CINXE.COM
Mathematical Physics
<!DOCTYPE html> <html lang="en"> <head> <title>Mathematical Physics </title> <meta name="viewport" content="width=device-width, initial-scale=1"> <link rel="apple-touch-icon" sizes="180x180" href="/static/browse/0.3.4/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="/static/browse/0.3.4/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="/static/browse/0.3.4/images/icons/favicon-16x16.png"> <link rel="manifest" href="/static/browse/0.3.4/images/icons/site.webmanifest"> <link rel="mask-icon" href="/static/browse/0.3.4/images/icons/safari-pinned-tab.svg" color="#5bbad5"> <meta name="msapplication-TileColor" content="#da532c"> <meta name="theme-color" content="#ffffff"> <link rel="stylesheet" type="text/css" media="screen" href="/static/browse/0.3.4/css/arXiv.css?v=20241206" /> <link rel="stylesheet" type="text/css" media="print" href="/static/browse/0.3.4/css/arXiv-print.css?v=20200611" /> <link rel="stylesheet" type="text/css" media="screen" href="/static/browse/0.3.4/css/browse_search.css" /> <script language="javascript" src="/static/browse/0.3.4/js/accordion.js" /></script> <script src="/static/browse/0.3.4/js/mathjaxToggle.min.js" type="text/javascript"></script> <script type="text/javascript" language="javascript">mathjaxToggle();</script> </head> <body class="with-cu-identity"> <div class="flex-wrap-footer"> <header> <a href="#content" class="is-sr-only">Skip to main content</a> <!-- start desktop header --> <div class="columns is-vcentered is-hidden-mobile" id="cu-identity"> <div class="column" id="cu-logo"> <a href="https://www.cornell.edu/"><img src="/static/browse/0.3.4/images/icons/cu/cornell-reduced-white-SMALL.svg" alt="Cornell University" /></a> </div><div class="column" id="support-ack"> <span id="support-ack-url">We gratefully acknowledge support from the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors.</span> <a href="https://info.arxiv.org/about/donate.html" class="btn-header-donate">Donate</a> </div> </div> <div id="header" class="is-hidden-mobile"> <a aria-hidden="true" tabindex="-1" href="/IgnoreMe"></a> <div class="header-breadcrumbs"> <a href="/"><img src="/static/browse/0.3.4/images/arxiv-logo-one-color-white.svg" alt="arxiv logo" style="height:40px;"/></a> <span>></span> <a href="/list/math-ph/recent">math-ph</a> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div><!-- /end desktop header --> <div class="mobile-header"> <div class="columns is-mobile"> <div class="column logo-arxiv"><a href="https://arxiv.org/"><img src="/static/browse/0.3.4/images/arxiv-logomark-small-white.svg" alt="arXiv logo" style="height:60px;" /></a></div> <div class="column logo-cornell"><a href="https://www.cornell.edu/"> <picture> <source media="(min-width: 501px)" srcset="/static/browse/0.3.4/images/icons/cu/cornell-reduced-white-SMALL.svg 400w" sizes="400w" /> <source srcset="/static/browse/0.3.4/images/icons/cu/cornell_seal_simple_black.svg 2x" /> <img src="/static/browse/0.3.4/images/icons/cu/cornell-reduced-white-SMALL.svg" alt="Cornell University Logo" /> </picture> </a></div> <div class="column nav" id="toggle-container" role="menubar"> <button class="toggle-control"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-white"><title>open search</title><path d="M505 442.7L405.3 343c-4.5-4.5-10.6-7-17-7H372c27.6-35.3 44-79.7 44-128C416 93.1 322.9 0 208 0S0 93.1 0 208s93.1 208 208 208c48.3 0 92.7-16.4 128-44v16.3c0 6.4 2.5 12.5 7 17l99.7 99.7c9.4 9.4 24.6 9.4 33.9 0l28.3-28.3c9.4-9.4 9.4-24.6.1-34zM208 336c-70.7 0-128-57.2-128-128 0-70.7 57.2-128 128-128 70.7 0 128 57.2 128 128 0 70.7-57.2 128-128 128z"/></svg></button> <div class="mobile-toggle-block toggle-target"> <form class="mobile-search-form" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <input class="input" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <input type="hidden" name="source" value="header"> <input type="hidden" name="searchtype" value="all"> <button class="button">GO</button> </div> </form> </div> <button class="toggle-control"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-white" role="menu"><title>open navigation menu</title><path d="M16 132h416c8.837 0 16-7.163 16-16V76c0-8.837-7.163-16-16-16H16C7.163 60 0 67.163 0 76v40c0 8.837 7.163 16 16 16zm0 160h416c8.837 0 16-7.163 16-16v-40c0-8.837-7.163-16-16-16H16c-8.837 0-16 7.163-16 16v40c0 8.837 7.163 16 16 16zm0 160h416c8.837 0 16-7.163 16-16v-40c0-8.837-7.163-16-16-16H16c-8.837 0-16 7.163-16 16v40c0 8.837 7.163 16 16 16z"/ ></svg></button> <div class="mobile-toggle-block toggle-target"> <nav class="mobile-menu" aria-labelledby="mobilemenulabel"> <h2 id="mobilemenulabel">quick links</h2> <ul> <li><a href="https://arxiv.org/login">Login</a></li> <li><a href="https://info.arxiv.org/help">Help Pages</a></li> <li><a href="https://info.arxiv.org/about">About</a></li> </ul> </nav> </div> </div> </div> </div><!-- /end mobile-header --> </header> <main> <div id="content"> <div id='content-inner'> <div id='dlpage'> <h1>Mathematical Physics</h1> <ul> <li><a href="#item0">New submissions</a></li> <li><a href="#item5">Cross-lists</a></li> <li><a href="#item18">Replacements</a></li> </ul> <p>See <a id="recent-math-ph" aria-labelledby="recent-math-ph" href="/list/math-ph/recent">recent</a> articles</p> <h3>Showing new listings for Wednesday, 19 March 2025</h3> <div class='paging'>Total of 32 entries </div> <div class='morefewer'>Showing up to 2000 entries per page: <a href=/list/math-ph/new?skip=0&show=1000 rel="nofollow"> fewer</a> | <span style="color: #454545">more</span> | <span style="color: #454545">all</span> </div> <dl id='articles'> <h3>New submissions (showing 4 of 4 entries)</h3> <dt> <a name='item1'>[1]</a> <a href ="/abs/2503.13686" title="Abstract" id="2503.13686"> arXiv:2503.13686 </a> [<a href="/pdf/2503.13686" title="Download PDF" id="pdf-2503.13686" aria-labelledby="pdf-2503.13686">pdf</a>, <a href="https://arxiv.org/html/2503.13686v1" title="View HTML" id="html-2503.13686" aria-labelledby="html-2503.13686" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.13686" title="Other formats" id="oth-2503.13686" aria-labelledby="oth-2503.13686">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> A new pair of transformations and applications to generalized informational inequalities and Hausdorff moment problem </div> <div class='list-authors'><a href="https://arxiv.org/search/math-ph?searchtype=author&query=Iagar,+R+G">Razvan Gabriel Iagar</a>, <a href="https://arxiv.org/search/math-ph?searchtype=author&query=Puertas-Centeno,+D">David Puertas-Centeno</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Mathematical Physics (math-ph)</span> </div> <p class='mathjax'> We introduce a pair of transformations, which are mutually inverse, acting on rather general classes of probability densities in R. These transformations have the property of interchanging the main informational measures such as p-moments, Shannon and R茅nyi entropies, and Fisher information. We thus apply them in order to establish extensions and generalizations of the Stam and moment-entropy inequalities in a mirrored domain of the entropic indexes. Moreover, with the aid of the two transformations we establish formal solutions to the Hausdorff entropic moment problem by connecting them with the solutions of the standard Hausdorff problem. In addition, we introduce a Fisher-like moment problem and relate it to the standard Hausdorff moment problem. </p> </div> </dd> <dt> <a name='item2'>[2]</a> <a href ="/abs/2503.14107" title="Abstract" id="2503.14107"> arXiv:2503.14107 </a> [<a href="/pdf/2503.14107" title="Download PDF" id="pdf-2503.14107" aria-labelledby="pdf-2503.14107">pdf</a>, <a href="https://arxiv.org/html/2503.14107v1" title="View HTML" id="html-2503.14107" aria-labelledby="html-2503.14107" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.14107" title="Other formats" id="oth-2503.14107" aria-labelledby="oth-2503.14107">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> A von Neumann algebraic approach to Quantum Theory on curved spacetime </div> <div class='list-authors'><a href="https://arxiv.org/search/math-ph?searchtype=author&query=Labuschagne,+L+E">Louis E Labuschagne</a>, <a href="https://arxiv.org/search/math-ph?searchtype=author&query=Majewski,+W+A">W Adam Majewski</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 28 pages </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Mathematical Physics (math-ph)</span> </div> <p class='mathjax'> By extending the method developed in our recent paper \cite{LM} we present the AQFT framework in terms of von Neumann algebras. In particular, this approach allows for a categorical description of AQFT as well as providing a natural and intrinsic framework for a description of entanglement. Turning to dynamical aspects of QFT we show that Killing local flows may be lifted to the algebraic setting in curved space-time. Furthermore, conditions under which quantum Lie derivatives of such local flows exist are provided. The central question that then emerges is how such quantum local flows might be described in interesting representations. We show that quasi-free representations of Weyl algebra fit the presented framework perfectly. Finally, the problem of enlarging the set of observables is discussed. We point out the usefulness of Orlicz space techniques to encompass unbounded field operators. In particular, a well-defined framework within which one can manipulate such operators is necessary for the correct presentation of (semiclassical) Einstein's equation. </p> </div> </dd> <dt> <a name='item3'>[3]</a> <a href ="/abs/2503.14415" title="Abstract" id="2503.14415"> arXiv:2503.14415 </a> [<a href="/pdf/2503.14415" title="Download PDF" id="pdf-2503.14415" aria-labelledby="pdf-2503.14415">pdf</a>, <a href="https://arxiv.org/html/2503.14415v1" title="View HTML" id="html-2503.14415" aria-labelledby="html-2503.14415" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.14415" title="Other formats" id="oth-2503.14415" aria-labelledby="oth-2503.14415">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Local formation of knotted screw dislocations in smectic liquid crystals </div> <div class='list-authors'><a href="https://arxiv.org/search/math-ph?searchtype=author&query=Cardona,+R">Robert Cardona</a>, <a href="https://arxiv.org/search/math-ph?searchtype=author&query=Vega,+A">Andreu Vega</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 19 pages, 6 figures </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Mathematical Physics (math-ph)</span>; Soft Condensed Matter (cond-mat.soft) </div> <p class='mathjax'> Given a configuration of a smectic liquid crystal, we show that a new screw dislocation loop can be introduced along any knot or link transverse to the regular layers through a purely local modification. We define a topological invariant of screw dislocation loops, the multiplicity, and show that it can be explicitly prescribed in our construction. Finally, we apply this method to establish that any link type can be locally introduced within the set of screw dislocations of a smectic configuration modeled by an open book decomposition. </p> </div> </dd> <dt> <a name='item4'>[4]</a> <a href ="/abs/2503.14436" title="Abstract" id="2503.14436"> arXiv:2503.14436 </a> [<a href="/pdf/2503.14436" title="Download PDF" id="pdf-2503.14436" aria-labelledby="pdf-2503.14436">pdf</a>, <a href="https://arxiv.org/html/2503.14436v1" title="View HTML" id="html-2503.14436" aria-labelledby="html-2503.14436" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.14436" title="Other formats" id="oth-2503.14436" aria-labelledby="oth-2503.14436">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Special solutions of a discrete Painlev茅 equation for quantum minimal surfaces </div> <div class='list-authors'><a href="https://arxiv.org/search/math-ph?searchtype=author&query=Clarkson,+P+A">Peter A. Clarkson</a>, <a href="https://arxiv.org/search/math-ph?searchtype=author&query=Dzhamay,+A">Anton Dzhamay</a>, <a href="https://arxiv.org/search/math-ph?searchtype=author&query=Hone,+A+N">Andrew N.W. Hone</a>, <a href="https://arxiv.org/search/math-ph?searchtype=author&query=Mitchell,+B">Ben Mitchell</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Mathematical Physics (math-ph)</span>; Classical Analysis and ODEs (math.CA); Exactly Solvable and Integrable Systems (nlin.SI) </div> <p class='mathjax'> We consider solutions of a discrete Painlev茅 equation arising from a construction of quantum minimal surfaces by Arnlind, Hoppe and Kontsevich, and in earlier work of Cornalba and Taylor on static membranes. While the discrete equation admits a continuum limit to the continuous Painlev茅 I equation, we find that it has the same space of initial values as the Painlev茅 V equation with certain specific parameter values. We further explicitly show how each iteration of this discrete Painlev茅 I equation corresponds to a certain composition of B盲cklund transformations for Painlev茅 V, as was first remarked in work by Tokihiro, Grammaticos and Ramani. In addition, we show that some explicit special function solutions of Painlev茅 V, written in terms of modified Bessel functions, yield the unique positive solution of the initial value problem required for quantum minimal surfaces. </p> </div> </dd> </dl> <dl id='articles'> <h3>Cross submissions (showing 13 of 13 entries)</h3> <dt> <a name='item5'>[5]</a> <a href ="/abs/2503.13633" title="Abstract" id="2503.13633"> arXiv:2503.13633 </a> (cross-list from hep-th) [<a href="/pdf/2503.13633" title="Download PDF" id="pdf-2503.13633" aria-labelledby="pdf-2503.13633">pdf</a>, <a href="https://arxiv.org/html/2503.13633v1" title="View HTML" id="html-2503.13633" aria-labelledby="html-2503.13633" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.13633" title="Other formats" id="oth-2503.13633" aria-labelledby="oth-2503.13633">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Braidings on topological operators, anomaly of higher-form symmetries and the SymTFT </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-th?searchtype=author&query=Putrov,+P">Pavel Putrov</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Radhakrishnan,+R">Rajath Radhakrishnan</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 53 pages, 10 figures, 3 appendices </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Theory (hep-th)</span>; Strongly Correlated Electrons (cond-mat.str-el); Mathematical Physics (math-ph); Quantum Algebra (math.QA) </div> <p class='mathjax'> The anomaly of non-invertible higher-form symmetries is determined by the braiding of topological operators implementing them. In this paper, we study a method to classify braidings on topological line and surface operators by leveraging the fact that topological operators which admit a braiding are symmetries of their associated SymTFT. This perspective allows us to formulate an algorithm to explicitly compute all possible braidings on a given fusion category, bypassing the need to solve the hexagon equations. Additionally, using 3+1d SymTFTs, we determine braidings on various fusion 2-categories. We prove a necessary and sufficient condition for the fusion 2-categories $\Sigma \mathcal{C}$, 2Vec$_G^{\pi}$ and Tambara-Yamagami (TY) 2-categories TY$(A,\pi)$ to admit a braiding. </p> </div> </dd> <dt> <a name='item6'>[6]</a> <a href ="/abs/2503.13680" title="Abstract" id="2503.13680"> arXiv:2503.13680 </a> (cross-list from hep-th) [<a href="/pdf/2503.13680" title="Download PDF" id="pdf-2503.13680" aria-labelledby="pdf-2503.13680">pdf</a>, <a href="https://arxiv.org/html/2503.13680v1" title="View HTML" id="html-2503.13680" aria-labelledby="html-2503.13680" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.13680" title="Other formats" id="oth-2503.13680" aria-labelledby="oth-2503.13680">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> On the Explicit Asymptotic Symmetry Breaking of sl(3,R) Jackiw-Teitelboim Gravity </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-th?searchtype=author&query=%C3%96zer,+H">H.T. 脰zer</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Filiz,+A">Ayt眉l Filiz</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 24 pages,LaTeX </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Theory (hep-th)</span>; General Relativity and Quantum Cosmology (gr-qc); Mathematical Physics (math-ph) </div> <p class='mathjax'> This study investigates the asymptotic symmetry algebras (ASA) of Jackiw-Teitelboim (JT) gravity within the framework of sl(3,R) symmetry. By explicitly constructing this algebra, <br>we explore how the presence of the dilaton field influences the structure of asymptotic symmetries and symmetry breaking mechanisms at the AdS(2) boundary. For the sl(3,R) model, the <br>dilaton field preserves a subset of the complete W(3)-symmetry, restricting the algebra to sl(3,R). These results provide deeper insights into the role of dilaton dynamics <br>in holographic dualities, with implications for the thermodynamics and geometry of AdS(2). The findings pave the way for systematically exploring extended gauge symmetries in <br>two-dimensional gravity and their relevance to higher-rank Lie algebras. </p> </div> </dd> <dt> <a name='item7'>[7]</a> <a href ="/abs/2503.13685" title="Abstract" id="2503.13685"> arXiv:2503.13685 </a> (cross-list from hep-th) [<a href="/pdf/2503.13685" title="Download PDF" id="pdf-2503.13685" aria-labelledby="pdf-2503.13685">pdf</a>, <a href="https://arxiv.org/html/2503.13685v1" title="View HTML" id="html-2503.13685" aria-labelledby="html-2503.13685" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.13685" title="Other formats" id="oth-2503.13685" aria-labelledby="oth-2503.13685">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Topological Holography for 2+1-D Gapped and Gapless Phases with Generalized Symmetries </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-th?searchtype=author&query=Wen,+R">Rui Wen</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Theory (hep-th)</span>; Strongly Correlated Electrons (cond-mat.str-el); Mathematical Physics (math-ph) </div> <p class='mathjax'> We study topological holography for 2+1-D gapped and gapless phases with generalized symmetries using tools from higher linear algebra and higher condensation theory. We focus on bosonic fusion 2-category symmetries, where the Symmetry Topological Field Theory (SymTFT) are 3+1D Dijkgraaf-Witten theories. <br>(1). Gapped phases are obtained from the sandwich construction with gapped symmetry and physical boundaries. A gapped boundary of the 3+1D SymTFT is called minimal if it has no intrinsic 2+1-D topological order. We derive the general structure of a sandwich construction with minimal gapped symmetry and physical boundaries, including the underlying topological order and the symmetry action. We also study some concrete examples with 2-group or non-invertible symmetries. <br>(2). For gapless phases, we show that the SymTFT provides a complete description of the \textit{topological skeleton} of a gapless phase. The topological skeleton of a gapless phase is the higher categorical structure of its topological defects. We rigorously establish this relation for 2+1-D gapless phases with finite group symmetries. For a gapless phase with a finite group symmetry, its topological skeleton(also known as gapless SPT(gSPT)) can be characterized by the decorated domain wall construction. We give a precise formulation of this using spectral sequence. We show that certain class of condensable algebras in the SymTFT $\mathcal{Z}_1[2\mathbf{Vec}_G]$, which we call minimal condensable algebras, has exactly the same structure. We further give a cohomological classification of minimal condensable algebras, which enables us to compute the classification of 2+1-D $G$-gSPTs via ordinary group cohomology. Finally we use SymTFT to construct 2+1-D gSPT with generalized symmetries, including an intrinsically gSPT(igSPT) with exact non-invertible fusion 2-category symmetry and anomalous 2-group IR symmetry. </p> </div> </dd> <dt> <a name='item8'>[8]</a> <a href ="/abs/2503.13731" title="Abstract" id="2503.13731"> arXiv:2503.13731 </a> (cross-list from quant-ph) [<a href="/pdf/2503.13731" title="Download PDF" id="pdf-2503.13731" aria-labelledby="pdf-2503.13731">pdf</a>, <a href="https://arxiv.org/html/2503.13731v1" title="View HTML" id="html-2503.13731" aria-labelledby="html-2503.13731" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.13731" title="Other formats" id="oth-2503.13731" aria-labelledby="oth-2503.13731">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Macroscopic Particle Transport in Dissipative Long-Range Bosonic Systems </div> <div class='list-authors'><a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Li,+H">Hongchao Li</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Shang,+C">Cheng Shang</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Kuwahara,+T">Tomotaka Kuwahara</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Van+Vu,+T">Tan Van Vu</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 11 pages, 1 figure </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Quantum Physics (quant-ph)</span>; Statistical Mechanics (cond-mat.stat-mech); Mathematical Physics (math-ph) </div> <p class='mathjax'> The inevitable loss of particles in quantum many-body systems provides a more general and experimentally realistic perspective on particle transport. In this work, we determine the maximal speed of macroscopic particle transport in dissipative bosonic systems featuring both long-range hopping and long-range interactions. By developing a generalized optimal transport theory for open quantum systems, we rigorously establish the relationship between the minimum transport time and the source-target distance, and investigate the maximal transportable distance of bosons. We demonstrate that optimal transport exhibits a fundamental distinction depending on whether the system experiences one-body loss or multi-body loss. Furthermore, we present the minimal transport time and the maximal transport distance for systems with both gain and loss. We observe that even an arbitrarily small gain rate enables transport over long distances if the lattice gas is dilute. Moreover, we generally reveal that the emergence of decoherence-free subspaces facilitates the long-distance and perfect transport process. We also derive an upper bound for the probability of transporting a given number of particles during a fixed period with one-body loss. Possible experimental protocols for observing our theoretical predictions are discussed. </p> </div> </dd> <dt> <a name='item9'>[9]</a> <a href ="/abs/2503.13871" title="Abstract" id="2503.13871"> arXiv:2503.13871 </a> (cross-list from math.AP) [<a href="/pdf/2503.13871" title="Download PDF" id="pdf-2503.13871" aria-labelledby="pdf-2503.13871">pdf</a>, <a href="https://arxiv.org/html/2503.13871v1" title="View HTML" id="html-2503.13871" aria-labelledby="html-2503.13871" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.13871" title="Other formats" id="oth-2503.13871" aria-labelledby="oth-2503.13871">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Local well-posedness for Chern-Simons gauged $O(3)$ sigma equations under the Lorenz gauge </div> <div class='list-authors'><a href="https://arxiv.org/search/math?searchtype=author&query=Guanghui,+J">Jin Guanghui</a>, <a href="https://arxiv.org/search/math?searchtype=author&query=Zhang,+H">Huali Zhang</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 14pages </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Analysis of PDEs (math.AP)</span>; Mathematical Physics (math-ph) </div> <p class='mathjax'> In this paper, we study the Cauchy problem for the Chern-Simons gauged $O(3)$ sigma model under the Lorenz gauge condition. We prove the local well-posedness of solutions if the initial matter field and gauge field satisfy $(\bm{\phi}_0, \bA_0) \in H^s(\R^2)\times H^{s-\frac12}(\R^2)$, $s>1$, where the critical regularity for $\bm{\phi}_0$ is $s_c=1$. Our proof is based on identifying null forms within the system and utilizing bilinear estimates in wave-Sobolev space. </p> </div> </dd> <dt> <a name='item10'>[10]</a> <a href ="/abs/2503.13922" title="Abstract" id="2503.13922"> arXiv:2503.13922 </a> (cross-list from math.AP) [<a href="/pdf/2503.13922" title="Download PDF" id="pdf-2503.13922" aria-labelledby="pdf-2503.13922">pdf</a>, <a href="https://arxiv.org/html/2503.13922v1" title="View HTML" id="html-2503.13922" aria-labelledby="html-2503.13922" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.13922" title="Other formats" id="oth-2503.13922" aria-labelledby="oth-2503.13922">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Existence and Regularizing Effects of a Nonlinear Diffusion Model for Plasma Instabilities </div> <div class='list-authors'><a href="https://arxiv.org/search/math?searchtype=author&query=Porteous,+W">William Porteous</a>, <a href="https://arxiv.org/search/math?searchtype=author&query=Gamba,+I+M">Irene M. Gamba</a>, <a href="https://arxiv.org/search/math?searchtype=author&query=Huang,+K">Kun Huang</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Analysis of PDEs (math.AP)</span>; Mathematical Physics (math-ph); Plasma Physics (physics.plasm-ph) </div> <p class='mathjax'> We study existence and regularity of weak solutions to a nonlinear parabolic Dirichlet problem $\partial_{t}u - \rho_{\lambda}(x)u\Delta u = \rho_{\lambda}(x)g_{0}(x)u$ on the half line $(0,\infty)$. We find weak solutions from $L^p\ (p < \infty)$ initial data, and by means of a Benilan-Crandall inequality, show solutions are jointly Holder continuous, and locally, spatially Lipschitz on the parabolic interior. We identify special solutions which saturate these bounds. The Benilan-Crandall inequality, derived from time-scaling arguments, is of independent interest for exposing a regularizing effect of the parabolic u$\Delta$u operator. Recently considered in [11], this problem originates in the theory of nonlinear instability damping via wave-particle interactions in plasma physics (see [8, 22]). </p> </div> </dd> <dt> <a name='item11'>[11]</a> <a href ="/abs/2503.14008" title="Abstract" id="2503.14008"> arXiv:2503.14008 </a> (cross-list from math.AP) [<a href="/pdf/2503.14008" title="Download PDF" id="pdf-2503.14008" aria-labelledby="pdf-2503.14008">pdf</a>, <a href="https://arxiv.org/html/2503.14008v1" title="View HTML" id="html-2503.14008" aria-labelledby="html-2503.14008" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.14008" title="Other formats" id="oth-2503.14008" aria-labelledby="oth-2503.14008">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> On the magnetic Dirichlet to Neumann operator on the exterior of the disk -- diamagnetism, weak-magnetic field limit and flux effects </div> <div class='list-authors'><a href="https://arxiv.org/search/math?searchtype=author&query=Bernard,+H">Helffer Bernard</a>, <a href="https://arxiv.org/search/math?searchtype=author&query=Francois,+N">Nicoleau Francois</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 28 pages </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Analysis of PDEs (math.AP)</span>; Mathematical Physics (math-ph); Spectral Theory (math.SP) </div> <p class='mathjax'> In this paper, we analyze the magnetic Dirichlet-to-Neumann operator (D-to-N map) $\check \Lambda(b,\nu)$ on the exterior of the disk with respect to a magnetic potential $A_{b, \nu}=A^b + A_\nu$ where, for $b\in \mathbb R$ and $\nu \in \mathbb R$, $A^b (x,y)= b\, (-y, x)$ and $A_\nu (x,y)$ is the Aharonov-Bohm potential centered at the origin of flux $2\pi \nu$. First, we show that the limit of $\check \Lambda(b,\nu)$ as $b\rightarrow 0$ is equal to the D-to-N map $\widehat \Lambda (\nu)$ on the interior of the disk associated with the potential $A_\nu (x,y)$. Secondly, we study the ground state energy of the D-to-N map $\check \Lambda(b,\nu)$ and show that the strong diamagnetism property holds. Finally we slightly extend to the exterior case the asymptotic results obtained in the interior case for general domains. </p> </div> </dd> <dt> <a name='item12'>[12]</a> <a href ="/abs/2503.14223" title="Abstract" id="2503.14223"> arXiv:2503.14223 </a> (cross-list from q-bio.PE) [<a href="/pdf/2503.14223" title="Download PDF" id="pdf-2503.14223" aria-labelledby="pdf-2503.14223">pdf</a>, <a href="https://arxiv.org/html/2503.14223v1" title="View HTML" id="html-2503.14223" aria-labelledby="html-2503.14223" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.14223" title="Other formats" id="oth-2503.14223" aria-labelledby="oth-2503.14223">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Modeling Epidemics with Memory Effects: an Open Quantum System Approach </div> <div class='list-authors'><a href="https://arxiv.org/search/q-bio?searchtype=author&query=Bagarello,+F">Fabio Bagarello</a>, <a href="https://arxiv.org/search/q-bio?searchtype=author&query=Gargano,+F">Francesco Gargano</a>, <a href="https://arxiv.org/search/q-bio?searchtype=author&query=Khrennikova,+P">Polina Khrennikova</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Populations and Evolution (q-bio.PE)</span>; Mathematical Physics (math-ph) </div> <p class='mathjax'> In this work, we introduce a quantum-inspired epidemic model to study the dynamics of an infectious disease in a population divided into compartments. By treating the healthy population as a large reservoir, we construct a framework based on open quantum systems and a Hilbert space formalism to model the spread of the infection. This approach allows for a mathematical framework that captures both Markovian and semi-Markovian dynamics in the evolution equations. <br>Through numerical experiments, we examine the impact of varying memory parameters on the epidemic evolution, focusing in particular on the conditions under which the model remains physically admissible. </p> </div> </dd> <dt> <a name='item13'>[13]</a> <a href ="/abs/2503.14270" title="Abstract" id="2503.14270"> arXiv:2503.14270 </a> (cross-list from physics.flu-dyn) [<a href="/pdf/2503.14270" title="Download PDF" id="pdf-2503.14270" aria-labelledby="pdf-2503.14270">pdf</a>, <a href="https://arxiv.org/html/2503.14270v1" title="View HTML" id="html-2503.14270" aria-labelledby="html-2503.14270" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.14270" title="Other formats" id="oth-2503.14270" aria-labelledby="oth-2503.14270">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Integral modelling and Reinforcement Learning control of 3D liquid metal coating on a moving substrate </div> <div class='list-authors'><a href="https://arxiv.org/search/physics?searchtype=author&query=Pino,+F">Fabio Pino</a>, <a href="https://arxiv.org/search/physics?searchtype=author&query=Fracchia,+E">Edoardo Fracchia</a>, <a href="https://arxiv.org/search/physics?searchtype=author&query=Scheid,+B">Benoit Scheid</a>, <a href="https://arxiv.org/search/physics?searchtype=author&query=Mendez,+M+A">Miguel A. Mendez</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Fluid Dynamics (physics.flu-dyn)</span>; Mathematical Physics (math-ph) </div> <p class='mathjax'> Metallic coatings are used to improve the durability of metal surfaces, protecting them from corrosion. These protective layers are typically deposited in a fluid state via a liquid film. Controlling instabilities in the liquid film is crucial for achieving uniform and high-quality coatings. This study explores the possibility of controlling liquid films on a moving substrate using a combination of gas jets and electromagnetic actuators. To model the 3D liquid film, we extend existing integral models to incorporate the effects of electromagnetic actuators. The control strategy was developed within a reinforcement learning framework, where the Proximal Policy Optimization (PPO) algorithm interacts with the liquid film via pneumatic and electromagnetic actuators to optimize a reward function, accounting for the amplitude of the instability waves through a trial and error process. The PPO found an optimal control law, which successfully reduced interface instabilities through a novel control mechanism, where gas jets push crests and electromagnets raise troughs using the Lorentz force. </p> </div> </dd> <dt> <a name='item14'>[14]</a> <a href ="/abs/2503.14302" title="Abstract" id="2503.14302"> arXiv:2503.14302 </a> (cross-list from gr-qc) [<a href="/pdf/2503.14302" title="Download PDF" id="pdf-2503.14302" aria-labelledby="pdf-2503.14302">pdf</a>, <a href="https://arxiv.org/html/2503.14302v1" title="View HTML" id="html-2503.14302" aria-labelledby="html-2503.14302" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.14302" title="Other formats" id="oth-2503.14302" aria-labelledby="oth-2503.14302">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Relativistic stars in $f(Q)$-gravity </div> <div class='list-authors'><a href="https://arxiv.org/search/gr-qc?searchtype=author&query=Dimakis,+N">Nikolaos Dimakis</a>, <a href="https://arxiv.org/search/gr-qc?searchtype=author&query=Giacomini,+A">Alex Giacomini</a>, <a href="https://arxiv.org/search/gr-qc?searchtype=author&query=Paliathanasis,+A">Andronikos Paliathanasis</a>, <a href="https://arxiv.org/search/gr-qc?searchtype=author&query=Panotopoulos,+G">Grigorios Panotopoulos</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 14 pages, 2 figures </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">General Relativity and Quantum Cosmology (gr-qc)</span>; High Energy Physics - Theory (hep-th); Mathematical Physics (math-ph) </div> <p class='mathjax'> We investigate static spherically symmetric spacetimes within the framework of symmetric teleparallel $f(Q)$ gravity in order to describe relativistic stars. We adopt a specific ansatz for the background geometry corresponding to a singularity-free space-time. We obtain an expression for the connection, which allows the derivation of solutions for any $f(Q)$ theory in this context. Our approach aims to address a recurring error appearing in the literature, where even when a connection compatible with spherical symmetry is adopted, the field equation for the connection is systematically omitted and not checked if it is satisfied. For the stellar configuration, we concentrate on the power-law model $f(Q)=Q+\alpha Q_{0}\left( \frac{Q}{Q_{0}}\right) ^{\nu }$. The de Sitter-Schwarzschild geometry naturally emerges as an attractor beyond a certain radius, we thus utilize it as the external solution beyond the boundary of the star. We perform a detailed investigation of the physical characteristics of the interior solution, explicitly determining the mass function, analyzing the resulting gravitational fluid properties and deriving the angular and radial speed of sound. </p> </div> </dd> <dt> <a name='item15'>[15]</a> <a href ="/abs/2503.14414" title="Abstract" id="2503.14414"> arXiv:2503.14414 </a> (cross-list from math.PR) [<a href="/pdf/2503.14414" title="Download PDF" id="pdf-2503.14414" aria-labelledby="pdf-2503.14414">pdf</a>, <a href="https://arxiv.org/html/2503.14414v1" title="View HTML" id="html-2503.14414" aria-labelledby="html-2503.14414" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.14414" title="Other formats" id="oth-2503.14414" aria-labelledby="oth-2503.14414">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Recovering Parameters from Edge Fluctuations: Beta-Ensembles and Critically-Spiked Models </div> <div class='list-authors'><a href="https://arxiv.org/search/math?searchtype=author&query=Lamarre,+P+Y+G">Pierre Yves Gaudreau Lamarre</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 39 pages, comments welcome </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Probability (math.PR)</span>; Mathematical Physics (math-ph) </div> <p class='mathjax'> Let $\Lambda=\{\Lambda_0,\Lambda_1,\Lambda_2,\ldots\}$ be the point process that describes the edge scaling limit of either (i) "regular" beta-ensembles with inverse temperature $\beta>0$, or (ii) the top eigenvalues of Wishart or Gaussian invariant random matrices perturbed by $r_0\geq1$ critical spikes. In other words, $\Lambda$ is the eigenvalue point process of one of the scalar or multivariate stochastic Airy operators. We prove that a single observation of $\Lambda$ suffices to recover (almost surely) either (i) $\beta$ in the case of beta-ensembles, or (ii) $r_0$ in the case of critically-spiked models. Our proof relies on the recently-developed semigroup theory for the multivariate stochastic Airy operators. <br>Going beyond these parameter-recovery applications, our results also (iii) refine our understanding of the rigidity properties of $\Lambda$, and (iv) shed new light on the equality (in distribution) of stochastic Airy spectra with different dimensions and the same Robin boundary conditions. </p> </div> </dd> <dt> <a name='item16'>[16]</a> <a href ="/abs/2503.14465" title="Abstract" id="2503.14465"> arXiv:2503.14465 </a> (cross-list from gr-qc) [<a href="/pdf/2503.14465" title="Download PDF" id="pdf-2503.14465" aria-labelledby="pdf-2503.14465">pdf</a>, <a href="https://arxiv.org/html/2503.14465v1" title="View HTML" id="html-2503.14465" aria-labelledby="html-2503.14465" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.14465" title="Other formats" id="oth-2503.14465" aria-labelledby="oth-2503.14465">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Scalar Field Static Spherically Symmetric Solutions in Teleparallel $F(T)$ Gravity </div> <div class='list-authors'><a href="https://arxiv.org/search/gr-qc?searchtype=author&query=Landry,+A">Alexandre Landry</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 43 pages, 5 tables, and no figure. Will appear soon in Mathematics </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">General Relativity and Quantum Cosmology (gr-qc)</span>; High Energy Physics - Theory (hep-th); Mathematical Physics (math-ph) </div> <p class='mathjax'> We investigate in this paper the static radial coordinate-dependent spherically symmetric spacetime in teleparallel $F(T)$ gravity for a scalar field source. We begin by setting the static field equations (FEs) to be solved and solve the conservation laws for scalar field potential solutions. We simplify the FEs and then find a general formula for computing the new teleparallel $F(T)$ solutions applicable for any scalar field potential $V(T)$ and coframe ansatz. We compute new non-trivial teleparallel $F(T)$ solutions by using a power-law coframe ansatz for each scalar potential case arising from the conservation laws. We apply this formula to find new exact teleparallel $F(T)$ solutions for several cases of coframe ansatz parameter. The new $F(T)$ solution classes will be relevant for {studying the models close to Born--Infeld and/or scalarized Black Hole (BH) solutions inside the} dark energy (DE) described by a fundamental scalar field such as quintessence, phantom energy or quintom system, to name only those types. </p> </div> </dd> <dt> <a name='item17'>[17]</a> <a href ="/abs/2503.14497" title="Abstract" id="2503.14497"> arXiv:2503.14497 </a> (cross-list from math.PR) [<a href="/pdf/2503.14497" title="Download PDF" id="pdf-2503.14497" aria-labelledby="pdf-2503.14497">pdf</a>, <a href="https://arxiv.org/html/2503.14497v1" title="View HTML" id="html-2503.14497" aria-labelledby="html-2503.14497" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.14497" title="Other formats" id="oth-2503.14497" aria-labelledby="oth-2503.14497">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Strong local uniqueness for the vacant set of random interlacements </div> <div class='list-authors'><a href="https://arxiv.org/search/math?searchtype=author&query=Goswami,+S">Subhajit Goswami</a>, <a href="https://arxiv.org/search/math?searchtype=author&query=Rodriguez,+P">Pierre-Fran莽ois Rodriguez</a>, <a href="https://arxiv.org/search/math?searchtype=author&query=Shulzhenko,+Y">Yuriy Shulzhenko</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 76 pages </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Probability (math.PR)</span>; Mathematical Physics (math-ph) </div> <p class='mathjax'> We consider the the vacant set $\mathcal{V}^u$ of random interlacements on $\mathbb{Z}^d$ in dimensions $d \ge 3$. For varying intensity $u > 0$, the connectivity properties of $\mathcal V^u$ undergo a percolation phase transition across a non-degenerate critical parameter $u_* \in (0,\infty)$. As a consequence of the series of recent works <a href="https://arxiv.org/abs/2308.07303" data-arxiv-id="2308.07303" class="link-https">arXiv:2308.07303</a>, <a href="https://arxiv.org/abs/2308.07919" data-arxiv-id="2308.07919" class="link-https">arXiv:2308.07919</a> and <a href="https://arxiv.org/abs/2308.07920" data-arxiv-id="2308.07920" class="link-https">arXiv:2308.07920</a>, one knows that in the super-critical regime, i.e. when $u < u_\ast$, there is a cluster of positive density inside any ball of radius $R$ with probability stretched exponentially close to $1$ in $R$. Furthermore, with similar probability, any two large clusters are connected to each other locally in any configuration with strictly smaller intensity. This last property falls short of the classical local uniqueness, which requires a connection in the same configuration, i.e. in absence of any sprinkling. In this article we resolve this question by proving a stronger property, namely that local uniqueness holds simultaneously for all configurations $\mathcal{V}^{v}$ with $v \le u$. Apart from the severe degeneracies in the conditional law of $\mathcal{V}^u$ including the lack of any finite-energy property, our methods also face up to the well-known problem of decoupling non-monotone events, by exhibiting a certain regularity in terms of so-called excursion packets, which has implications beyond the scope of this paper. Our approach suggests a robust way to tackle similar problems for various other (correlated) models. In itself, the strong local uniqueness we prove yields several important results characterizing the super-critical phase of $\mathcal{V}^u$, among which are the large-scale geometry of the infinite cluster and sharp upper bounds on truncated connectivity functions. </p> </div> </dd> </dl> <dl id='articles'> <h3>Replacement submissions (showing 15 of 15 entries)</h3> <dt> <a name='item18'>[18]</a> <a href ="/abs/2306.00896" title="Abstract" id="2306.00896"> arXiv:2306.00896 </a> (replaced) [<a href="/pdf/2306.00896" title="Download PDF" id="pdf-2306.00896" aria-labelledby="pdf-2306.00896">pdf</a>, <a href="/format/2306.00896" title="Other formats" id="oth-2306.00896" aria-labelledby="oth-2306.00896">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Boundary conditions and universal finite-size scaling for the hierarchical $|蠁|^4$ model in dimensions 4 and higher </div> <div class='list-authors'><a href="https://arxiv.org/search/math-ph?searchtype=author&query=Michta,+E">Emmanuel Michta</a>, <a href="https://arxiv.org/search/math-ph?searchtype=author&query=Park,+J">Jiwoon Park</a>, <a href="https://arxiv.org/search/math-ph?searchtype=author&query=Slade,+G">Gordon Slade</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 105 pages. Editorial improvements throughout v3 </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Mathematical Physics (math-ph)</span>; Probability (math.PR) </div> <p class='mathjax'> We analyse and clarify the finite-size scaling of the weakly-coupled hierarchical $n$-component $|\varphi|^4$ model for all integers $n \ge 1$ in all dimensions $d\ge 4$, for both free and periodic boundary conditions. For $d>4$, we prove that for a volume of size $R^{d}$ with periodic boundary conditions the infinite-volume critical point is an effective finite-volume critical point, whereas for free boundary conditions the effective critical point is shifted smaller by an amount of order $R^{-2}$. For both boundary conditions, the average field has the same non-Gaussian limit within a critical window of width $R^{-d/2}$ around the effective critical point, and in that window we compute the universal scaling profile for the susceptibility. In contrast, and again for both boundary conditions, the average field has a massive Gaussian limit when above the effective critical point by an amount $R^{-2}$. In particular, at the infinite-volume critical point the susceptibility scales as $R^{d/2}$ for periodic boundary conditions and as $R^{2}$ for free boundary conditions. We identify a mass generation mechanism for free boundary conditions that is responsible for this distinction and which we believe has wider validity, in particular to Euclidean (non-hierarchical) models on $\mathbb{Z}^d$ in dimensions $d \ge 4$. For $d=4$ we prove a similar picture with logarithmic corrections. Our analysis is based on the rigorous renormalisation group method of Bauerschmidt, Brydges and Slade, which we improve and extend. </p> </div> </dd> <dt> <a name='item19'>[19]</a> <a href ="/abs/2501.05304" title="Abstract" id="2501.05304"> arXiv:2501.05304 </a> (replaced) [<a href="/pdf/2501.05304" title="Download PDF" id="pdf-2501.05304" aria-labelledby="pdf-2501.05304">pdf</a>, <a href="https://arxiv.org/html/2501.05304v3" title="View HTML" id="html-2501.05304" aria-labelledby="html-2501.05304" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2501.05304" title="Other formats" id="oth-2501.05304" aria-labelledby="oth-2501.05304">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Mean-Field Dynamics of the Bose-Hubbard Model in High Dimension </div> <div class='list-authors'><a href="https://arxiv.org/search/math-ph?searchtype=author&query=Farhat,+S">Shahnaz Farhat</a>, <a href="https://arxiv.org/search/math-ph?searchtype=author&query=P%C3%A9rice,+D">Denis P茅rice</a>, <a href="https://arxiv.org/search/math-ph?searchtype=author&query=Petrat,+S">S枚ren Petrat</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Mathematical Physics (math-ph)</span>; Quantum Gases (cond-mat.quant-gas) </div> <p class='mathjax'> The Bose-Hubbard model effectively describes bosons on a lattice with on-site interactions and nearest-neighbour hopping, serving as a foundational framework for understanding strong particle interactions and the superfluid to Mott insulator transition. This paper aims to rigorously establish the validity of a mean-field approximation for the dynamics of quantum systems in high dimension, using the Bose-Hubbard model on a square lattice as a case study. We prove a trace norm estimate between the one-lattice-site reduced density of the Schr枚dinger dynamics and the mean-field dynamics in the limit of large dimension. Here, the mean-field approximation is in the hopping amplitude and not in the interaction, leading to a very rich and non-trivial mean-field equation. This mean-field equation does not only describe the condensate, as is the case when the mean-field description comes from a large particle number limit averaging out the interaction, but it allows for a phase transition to a Mott insulator since it contains the full non-trivial interaction. Our work is a rigorous justification of a simple case of the highly successful dynamical mean-field theory (DMFT) for bosons, which somewhat surprisingly yields many qualitatively correct results in three dimensions. </p> </div> </dd> <dt> <a name='item20'>[20]</a> <a href ="/abs/2501.18557" title="Abstract" id="2501.18557"> arXiv:2501.18557 </a> (replaced) [<a href="/pdf/2501.18557" title="Download PDF" id="pdf-2501.18557" aria-labelledby="pdf-2501.18557">pdf</a>, <a href="https://arxiv.org/html/2501.18557v2" title="View HTML" id="html-2501.18557" aria-labelledby="html-2501.18557" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2501.18557" title="Other formats" id="oth-2501.18557" aria-labelledby="oth-2501.18557">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Classical facets of quantum integrability </div> <div class='list-authors'><a href="https://arxiv.org/search/math-ph?searchtype=author&query=Zabrodin,+A">A. Zabrodin</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 40 pages, no figures, references added, misprints corrected </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Mathematical Physics (math-ph)</span> </div> <p class='mathjax'> This paper is a review of the works devoted to understanding and reinterpretation of the theory of quantum integrable models solvable by Bethe ansatz in terms of the theory of purely classical soliton equations. Remarkably, studying polynomial solutions of the latter by methods of classical soliton theory, one is able to develop a method of solving the spectral problem for the former which provides an alternative to the Bethe ansatz procedure. Our main examples are the generalized inhomogeneous spins chains with twisted boundary conditions on the quantum side and the modified Kadomtsev-Petviashvili hierarchy of nonlinear differential-difference equations on the classical side. In this paper, we restrict ourselves to quantum spin chains with rational $GL(n)$-invariant $R$-matrices (of the XXX type). Also, the connection of quantum spin chains with classical soliton equations implies a close interrelation between the spectral problem for spin chains and integrable many-body systems of classical mechanics such as Calogero-Moser and Ruijsenaars-Scheider models, which is known as the quantum-classical duality. Revisiting this topic, we suggest a simpler and more instructive proof of this kind of duality. </p> </div> </dd> <dt> <a name='item21'>[21]</a> <a href ="/abs/2501.19396" title="Abstract" id="2501.19396"> arXiv:2501.19396 </a> (replaced) [<a href="/pdf/2501.19396" title="Download PDF" id="pdf-2501.19396" aria-labelledby="pdf-2501.19396">pdf</a>, <a href="/format/2501.19396" title="Other formats" id="oth-2501.19396" aria-labelledby="oth-2501.19396">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> The Gibbs state of the mean-field Bose gas </div> <div class='list-authors'><a href="https://arxiv.org/search/math-ph?searchtype=author&query=Deuchert,+A">Andreas Deuchert</a>, <a href="https://arxiv.org/search/math-ph?searchtype=author&query=Nam,+P+T">Phan Th脿nh Nam</a>, <a href="https://arxiv.org/search/math-ph?searchtype=author&query=Napi%C3%B3rkowski,+M">Marcin Napi贸rkowski</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 102 pages, presentation improved </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Mathematical Physics (math-ph)</span> </div> <p class='mathjax'> We consider the homogeneous mean-field Bose gas at temperatures proportional to the critical temperature of its Bose-Einstein condensation phase transition. We prove a trace norm approximation for the grand canonical Gibbs state in terms of a reference state, which is given by a convex combination of products of coherent states and Gibbs states associated with certain temperature-dependent Bogoliubov Hamiltonians. The convex combination is expressed as an integral over a Gibbs distribution of a one-mode $\Phi^4$-theory describing the condensate. This result justifies an analogue of Lee and Yang's extension of Bogoliubov theory to positive temperatures, and it allows us to derive various limiting distributions for the number of particles in the condensate, as well as precise formulas for the one- and two-particle density matrices of the Gibbs state. Key ingredients of our proof, which are of independent interest, include two novel abstract correlation inequalities. The proof of one of them is based on an application of an infinite-dimensional version of Stahl's theorem. </p> </div> </dd> <dt> <a name='item22'>[22]</a> <a href ="/abs/2503.13196" title="Abstract" id="2503.13196"> arXiv:2503.13196 </a> (replaced) [<a href="/pdf/2503.13196" title="Download PDF" id="pdf-2503.13196" aria-labelledby="pdf-2503.13196">pdf</a>, <a href="https://arxiv.org/html/2503.13196v2" title="View HTML" id="html-2503.13196" aria-labelledby="html-2503.13196" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.13196" title="Other formats" id="oth-2503.13196" aria-labelledby="oth-2503.13196">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Scale-Dependent Suppression Functions and Functional Space Geometry in Renormalization </div> <div class='list-authors'><a href="https://arxiv.org/search/math-ph?searchtype=author&query=Ketels,+D">Daniel Ketels</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 15 pages, removed accidently included LaTeX section, added some details </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Mathematical Physics (math-ph)</span>; High Energy Physics - Theory (hep-th); Functional Analysis (math.FA) </div> <p class='mathjax'> We analyze the effects of a scale-dependent suppression function $\Omega(k, \Lambda)$ on the functional space geometry in renormalization theory. By introducing a dynamical cutoff scale $\Lambda$, the suppression function smoothly regulates high-momentum contributions without requiring a hard cutoff. We show that $\Omega(k, \Lambda)$ induces a modified metric on functional space, leading to a non-trivial Ricci curvature that becomes increasingly negative in the ultraviolet (UV) limit. This effect dynamically suppresses high-energy states, yielding a controlled deformation of the functional domain. Furthermore, we derive the renormalization group (RG) flow of $\Omega(k, \Lambda)$ and demonstrate its role in controlling the curvature flow of the functional space. The suppression function leads to spectral modifications that suggest an effective dimensional reduction at high energies, a feature relevant to functional space deformations and integral convergence in renormalization theory. Our findings provide a mathematical framework for studying regularization techniques and their role in the UV behavior of function spaces. </p> </div> </dd> <dt> <a name='item23'>[23]</a> <a href ="/abs/2405.17063" title="Abstract" id="2405.17063"> arXiv:2405.17063 </a> (replaced) [<a href="/pdf/2405.17063" title="Download PDF" id="pdf-2405.17063" aria-labelledby="pdf-2405.17063">pdf</a>, <a href="/format/2405.17063" title="Other formats" id="oth-2405.17063" aria-labelledby="oth-2405.17063">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> On Laplace equation solution in orthogonal similar oblate spheroidal coordinates </div> <div class='list-authors'><a href="https://arxiv.org/search/physics?searchtype=author&query=Strunz,+P">Pavel Strunz</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> Version printed in Contemporary Mathematics (Singapore). Licence: CC BY 4.0. 23 pages, 1 figure, 4 supplements </div> <div class='list-journal-ref'><span class='descriptor'>Journal-ref:</span> Strunz P.: On Laplace equation solution in orthogonal similar oblate spheroidal coordinates. Contemp. Math. 6 (2025), 1715-1737. https://ojs.wiserpub.com/index.php/CM/article/view/4965 </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Classical Physics (physics.class-ph)</span>; Mathematical Physics (math-ph) </div> <p class='mathjax'> Orthogonal coordinate systems enable expressing the boundary conditions of differential equations in accord with the physical boundaries of the problem. It can significantly simplify calculations. The orthogonal similar oblate spheroidal (SOS) coordinate system can be particularly useful for a physical processes description inside or in the vicinity of the bodies or particles with the geometry of an oblate spheroid. The interior solution of the Laplace equation in the SOS coordinates was recently found; however, the exterior solution was missing. The exterior solution of the azimuthally symmetric Laplace equation in the SOS coordinates is derived. In the steps leading to this solution, important formulas of the SOS algebra are found. Various forms of the Laplace operator in the SOS coordinates in azimuthally symmetric case are shown. General transformation between two different SOS coordinate systems is derived. It is determined that the SOS harmonics are physically the same as the solid harmonics. Further, a formula expressing any generalized Legendre polynomial as a finite sum of monomials is found. The reported relations have potential application in geophysics, astrophysics, electrostatics and solid state physics (e.g. ferroic inclusions). </p> </div> </dd> <dt> <a name='item24'>[24]</a> <a href ="/abs/2406.01680" title="Abstract" id="2406.01680"> arXiv:2406.01680 </a> (replaced) [<a href="/pdf/2406.01680" title="Download PDF" id="pdf-2406.01680" aria-labelledby="pdf-2406.01680">pdf</a>, <a href="https://arxiv.org/html/2406.01680v2" title="View HTML" id="html-2406.01680" aria-labelledby="html-2406.01680" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2406.01680" title="Other formats" id="oth-2406.01680" aria-labelledby="oth-2406.01680">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Pivoting through the chiral-clock family </div> <div class='list-authors'><a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Jones,+N+G">Nick G. Jones</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Prakash,+A">Abhishodh Prakash</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Fendley,+P">Paul Fendley</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 30 pages, 9 figures. v2 close to published version with new section on symmetry fractionalisation in the cluster model </div> <div class='list-journal-ref'><span class='descriptor'>Journal-ref:</span> SciPost Phys. 18, 094 (2025) </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Statistical Mechanics (cond-mat.stat-mech)</span>; Strongly Correlated Electrons (cond-mat.str-el); Mathematical Physics (math-ph) </div> <p class='mathjax'> The Onsager algebra, invented to solve the two-dimensional Ising model, can be used to construct conserved charges for a family of integrable $N$-state chiral clock models. We show how it naturally gives rise to a "pivot" procedure for this family of chiral Hamiltonians. These Hamiltonians have an anti-unitary CPT symmetry that when combined with the usual $\mathbb{Z}_N$ clock symmetry gives a non-abelian dihedral symmetry group $D_{2N}$. We show that this symmetry gives rise to symmetry-protected topological (SPT) order in this family for all even $N$, and representation-SPT (RSPT) physics for all odd $N$. The simplest such example is a next-nearest-neighbour chain generalising the spin-1/2 cluster model, an SPT phase of matter. We derive a matrix-product state representation of its fixed-point ground state along with the ensuing entanglement spectrum and symmetry fractionalisation. We analyse a rich phase diagram combining this model with the Onsager-integrable chiral Potts chain, and find trivial, symmetry-breaking and (R)SPT orders, as well as extended gapless regions. For odd $N$, the phase transitions are "unnecessarily" critical from the SPT point of view. </p> </div> </dd> <dt> <a name='item25'>[25]</a> <a href ="/abs/2408.09921" title="Abstract" id="2408.09921"> arXiv:2408.09921 </a> (replaced) [<a href="/pdf/2408.09921" title="Download PDF" id="pdf-2408.09921" aria-labelledby="pdf-2408.09921">pdf</a>, <a href="https://arxiv.org/html/2408.09921v2" title="View HTML" id="html-2408.09921" aria-labelledby="html-2408.09921" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2408.09921" title="Other formats" id="oth-2408.09921" aria-labelledby="oth-2408.09921">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Holographic M-Brane Super-Embeddings </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-th?searchtype=author&query=Giotopoulos,+G">Grigorios Giotopoulos</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Sati,+H">Hisham Sati</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Schreiber,+U">Urs Schreiber</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 28 pages; v2: radial prefactors fixed in (48) and (94), spurious critical radius removed </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Theory (hep-th)</span>; General Relativity and Quantum Cosmology (gr-qc); Mathematical Physics (math-ph); Differential Geometry (math.DG) </div> <p class='mathjax'> Over a decade before the modern formulation of AdS/CFT duality, Duff et al. had observed a candidate microscopic explanation by identifying the CFT fields with fluctuations of probe p-branes stretched out in parallel near the horizon of their own black brane incarnation. A profound way to characterize these and more general probe p-brane configurations, especially for M5-branes, is expected to be as "super-embeddings" of their super-worldvolumes into target super-spacetime - but no concrete example of these had appeared in the literature. Here we fill this gap by constructing the explicit holographic super-embeddings of probe M5-branes and M2-branes into their corresponding super-AdS backgrounds. </p> </div> </dd> <dt> <a name='item26'>[26]</a> <a href ="/abs/2410.05181" title="Abstract" id="2410.05181"> arXiv:2410.05181 </a> (replaced) [<a href="/pdf/2410.05181" title="Download PDF" id="pdf-2410.05181" aria-labelledby="pdf-2410.05181">pdf</a>, <a href="https://arxiv.org/html/2410.05181v2" title="View HTML" id="html-2410.05181" aria-labelledby="html-2410.05181" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2410.05181" title="Other formats" id="oth-2410.05181" aria-labelledby="oth-2410.05181">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Optimal Conversion from Classical to Quantum Randomness via Quantum Chaos </div> <div class='list-authors'><a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Mok,+W">Wai-Keong Mok</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Haug,+T">Tobias Haug</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Shaw,+A+L">Adam L. Shaw</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Endres,+M">Manuel Endres</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Preskill,+J">John Preskill</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 6 pages, 3 figures </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Quantum Physics (quant-ph)</span>; Statistical Mechanics (cond-mat.stat-mech); Mathematical Physics (math-ph) </div> <p class='mathjax'> Quantum many-body systems provide a unique platform for exploring the rich interplay between chaos, randomness, and complexity. In a recently proposed paradigm known as deep thermalization, random quantum states of system A are generated by performing projective measurements on system B following chaotic Hamiltonian evolution acting jointly on AB. In this scheme, the randomness of the projected state ensemble arises from the intrinsic randomness of the outcomes when B is measured. Here we propose a modified scheme, in which classical randomness injected during the protocol is converted by quantum chaos into quantum randomness of the resulting state ensemble. We show that for generic chaotic systems this conversion is optimal in that each bit of injected classical entropy generates as much additional quantum randomness as adding an extra qubit to B. This significantly enhances the randomness of the projected ensemble without imposing additional demands on the quantum hardware. Our scheme can be easily implemented on typical analog quantum simulators, providing a more scalable route for generating quantum randomness valuable for many applications. In particular, we demonstrate that the accuracy of a shadow tomography protocol can be substantially improved. </p> </div> </dd> <dt> <a name='item27'>[27]</a> <a href ="/abs/2412.14255" title="Abstract" id="2412.14255"> arXiv:2412.14255 </a> (replaced) [<a href="/pdf/2412.14255" title="Download PDF" id="pdf-2412.14255" aria-labelledby="pdf-2412.14255">pdf</a>, <a href="https://arxiv.org/html/2412.14255v2" title="View HTML" id="html-2412.14255" aria-labelledby="html-2412.14255" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2412.14255" title="Other formats" id="oth-2412.14255" aria-labelledby="oth-2412.14255">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Zero energy modes with Gaussian, exponential, or polynomial decay: Exact solutions in hermitian and nonhermitian regimes </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-th?searchtype=author&query=Marra,+P">Pasquale Marra</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Nigro,+A">Angela Nigro</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 18 pages, 6 figures, published on PTEP </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Theory (hep-th)</span>; Mesoscale and Nanoscale Physics (cond-mat.mes-hall); Superconductivity (cond-mat.supr-con); Mathematical Physics (math-ph); Quantum Physics (quant-ph) </div> <p class='mathjax'> Topological zero modes in topological insulators or superconductors are exponentially localized at the phase transition between a topologically trivial and nontrivial phase. These modes are solutions of a Jackiw-Rebbi equation modified with an additional term which is quadratic in the momentum. Moreover, localized fermionic modes can also be induced by harmonic potentials in superfluids and superconductors or in atomic nuclei. Here, by using inverse methods, we consider in the same framework exponentially-localized zero modes, as well as Gaussian modes induced by harmonic potentials (with superexponential decay) and polynomially decaying modes (with subexponential decay), and derive the explicit and analytical form of the modified Jackiw-Rebbi equation (and of the Schr枚dinger equation) which admits these modes as solutions. We find that the asymptotic behavior of the mass term is crucial in determining the decay properties of the modes. Furthermore, these considerations naturally extend to the nonhermitian regime. These findings allow us to classify and understand topological and nontopological boundary modes in topological insulators and superconductors. </p> </div> </dd> <dt> <a name='item28'>[28]</a> <a href ="/abs/2501.12360" title="Abstract" id="2501.12360"> arXiv:2501.12360 </a> (replaced) [<a href="/pdf/2501.12360" title="Download PDF" id="pdf-2501.12360" aria-labelledby="pdf-2501.12360">pdf</a>, <a href="https://arxiv.org/html/2501.12360v3" title="View HTML" id="html-2501.12360" aria-labelledby="html-2501.12360" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2501.12360" title="Other formats" id="oth-2501.12360" aria-labelledby="oth-2501.12360">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Stochastic Calculus and Hochschild Homology </div> <div class='list-authors'><a href="https://arxiv.org/search/math?searchtype=author&query=Li,+S">Si Li</a>, <a href="https://arxiv.org/search/math?searchtype=author&query=Wang,+Z">Zichang Wang</a>, <a href="https://arxiv.org/search/math?searchtype=author&query=Yang,+P">Peng Yang</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 16 pages. Comments are welcome </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Probability (math.PR)</span>; High Energy Physics - Theory (hep-th); Mathematical Physics (math-ph); Quantum Algebra (math.QA) </div> <p class='mathjax'> This paper is a case study of probabilistic approach to homological aspects of topological quantum field theory via the example of topological quantum mechanics. We propose topological correlations in terms of large variance limit. An investigation on the relation between probabilistic topological correlations on the circle and Hochschild homology is illustrated. </p> </div> </dd> <dt> <a name='item29'>[29]</a> <a href ="/abs/2501.17138" title="Abstract" id="2501.17138"> arXiv:2501.17138 </a> (replaced) [<a href="/pdf/2501.17138" title="Download PDF" id="pdf-2501.17138" aria-labelledby="pdf-2501.17138">pdf</a>, <a href="https://arxiv.org/html/2501.17138v3" title="View HTML" id="html-2501.17138" aria-labelledby="html-2501.17138" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2501.17138" title="Other formats" id="oth-2501.17138" aria-labelledby="oth-2501.17138">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Useful trick to compute correlation functions of composite operators </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-th?searchtype=author&query=Peruzzo,+G">Giovani Peruzzo</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 12 pages, 7 figures </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Theory (hep-th)</span>; Mathematical Physics (math-ph) </div> <p class='mathjax'> In general, in gauge field theories, physical observables are represented by gauge-invariant composite operators, such as the electromagnetic current. As we recently demonstrated in the context of the $U\left(1\right)$ and $SU\left(2\right)$ Higgs models \cite{Dudal:2019pyg,Dudal:2020uwb,Maas:2020kda}, correlation functions of gauge-invariant operators exhibit very nice properties. Besides the well-known gauge independence, they do not present unphysical cuts, and their K盲ll茅n-Lehmann representations are positive, at least perturbatively. Despite all these interesting features, they are not employed as much as elementary fields, mainly due to the additional complexities involved in their computation and renormalization. In this article, we present a useful trick to compute loop corrections to correlation functions of composite operators. This trick consists of introducing an additional field with no dynamics, coupled to the composite operator of interest. By using this approach, we can employ the traditional algorithms used to compute correlation functions of elementary fields. </p> </div> </dd> <dt> <a name='item30'>[30]</a> <a href ="/abs/2502.14295" title="Abstract" id="2502.14295"> arXiv:2502.14295 </a> (replaced) [<a href="/pdf/2502.14295" title="Download PDF" id="pdf-2502.14295" aria-labelledby="pdf-2502.14295">pdf</a>, <a href="https://arxiv.org/html/2502.14295v2" title="View HTML" id="html-2502.14295" aria-labelledby="html-2502.14295" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2502.14295" title="Other formats" id="oth-2502.14295" aria-labelledby="oth-2502.14295">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Fusion rules and structure constants of E-series minimal models </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-th?searchtype=author&query=Nivesvivat,+R">Rongvoram Nivesvivat</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Ribault,+S">Sylvain Ribault</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 22 pages, v2, clarification </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Theory (hep-th)</span>; Mathematical Physics (math-ph) </div> <p class='mathjax'> In the ADE classification of Virasoro minimal models, the E-series is the sparsest: their central charges $c=1-6\frac{(p-q)^2}{pq}$ are not dense in the half-line $c\in (-\infty,1)$, due to $q=12,18,30$ taking only 3 values -- the Coxeter numbers of $E_6, E_7, E_8$. The E-series is also the least well understood, with few known results beyond the spectrum. <br>Here, we use a semi-analytic bootstrap approach for numerically computing 4-point correlation functions. We deduce non-chiral fusion rules, i.e. which 3-point structure constants vanish. These vanishings can be explained by constraints from null vectors, interchiral symmetry, simple currents, extended symmetries, permutations, and parity, except in one case for $q=30$. We conjecture that structure constants are given by a universal expression built from the double Gamma function, times polynomial functions of $\cos(\pi\frac{p}{q})$ with values in $\mathbb{Q}\big(\cos(\frac{\pi}{q})\big)$, which we work out explicitly for $q=12$. <br>We speculate on generalizing E-series minimal models to generic integer values of $q$, and recovering loop CFTs as $p,q\to \infty$. </p> </div> </dd> <dt> <a name='item31'>[31]</a> <a href ="/abs/2502.20328" title="Abstract" id="2502.20328"> arXiv:2502.20328 </a> (replaced) [<a href="/pdf/2502.20328" title="Download PDF" id="pdf-2502.20328" aria-labelledby="pdf-2502.20328">pdf</a>, <a href="https://arxiv.org/html/2502.20328v2" title="View HTML" id="html-2502.20328" aria-labelledby="html-2502.20328" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2502.20328" title="Other formats" id="oth-2502.20328" aria-labelledby="oth-2502.20328">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Probing non-equilibrium steady states of the Klein-Gordon field with Unruh-DeWitt detectors </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-th?searchtype=author&query=Passegger,+A+G">Albert Georg Passegger</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Verch,+R">Rainer Verch</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 39 pages, several figures. v2: revised and extended, figures updated, references added </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Theory (hep-th)</span>; Statistical Mechanics (cond-mat.stat-mech); Mathematical Physics (math-ph); Quantum Physics (quant-ph) </div> <p class='mathjax'> We calculate the transition rate of an Unruh-DeWitt detector coupled to a non-equilibrium steady state (NESS) of a free massless scalar field on four-dimensional Minkowski spacetime. The NESS arises from bringing two semi-infinite heat baths into thermal contact along a hypersurface. The detector couples linearly to the field by a monopole interaction, and it moves inertially along the axis of the NESS heat flow. We contrast the resulting transition rates with the case of a detector that is coupled to an inertial thermal equilibrium state. The results illustrate that the monopole does not properly couple to the heat flow, resulting in the detector to merely register kinematical effects. Hence dynamical features of the NESS are hidden from this detector model. </p> </div> </dd> <dt> <a name='item32'>[32]</a> <a href ="/abs/2503.13256" title="Abstract" id="2503.13256"> arXiv:2503.13256 </a> (replaced) [<a href="/pdf/2503.13256" title="Download PDF" id="pdf-2503.13256" aria-labelledby="pdf-2503.13256">pdf</a>, <a href="https://arxiv.org/html/2503.13256v2" title="View HTML" id="html-2503.13256" aria-labelledby="html-2503.13256" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.13256" title="Other formats" id="oth-2503.13256" aria-labelledby="oth-2503.13256">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> On Fractional Generalizations of the Logistic Map and their Applications </div> <div class='list-authors'><a href="https://arxiv.org/search/nlin?searchtype=author&query=Edelman,+M">Mark Edelman</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 42 pages, 20 figures, a book chapter </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Chaotic Dynamics (nlin.CD)</span>; Mathematical Physics (math-ph) </div> <p class='mathjax'> The regular logistic map was introduced in 1960s, served as an example of a complex system, and was used as an instrument to demonstrate and investigate the period doubling cascade of bifurcations scenario of transition to chaos. In this paper, we review various fractional generalizations of the logistic map and their applications. </p> </div> </dd> </dl> <div class='paging'>Total of 32 entries </div> <div class='morefewer'>Showing up to 2000 entries per page: <a href=/list/math-ph/new?skip=0&show=1000 rel="nofollow"> fewer</a> | <span style="color: #454545">more</span> | <span style="color: #454545">all</span> </div> </div> </div> </div> </main> <footer style="clear: both;"> <div class="columns is-desktop" role="navigation" aria-label="Secondary" style="margin: -0.75em -0.75em 0.75em -0.75em"> <!-- Macro-Column 1 --> <div class="column" style="padding: 0;"> <div class="columns"> <div class="column"> <ul style="list-style: none; line-height: 2;"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul style="list-style: none; line-height: 2;"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- End Macro-Column 1 --> <!-- Macro-Column 2 --> <div class="column" style="padding: 0;"> <div class="columns"> <div class="column"> <ul style="list-style: none; line-height: 2;"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul style="list-style: none; line-height: 2;"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> <!-- End Macro-Column 2 --> </div> </footer> </div> <script src="/static/base/1.0.1/js/member_acknowledgement.js"></script> </body> </html>