> R. Sochaczewski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent improvements in electric propulsion systems and energy storage systems allow for the electrification of many sectors where it was previously not feasible. This analysis proves the feasibility of electric propulsion in aviation applications reviewing recent energy storage developments. It can be more quiet, energy efficient and more environmentally friendly. Numerical simulations were done to prove that energy efficiency can be improved for rotorcrafts especially in hover conditions. New types of aircraft configurations are reviewed and future trends are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aircraft" title="aircraft">aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=propulsion" title=" propulsion "> propulsion </a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a> </p> <a href="https://publications.waset.org/abstracts/106678/electric-propulsion-systems-in-aerospace-applications-energy-balance-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106678.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18463</span> Research of the Rotation Magnetic Field Current Driven Effect on Pulsed Plasmoid Acceleration of Electric Propulsion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=X.%20F.%20Sun">X. F. Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=X.%20D.%20Wen"> X. D. Wen</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20J.%20Liu"> L. J. Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20C.%20Wu"> C. C. Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20H.%20Jia"> Y. H. Jia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The field reversed closed magnetic field configuration plasmoid has a potential for large thrust and high power propulsion missions such as deep space exploration due to its high plasma density and larger azimuthal current, which will be a most competitive program for the next generation electric propulsion technology. Moreover, without the electrodes, it also has a long lifetime. Thus, the research on this electric propulsion technology is quite necessary. The plasmoid will be formatted and accelerated by applying a rotation magnetic field (RMF) method. And, the essence of this technology lies on the generation of the azimuthal electron currents driven by RMF. Therefore, the effect of RMF current on the plasmoid acceleration efficiency is a concerned problem. In the paper, the influences of the penetration process of RMF in plasma, the relations of frequency and amplitude of input RF power with current strength and the RMF antenna configuration on the plasmoid acceleration efficiency will be given by a two-fluid numerical simulation method. The results show that the radio-frequency and input power have remarkable influence on the formation and acceleration of plasmoid. These results will provide useful advice for the development, and optimized designing of field reversed configuration plasmoid thruster. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rotation%20magnetic%20field" title="rotation magnetic field">rotation magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=current%20driven" title=" current driven"> current driven</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20penetration" title=" plasma penetration"> plasma penetration</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20propulsion" title=" electric propulsion"> electric propulsion</a> </p> <a href="https://publications.waset.org/abstracts/102126/research-of-the-rotation-magnetic-field-current-driven-effect-on-pulsed-plasmoid-acceleration-of-electric-propulsion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102126.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18462</span> Using The Flight Heritage From >150 Electric Propulsion Systems To Design The Next Generation Field Emission Electric Propulsion Thrusters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20Krejci">David Krejci</a>, <a href="https://publications.waset.org/abstracts/search?q=Tony%20Sch%C3%B6nherr"> Tony Schönherr</a>, <a href="https://publications.waset.org/abstracts/search?q=Quirin%20Koch"> Quirin Koch</a>, <a href="https://publications.waset.org/abstracts/search?q=Valentin%20Hugonnaud"> Valentin Hugonnaud</a>, <a href="https://publications.waset.org/abstracts/search?q=Lou%20Grimaud"> Lou Grimaud</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Reissner"> Alexander Reissner</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernhard%20Seifert"> Bernhard Seifert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In 2018 the NANO thruster became the first Field Emission Electric Propulsion (FEEP) system ever to be verified in space in an In-Orbit Demonstration mission conducted together with Fotec. Since then, 160 additional ENPULSION NANO propulsion systems have been deployed in orbit on 73 different spacecraft across multiple customers and missions. These missions included a variety of different satellite bus sizes ranging from 3U Cubesats to >100kg buses, and different orbits in Low Earth Orbit and Geostationary Earth orbit, providing an abundance of on orbit data for statistical analysis. This large-scale industrialization and flight heritage allows for a holistic way of gathering data from testing, integration and operational phases, deriving lessons learnt over a variety of different mission types, operator approaches, use cases and environments. Based on these lessons learnt a new generation of propulsion systems is developed, addressing key findings from the large NANO heritage and adding new capabilities, including increased resilience, thrust vector steering and increased power and thrust level. Some of these successor products have already been validated in orbit, including the MICRO R3 and the NANO AR3. While the MICRO R3 features increased power and thrust level, the NANO AR3 is a successor of the heritage NANO thruster with added thrust vectoring capability. 5 NANO AR3 have been launched to date on two different spacecraft. This work presents flight telemetry data of ENPULSION NANO systems and onorbit statistical data of the ENPULSION NANO as well as lessons learnt during onorbit operations, customer assembly, integration and testing support and ground test campaigns conducted at different facilities. We discuss how transfer of lessons learnt and operational improvement across independent missions across customers has been accomplished. Building on these learnings and exhaustive heritage, we present the design of the new generation of propulsion systems that increase the power and thrust level of FEEP systems to address larger spacecraft buses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FEEP" title="FEEP">FEEP</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20emission%20electric%20propulsion" title=" field emission electric propulsion"> field emission electric propulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20propulsion" title=" electric propulsion"> electric propulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=flight%20heritage" title=" flight heritage"> flight heritage</a> </p> <a href="https://publications.waset.org/abstracts/167767/using-the-flight-heritage-from-150-electric-propulsion-systems-to-design-the-next-generation-field-emission-electric-propulsion-thrusters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167767.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18461</span> Solar Electric Propulsion: The Future of Deep Space Exploration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20Sharma">Abhishek Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnab%20Banerjee"> Arnab Banerjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research is intended to study the solar electric propulsion (SEP) technology for planetary missions. The main benefits of using solar electric propulsion for such missions are shorter flight times, more frequent target accessibility and the use of a smaller launch vehicle than that required by a comparable chemical propulsion mission. Energized by electric power from on-board solar arrays, the electrically propelled system uses 10 times less propellant than conventional chemical propulsion system, yet the reduced fuel mass can provide vigorous power which is capable of propelling robotic and crewed missions beyond the Lower Earth Orbit (LEO). The various thrusters used in the SEP are gridded ion thrusters and the Hall Effect thrusters. The research is solely aimed to study the ion thrusters and investigate the complications related to it and what can be done to overcome the glitches. The ion thrusters are used because they are found to have a total lower propellant requirement and have substantially longer time. In the ion thrusters, the anode pushes or directs the incoming electrons from the cathode. But the anode is not maintained at a very high potential which leads to divergence. Divergence leads to the charges interacting against the surface of the thruster. Just as the charges ionize the xenon gases, they are capable of ionizing the surfaces and over time destroy the surface and hence contaminate it. Hence the lifetime of thruster gets limited. So a solution to this problem is using substances which are not easy to ionize as the surface material. Another approach can be to increase the potential of anode so that the electrons don’t deviate much or reduce the length of thruster such that the positive anode is more effective. The aim is to work on these aspects as to how constriction of the deviation of charges can be done by keeping the input power constant and hence increase the lifetime of the thruster. Predominantly ring cusp magnets are used in the ion thrusters. However, the study is also intended to observe the effect of using solenoid for producing micro-solenoidal magnetic field apart from using the ring cusp magnetic field which are used in the discharge chamber for prevention of interaction of electrons with the ionization walls. Another foremost area of interest is what are the ways by which power can be provided to the Solar Electric Propulsion Vehicle for lowering and boosting the orbit of the spacecraft and also provide substantial amount of power to the solenoid for producing stronger magnetic fields. This can be successfully achieved by using the concept of Electro-dynamic tether which will serve as a power source for powering both the vehicle and the solenoids in the ion thruster and hence eliminating the need for carrying extra propellant on the spacecraft which will reduce the weight and hence reduce the cost of space propulsion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electro-dynamic%20tether" title="electro-dynamic tether">electro-dynamic tether</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20thruster" title=" ion thruster"> ion thruster</a>, <a href="https://publications.waset.org/abstracts/search?q=lifetime%20of%20thruster" title=" lifetime of thruster"> lifetime of thruster</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20electric%20propulsion%20vehicle" title=" solar electric propulsion vehicle"> solar electric propulsion vehicle</a> </p> <a href="https://publications.waset.org/abstracts/76778/solar-electric-propulsion-the-future-of-deep-space-exploration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18460</span> Experimental Investigation of Hull Form for Electric Driven Ferry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vasilij%20Djackov">Vasilij Djackov</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomas%20Zapnickas"> Tomas Zapnickas</a>, <a href="https://publications.waset.org/abstracts/search?q=Evgenii%20Iamshchikov"> Evgenii Iamshchikov</a>, <a href="https://publications.waset.org/abstracts/search?q=Lukas%20Norkevicius"> Lukas Norkevicius</a>, <a href="https://publications.waset.org/abstracts/search?q=Rima%20Mickeviciene"> Rima Mickeviciene</a>, <a href="https://publications.waset.org/abstracts/search?q=Larisa%20Vasiljeva"> Larisa Vasiljeva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the resistance and pitching values of the test of an electric ferry are presented. The research was carried out in the open flow channel of Klaipėda University with a multi-axis dynamometer. The received model resistance values were recalculated to the real vessel and the preliminary chosen propulsion unit power was compared. After analyzing the results of the pitching of the model, it was concluded that the shape of the hull needs to be further improved, taking into account the possible uneven weight distribution at the ends of the ferry. Further investigation of the hull of the electric ferry is recommended, including experiments with various water depths and activation of propulsion units. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20ferry" title="electrical ferry">electrical ferry</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20tests" title=" model tests"> model tests</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20flow%20channel" title=" open flow channel"> open flow channel</a>, <a href="https://publications.waset.org/abstracts/search?q=pitching" title=" pitching"> pitching</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance" title=" resistance"> resistance</a> </p> <a href="https://publications.waset.org/abstracts/159298/experimental-investigation-of-hull-form-for-electric-driven-ferry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18459</span> Emissions and Total Cost of Ownership Assessment of Hybrid Propulsion Concepts for Bus Transport with Compressed Natural Gases or Diesel Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Volker%20Landersheim">Volker Landersheim</a>, <a href="https://publications.waset.org/abstracts/search?q=Daria%20Manushyna"> Daria Manushyna</a>, <a href="https://publications.waset.org/abstracts/search?q=Thinh%20Pham"> Thinh Pham</a>, <a href="https://publications.waset.org/abstracts/search?q=Dai-Duong%20Tran"> Dai-Duong Tran</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Geury"> Thomas Geury</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20Hegazy"> Omar Hegazy</a>, <a href="https://publications.waset.org/abstracts/search?q=Steven%20Wilkins"> Steven Wilkins</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Air pollution is one of the emerging problems in our society. Targets of reduction of CO₂ emissions address low-carbon and resource-efficient transport. (Plug-in) hybrid electric propulsion concepts offer the possibility to reduce total cost of ownership (TCO) and emissions for public transport vehicles (e.g., bus application). In this context, typically, diesel engines are used to form the hybrid propulsion system of the vehicle. Though the technological development of diesel engines experience major advantages, some challenges such as the high amount of particle emissions remain relevant. Gaseous fuels (i.e., compressed natural gases (CNGs) or liquefied petroleum gases (LPGs) represent an attractive alternative to diesel because of their composition. In the framework of the research project 'Optimised Real-world Cost-Competitive Modular Hybrid Architecture' (ORCA), which was funded by the EU, two different hybrid-electric propulsion concepts have been investigated: one using a diesel engine as internal combustion engine and one using CNG as fuel. The aim of the current study is to analyze specific benefits for the aforementioned hybrid propulsion systems for predefined driving scenarios with regard to emissions and total cost of ownership in bus application. Engine models based on experimental data for diesel and CNG were developed. For the purpose of designing optimal energy management strategies for each propulsion system, maps-driven or quasi-static models for specific engine types are used in the simulation framework. An analogous modelling approach has been chosen to represent emissions. This paper compares the two concepts regarding their CO₂ and NOx emissions. This comparison is performed for relevant bus missions (urban, suburban, with and without zero-emission zone) and with different energy management strategies. In addition to the emissions, also the downsizing potential of the combustion engine has been analysed to minimize the powertrain TCO (pTCO) for plug-in hybrid electric buses. The results of the performed analyses show that the hybrid vehicle concept using the CNG engine shows advantages both with respect to emissions as well as to pTCO. The pTCO is 10% lower, CO₂ emissions are 13% lower, and the NOx emissions are more than 50% lower than with the diesel combustion engine. These results are consistent across all usage profiles under investigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bus%20transport" title="bus transport">bus transport</a>, <a href="https://publications.waset.org/abstracts/search?q=emissions" title=" emissions"> emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20propulsion" title=" hybrid propulsion"> hybrid propulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=pTCO" title=" pTCO"> pTCO</a>, <a href="https://publications.waset.org/abstracts/search?q=CNG" title=" CNG"> CNG</a> </p> <a href="https://publications.waset.org/abstracts/130126/emissions-and-total-cost-of-ownership-assessment-of-hybrid-propulsion-concepts-for-bus-transport-with-compressed-natural-gases-or-diesel-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130126.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18458</span> Development of Self-Reliant Satellite-Level Propulsion System by Using Hydrogen Peroxide Propellant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20J.%20Liu">H. J. Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20A.%20Chan"> Y. A. Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20K.%20Pai"> C. K. Pai</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20C.%20Tseng"> K. C. Tseng</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20H.%20Chen"> Y. H. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20L.%20Chan"> Y. L. Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20C.%20Kuo"> T. C. Kuo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To satisfy the mission requirement of the FORMOSAT-7 project, NSPO has initialized a self-reliant development on satellite propulsion technology. A trade-off study on different types of on-board propulsion system has been done. A green propellant, high-concentration hydrogen peroxide (H2O2 hereafter), is chosen in this research because it is ITAR-free, nontoxic and easy to produce. As the components designed for either cold gas or hydrazine propulsion system are not suitable for H2O2 propulsion system, the primary objective of the research is to develop the components compatible with H2O2. By cooperating with domestic research institutes and manufacturing vendors, several prototype components, including a diaphragm-type tank, pressure transducer, ball latching valve, and one-Newton thruster with catalyst bed, were manufactured, and the functional tests were performed successfully according to the mission requirements. The requisite environmental tests, including hot firing test, thermal vaccum test, vibration test and compatibility test, are prepared and will be to completed in the near future. To demonstrate the subsystem function, an Air-Bearing Thrust Stand (ABTS) and a real-time Data Acquisition & Control System (DACS) were implemented to assess the performance of the proposed H2O2 propulsion system. By measuring the distance that the thrust stand has traveled in a given time, the thrust force can be derived from the kinematics equation. To validate the feasibility of the approach, it is scheduled to assess the performance of a cold gas (N2) propulsion system prior to the H2O2 propulsion system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FORMOSAT-7" title="FORMOSAT-7">FORMOSAT-7</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20propellant" title=" green propellant"> green propellant</a>, <a href="https://publications.waset.org/abstracts/search?q=Hydrogen%20peroxide" title=" Hydrogen peroxide"> Hydrogen peroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=thruster" title=" thruster"> thruster</a> </p> <a href="https://publications.waset.org/abstracts/30721/development-of-self-reliant-satellite-level-propulsion-system-by-using-hydrogen-peroxide-propellant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30721.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18457</span> Propellant Less Propulsion System Using Microwave Thrusters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Pradeep%20Mitra">D. Pradeep Mitra</a>, <a href="https://publications.waset.org/abstracts/search?q=Prafulla"> Prafulla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Looking to the word propellant-less system it makes us to believe that it is an impossible one, but this paper demonstrates the use of microwaves to create a system which makes impossible to be possible, it means a propellant-less propulsion system using microwaves. In these thrusters, microwaves are radiated into a sealed parabolic cavity through a waveguide, which act on the surface of the cavity and follow the axis of the thrusters to produce thrust. The advantages of these thrusters are: (1) Producing thrust without propellant; without erosion, wear, and thermal stress from the hot exhaust gas; and at the same time increasing quality. (2) If the microwave output power is stable, the performance of thrusters is not affected by its working environment. This paper is demonstrated from general maxwell equations. These equations are used to create the mathematical model of the thrusters. These mathematical model helps us to calculate the Q factor and calculate the approximate thrust which would be generated in the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=propellant%20less" title="propellant less">propellant less</a>, <a href="https://publications.waset.org/abstracts/search?q=microwaves" title=" microwaves"> microwaves</a>, <a href="https://publications.waset.org/abstracts/search?q=parabolic%20wave%20guide" title=" parabolic wave guide"> parabolic wave guide</a>, <a href="https://publications.waset.org/abstracts/search?q=propulsion%20system" title=" propulsion system"> propulsion system</a> </p> <a href="https://publications.waset.org/abstracts/15925/propellant-less-propulsion-system-using-microwave-thrusters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18456</span> Rollet vs Rocket: A New in-Space Propulsion Concept</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arthur%20Baraov">Arthur Baraov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nearly all rocket and spacecraft propulsion concepts in existence today can be linked one way or the other to one of the two ancient warfare devices: the gun and the sling. Chemical, thermoelectric, ion, nuclear thermal and electromagnetic rocket engines – all fall into the first group which, for obvious reasons, can be categorized as “hot” space propulsion concepts. Space elevator, orbital tower, rolling satellite, orbital skyhook, tether propulsion and gravitational assist – are examples of the second category which lends itself for the title “cold” space propulsion concepts. The “hot” space propulsion concepts skyrocketed – literally and figuratively – from the naïve ideas of Jules Verne to the manned missions to the Moon. On the other hand, with the notable exception of gravitational assist, hardly any of the “cold” space propulsion concepts made any progress in terms of practical application. Why is that? This article aims to show that the right answer to this question has the potential comparable by its implications and practical consequences to that of transition from Jules Verne’s stillborn and impractical conceptions of space flight to cogent and highly fertile ideas of Konstantin Tsiolkovsky and Yuri Kondratyuk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=propulsion" title="propulsion">propulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=rocket" title=" rocket"> rocket</a>, <a href="https://publications.waset.org/abstracts/search?q=rollet" title=" rollet"> rollet</a>, <a href="https://publications.waset.org/abstracts/search?q=spacecraft" title=" spacecraft"> spacecraft</a> </p> <a href="https://publications.waset.org/abstracts/29858/rollet-vs-rocket-a-new-in-space-propulsion-concept" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">538</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18455</span> Comparison of the Thermal Characteristics of Induction Motor, Switched Reluctance Motor and Inset Permanent Magnet Motor for Electric Vehicle Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadeep%20Sasidharan">Sadeep Sasidharan</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20B.%20Isha"> T. B. Isha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modern day electric vehicles require compact high torque/power density motors for electric propulsion. This necessitates proper thermal management of the electric motors. The main focus of this paper is to compare the steady state thermal analysis of a conventional 20 kW 8/6 Switched Reluctance Motor (SRM) with that of an Induction Motor and Inset Permanent Magnet (IPM) motor of the same rating. The goal is to develop a proper thermal model of the three types of models for Finite Element Thermal Analysis. JMAG software is used for the development and simulation of the thermal models. The results show that the induction motor is subjected to more heating when used for electric vehicle application constantly, compared to the SRM and IPM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicles" title="electric vehicles">electric vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=induction%20motor" title=" induction motor"> induction motor</a>, <a href="https://publications.waset.org/abstracts/search?q=inset%20permanent%20magnet%20motor" title=" inset permanent magnet motor"> inset permanent magnet motor</a>, <a href="https://publications.waset.org/abstracts/search?q=loss%20models" title=" loss models"> loss models</a>, <a href="https://publications.waset.org/abstracts/search?q=switched%20reluctance%20motor" title=" switched reluctance motor"> switched reluctance motor</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20analysis" title=" thermal analysis"> thermal analysis</a> </p> <a href="https://publications.waset.org/abstracts/99775/comparison-of-the-thermal-characteristics-of-induction-motor-switched-reluctance-motor-and-inset-permanent-magnet-motor-for-electric-vehicle-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99775.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18454</span> Investigation for the Mechanism of Lateral-Torsional Coupled Vibration of the Propulsion Shaft in a Ship</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyungsuk%20Han">Hyungsuk Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Soohong%20Jeon"> Soohong Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Chungwon%20Lee"> Chungwon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=YongHoon%20Kim"> YongHoon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When a rubber mount and flexible coupling are installed on the main engine, high torsional vibration can occur. The root cause of this high torsional vibration can be attributed to the lateral-torsional coupled vibration of the shaft system. Therefore, the lateral-torsional coupled vibration is investigated numerically after approximating the shaft system to a three-degrees-of-freedom Jeffcott rotor. To verify that the high torsional vibration is caused by the lateral-torsional coupled vibration, a test unit that can simulate this lateral-torsional coupled vibration occurring in the propulsion shaft is developed. Performing a vibration test with the test unit, it can be experimentally verified that the high torsional vibration occurring in the propulsion shaft of the particular ship was caused by the lateral-torsional coupled vibration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeffcott%20rotor" title="Jeffcott rotor">Jeffcott rotor</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral-torsional%20coupled%20vibration" title=" lateral-torsional coupled vibration"> lateral-torsional coupled vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=propulsion%20shaft" title=" propulsion shaft"> propulsion shaft</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/107458/investigation-for-the-mechanism-of-lateral-torsional-coupled-vibration-of-the-propulsion-shaft-in-a-ship" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18453</span> Study on Electromagnetic Plasma Acceleration Using Rotating Magnetic Field Scheme</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Takeru%20Furuawa">Takeru Furuawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Kohei%20Takizawa"> Kohei Takizawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Daisuke%20Kuwahara"> Daisuke Kuwahara</a>, <a href="https://publications.waset.org/abstracts/search?q=Shunjiro%20Shinohara"> Shunjiro Shinohara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the field of a space propulsion, an electric propulsion system has been developed because its fuel efficiency is much higher than a conventional chemical one. However, the practical electric propulsion systems, e.g., an ion engine, have a problem of short lifetime due to a damage of generation and acceleration electrodes of the plasma. A helicon plasma thruster is proposed as a long-lifetime electric thruster which has non-direct contact electrodes. In this system, both generation and acceleration methods of a dense plasma are executed by antennas from the outside of a discharge tube. Development of the helicon plasma thruster has been conducting under the Helicon Electrodeless Advanced Thruster (HEAT) project. Our helicon plasma thruster has two important processes. First, we generate a dense source plasma using a helicon wave with an excitation frequency between an ion and an electron cyclotron frequencies, fci and fce, respectively, applied from the outside of a discharge using a radio frequency (RF) antenna. The helicon plasma source can provide a high-density (~1019 m-3), a high-ionization ratio (up to several tens of percent), and a high particle generation efficiency. Second, in order to achieve high thrust and specific impulse, we accelerate the dense plasma by the axial Lorentz force fz using the product of the induced azimuthal current jθ and the static radial magnetic field Br, shown as fz = jθ × Br. The HEAT project has proposed several kinds of electrodeless acceleration schemes, and in our particular case, a Rotating Magnetic Field (RMF) method has been extensively studied. The RMF scheme was originally developed as a concept to maintain the Field Reversed Configuration (FRC) in a magnetically confined fusion research. Here, RMF coils are expected to generate jθ due to a nonlinear effect shown below. First, the rotating magnetic field Bω is generated by two pairs of RMF coils with AC currents, which have a phase difference of 90 degrees between the pairs. Due to the Faraday’s law, an axial electric field is induced. Second, an axial current is generated by the effects of an electron-ion and an electron-neutral collisions through the Ohm’s law. Third, the azimuthal electric field is generated by the nonlinear term, and the retarding torque generated by the collision effects again. Then, azimuthal current jθ is generated as jθ = - nₑ er ∙ 2π fRMF. Finally, the axial Lorentz force fz for plasma acceleration is generated. Here, jθ is proportional to nₑ and frequency of RMF coil current fRMF, when Bω is fully penetrated into the plasma. Our previous study has achieved 19 % increase of ion velocity using the 5 MHz and 50 A of the RMF coil power supply. In this presentation, we will show the improvement of the ion velocity using the lower frequency and higher current supplied by RMF power supply. In conclusion, helicon high-density plasma production and electromagnetic acceleration by the RMF scheme with a concept of electrodeless condition have been successfully executed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20propulsion" title="electric propulsion">electric propulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodeless%20thruster" title=" electrodeless thruster"> electrodeless thruster</a>, <a href="https://publications.waset.org/abstracts/search?q=helicon%20plasma" title=" helicon plasma"> helicon plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20magnetic%20field" title=" rotating magnetic field"> rotating magnetic field</a> </p> <a href="https://publications.waset.org/abstracts/52695/study-on-electromagnetic-plasma-acceleration-using-rotating-magnetic-field-scheme" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52695.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18452</span> Stabilization of Displaced Periodic Orbit Using Feedback Linearization Control Scheme</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arun%20Kumar%20Yadav">Arun Kumar Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Badam%20Singh%20Kushvah"> Badam Singh Kushvah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work, we investigated displaced periodic orbits in the linear order in the circular restricted three-body Sun-Jupiter system, where the third mass-less body utilizes solar electric sail. The electric solar sail is a new space propulsion concept which uses the solar wind momentum for producing thrust, and it is somewhat like to the more well-known solar radiation pressure sail which is often called simply the solar sail. Moreover, we implement the feedback linearization control scheme to perform the stabilization and trajectory tracking for the nonlinear system. Further, we derived periodic orbits analytically in linear order by introducing a first order approximation. These approximate analytic solutions are utilized in a numerical search to determine displaced periodic orbit in the full nonlinear model. We found the displaced periodic orbit for the defined non-linear model and stabilized the model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20electric%20sail" title="solar electric sail">solar electric sail</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20restricted%20three-body%20problem%20%28CRTBP%29" title=" circular restricted three-body problem (CRTBP)"> circular restricted three-body problem (CRTBP)</a>, <a href="https://publications.waset.org/abstracts/search?q=displaced%20orbit" title=" displaced orbit"> displaced orbit</a>, <a href="https://publications.waset.org/abstracts/search?q=feedback%20linearization%20control" title=" feedback linearization control"> feedback linearization control</a> </p> <a href="https://publications.waset.org/abstracts/83358/stabilization-of-displaced-periodic-orbit-using-feedback-linearization-control-scheme" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18451</span> Flight School Perceptions of Electric Planes for Training</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chelsea-Anne%20Edwards">Chelsea-Anne Edwards</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Parker"> Paul Parker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flight school members are facing a major disruption in the technologies available for them to fly as electric planes enter the aviation industry. The year 2020 marked a new era in aviation with the first type certification of an electric plane. The Pipistrel Velis Electro is a two-seat electric aircraft (e-plane) designed for flight training. Electric flight training has the potential to deeply reduce emissions, noise, and cost of pilot training. Though these are all attractive features, understanding must be developed on the perceptions of the essential actor of the technology, the pilot. This study asks student pilots, flight instructors, flight center managers, and other members of flight schools about their perceptions of e-planes. The questions were divided into three categories: safety and trust of the technology, expected costs in comparison to conventional planes, and interest in the technology, including their desire to fly electric planes. Participants were recruited from flight schools using a protocol approved by the Office of Research Ethics. None of these flight schools have an e-plane in their fleet so these views are based on perceptions rather than direct experience. The results revealed perceptions that were strongly positive with many qualitative comments indicating great excitement about the potential of the new electric aviation technology. Some concerns were raised regarding battery endurance limits. Overall, the flight school community is clearly in favor of introducing electric propulsion technology and reducing the environmental impacts of their industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20planes" title="electric planes">electric planes</a>, <a href="https://publications.waset.org/abstracts/search?q=flight%20training" title=" flight training"> flight training</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20aircraft" title=" green aircraft"> green aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=student%20pilots" title=" student pilots"> student pilots</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20aviation" title=" sustainable aviation"> sustainable aviation</a> </p> <a href="https://publications.waset.org/abstracts/136258/flight-school-perceptions-of-electric-planes-for-training" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18450</span> A Xenon Mass Gauging through Heat Transfer Modeling for Electric Propulsion Thrusters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Soria-Salinas">A. Soria-Salinas</a>, <a href="https://publications.waset.org/abstracts/search?q=M.-P.%20Zorzano"> M.-P. Zorzano</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Mart%C3%ADn-Torres"> J. Martín-Torres</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20S%C3%A1nchez-Garc%C3%ADa-Casarrubios"> J. Sánchez-García-Casarrubios</a>, <a href="https://publications.waset.org/abstracts/search?q=J.-L.%20P%C3%A9rez-D%C3%ADaz"> J.-L. Pérez-Díaz</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Vakkada-Ramachandran"> A. Vakkada-Ramachandran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current state-of-the-art methods of mass gauging of Electric Propulsion (EP) propellants in microgravity conditions rely on external measurements that are taken at the surface of the tank. The tanks are operated under a constant thermal duty cycle to store the propellant within a pre-defined temperature and pressure range. We demonstrate using computational fluid dynamics (CFD) simulations that the heat-transfer within the pressurized propellant generates temperature and density anisotropies. This challenges the standard mass gauging methods that rely on the use of time changing skin-temperatures and pressures. We observe that the domes of the tanks are prone to be overheated, and that a long time after the heaters of the thermal cycle are switched off, the system reaches a quasi-equilibrium state with a more uniform density. We propose a new gauging method, which we call the Improved PVT method, based on universal physics and thermodynamics principles, existing TRL-9 technology and telemetry data. This method only uses as inputs the temperature and pressure readings of sensors externally attached to the tank. These sensors can operate during the nominal thermal duty cycle. The improved PVT method shows little sensitivity to the pressure sensor drifts which are critical towards the end-of-life of the missions, as well as little sensitivity to systematic temperature errors. The retrieval method has been validated experimentally with CO<sub>2</sub> in gas and fluid state in a chamber that operates up to 82 bar within a nominal thermal cycle of 38 °C to 42 °C. The mass gauging error is shown to be lower than 1% the mass at the beginning of life, assuming an initial tank load at 100 bar. In particular, for a pressure of about 70 bar, just below the critical pressure of CO<sub>2</sub>, the error of the mass gauging in gas phase goes down to 0.1% and for 77 bar, just above the critical point, the error of the mass gauging of the liquid phase is 0.6% of initial tank load. This gauging method improves by a factor of 8 the accuracy of the standard PVT retrievals using look-up tables with tabulated data from the National Institute of Standards and Technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20propulsion" title="electric propulsion">electric propulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20gauging" title=" mass gauging"> mass gauging</a>, <a href="https://publications.waset.org/abstracts/search?q=propellant" title=" propellant"> propellant</a>, <a href="https://publications.waset.org/abstracts/search?q=PVT" title=" PVT"> PVT</a>, <a href="https://publications.waset.org/abstracts/search?q=xenon" title=" xenon"> xenon</a> </p> <a href="https://publications.waset.org/abstracts/62668/a-xenon-mass-gauging-through-heat-transfer-modeling-for-electric-propulsion-thrusters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62668.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18449</span> An Autopilot System for Static Zone Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanchun%20Zuo">Yanchun Zuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yingao%20Liu"> Yingao Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Liu"> Wei Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Le%20Yu"> Le Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Run%20Huang"> Run Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lixin%20Guo"> Lixin Guo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electric field detection is important in many application scenarios. The traditional strategy is measuring the electric field with a man walking around in the area under test. This strategy cannot provide a satisfactory measurement accuracy. To solve the mentioned problem, an autopilot measurement system is divided. A mini-car is produced, which can travel in the area under test according to respect to the program within the CPU. The electric field measurement platform (EFMP) carries a central computer, two horn antennas, and a vector network analyzer. The mini-car stop at the sampling points according to the preset. When the car stops, the EFMP probes the electric field and stores data on the hard disk. After all the sampling points are traversed, an electric field map can be plotted. The proposed system can give an accurate field distribution description of the chamber. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autopilot%20mini-car%20measurement%20system" title="autopilot mini-car measurement system">autopilot mini-car measurement system</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20field%20detection" title=" electric field detection"> electric field detection</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20map" title=" field map"> field map</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20zone%20measurement" title=" static zone measurement"> static zone measurement</a> </p> <a href="https://publications.waset.org/abstracts/153711/an-autopilot-system-for-static-zone-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153711.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18448</span> A Single Stage Rocket Using Solid Fuels in Conventional Propulsion Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20R%20Evans">John R Evans</a>, <a href="https://publications.waset.org/abstracts/search?q=Sook-Ying%20%20Ho"> Sook-Ying Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Rey%20Chin"> Rey Chin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes the research investigations orientated to the starting and propelling of a solid fuel rocket engine which operates as combined cycle propulsion system using three thrust pulses. The vehicle has been designed to minimise the cost of launching small number of Nano/Cube satellites into low earth orbits (LEO). A technology described in this paper is a ground-based launch propulsion system which starts the rocket vertical motion immediately causing air flow to enter the ramjet’s intake. Current technology has a ramjet operation predicted to be able to start high subsonic speed of 280 m/s using a liquid fuel ramjet (LFRJ). The combined cycle engine configuration is in many ways fundamentally different from the LFRJ. A much lower subsonic start speed is highly desirable since the use of a mortar to obtain the latter speed for rocket means a shorter launcher length can be utilized. This paper examines the means and has some performance calculations, including Computational Fluid Dynamics analysis of air-intake at suitable operational conditions, 3-DOF point mass trajectory analysis of multi-pulse propulsion system (where pulse ignition time and thrust magnitude can be controlled), etc. of getting a combined cycle rocket engine use in a single stage vehicle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combine%20cycle%20propulsion%20system" title="combine cycle propulsion system">combine cycle propulsion system</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20earth%20orbit%20launch%20vehicle" title=" low earth orbit launch vehicle"> low earth orbit launch vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics%20analysis" title=" computational fluid dynamics analysis"> computational fluid dynamics analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=3dof%20trajectory%20analysis" title=" 3dof trajectory analysis "> 3dof trajectory analysis </a> </p> <a href="https://publications.waset.org/abstracts/136487/a-single-stage-rocket-using-solid-fuels-in-conventional-propulsion-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18447</span> Analysis of Reliability of Mining Shovel Using Weibull Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anurag%20Savarnya">Anurag Savarnya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The reliability of the various parts of electric mining shovel has been assessed through the application of Weibull Model. The study was initiated to find reliability of components of electric mining shovel. The paper aims to optimize the reliability of components and increase the life cycle of component. A multilevel decomposition of the electric mining shovel was done and maintenance records were used to evaluate the failure data and appropriate system characterization was done to model the system in terms of reasonable number of components. The approach used develops a mathematical model to assess the reliability of the electric mining shovel components. The model can be used to predict reliability of components of the hydraulic mining shovel and system performance. Reliability is an inherent attribute to a system. When the life-cycle costs of a system are being analyzed, reliability plays an important role as a major driver of these costs and has considerable influence on system performance. It is an iterative process that begins with specification of reliability goals consistent with cost and performance objectives. The data were collected from an Indian open cast coal mine and the reliability of various components of the electric mining shovel has been assessed by following a Weibull Model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reliability" title="reliability">reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=Weibull%20model" title=" Weibull model"> Weibull model</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20mining%20shovel" title=" electric mining shovel"> electric mining shovel</a> </p> <a href="https://publications.waset.org/abstracts/8913/analysis-of-reliability-of-mining-shovel-using-weibull-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">513</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18446</span> Modelling and Technical Assessment of Multi-Motor for Electric Vehicle Drivetrains by Using Electric Differential</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Abdel-Monem">Mohamed Abdel-Monem</a>, <a href="https://publications.waset.org/abstracts/search?q=Gamal%20Sowilam"> Gamal Sowilam</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20Hegazy"> Omar Hegazy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a technical assessment of an electric vehicle with two independent rear-wheel motor and an improved traction control system. The electric differential and the control strategy have been implemented to assure that in a straight trajectory, the two rear-wheels run exactly at the same speed, considering the same/different road conditions under the left and right side of the wheels. In case of turning to right/left, the difference between the two rear-wheels speeds assures a vehicle trajectory without sliding, thanks to a harmony between the electric differential and the control strategy. The present article demonstrates a complete model and analysis of a traction control system, considering four different traction scenarios, for two independent rear-wheels motors for electric vehicles. Furthermore, the vehicle model, including wheel dynamics, load forces, electric differential, and control strategy, is designed and verified by using MATLAB/Simulink environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title="electric vehicle">electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20saving" title=" energy saving"> energy saving</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-motor" title=" multi-motor"> multi-motor</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20differential" title=" electric differential"> electric differential</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20and%20control" title=" simulation and control"> simulation and control</a> </p> <a href="https://publications.waset.org/abstracts/90576/modelling-and-technical-assessment-of-multi-motor-for-electric-vehicle-drivetrains-by-using-electric-differential" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90576.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18445</span> A Detailed Study of Two Different Airfoils on Flight Performance of MAV of Same Physical Dimension </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shoeb%20A.%20Adeel">Shoeb A. Adeel</a>, <a href="https://publications.waset.org/abstracts/search?q=Shashant%20Anand"> Shashant Anand</a>, <a href="https://publications.waset.org/abstracts/search?q=Vivek%20Paul"> Vivek Paul</a>, <a href="https://publications.waset.org/abstracts/search?q=Dinesh"> Dinesh</a>, <a href="https://publications.waset.org/abstracts/search?q=Suraj"> Suraj</a>, <a href="https://publications.waset.org/abstracts/search?q=Roshan"> Roshan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents a study of micro air vehicles (MAVs) with wingspans of 20 Cm with two different airfoil configurations. MAVs have vast potential applications in both military and civilian areas. These MAVs are fully autonomous and supply real-time data. The paper focuses on two different designs of the MAVs one being N22 airfoil and the other a flat plate with similar dimension. As designed, the MAV would fly in a low Reynolds-number regime at airspeeds of 15 & 20 m/sec. Propulsion would be provided by an electric motor with an advanced lithium. Because of the close coupling between vehicle elements, system integration would be a significant challenge, requiring tight packaging and multifunction components to meet mass limitations and Centre of Gravity (C.G) balancing. These MAVs are feasible and within a couple of years of technology development in key areas including sensors, propulsion, Aerodynamics, and packaging these would be easily available to the users at affordable prices. The paper finally compares the flight performance of the two configurations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airfoil" title="airfoil">airfoil</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=MAV" title=" MAV"> MAV</a>, <a href="https://publications.waset.org/abstracts/search?q=flight%20performance" title=" flight performance"> flight performance</a>, <a href="https://publications.waset.org/abstracts/search?q=endurance" title=" endurance"> endurance</a>, <a href="https://publications.waset.org/abstracts/search?q=climb" title=" climb"> climb</a>, <a href="https://publications.waset.org/abstracts/search?q=lift" title=" lift"> lift</a>, <a href="https://publications.waset.org/abstracts/search?q=drag" title=" drag"> drag</a> </p> <a href="https://publications.waset.org/abstracts/35290/a-detailed-study-of-two-different-airfoils-on-flight-performance-of-mav-of-same-physical-dimension" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35290.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18444</span> An Experimental Study on the Temperature Reduction of Exhaust Gas at a Snorkeling of Submarine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seok-Tae%20Yoon">Seok-Tae Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Yeong%20Choi"> Jae-Yeong Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gyu-Mok%20Jeon"> Gyu-Mok Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-Jin%20Cho"> Yong-Jin Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong-Chun%20Park"> Jong-Chun Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conventional submarines obtain propulsive force by using an electric propulsion system consisting of a diesel generator, battery, motor, and propeller. In the underwater, the submarine uses the electric power stored in the battery. After that, when a certain amount of electric power is consumed, the submarine floats near the sea water surface and recharges the electric power by using the diesel generator. The voyage carried out while charging the power is called a snorkel, and the high-temperature exhaust gas from the diesel generator forms a heat distribution on the sea water surface. The heat distribution is detected by weapon system equipped with thermo-detector and that is the main cause of reducing the survivability of the submarine. In this paper, an experimental study was carried out to establish optimal operating conditions of a submarine for reduction of infrared signature radiated from the sea water surface. For this, a hot gas generating system and a round acrylic water tank with adjustable water level were made. The control variables of the experiment were set as the mass flow rate, the temperature difference between the water and the hot gas in the water tank, and the water level difference between the air outlet and the water surface. The experimental instrumentation used a thermocouple of T-type to measure the released air temperature on the surface of the water, and a thermography system to measure the thermal energy distribution on the water surface. As a result of the experiment study, we analyzed the correlation between the final released temperature of the exhaust pipe exit in a submarine and the depth of the snorkel, and presented reasonable operating conditions for the infrared signature reduction of submarine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experiment%20study" title="experiment study">experiment study</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20rate" title=" flow rate"> flow rate</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20signature" title=" infrared signature"> infrared signature</a>, <a href="https://publications.waset.org/abstracts/search?q=snorkeling" title=" snorkeling"> snorkeling</a>, <a href="https://publications.waset.org/abstracts/search?q=thermography" title=" thermography"> thermography</a> </p> <a href="https://publications.waset.org/abstracts/87195/an-experimental-study-on-the-temperature-reduction-of-exhaust-gas-at-a-snorkeling-of-submarine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18443</span> Modelling of Relocation and Battery Autonomy Problem on Electric Cars Sharing Dynamic by Using Discrete Event Simulation and Petri Net</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taha%20Benarbia">Taha Benarbia</a>, <a href="https://publications.waset.org/abstracts/search?q=Kay%20W.%20Axhausen"> Kay W. Axhausen</a>, <a href="https://publications.waset.org/abstracts/search?q=Anugrah%20Ilahi"> Anugrah Ilahi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electric car sharing system as ecologic transportation increasing in the world. The complexity of managing electric car sharing systems, especially one-way trips and battery autonomy have direct influence to on supply and demand of system. One must be able to precisely model the demand and supply of these systems to better operate electric car sharing and estimate its effect on mobility management and the accessibility that it provides in urban areas. In this context, our work focus to develop performances optimization model of the system based on discrete event simulation and stochastic Petri net. The objective is to search optimal decisions and management parameters of the system in order to fulfil at best demand while minimizing undesirable situations. In this paper, we present new model of electric cars sharing with relocation based on monitoring system. The proposed approach also help to precise the influence of battery charging level on the behaviour of system as important decision parameter of this complex and dynamical system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20car-sharing%20systems" title="electric car-sharing systems">electric car-sharing systems</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20mobility" title=" smart mobility"> smart mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=Petri%20nets%20modelling" title=" Petri nets modelling"> Petri nets modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20event%20simulation" title=" discrete event simulation"> discrete event simulation</a> </p> <a href="https://publications.waset.org/abstracts/86638/modelling-of-relocation-and-battery-autonomy-problem-on-electric-cars-sharing-dynamic-by-using-discrete-event-simulation-and-petri-net" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86638.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18442</span> Light Car Assisted by PV Panels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soufiane%20Benoumhani">Soufiane Benoumhani</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadia%20Saifi"> Nadia Saifi</a>, <a href="https://publications.waset.org/abstracts/search?q=Boubekeur%20Dokkar"> Boubekeur Dokkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Cherif%20Benzid"> Mohamed Cherif Benzid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents the design and simulation of electric equipment for a hybrid solar vehicle. The new drive train of this vehicle is a parallel hybrid system which means a vehicle driven by a great percentage of an internal combustion engine with 49.35 kW as maximal power and electric motor only as assistance when is needed. This assistance is carried out on the rear axle by a single electric motor of 7.22 kW as nominal power. The motor is driven by 12 batteries connecting in series, which are charged by three PV panels (300 W) installed on the roof and hood of the vehicle. The individual components are modeled and simulated by using the Matlab Simulink environment. The whole system is examined under different load conditions. The reduction of CO₂ emission is obtained by reducing fuel consumption. With the use of this hybrid system, fuel consumption can be reduced from 6.74 kg/h to 5.56 kg/h when the electric motor works at 100 % of its power. The net benefit of the system reaches 1.18 kg/h as fuel reduction at high values of power and torque. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=light%20car" title="light car">light car</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20system" title=" hybrid system"> hybrid system</a>, <a href="https://publications.waset.org/abstracts/search?q=PV%20panel" title=" PV panel"> PV panel</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20motor" title=" electric motor"> electric motor</a> </p> <a href="https://publications.waset.org/abstracts/148704/light-car-assisted-by-pv-panels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148704.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18441</span> New Series Input Parallel Output LLC DC/DC Converter with the Input Voltage Balancing Capacitor for the Electric System of Electric Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kang%20Hyun%20Yi">Kang Hyun Yi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a new parallel output LLC DC/DC converter for electric vehicle. The electric vehicle has two batteries. One is a high voltage battery for the powertrain of the vehicle and the other is a low voltage battery for the vehicle electric system. The low voltage is charged from the high voltage battery and the high voltage input and the high current output DC/DC converter is needed. Therefore, the new LLC converter with the input voltage compensation is proposed for the high voltage input and the low voltage output DC/DC converter. The proposed circuit has two LLC converters with the series input voltage from the battery for the powertrain and the parallel output low battery voltage for the vehicle electric system because the battery voltage for the powertrain and the electric power for the vehicle become high. Also, the input series voltage compensation capacitor is used for balancing the input current in the two LLC converters. The proposed converter has an equal electric stress of the semiconductor parts and the reactive components, high efficiency and good heat dissipation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title="electric vehicle">electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=LLC%20DC%2FDC%20converter" title=" LLC DC/DC converter"> LLC DC/DC converter</a>, <a href="https://publications.waset.org/abstracts/search?q=input%20voltage%20balancing" title=" input voltage balancing"> input voltage balancing</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20output" title=" parallel output"> parallel output</a> </p> <a href="https://publications.waset.org/abstracts/31896/new-series-input-parallel-output-llc-dcdc-converter-with-the-input-voltage-balancing-capacitor-for-the-electric-system-of-electric-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1051</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18440</span> Transient Phenomena in a 100 W Hall Thrusters: Experimental Measurements of Discharge Current and Plasma Parameter Evolution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cl%C3%A9mence%20Royer">Clémence Royer</a>, <a href="https://publications.waset.org/abstracts/search?q=St%C3%A9phane%20Mazouffre"> Stéphane Mazouffre</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, electric propulsion systems play a crucial role in space exploration missions due to their high specific impulse and long operational life. The Hall thrusters are one of the most mature EP technologies. It is a gridless ion thruster that has proved reliable and high-performance for decades in various space missions. Operation of HT relies on electron emissions through a cathode placed outside a hollow dielectric channel that includes an anode at the back. Negatively charged particles are trapped in a magnetic field and efficiently slow down. By collisions, the electron cloud ionizes xenon atoms. A large electric field is generated in the axial direction due to the low electron transverse mobility in the region of a strong magnetic field. Positive particles are pulled out of the chamber at high velocity and are neutralized directly at the exhaust area. This phenomenon leads to the acceleration of the spacecraft system at a high specific impulse. While HT’s architecture and operating principle are relatively simple, the physics behind thrust is complex and still partly unknown. Current and voltage oscillations, as well as electron properties, have been captured over a 30 mn time period after ignition. The observed low-frequency oscillations exhibited specific frequency ranges, amplitudes, and stability patterns. Correlations between the oscillations and plasma characteristics we analyzed. The impact of these instabilities on thruster performance, including thrust efficiency, has been evaluated as well. Moreover, strategies for mitigating and controlling these instabilities have been developed, such as filtering. In this contribution, in addition to presenting a summary of the results obtained in the transient regime, we will present and discuss recent advances in Hall thruster plasma discharge filtering and control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20propulsion" title="electric propulsion">electric propulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=Hall%20Thruster" title=" Hall Thruster"> Hall Thruster</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20diagnostics" title=" plasma diagnostics"> plasma diagnostics</a>, <a href="https://publications.waset.org/abstracts/search?q=low-frequency%20oscillations" title=" low-frequency oscillations"> low-frequency oscillations</a> </p> <a href="https://publications.waset.org/abstracts/168470/transient-phenomena-in-a-100-w-hall-thrusters-experimental-measurements-of-discharge-current-and-plasma-parameter-evolution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18439</span> Machine Learning Algorithms for Rocket Propulsion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R%C3%B4mulo%20Eust%C3%A1quio%20Martins%20de%20Souza">Rômulo Eustáquio Martins de Souza</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20Alexandre%20Rodrigues%20de%20Vasconcelos%20Figueiredo"> Paulo Alexandre Rodrigues de Vasconcelos Figueiredo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, there has been a surge in interest in applying artificial intelligence techniques, particularly machine learning algorithms. Machine learning is a data-analysis technique that automates the creation of analytical models, making it especially useful for designing complex situations. As a result, this technology aids in reducing human intervention while producing accurate results. This methodology is also extensively used in aerospace engineering since this is a field that encompasses several high-complexity operations, such as rocket propulsion. Rocket propulsion is a high-risk operation in which engine failure could result in the loss of life. As a result, it is critical to use computational methods capable of precisely representing the spacecraft's analytical model to guarantee its security and operation. Thus, this paper describes the use of machine learning algorithms for rocket propulsion to aid the realization that this technique is an efficient way to deal with challenging and restrictive aerospace engineering activities. The paper focuses on three machine-learning-aided rocket propulsion applications: set-point control of an expander-bleed rocket engine, supersonic retro-propulsion of a small-scale rocket, and leak detection and isolation on rocket engine data. This paper describes the data-driven methods used for each implementation in depth and presents the obtained results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20analysis" title="data analysis">data analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=aerospace" title=" aerospace"> aerospace</a>, <a href="https://publications.waset.org/abstracts/search?q=rocket%20propulsion" title=" rocket propulsion"> rocket propulsion</a> </p> <a href="https://publications.waset.org/abstracts/168232/machine-learning-algorithms-for-rocket-propulsion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168232.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18438</span> Aerodynamic Interference of Propellers Group with Adjustable Mutual Position</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michal%20Bia%C5%82y">Michal Biały</a>, <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Skiba"> Krzysztof Skiba</a>, <a href="https://publications.waset.org/abstracts/search?q=Zdzislaw%20Kaminski"> Zdzislaw Kaminski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research results of the influence of the adjustable mutual position of the propellers for getting optimal lift force on a specially designed bench. The bench consists of frame with electric motors and with attached propellers. Engines were arranged in a matrix of two columns and three rows. The distance between the columns averages from 0 to 20”, while the engine was placed at a height of 8”, 15.5” and 23.6”. By adjusting the tilt of an electric motor, an angle of the propeller in the range of 0° to 60°, by 15° was controlled. Propellers with a diameter of 8" and pitch of 4.5” were driven by brushless model engines Roxxy BL-Outrunner 2827/26 with a power of 110W (each). Rotational speed control of electric motors were realized parallel for all propellers. The speed adjustment was realized using an aggregate of radio-controlled regulators. Electric power supplied to the engines from zero to maximum power, by the setting for every 14W, was controlled by radio system. Measurement system was placed on a laboratory scale. The lift was measured and recorded by an electronic scale. The lift force for different configurations of propellers arrangement was recorded during the test. All propellers were driven in one rotational direction and in different directions when they were in the same pairs. Propellers were driven concurrently and contra-concurrently along one of the columns and along the selected rows. During the tests, except the lift, parameters such as: rotational speed of propellers, voltage and current to the electric engines were recorded. The main aim of the research was to show the influence of aerodynamic interference between the propellers to receive lift force depending on the drive configuration of individual propellers. The research has shown that, this interference exists. The increase of the lift force for a distance between columns above 26.6” was noticed during the driving propellers in different directions. The optimum tilt angle of the propeller was 45°. Furthermore there has been also approx. 12% increase of the lift for propellers driven alternately in column and contra-concurrently in relation to the contra-rotating drive in the row. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic" title="aerodynamic">aerodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=interference" title=" interference"> interference</a>, <a href="https://publications.waset.org/abstracts/search?q=lift%20force" title=" lift force"> lift force</a>, <a href="https://publications.waset.org/abstracts/search?q=propeller" title=" propeller"> propeller</a>, <a href="https://publications.waset.org/abstracts/search?q=propulsion%20system" title=" propulsion system"> propulsion system</a> </p> <a href="https://publications.waset.org/abstracts/49980/aerodynamic-interference-of-propellers-group-with-adjustable-mutual-position" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18437</span> Preferences of Electric Buses in Public Transport; Conclusions from Real Life Testing in Eight Swedish Municipalities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sven%20Bor%C3%A9n">Sven Borén</a>, <a href="https://publications.waset.org/abstracts/search?q=Lisiana%20Nurhadi"> Lisiana Nurhadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Henrik%20Ny"> Henrik Ny</a> </p> <p class="card-text"><strong>Abstract:</strong></p> From a theoretical perspective, electric buses can be more sustainable and can be cheaper than fossil fuelled buses in city traffic. The authors have not found other studies based on actual urban public transport in Swedish winter climate. Further on, noise measurements from buses for the European market were found old. The aims of this follow-up study was therefore to test and possibly verify in a real-life environment how energy efficient and silent electric buses are, and then conclude on if electric buses are preferable to use in public transport. The Ebusco 2.0 electric bus, fitted with a 311 kWh battery pack, was used and the tests were carried out during November 2014-April 2015 in eight municipalities in the south of Sweden. Six tests took place in urban traffic and two took place in more of a rural traffic setting. The energy use for propulsion was measured via logging of the internal system in the bus and via an external charging meter. The average energy use turned out to be 8% less (0,96 kWh/km) than assumed in the earlier theoretical study. This rate allows for a 320 km range in public urban traffic. The interior of the bus was kept warm by a diesel heater (biodiesel will probably be used in a future operational traffic situation), which used 0,67 kWh/km in January. This verified that electric buses can be up to 25% cheaper when used in public transport in cities for about eight years. The noise was found to be lower, primarily during acceleration, than for buses with combustion engines in urban bus traffic. According to our surveys, most passengers and drivers appreciated the silent and comfortable ride and preferred electric buses rather than combustion engine buses. Bus operators and passenger transport executives were also positive to start using electric buses for public transport. The operators did however point out that procurement processes need to account for eventual risks regarding this new technology, along with personnel education. The study revealed that it is possible to establish a charging infrastructure for almost all studied bus lines. However, design of a charging infrastructure for each municipality requires further investigations, including electric grid capacity analysis, smart location of charging points, and tailored schedules to allow fast charging. In conclusion, electric buses proved to be a preferable alternative for all stakeholders involved in public bus transport in the studied municipalities. However, in order to electric buses to be a prominent support for sustainable development, they need to be charged either by stand-alone units or via an expansion of the electric grid, and the electricity should be made from new renewable sources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainability" title="sustainability">sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=electric" title=" electric"> electric</a>, <a href="https://publications.waset.org/abstracts/search?q=bus" title=" bus"> bus</a>, <a href="https://publications.waset.org/abstracts/search?q=noise" title=" noise"> noise</a>, <a href="https://publications.waset.org/abstracts/search?q=greencharge" title=" greencharge"> greencharge</a> </p> <a href="https://publications.waset.org/abstracts/39264/preferences-of-electric-buses-in-public-transport-conclusions-from-real-life-testing-in-eight-swedish-municipalities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20propulsion%20system&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20propulsion%20system&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20propulsion%20system&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20propulsion%20system&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20propulsion%20system&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20propulsion%20system&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20propulsion%20system&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20propulsion%20system&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20propulsion%20system&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20propulsion%20system&page=615">615</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20propulsion%20system&page=616">616</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20propulsion%20system&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>