CINXE.COM

Search results for: nerve system

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: nerve system</title> <meta name="description" content="Search results for: nerve system"> <meta name="keywords" content="nerve system"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="nerve system" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="nerve system"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 12289</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: nerve system</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12289</span> Close Loop Controlled Current Nerve Locator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20A.%20Alzomor">H. A. Alzomor</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20K.%20Ouda"> B. K. Ouda</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Eldeib"> A. M. Eldeib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Successful regional anesthesia depends upon precise location of the peripheral nerve or nerve plexus. Locating peripheral nerves is preferred to be done using nerve stimulation. In order to generate a nerve impulse by electrical means, a minimum threshold stimulus of current “rheobase” must be applied to the nerve. The technique depends on stimulating muscular twitching at a close distance to the nerve without actually touching it. Success rate of this operation depends on the accuracy of current intensity pulses used for stimulation. In this paper, we will discuss a circuit and algorithm for closed loop control for the current, theoretical analysis and test results and compare them with previous techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Close%20Loop%20Control%20%28CLC%29" title="Close Loop Control (CLC)">Close Loop Control (CLC)</a>, <a href="https://publications.waset.org/abstracts/search?q=constant%20current" title=" constant current"> constant current</a>, <a href="https://publications.waset.org/abstracts/search?q=nerve%20locator" title=" nerve locator"> nerve locator</a>, <a href="https://publications.waset.org/abstracts/search?q=rheobase" title=" rheobase"> rheobase</a> </p> <a href="https://publications.waset.org/abstracts/2622/close-loop-controlled-current-nerve-locator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12288</span> A Nanofi Brous PHBV Tube with Schwann Cell as Artificial Nerve Graft Contributing to Rat Sciatic Nerve Regeneration across a 30-Mm Defect Bridge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esmaeil%20Biazar">Esmaeil Biazar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A nanofibrous PHBV nerve conduit has been used to evaluate its efficiency based on the promotion of nerve regeneration in rats. The designed conduits were investigated by physical, mechanical and microscopic analyses. The conduits were implanted into a 30-mm gap in the sciatic nerves of the rats. Four months after surgery, the regenerated nerves were evaluated by macroscopic assessments and histology. This polymeric conduit had sufficiently high mechanical properties to serve as a nerve guide. The results demonstrated that in the nanofibrous graft with cells, the sciatic nerve trunk had been reconstructed with restoration of nerve continuity and formatted nerve fibers with myelination. For the grafts especially the nanofibrous conduits with cells, muscle cells of gastrocnemius on the operated side were uniform in their size and structures. This study proves the feasibility of artificial conduit with Schwann cells for nerve regeneration by bridging a longer defect in a rat model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sciatic%20regeneration" title="sciatic regeneration">sciatic regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=Schwann%20cell" title=" Schwann cell"> Schwann cell</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20conduit" title=" artificial conduit"> artificial conduit</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofibrous%20PHBV" title=" nanofibrous PHBV"> nanofibrous PHBV</a>, <a href="https://publications.waset.org/abstracts/search?q=histological%20assessments" title=" histological assessments"> histological assessments</a> </p> <a href="https://publications.waset.org/abstracts/21190/a-nanofi-brous-phbv-tube-with-schwann-cell-as-artificial-nerve-graft-contributing-to-rat-sciatic-nerve-regeneration-across-a-30-mm-defect-bridge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12287</span> Optic Nerve Sheath Measurement in Children with Head Trauma </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sabiha%20Sahin">Sabiha Sahin</a>, <a href="https://publications.waset.org/abstracts/search?q=Kursad%20Bora%20Carman"> Kursad Bora Carman</a>, <a href="https://publications.waset.org/abstracts/search?q=Coskun%20Yarar"> Coskun Yarar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Measuring the diameter of the optic nerve sheath is a noninvasive and easy to use imaging technique to predict intracranial pressure in children and adults. The aim was to measure the diameter of the optic nerve sheath in pediatric head trauma. Methods: The study group consisted of 40 children with healthy and 40 patients with head trauma. Transorbital sonographic measurement of the optic nerve sheath diameter was performed. Conclusion: The mean diameters of the optic nerve sheath of right and left eyes were 0.408 ± 0.064 mm and 0.417 ± 0.065 mm, respectively, in the trauma group. These results were higher in patients than in control group. There was a negative correlation between optic nerve sheath diameters and Glasgow Coma Scales in patients with head trauma (p < 0.05). There was a positive correlation between optic nerve sheath diameters and positive CT findings, systolic blood pressure in patients with head trauma. The clinical status of the patients at admission, blood pH and lactate level were related to the optic nerve sheath diameter. Conclusion: Measuring the diameter of the optic nerve sheath is not an invasive technique and can be easily used to predict increased intracranial pressure and to prevent secondary brain injury. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=head%20trauma" title="head trauma">head trauma</a>, <a href="https://publications.waset.org/abstracts/search?q=intracranial%20pressure" title=" intracranial pressure"> intracranial pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=optic%20nerve" title=" optic nerve"> optic nerve</a>, <a href="https://publications.waset.org/abstracts/search?q=sonography" title=" sonography"> sonography</a> </p> <a href="https://publications.waset.org/abstracts/104676/optic-nerve-sheath-measurement-in-children-with-head-trauma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104676.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12286</span> Electromagnetic-Mechanical Stimulation on PC12 for Enhancement of Nerve Axonal Extension</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Nakamachi">E. Nakamachi</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Matsumoto"> K. Matsumoto</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Yamamoto"> K. Yamamoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Morita"> Y. Morita</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Sakamoto"> H. Sakamoto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recently, electromagnetic and mechanical stimulations have been recognized as the effective extracellular environment stimulation technique to enhance the defected peripheral nerve tissue regeneration. In this study, we developed a new hybrid bioreactor by adopting 50 Hz uniform alternative current (AC) magnetic stimulation and 4% strain mechanical stimulation. The guide tube for nerve regeneration is mesh structured tube made of biodegradable polymer, such as polylatic acid (PLA). However, when neural damage is large, there is a possibility that peripheral nerve undergoes necrosis. So it is quite important to accelerate the nerve tissue regeneration by achieving enhancement of nerve axonal extension rate. Therefore, we try to design and fabricate the system that can simultaneously load the uniform AC magnetic field stimulation and the stretch stimulation to cells for enhancement of nerve axonal extension. Next, we evaluated systems performance and the effectiveness of each stimulation for rat adrenal pheochromocytoma cells (PC12). First, we designed and fabricated the uniform AC magnetic field system and the stretch stimulation system. For the AC magnetic stimulation system, we focused on the use of pole piece structure to carry out in-situ microscopic observation. We designed an optimum pole piece structure using the magnetic field finite element analyses and the response surface methodology. We fabricated the uniform AC magnetic field stimulation system as a bio-reactor by adopting analytically determined design specifications. We measured magnetic flux density that is generated by the uniform AC magnetic field stimulation system. We confirmed that measurement values show good agreement with analytical results, where the uniform magnetic field was observed. Second, we fabricated the cyclic stretch stimulation device under the conditions of particular strains, where the chamber was made of polyoxymethylene (POM). We measured strains in the PC12 cell culture region to confirm the uniform strain. We found slightly different values from the target strain. Finally, we concluded that these differences were allowable in this mechanical stimulation system. We evaluated the effectiveness of each stimulation to enhance the nerve axonal extension using PC12. We confirmed that the average axonal extension length of PC12 under the uniform AC magnetic stimulation was increased by 16 % at 96 h in our bio-reactor. We could not confirm that the axonal extension enhancement under the stretch stimulation condition, where we found the exfoliating of cells. Further, the hybrid stimulation enhanced the axonal extension. Because the magnetic stimulation inhibits the exfoliating of cells. Finally, we concluded that the enhancement of PC12 axonal extension is due to the magnetic stimulation rather than the mechanical stimulation. Finally, we confirmed that the effectiveness of the uniform AC magnetic field stimulation for the nerve axonal extension using PC12 cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nerve%20cell%20PC12" title="nerve cell PC12">nerve cell PC12</a>, <a href="https://publications.waset.org/abstracts/search?q=axonal%20extension" title=" axonal extension"> axonal extension</a>, <a href="https://publications.waset.org/abstracts/search?q=nerve%20regeneration" title=" nerve regeneration"> nerve regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic-mechanical%20stimulation" title=" electromagnetic-mechanical stimulation"> electromagnetic-mechanical stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=bioreactor" title=" bioreactor"> bioreactor</a> </p> <a href="https://publications.waset.org/abstracts/73506/electromagnetic-mechanical-stimulation-on-pc12-for-enhancement-of-nerve-axonal-extension" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12285</span> A Polyimide Based Split-Ring Neural Interface Electrode for Neural Signal Recording</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ning%20Xue">Ning Xue</a>, <a href="https://publications.waset.org/abstracts/search?q=Srinivas%20Merugu"> Srinivas Merugu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ignacio%20Delgado%20Martinez"> Ignacio Delgado Martinez</a>, <a href="https://publications.waset.org/abstracts/search?q=Tao%20Sun"> Tao Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Tsang"> John Tsang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shih-Cheng%20Yen"> Shih-Cheng Yen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have developed a polyimide based neural interface electrode to record nerve signals from the sciatic nerve of a rat. The neural interface electrode has a split-ring shape, with four protruding gold electrodes for recording, and two reference gold electrodes around the split-ring. The split-ring electrode can be opened up to encircle the sciatic nerve. The four electrodes can be bent to sit on top of the nerve and hold the device in position, while the split-ring frame remains flat. In comparison, while traditional cuff electrodes can only fit certain sizes of the nerve, the developed device can fit a variety of rat sciatic nerve dimensions from 0.6 mm to 1.0 mm, and adapt to the chronic changes in the nerve as the electrode tips are bendable. The electrochemical impedance spectroscopy measurement was conducted. The gold electrode impedance is on the order of 10 kΩ, showing excellent charge injection capacity to record neural signals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=impedance" title="impedance">impedance</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20interface" title=" neural interface"> neural interface</a>, <a href="https://publications.waset.org/abstracts/search?q=split-ring%20electrode" title=" split-ring electrode"> split-ring electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20signal%20recording" title=" neural signal recording"> neural signal recording</a> </p> <a href="https://publications.waset.org/abstracts/6287/a-polyimide-based-split-ring-neural-interface-electrode-for-neural-signal-recording" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6287.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12284</span> Analysis of Motor Nerve Conduction Velocity (MNCV) of Selected Nerves in Athletics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jogbinder%20Singh%20Soodan">Jogbinder Singh Soodan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashok%20Kumar"> Ashok Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Gobind%20Singh"> Gobind Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: This study aims to describe the motor nerve conduction velocity of selected nerves of both the upper and lower extremities in athletes. Thirty high-level sprinters (100 mts and 200 mts) and thirty high level distance runners (3000 mts) were volunteered to participate in the study. Method: Motor nerve conduction velocities (MNCV) of radial and sural nerves were recorded with the help of computerized equipment, NEUROPERFECT (MEDICAID SYSTEMS, India), with standard techniques of supramaximal percutaneus stimulation. The anthropometric measurements taken were body height (cms), age (yrs) and body weight (kgs). The neurophysiological parameters taken were MNCV of radial nerve (upper extremity) and sural nerve (lower extremity) of both sides (i.e. dominant and non-dominant) of the body. The room temperature was maintained at 37 degree Celsius. Results: Significant differences in motor nerve conduction velocities were found between dominant and non-dominant limbs in each group. The MNCV of radial nerve was obtained was significantly higher in the sprinters than long distance runners. The MNCV of sural nerve recorded was significantly higher in sprinters as compared to distance runners. Conclusion: The motor nerve conduction velocity of radial nerve was found to be higher in sprinters as compared to the distance runners and also, the MNCV for sural nerve was found to be higher in sprinters as compared to distance runners. In case of sprinters, the MNCV of radial and sural nerves were higher in dominant limbs (i.e. arms and legs) of both sides of the body. But, in case of distance runners, the MNCV of radial and sural nerves is higher in non dominant limbs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=motor%20nerve%20conduction%20velocity" title="motor nerve conduction velocity">motor nerve conduction velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20nerve" title=" radial nerve"> radial nerve</a>, <a href="https://publications.waset.org/abstracts/search?q=sural%20nerve" title=" sural nerve"> sural nerve</a>, <a href="https://publications.waset.org/abstracts/search?q=sprinters" title=" sprinters"> sprinters</a> </p> <a href="https://publications.waset.org/abstracts/10891/analysis-of-motor-nerve-conduction-velocity-mncv-of-selected-nerves-in-athletics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10891.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">564</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12283</span> Ulnar Nerve Changes Associated with Carpal Tunnel Syndrome Not Affecting Median versus Ulnar Comparative Studies </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Kamal%20Aziz%20Saba">Emmanuel Kamal Aziz Saba</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarah%20Sayed%20El-Tawab"> Sarah Sayed El-Tawab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was conducted to assess the involvement of ulnar sensory and/or motor nerve fibers in patients with carpal tunnel syndrome (CTS) and whether this affects the accuracy of the median versus ulnar comparative tests. The present study included 145 CTS hands and 71 asymptomatic control hands. Clinical examination was done. The following tests were done: Sensory conduction studies: median, ulnar and dorsal ulnar cutaneous nerves; and median versus ulnar digit (D) four sensory comparative study; and motor conduction studies: median nerve, ulnar nerve and median versus ulnar motor comparative study. It was found that 17 CTS hands (11.7%) had ulnar sensory abnormalities in 17 different patients. The median versus ulnar sensory and motor comparative studies were abnormal among all these 17 CTS hands. There were significant negative correlations between median motor latency and both ulnar sensory amplitudes recording D5 and D4. In conclusion, there is ulnar sensory nerve abnormality among CTS patients. This abnormality affects the amplitude of ulnar sensory nerve action potential. This does not affect the median versus ulnar sensory and motor comparative tests accuracy for use in CTS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=median%20nerve" title="median nerve">median nerve</a>, <a href="https://publications.waset.org/abstracts/search?q=motor%20comparative%20study" title=" motor comparative study"> motor comparative study</a>, <a href="https://publications.waset.org/abstracts/search?q=sensory%20comparative%20study" title=" sensory comparative study"> sensory comparative study</a>, <a href="https://publications.waset.org/abstracts/search?q=ulnar%20nerve" title=" ulnar nerve"> ulnar nerve</a> </p> <a href="https://publications.waset.org/abstracts/32484/ulnar-nerve-changes-associated-with-carpal-tunnel-syndrome-not-affecting-median-versus-ulnar-comparative-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32484.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12282</span> Early Detection of Neuropathy in Leprosy-Comparing Clinical Tests with Nerve Conduction Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suchana%20Marahatta">Suchana Marahatta</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabina%20Bhattarai"> Sabina Bhattarai</a>, <a href="https://publications.waset.org/abstracts/search?q=Bishnu%20Hari%20Paudel"> Bishnu Hari Paudel</a>, <a href="https://publications.waset.org/abstracts/search?q=Dilip%20Thakur"> Dilip Thakur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Every year thousands of patients develop nerve damage and disabilities as a result of leprosy which can be prevented by early detection and treatment. So, early detection and treatment of nerve function impairment is of paramount importance in leprosy. Objectives: To assess the electrophysiological pattern of the peripheral nerves in leprosy patients and to compare it with clinical assessment tools. Materials and Methods: In this comparative cross-sectional study, 74 newly diagnosed leprosy patients without reaction were enrolled. They underwent thorough evaluation for peripheral nerve function impairment using clinical tests [i.e. nerve palpation (NP), monofilament (MF) testing, voluntary muscle testing (VMT)] and nerve conduction study (NCS). Clinical findings were compared with that of NCS using SPSS version 11.5. Results: NCS was impaired in 43.24% of leprosy patient at the baseline. Among them, sensory NCS was impaired in more patients (32.4%) in comparison to motor NCS (20.3%). NP, MF, and VMT were impaired in 58.1%, 25.7%, and 9.4% of the patients, respectively. Maximum concordance of monofilament testing and sensory NCS was found for sural nerve (14.7%). Likewise, the concordance of motor NP and motor NCS was the maximum for ulnar nerve (14.9%). When individual parameters of the NCS were considered, amplitude was found to be the most frequently affected parameter for both sensory and motor NCS. It was impaired in 100% of cases with abnormal NCS findings. Conclusion: Since there was no acceptable concordance between NCS findings and clinical findings, we should consider NCS whenever feasible for early detection of neuropathy in leprosy. The amplitude of both sensory nerve action potential (SNAP) and compound nerve action potential (CAMP) could be important determinants of the abnormal NCS if supported by further studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leprosy" title="leprosy">leprosy</a>, <a href="https://publications.waset.org/abstracts/search?q=nerve%20function%20impairment" title=" nerve function impairment"> nerve function impairment</a>, <a href="https://publications.waset.org/abstracts/search?q=neuropathy" title=" neuropathy"> neuropathy</a>, <a href="https://publications.waset.org/abstracts/search?q=nerve%20conduction%20study" title=" nerve conduction study"> nerve conduction study</a> </p> <a href="https://publications.waset.org/abstracts/31963/early-detection-of-neuropathy-in-leprosy-comparing-clinical-tests-with-nerve-conduction-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12281</span> Management of Facial Nerve Palsy Following Physiotherapy </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bassam%20Band">Bassam Band</a>, <a href="https://publications.waset.org/abstracts/search?q=Simon%20Freeman"> Simon Freeman</a>, <a href="https://publications.waset.org/abstracts/search?q=Rohan%20Munir"> Rohan Munir</a>, <a href="https://publications.waset.org/abstracts/search?q=Hisham%20Band"> Hisham Band</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: To determine efficacy of facial physiotherapy provided for patients with facial nerve palsy. Design: Retrospective study Subjects: 54 patients diagnosed with Facial nerve palsy were included in the study after they met the selection criteria including unilateral facial paralysis and start of therapy twelve months after the onset of facial nerve palsy. Interventions: Patients received the treatment offered at a facial physiotherapy clinic consisting of: Trophic electrical stimulation, surface electromyography with biofeedback, neuromuscular re-education and myofascial release. Main measures: The Sunnybrook facial grading scale was used to evaluate the severity of facial paralysis. Results: This study demonstrated the positive impact of physiotherapy for patient with facial nerve palsy with improvement of 24.2% on the Sunnybrook facial grading score from a mean baseline of 34.2% to 58.2%. The greatest improvement looking at different causes was seen in patient who had reconstructive surgery post Acoustic Neuroma at 31.3%. Conclusion: The therapy shows significant improvement for patients with facial nerve palsy even when started 12 months post onset of paralysis across different causes. This highlights the benefit of this non-invasive technique in managing facial nerve paralysis and possibly preventing the need for surgery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=facial%20nerve%20palsy" title="facial nerve palsy">facial nerve palsy</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=physiotherapy" title=" physiotherapy"> physiotherapy</a>, <a href="https://publications.waset.org/abstracts/search?q=bells%20palsy" title=" bells palsy"> bells palsy</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20neuroma" title=" acoustic neuroma"> acoustic neuroma</a>, <a href="https://publications.waset.org/abstracts/search?q=ramsey-hunt%20syndrome" title=" ramsey-hunt syndrome"> ramsey-hunt syndrome</a> </p> <a href="https://publications.waset.org/abstracts/19940/management-of-facial-nerve-palsy-following-physiotherapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">535</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12280</span> Multiple Variations of the Nerves of Gluteal Region and Their Clinical Implications, a Case Report</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Prasad">A. M. Prasad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Knowledge of variations of nerves of gluteal region is important for clinicians administering intramuscular injections, for orthopedic surgeons dealing with the hip surgeries, possibly for physiotherapists managing the painful conditions and paralysis of this region. Herein, we report multiple variations of the nerves of gluteal region. In the current case, the sciatic nerve was absent. The common peroneal and tibial nerves arose from sacral plexus and reached the gluteal region through greater sciatic foramen above and below piriformis respectively. The common peroneal nerve gave a muscular branch to the gluteus maximus. The inferior gluteal nerve and posterior cutaneous nerve of the thigh arose from a common trunk. The common trunk was formed by three roots. Upper and middle roots arose from sacral plexus and entered gluteal region through greater sciatic foramen respectively above and below piriformis. The lower root arose from the pudendal nerve and joined the common trunk. These variations were seen in the right gluteal region of an adult male cadaver aged approximately 70 years. Innervation of gluteus maximus by common peroneal nerve and presence of a common trunk of inferior gluteal nerve and posterior cutaneous nerve of the thigh make this case unique. The variant nerves may be subjected to iatrogenic injuries during surgical approach to the hip. They may also get compressed if there is a hypertrophy of the piriformis syndrome. Hence, the knowledge of these variations is of importance to clinicians, orthopedic surgeons and possibly for physiotherapists. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gluteal%20region" title="gluteal region">gluteal region</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20variations" title=" multiple variations"> multiple variations</a>, <a href="https://publications.waset.org/abstracts/search?q=nerve%20injury" title=" nerve injury"> nerve injury</a>, <a href="https://publications.waset.org/abstracts/search?q=sciatic%20nerve" title=" sciatic nerve"> sciatic nerve</a> </p> <a href="https://publications.waset.org/abstracts/30346/multiple-variations-of-the-nerves-of-gluteal-region-and-their-clinical-implications-a-case-report" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12279</span> Peripheral Nerves Cross-Sectional Area for the Diagnosis of Diabetic Polyneuropathy: A Meta-Analysis of Ultrasonographic Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Pourhassan">Saeed Pourhassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nastaran%20Maghbouli"> Nastaran Maghbouli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 1) Background It has been hypothesized that, in individuals with diabetes mellitus, the peripheral nerve is swollen due to sorbitol over-accumulation. Additionally growing evidence supported electro diagnostic study of diabetes induced neuropathy as a method having some challenges. 2) Objective To examine the performance of sonographic cross-sectional area (CSA) measurements in the diagnosis of diabetic polyneuropathy (DPN). 3) Data Sources Electronic databases, comprising PubMed and EMBASE and Google scholar, were searched for the appropriate studies before Jan 1, 2020. 4) Study Selection Eleven trials comparing different peripheral nerve CSA measurements between participants with and without DPN were included. 5) Data Extraction Study design, participants' demographic characteristics, diagnostic reference of DPN, and evaluated peripheral nerves and methods of CSA measurement. 6) Data Synthesis Among different peripheral nerves, Tibial nerve diagnostic odds ratios pooled from five studies (713 participants) were 4.46 (95% CI, 0.35–8.57) and the largest one with P<0.0001, I²:64%. Median nerve CSA at wrist and mid-arm took second and third place with ORs= 2.82 (1.50-4.15), 2.02(0.26-3.77) respectively. The sensitivities and specificities pooled from two studies for Sural nerve were 0.78 (95% CI, 0.68–0.89), and 0.68 (95% CI, 0.53–0.74). Included studies for other nerves were limited to one study. The largest sensitivity was for Sural nerve and the largest specificity was for Tibial nerve. 7) Conclusions The peripheral nerves CSA measured by ultrasound imaging is useful for the diagnosis of DPN and is most significantly different between patients and participants without DPN at the Tibial nerve. Because the Tibial nerve CSA in healthy participants, at various locations, rarely exceeds 24 mm2, this value can be considered as a cutoff point for diagnosing DPN. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabetes" title="diabetes">diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnosis" title=" diagnosis"> diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=polyneuropathy" title=" polyneuropathy"> polyneuropathy</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a> </p> <a href="https://publications.waset.org/abstracts/124321/peripheral-nerves-cross-sectional-area-for-the-diagnosis-of-diabetic-polyneuropathy-a-meta-analysis-of-ultrasonographic-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12278</span> Designing Stochastic Non-Invasively Applied DC Pulses to Suppress Tremors in Multiple Sclerosis by Computational Modeling </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aamna%20Lawrence">Aamna Lawrence</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashutosh%20Mishra"> Ashutosh Mishra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tremors occur in 60% of the patients who have Multiple Sclerosis (MS), the most common demyelinating disease that affects the central and peripheral nervous system, and are the primary cause of disability in young adults. While pharmacological agents provide minimal benefits, surgical interventions like Deep Brain Stimulation and Thalamotomy are riddled with dangerous complications which make non-invasive electrical stimulation an appealing treatment of choice for dealing with tremors. Hence, we hypothesized that if the non-invasive electrical stimulation parameters (mainly frequency) can be computed by mathematically modeling the nerve fibre to take into consideration the minutest details of the axon morphologies, tremors due to demyelination can be optimally alleviated. In this computational study, we have modeled the random demyelination pattern in a nerve fibre that typically manifests in MS using the High-Density Hodgkin-Huxley model with suitable modifications to account for the myelin. The internode of the nerve fibre in our model could have up to ten demyelinated regions each having random length and myelin thickness. The arrival time of action potentials traveling the demyelinated and the normally myelinated nerve fibre between two fixed points in space was noted, and its relationship with the nerve fibre radius ranging from 5µm to 12µm was analyzed. It was interesting to note that there were no overlaps between the arrival time for action potentials traversing the demyelinated and normally myelinated nerve fibres even when a single internode of the nerve fibre was demyelinated. The study gave us an opportunity to design DC pulses whose frequency of application would be a function of the random demyelination pattern to block only the delayed tremor-causing action potentials. The DC pulses could be delivered to the peripheral nervous system non-invasively by an electrode bracelet that would suppress any shakiness beyond it thus paving the way for wearable neuro-rehabilitative technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=demyelination" title="demyelination">demyelination</a>, <a href="https://publications.waset.org/abstracts/search?q=Hodgkin-Huxley%20model" title=" Hodgkin-Huxley model"> Hodgkin-Huxley model</a>, <a href="https://publications.waset.org/abstracts/search?q=non-invasive%20electrical%20stimulation" title=" non-invasive electrical stimulation"> non-invasive electrical stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=tremor" title=" tremor"> tremor</a> </p> <a href="https://publications.waset.org/abstracts/103509/designing-stochastic-non-invasively-applied-dc-pulses-to-suppress-tremors-in-multiple-sclerosis-by-computational-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103509.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12277</span> Development of Three-Dimensional Bio-Reactor Using Magnetic Field Stimulation to Enhance PC12 Cell Axonal Extension </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eiji%20Nakamachi">Eiji Nakamachi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryota%20Sakiyama"> Ryota Sakiyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Koji%20Yamamoto"> Koji Yamamoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusuke%20Morita"> Yusuke Morita</a>, <a href="https://publications.waset.org/abstracts/search?q=Hidetoshi%20Sakamoto"> Hidetoshi Sakamoto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The regeneration of injured central nerve network caused by the cerebrovascular accidents is difficult, because of poor regeneration capability of central nerve system composed of the brain and the spinal cord. Recently, new regeneration methods such as transplant of nerve cells and supply of nerve nutritional factor were proposed and examined. However, there still remain many problems with the canceration of engrafted cells and so on and it is strongly required to establish an efficacious treating method of a central nerve system. Blackman proposed the electromagnetic stimulation method to enhance the axonal nerve extension. In this study, we try to design and fabricate a new three-dimensional (3D) bio-reactor, which can load a uniform AC magnetic field stimulation on PC12 cells in the extracellular environment for enhancement of an axonal nerve extension and 3D nerve network generation. Simultaneously, we measure the morphology of PC12 cell bodies, axons, and dendrites by the multiphoton excitation fluorescence microscope (MPM) and evaluate the effectiveness of the uniform AC magnetic stimulation to enhance the axonal nerve extension. Firstly, we designed and fabricated the uniform AC magnetic field stimulation bio-reactor. For the AC magnetic stimulation system, we used the laminated silicon steel sheets for a yoke structure of 3D chamber, which had a high magnetic permeability. Next, we adopted the pole piece structure and installed similar specification coils on both sides of the yoke. We searched an optimum pole piece structure using the magnetic field finite element (FE) analyses and the response surface methodology. We confirmed that the optimum 3D chamber structure showed a uniform magnetic flux density in the PC12 cell culture area by using FE analysis. Then, we fabricated the uniform AC magnetic field stimulation bio-reactor by adopting analytically determined specifications, such as the size of chamber and electromagnetic conditions. We confirmed that measurement results of magnetic field in the chamber showed a good agreement with FE results. Secondly, we fabricated a dish, which set inside the uniform AC magnetic field stimulation of bio-reactor. PC12 cells were disseminated with collagen gel and could be 3D cultured in the dish. The collagen gel were poured in the dish. The collagen gel, which had a disk shape of 6 mm diameter and 3mm height, was set on the membrane filter, which was located at 4 mm height from the bottom of dish. The disk was full filled with the culture medium inside the dish. Finally, we evaluated the effectiveness of the uniform AC magnetic field stimulation to enhance the nurve axonal extension. We confirmed that a 6.8 increase in the average axonal extension length of PC12 under the uniform AC magnetic field stimulation at 7 days culture in our bio-reactor, and a 24.7 increase in the maximum axonal extension length. Further, we confirmed that a 60 increase in the number of dendrites of PC12 under the uniform AC magnetic field stimulation. Finally, we confirm the availability of our uniform AC magnetic stimulation bio-reactor for the nerve axonal extension and the nerve network generation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nerve%20regeneration" title="nerve regeneration">nerve regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=axonal%20extension" title=" axonal extension "> axonal extension </a>, <a href="https://publications.waset.org/abstracts/search?q=PC12%20cell" title=" PC12 cell"> PC12 cell</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=three-dimensional%20bio-reactor" title=" three-dimensional bio-reactor"> three-dimensional bio-reactor</a> </p> <a href="https://publications.waset.org/abstracts/80976/development-of-three-dimensional-bio-reactor-using-magnetic-field-stimulation-to-enhance-pc12-cell-axonal-extension" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12276</span> Development of 3D Printed, Conductive, Biodegradable Nerve Conduits for Neural Regeneration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei-Chia%20Huang">Wei-Chia Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jane%20Wang"> Jane Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Damage to nerves is considered one of the most irreversible injuries. The regeneration of nerves has always been an important topic in regenerative medicine. In general, damage to human tissue will naturally repair overtime. However, when the nerves are damaged, healed flesh wound cannot guarantee full restoration to its original function, as truncated nerves are often irreversible. Therefore, the development of treatment methods to successfully guide and accelerate the regeneration of nerves has been highly sought after. In order to induce nerve tissue growth, nerve conduits are commonly used to help reconnect broken nerve bundles to provide protection to the location of the fracture while guiding the growth of the nerve bundles. To prevent the protected tissue from becoming necrotic and to ensure the growth rate, the conduits used are often modified with microstructures or blended with neuron growth factors that may facilitate nerve regeneration. Electrical stimulation is another attempted treatment for medical rehabilitation. With appropriate range of voltages and stimulation frequencies, it has been demonstrated to promote cell proliferation and migration. Biodegradability are critical for medical devices like nerve conduits, while conductive polymers pose great potential toward the differentiation and growth of nerve cells. In this work, biodegradability and conductivity were combined into a novel biodegradable, photocurable, conductive polymer composite materials by embedding conductive nanoparticles in poly(glycerol sebacate) acrylate (PGSA) and 3D-printed into nerve conduits. Rat pheochromocytoma cells and rat neuronal Schwann cells were chosen for the in vitro tests of the conduits and had demonstrate selective growth upon culture in the conductive conduits with built-in microchannels and electrical stimulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodegradable%20polymer" title="biodegradable polymer">biodegradable polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=3d%20printing" title=" 3d printing"> 3d printing</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20regeneration" title=" neural regeneration"> neural regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20stimulation" title=" electrical stimulation"> electrical stimulation</a> </p> <a href="https://publications.waset.org/abstracts/170754/development-of-3d-printed-conductive-biodegradable-nerve-conduits-for-neural-regeneration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170754.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12275</span> Sensitivity and Specificity of Clinical Testing for Digital Nerve Injury</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guy%20Rubin">Guy Rubin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravit%20Shay"> Ravit Shay</a>, <a href="https://publications.waset.org/abstracts/search?q=Nimrod%20Rozen"> Nimrod Rozen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The accuracy of a diagnostic test used to classify a patient as having disease or being disease-free is a valuable piece of information to be used by the physician when making treatment decisions. Finger laceration, suspected to have nerve injury is a challenging decision for the treating surgeon. The purpose of this study was to evaluate the sensitivity, specificity and predictive values of six clinical tests in the diagnosis of digital nerve injury. The six clinical tests included light touch, pin prick, static and dynamic 2-point discrimination, Semmes Weinstein monofilament and wrinkle test. Data comparing pre-surgery examination with post-surgery results of 42 patients with 52 digital nerve injury was evaluated. The subjective examinations, light touch, pin prick, static and dynamic 2-point discrimination and Semmes-Weinstein monofilament were not sensitive (57.6, 69.7, 42.4, 40 and 66.8% respectively) and specific (36.8, 36.8, 47.4, 42.1 and 31.6% respectively). Wrinkle test, the only objective examination, was the most sensitive (78.1%) and specific (55.6%). This result gives no pre-operative examination the ability to predict the result of explorative surgery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20nerve" title="digital nerve">digital nerve</a>, <a href="https://publications.waset.org/abstracts/search?q=injury" title=" injury"> injury</a>, <a href="https://publications.waset.org/abstracts/search?q=nerve%20examination" title=" nerve examination"> nerve examination</a>, <a href="https://publications.waset.org/abstracts/search?q=Semmes-Weinstein%20monofilamen" title=" Semmes-Weinstein monofilamen"> Semmes-Weinstein monofilamen</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity" title=" sensitivity"> sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=specificity" title=" specificity"> specificity</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20point%20discrimination" title=" two point discrimination"> two point discrimination</a>, <a href="https://publications.waset.org/abstracts/search?q=wrinkle%20test" title=" wrinkle test"> wrinkle test</a> </p> <a href="https://publications.waset.org/abstracts/74474/sensitivity-and-specificity-of-clinical-testing-for-digital-nerve-injury" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74474.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12274</span> Median Versus Ulnar Medial Thenar Motor Recording in Diagnosis Of Carpal Tunnel Syndrome</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Kamal%20Aziz%20Saba">Emmanuel Kamal Aziz Saba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim of the work: This study proposed to assess the role of the median versus ulnar medial thenar motor (MTM) recording in supporting the diagnosis of carpal tunnel syndrome (CTS). Patients and methods: The present study included 130 hands (70 CTS and 60 controls). Clinical examination was done for all patients. The following tests were done (using surface electrodes recording) for patients and control: (1) sensory nerve conduction studies: median nerve, ulnar nerve and median versus ulnar digit four sensory study; (2) motor nerve conduction studies: median nerve, ulnar nerve, median (second lumbrical) versus ulnar (interosseous) (2-LINT) motor study and median versus ulnar (MTM) study. Results: The tests with higher sensitivity in diagnosing CTS were median versus ulnar (2-LINT) motor latency difference (87.1%), median versus ulnar (MTM) motor latency difference (80%) and median versus ulnar digit four sensory latency differences (91.4%). There was no statistically significant difference between median versus ulnar (MTM) motor latency difference with both median versus ulnar (2-LINT) motor latency difference and median versus ulnar digit four sensory latency difference (P > 0.05) as regards the confirmation of CTS. Conclusions: Median versus ulnar (MTM) motor latency difference has high sensitivity and specificity for the diagnosis of CTS as for both median versus ulnar (2-LINT) motor latency difference and median versus ulnar digit four sensory latency differences. It can be considered a useful neurophysiological test to be used in combination with another median versus ulnar comparative tests for confirming the diagnosis of CTS beside other well-known electrophysiological tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carpal%20tunnel%20syndrome" title="carpal tunnel syndrome">carpal tunnel syndrome</a>, <a href="https://publications.waset.org/abstracts/search?q=medial%20thenar%20motor" title=" medial thenar motor"> medial thenar motor</a>, <a href="https://publications.waset.org/abstracts/search?q=median%20nerve" title=" median nerve"> median nerve</a>, <a href="https://publications.waset.org/abstracts/search?q=ulnar%20nerve" title=" ulnar nerve"> ulnar nerve</a> </p> <a href="https://publications.waset.org/abstracts/29852/median-versus-ulnar-medial-thenar-motor-recording-in-diagnosis-of-carpal-tunnel-syndrome" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29852.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12273</span> Vestibular Schwannoma: A Rare Cause of Trigeminal Nerve Paraesthesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jessie%20Justice">Jessie Justice</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This is a case report of a vestibular schwannoma presenting with numbness to the left lower lip and tongue and altered taste. The aim of this case is to raise awareness of differential diagnoses for trigeminal nerve paraesthesia and, hence, prompt thorough investigation. A 65-year-old male was referred to the Oral and Maxillofacial department regarding sudden-onset of numbness to his left lower lip and left tongue, with altered taste sensation subsequently developing. The patient was simultaneously being investigated for severe hearing loss in his left ear. On examination, there was altered sensation in the distribution of the left inferior alveolar nerve and left lingual nerve. There was no palpable cervical lymphadenopathy and no intra-oral lesions or dental cause for the symptoms. Due to his hearing loss in the left ear, the patient was sent for magnetic resonance imaging of the internal auditory meatus by the Ear, Nose and Throat (ENT) department, revealing a 2.5cm mass within the left cerebellopontine angle presumed to be a vestibular schwannoma. This led to the diagnosis of trigeminal nerve compression by a medium vestibular schwannoma. Consequently, the patient was followed up by an ENT, who referred him for stereotactic radiosurgery. A literature review regarding vestibular schwannomas presenting with orofacial paraesthesia was then carried out. A review of the literature has shown the incidence of vestibular schwannoma to be 3-5 cases per 100,000. It has been reported that approximately 5% of vestibular schwannoma cases display orofacial dysaesthesia, and about 1-3% of cases exhibit trigeminal neuralgia symptoms. This is a rare case of vestibular schwannoma causing trigeminal nerve paraesthesia. The aim of this study is to raise awareness of alternative causes of trigeminal nerve paraesthesia and the available literature surrounding this. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20neuroma" title="acoustic neuroma">acoustic neuroma</a>, <a href="https://publications.waset.org/abstracts/search?q=orofacial%20dysaesthesia" title=" orofacial dysaesthesia"> orofacial dysaesthesia</a>, <a href="https://publications.waset.org/abstracts/search?q=trigeminal%20nerve%20paraesthesia" title=" trigeminal nerve paraesthesia"> trigeminal nerve paraesthesia</a>, <a href="https://publications.waset.org/abstracts/search?q=vestibular%20schwannoma" title=" vestibular schwannoma"> vestibular schwannoma</a> </p> <a href="https://publications.waset.org/abstracts/193761/vestibular-schwannoma-a-rare-cause-of-trigeminal-nerve-paraesthesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193761.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">13</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12272</span> Bi-Layer Electro-Conductive Nanofibrous Conduits for Peripheral Nerve Regeneration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Niloofar%20Nazeri">Niloofar Nazeri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ali%20Derakhshan"> Mohammad Ali Derakhshan</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Faridi%20Majidi"> Reza Faridi Majidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Ghanbari"> Hossein Ghanbari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Injury of peripheral nervous system (PNS) can lead to loss of sensation or movement. To date, one of the challenges for surgeons is repairing large gaps in PNS. To solve this problem, nerve conduits have been developed. Conduits produced by means of electrospinning can mimic extracellular matrix and provide enough surface for further functionalization. In this research, a conductive bilayer nerve conduit with poly caprolactone (PCL), poly (lactic acid co glycolic acid) (PLGA) and MWCNT for promoting peripheral nerve regeneration was fabricated. The conduit was made of longitudinally aligned PLGA nanofibrous sheets in the lumen to promote nerve regeneration and randomly oriented PCL nanofibers on the outer surface for mechanical support. The intra-luminal guidance channel was made out of conductive aligned nanofibrous rolled sheets which are coated with laminin via dopamine. Different properties of electrospun scaffolds were investigated by using contact angle, mechanical strength, degradation time, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The SEM analysis was shown that size range of nanofibrous mat were about 600-750 nm and MWCNTs deposited between nanofibers. The XPS result was shown that laminin attached to the nanofibers surface successfully. The contact-angle and tensile tests analysis revealed that scaffolds have good hydrophilicity and enough mechanical strength. In vitro studies demonstrated that this conductive surface was able to enhance the attachment and proliferation of PC12 and Schwann cells. We concluded that this bilayer composite conduit has good potential for nerve regeneration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conductive" title="conductive">conductive</a>, <a href="https://publications.waset.org/abstracts/search?q=conduit" title=" conduit"> conduit</a>, <a href="https://publications.waset.org/abstracts/search?q=laminin" title=" laminin"> laminin</a>, <a href="https://publications.waset.org/abstracts/search?q=MWCNT" title=" MWCNT"> MWCNT</a> </p> <a href="https://publications.waset.org/abstracts/76928/bi-layer-electro-conductive-nanofibrous-conduits-for-peripheral-nerve-regeneration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76928.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12271</span> Three-Dimensional Measurement and Analysis of Facial Nerve Recess</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kang%20Shuo-Shuo">Kang Shuo-Shuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Jian-Nan"> Li Jian-Nan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Shiming"> Yang Shiming</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: The three-dimensional anatomical structure of the facial nerve recess and its relationship were measured by high-resolution temporal bone CT to provide imaging reference for cochlear implant operation. Materials and Methods: By analyzing the high-resolution CT of 160 cases (320 pleural ears) of the temporal bone, the following parameters were measured at the axial window niche level: 1. The distance between the facial nerve and chordae tympani nerve d1; 2. Distance between the facial nerve and circular window niche d2; 3. The relative Angle between the facial nerve and the circular window niche a; 4. Distance between the middle point of the face recess and the circular window niche d3; 5. The relative angle between the middle point of the face recess and the circular window niche b. Factors that might influence the anatomy of the facial recess were recorded, including the patient's sex, age, and anatomical variation (e.g., vestibular duct dilation, mastoid gas type, mothoid sinus advancement, jugular bulbar elevation, etc.), and the correlation between these factors and the measured facial recess parameters was analyzed. Result: The mean value of face-drum distance d1 is (3.92 ± 0.26) mm, the mean value of face-niche distance d2 is (5.95 ± 0.62) mm, the mean value of face-niche Angle a is (94.61 ± 9.04) °, and the mean value of fossa - niche distance d3 is (6.46 ± 0.63) mm. The average fossa-niche Angle b was (113.47 ± 7.83) °. Gender, age, and anterior sigmoid sinus were the three factors affecting the width of the opposite recess d1, the Angle of the opposite nerve relative to the circular window niche a, and the Angle of the facial recess relative to the circular window niche b. Conclusion: High-resolution temporal bone CT before cochlear implantation can show the important anatomical relationship of the facial nerve recess, and the measurement results have clinical reference value for the operation of cochlear implantation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cochlear%20implantation" title="cochlear implantation">cochlear implantation</a>, <a href="https://publications.waset.org/abstracts/search?q=recess%20of%20facial%20nerve" title=" recess of facial nerve"> recess of facial nerve</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal%20bone%20CT" title=" temporal bone CT"> temporal bone CT</a>, <a href="https://publications.waset.org/abstracts/search?q=three-dimensional%20measurement" title=" three-dimensional measurement"> three-dimensional measurement</a> </p> <a href="https://publications.waset.org/abstracts/192591/three-dimensional-measurement-and-analysis-of-facial-nerve-recess" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">16</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12270</span> Central Retinal Venous Occlusion Associated O Bilateral Optic Nerve Infiltration Revealing Relapse Of An Acute Lymphoblastic Leukemia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fendouli%20Ines">Fendouli Ines</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaafrane%20Nesrine"> Zaafrane Nesrine</a>, <a href="https://publications.waset.org/abstracts/search?q=Mhamdi%20Hana"> Mhamdi Hana</a>, <a href="https://publications.waset.org/abstracts/search?q=Knani%20Leila"> Knani Leila</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghorbel%20Mohamed"> Ghorbel Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Ocular infiltration of leukemia can involve orbit, uveal tract, retina and optic nerve. It may result from direct ocular infiltration by leukemic cells or indirect ocular involvement resulting from secondary hematologic changes, opportunistic infections and complications of various modalities of therapy. We here in report a case of central venous retinal occlusion associated to optic nerve infiltration as presenting signs of a relapse of acute lymphoblastic leukemia. Case Report: A twelve-year-old male -patient of acute B lymphoblastic leukemia presented with headaches and bilateral blurred vision in the left ee. Ophthalmic examination showed a visual acuity reduced to counting fingers in the right eye and no light perception in the left eye. Funduscopy revealed a voluminous disc edema surrounded by retinal haemorrhages in the right eye, and venous tortusities, papillary edema, and hemorrages suggesting central retinal venous occlusion in the LE. Swept source optical coherence tomography revealed a serous retinal detachment in the RE and .hyperreflective inner layers with macular edema in the left eye. Cerebro-orbital MRI showed bilateral thickened left optic nerve. There were no radiological signs of true papillary edema due to intracranial hypertension secondary to central nervous system involvement. Myelogram and lumbar punction demonstrated blast infiltration and confirmed ocular relapse of the leukemia. Conclusion: Ocular involvement lymphoblastic acute leukemias decreased since the introduction of a systematic prophylactic treatment of central nervous system. Periodic ophthalmic examination is necessary to allow early diagnosis and treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acute%20leukemia" title="acute leukemia">acute leukemia</a>, <a href="https://publications.waset.org/abstracts/search?q=optic%20nerve" title=" optic nerve"> optic nerve</a>, <a href="https://publications.waset.org/abstracts/search?q=infiltration" title=" infiltration"> infiltration</a>, <a href="https://publications.waset.org/abstracts/search?q=relapse" title=" relapse"> relapse</a> </p> <a href="https://publications.waset.org/abstracts/167221/central-retinal-venous-occlusion-associated-o-bilateral-optic-nerve-infiltration-revealing-relapse-of-an-acute-lymphoblastic-leukemia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12269</span> Network Conditioning and Transfer Learning for Peripheral Nerve Segmentation in Ultrasound Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harold%20Mauricio%20D%C3%ADaz-Vargas">Harold Mauricio Díaz-Vargas</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristian%20Alfonso%20Jimenez-Casta%C3%B1o"> Cristian Alfonso Jimenez-Castaño</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Augusto%20C%C3%A1rdenas-Pe%C3%B1a"> David Augusto Cárdenas-Peña</a>, <a href="https://publications.waset.org/abstracts/search?q=Guillermo%20Alberto%20Ortiz-G%C3%B3mez"> Guillermo Alberto Ortiz-Gómez</a>, <a href="https://publications.waset.org/abstracts/search?q=Alvaro%20Angel%20Orozco-Gutierrez"> Alvaro Angel Orozco-Gutierrez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Precise identification of the nerves is a crucial task performed by anesthesiologists for an effective Peripheral Nerve Blocking (PNB). Now, anesthesiologists use ultrasound imaging equipment to guide the PNB and detect nervous structures. However, visual identification of the nerves from ultrasound images is difficult, even for trained specialists, due to artifacts and low contrast. The recent advances in deep learning make neural networks a potential tool for accurate nerve segmentation systems, so addressing the above issues from raw data. The most widely spread U-Net network yields pixel-by-pixel segmentation by encoding the input image and decoding the attained feature vector into a semantic image. This work proposes a conditioning approach and encoder pre-training to enhance the nerve segmentation of traditional U-Nets. Conditioning is achieved by the one-hot encoding of the kind of target nerve a the network input, while the pre-training considers five well-known deep networks for image classification. The proposed approach is tested in a collection of 619 US images, where the best C-UNet architecture yields an 81% Dice coefficient, outperforming the 74% of the best traditional U-Net. Results prove that pre-trained models with the conditional approach outperform their equivalent baseline by supporting learning new features and enriching the discriminant capability of the tested networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nerve%20segmentation" title="nerve segmentation">nerve segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=U-Net" title=" U-Net"> U-Net</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound%20imaging" title=" ultrasound imaging"> ultrasound imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=peripheral%20nerve%20blocking" title=" peripheral nerve blocking"> peripheral nerve blocking</a> </p> <a href="https://publications.waset.org/abstracts/152338/network-conditioning-and-transfer-learning-for-peripheral-nerve-segmentation-in-ultrasound-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12268</span> Tick Induced Facial Nerve Paresis: A Narrative Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jemma%20Porrett">Jemma Porrett</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: We present a literature review examining the research surrounding tick paralysis resulting in facial nerve palsy. A case of an intra-aural paralysis tick bite resulting in unilateral facial nerve palsy is also discussed. Methods: A novel case of otoacariasis with associated ipsilateral facial nerve involvement is presented. Additionally, we conducted a review of the literature, and we searched the MEDLINE and EMBASE databases for relevant literature published between 1915 and 2020. Utilising the following keywords; 'Ixodes', 'Facial paralysis', 'Tick bite', and 'Australia', 18 articles were deemed relevant to this study. Results: Eighteen articles included in the review comprised a total of 48 patients. Patients' ages ranged from one year to 84 years of age. Ten studies estimated the possible duration between a tick bite and facial nerve palsy, averaging 8.9 days. Forty-one patients presented with a single tick within the external auditory canal, three had a single tick located on the temple or forehead region, three had post-auricular ticks, and one patient had a remarkable 44 ticks removed from the face, scalp, neck, back, and limbs. A complete ipsilateral facial nerve palsy was present in 45 patients, notably, in 16 patients, this occurred following tick removal. House-Brackmann classification was utilised in 7 patients; four patients with grade 4, one patient with grade three, and two patients with grade 2 facial nerve palsy. Thirty-eight patients had complete recovery of facial palsy. Thirteen studies were analysed for time to recovery, with an average time of 19 days. Six patients had partial recovery at the time of follow-up. One article reported improvement in facial nerve palsy at 24 hours, but no further follow-up was reported. One patient was lost to follow up, and one article failed to mention any resolution of facial nerve palsy. One patient died from respiratory arrest following generalized paralysis. Conclusions: Tick paralysis is a severe but preventable disease. Careful examination of the face, scalp, and external auditory canal should be conducted in patients presenting with otalgia and facial nerve palsy, particularly in tropical areas, to exclude the possibility of tick infestation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=facial%20nerve%20palsy" title="facial nerve palsy">facial nerve palsy</a>, <a href="https://publications.waset.org/abstracts/search?q=tick%20bite" title=" tick bite"> tick bite</a>, <a href="https://publications.waset.org/abstracts/search?q=intra-aural" title=" intra-aural"> intra-aural</a>, <a href="https://publications.waset.org/abstracts/search?q=Australia" title=" Australia"> Australia</a> </p> <a href="https://publications.waset.org/abstracts/133035/tick-induced-facial-nerve-paresis-a-narrative-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12267</span> Chronic Left Sciatic Nerve Injury and Subsequent Complications Following Delayed Hip Dislocation Treatment in a 34-Year Old Male: A Case Report</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamida%20Memon">Hamida Memon</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Sanan"> Muhammad Sanan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A 34-year-old male with no prior health issues presented with a wound in his left leg exhibiting active pus discharge, intense inflammation, pain radiating from the buttocks to the knee, foot drop, and skin darkening. Four years prior, he sustained an untreated dislocation of the hip joint and acetabulum from a road traffic accident. Initial nerve conduction studies (NCS) and electromyography (EMG) revealed severe axonotomesis of the left sciatic nerve and reduced compound muscle action potential in the left common peroneal nerve. Despite normal venous flow, edema and cellulitis were noted. Follow-up NCS/EMG in 2022 showed improvement, but in 2023, the patient experienced recurrent infection and underwent surgical intervention with tissue culture. Postoperative care included antibiotics and pain management. NCS/EMG in 2024 indicated decreased nerve amplitudes and conduction velocities, consistent with moderate axonotmesis and ongoing recovery, alongside incidental right S1 radiculopathy. General lab tests and abdominal imaging were normal. The patient was treated with Pregabalin and Neurobion for neuropathic pain and nerve support and is currently under observation by a tertiary sector hospital for treatment. This case underscores the critical importance of prompt treatment for hip dislocations to prevent long-term complications such as neuropathy and avascular necrosis. Delays in treatment significantly increase the risk of severe outcomes, highlighting the need for timely intervention. Overall, the case illustrates the challenges of managing complex nerve injuries and the importance of comprehensive care for optimal recovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sciatic%20nerve%20neuropathy" title="sciatic nerve neuropathy">sciatic nerve neuropathy</a>, <a href="https://publications.waset.org/abstracts/search?q=hip%20dislocation" title=" hip dislocation"> hip dislocation</a>, <a href="https://publications.waset.org/abstracts/search?q=acetabular%20fracture" title=" acetabular fracture"> acetabular fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=radiculopathy" title=" radiculopathy"> radiculopathy</a> </p> <a href="https://publications.waset.org/abstracts/191059/chronic-left-sciatic-nerve-injury-and-subsequent-complications-following-delayed-hip-dislocation-treatment-in-a-34-year-old-male-a-case-report" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191059.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">22</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12266</span> Bioarm, a Prothesis without Surgery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Sagouis">J. Sagouis</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Chamel"> A. Chamel</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Carre"> E. Carre</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Casasreales"> C. Casasreales</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Rudnik"> G. Rudnik</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Cerdan"> M. Cerdan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Robotics provides answers to amputees. The most expensive solutions surgically connect the prosthesis to nerve endings. There are also several types of non-invasive technologies that recover nerve messages passing through the muscles. After analyzing these messages, myoelectric prostheses perform the desired movement. The main goal is to avoid all surgeries, which can be heavy and offer cheaper alternatives. For an amputee, we use valid muscles to recover the electrical signal involved in a muscle movement. EMG sensors placed on the muscle allows us to measure a potential difference, which our program transforms into control for a robotic arm with two degrees of freedom. We have shown the feasibility of non-invasive prostheses with two degrees of freedom. Signal analysis and an increase in degrees of freedom is still being improved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prosthesis" title="prosthesis">prosthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=electromyography%20%28EMG%29" title=" electromyography (EMG)"> electromyography (EMG)</a>, <a href="https://publications.waset.org/abstracts/search?q=robotic%20arm" title=" robotic arm"> robotic arm</a>, <a href="https://publications.waset.org/abstracts/search?q=nerve%20message" title=" nerve message"> nerve message</a> </p> <a href="https://publications.waset.org/abstracts/15441/bioarm-a-prothesis-without-surgery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12265</span> Botulinum Toxin a in the Treatment of Late Facial Nerve Palsy Complications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akulov%20M.%20A.">Akulov M. A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Orlova%20O.%20R."> Orlova O. R.</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaharov%20V.%20O."> Zaharov V. O.</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomskij%20A.%20A."> Tomskij A. A.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: One of the common postoperative complications of posterior cranial fossa (PCF) and cerebello-pontine angle tumor treatment is a facial nerve palsy, which leads to multiple and resistant to treatment impairments of mimic muscles structure and functions. After 4-6 months after facial nerve palsy with insufficient therapeutic intervention patients develop a postparalythic syndrome, which includes such symptoms as mimic muscle insufficiency, mimic muscle contractures, synkinesis and spontaneous muscular twitching. A novel method of treatment is the use of a recent local neuromuscular blocking agent– botulinum toxin A (BTA). Experience of BTA treatment enables an assumption that it can be successfully used in late facial nerve palsy complications to significantly increase quality of life of patients. Study aim. To evaluate the efficacy of botulinum toxin A (BTA) (Xeomin) treatment in patients with late facial nerve palsy complications. Patients and Methods: 31 patients aged 27-59 years 6 months after facial nerve palsy development were evaluated. All patients received conventional treatment, including massage, movement therapy etc. Facial nerve palsy developed after acoustic nerve tumor resection in 23 (74,2%) patients, petroclival meningioma resection – in 8 (25,8%) patients. The first group included 17 (54,8%) patients, receiving BT-therapy; the second group – 14 (45,2%) patients continuing conventional treatment. BT-injections were performed in synkinesis or contracture points 1-2 U on injured site and 2-4 U on healthy side (for symmetry). Facial nerve function was evaluated on 2 and 4 months of therapy according to House-Brackman scale. Pain syndrome alleviation was assessed on VAS. Results: At baseline all patients in the first and second groups demonstrated аpostparalytic syndrome. We observed a significant improvement in patients receiving BTA after only one month of treatment. Mean VAS score at baseline was 80,4±18,7 and 77,9±18,2 in the first and second group, respectively. In the first group after one month of treatment we observed a significant decrease of pain syndrome – mean VAS score was 44,7±10,2 (р<0,01), whereas in the second group VAS score was as high as 61,8±9,4 points (p>0,05). By the 3d month of treatment pain syndrome intensity continued to decrease in both groups, but, the first group demonstrated significantly better results; mean score was 8,2±3,1 and 31,8±4,6 in the first and second group, respectively (р<0,01). Total House-Brackman score at baseline was 3,67±0,16 in the first group and 3,74±0,19 in the second group. Treatment resulted in a significant symptom improvement in the first group, with no improvement in the second group. After 4 months of treatment House-Brockman score in the first group was 3,1-fold lower, than in the second group (р<0,05). Conclusion: Botulinum toxin injections decrease postparalytic syndrome symptoms in patients with facial nerve palsy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=botulinum%20toxin" title="botulinum toxin">botulinum toxin</a>, <a href="https://publications.waset.org/abstracts/search?q=facial%20nerve%20palsy" title=" facial nerve palsy"> facial nerve palsy</a>, <a href="https://publications.waset.org/abstracts/search?q=postparalytic%20syndrome" title=" postparalytic syndrome"> postparalytic syndrome</a>, <a href="https://publications.waset.org/abstracts/search?q=synkinesis" title=" synkinesis"> synkinesis</a> </p> <a href="https://publications.waset.org/abstracts/26708/botulinum-toxin-a-in-the-treatment-of-late-facial-nerve-palsy-complications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26708.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12264</span> The Effect of Vitamin &quot;E&quot; on the Peripheral Neurotoxicity of Antimony in Adult Male Albino Rat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pymaneh%20Bairami%20Rad">Pymaneh Bairami Rad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work was planned with the aim to study the histological changes that might occur in the sciatic nerve of adult male albino rat following antimony trioxide exposure and to throw more light on the protective role of vitamin "E" on the peripheral neurotoxicity induced by this environmental toxin Sixty adult male albino rats, weighing 183 - 235 grams, were utilized in this work. The animals were divided into 3 groups; each of 20 rats: animals of group I served as control, animals of group II received antimony trioxide daily for 12 successive weeks , animals of group III received antimony trioxide and vitamin "E" daily for the same duration. Antimony trioxide was given in a daily dose of 500 mg/ kg body weight which represents 1/40 of the known LD50 and vitamin "E" was administered in a daily dose of 300 mg/kg body weight. Both antimony trioxide and vitamin "E" were given to the animals by gastric intubation. This research revealed many histological changes in the sciatic nerve, following exposure to antimony trioxide, including Wallerian degeneration in most myelinated nerve fibers with pleomorphic destruction, fragmentation, loss of normal lamination and rupture of myelin sheaths. The axoplasms of these nerve fibers were irregular, degenerated and contained myelin fragments with loss of neurofibrils. Obvious increase in endoneurium was also observed. Concomitant administration of vitamin "E" with antimony trioxide resulted in marked improvement in the histological changes observed in the sciatic nerve. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neurotoxicity" title="neurotoxicity">neurotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=antimony" title=" antimony"> antimony</a>, <a href="https://publications.waset.org/abstracts/search?q=vitamin%20e" title=" vitamin e"> vitamin e</a>, <a href="https://publications.waset.org/abstracts/search?q=anatomy" title=" anatomy"> anatomy</a>, <a href="https://publications.waset.org/abstracts/search?q=histology" title=" histology"> histology</a> </p> <a href="https://publications.waset.org/abstracts/31796/the-effect-of-vitamin-e-on-the-peripheral-neurotoxicity-of-antimony-in-adult-male-albino-rat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12263</span> An Assessment of Inferior Dental (IDN) and Lingual Nerve (LN) Injuries Following Third Molar Removal Under LA, IVS, and GA - An Audit and Case-Series</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aamna%20Tufail">Aamna Tufail</a>, <a href="https://publications.waset.org/abstracts/search?q=Catherine%20Anyanwu"> Catherine Anyanwu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction/Aims: Neurosensory deficits following third molar removal affect the quality of life markedly. The purpose of this audit was to evaluate the incidence of IDN and LN damage and to compare departmental rates to an established standard. A secondary objective was to provide a descriptive summary of identified cases for clinical learning. Materials and Methods: A retrospective audit was conducted by a telephone survey of 101 patients who had third molar extractions performed under LA, IVS, or GA from January 2019 to June 2020 at a District General Hospital. The results were compared to a clinical standard identified as Cheng et al1. Data collection included mode of surgery, mode of anaesthesia, grade of clinician, assessment of difficulty, severity, and duration of symptoms. Results/Statistics: A total of 101 patients had 136 third molars extracted. Age range was 18-84 years. 44% extractions were under LA, 52% under GA, and 4% under IV sedation. 30% were simple extractions, 68% were surgical removals, 2% were unspecified. 89% extractions were performed by an Associate Specialist, 5% by a consultant, and 6% by unspecified grade of clinician. The rate of IDN injuries was 2.9% (n=4), higher than standard (0.3%). The rate of LN injuries was 0.7% (n=1), same as standard (0.7%). The 5 cases of neurosensory deficits are discussed in detail. Conclusions/Clinical Relevance: The rate of ID nerve injuries was higher than the standard. The rate of LN complications was lower than the standard. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inferior%20dental%20nerve" title="inferior dental nerve">inferior dental nerve</a>, <a href="https://publications.waset.org/abstracts/search?q=lingual%20nerve" title=" lingual nerve"> lingual nerve</a>, <a href="https://publications.waset.org/abstracts/search?q=nerve%20injuries" title=" nerve injuries"> nerve injuries</a>, <a href="https://publications.waset.org/abstracts/search?q=third%20molars" title=" third molars"> third molars</a> </p> <a href="https://publications.waset.org/abstracts/168149/an-assessment-of-inferior-dental-idn-and-lingual-nerve-ln-injuries-following-third-molar-removal-under-la-ivs-and-ga-an-audit-and-case-series" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12262</span> The Incidence of Inferior Alveolar Nerve Dysfunction Following Bilateral Sagittal Split Osteotomies: A Single Centre Retrospective Audit in the United Kingdom</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krupali%20Mukeshkumar">Krupali Mukeshkumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinesh%20Shah"> Jinesh Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Bilateral Sagittal Split Osteotomy (BSSO), used for the correction of mandibular deformities, is a common oral and maxillofacial surgical procedure. Inferior alveolar nerve dysfunction is commonly reported post-operatively by patients as paresthesia or anesthesia. The current literature lacks a consensus on the incidence of inferior alveolar nerve dysfunction as patients are not routinely assessed pre and post-operatively with an objective assessment. The range of incidence varies from 9% to 85% of patients, with some authors arguing that 100% of patients experience nerve dysfunction immediately post-surgery. Systematic reviews have shown a difference between incidence rates at different follow-up periods using objective and subjective methods. Aim: To identify the incidence of inferior alveolar nerve dysfunction following BSSO. Gold standard: Nerve dysfunction incidence rates similar or lower than current literature of 83% day one post-operatively and 18.4% at one year follow up. Setting: A retrospective cross-sectional audit of patients treated between 2017-2019 at the Royal Stoke University Hospital, Maxillofacial and Orthodontic departments. Sample: All patients who underwent a BSSO (with or without le fort one osteotomy) between 2017–2019 were identified from the database. Patients with pre-existing neurosensory disturbance, those who had a genioplasty at the same time and those with no follow-up were excluded. The sample consisted of 121 patients, 37 males and 84 females between the ages of 17-50 years at the time of surgery. Methods: Clinical records of 121 cases were reviewed to assess the age, sex, type of mandibular osteotomy, status of the nerve during the surgical procedure, type of bony split and incidence of nerve dysfunction at follow-up appointments. The surgical procedure was carried out by three Maxillo-facial surgeons and follow-up appointments were carried out in the Orthodontic and Oral and Maxillo-facial departments. Results: 120 patients were treated to correct the mandibular facial deformity and 1 patient was treated for sleep apnoea. Seventeen patients had a mandibular setback and 104 patients had mandibular advancement. 68 patients reported inferior alveolar nerve dysfunction at one week following their surgery. Seventy-six patients had temporary paresthesia present between 2 weeks and 12 months post-surgery. 13 patients had persistent nerve dysfunction at 12 months, of which 1 had a bad bony split during the BSSO. The incidence of nerve dysfunction postoperatively was 6.6% after 1 day, 56.1% at 1 week, 62.8% at 2 weeks, 59.5% between 3-6 weeks, 43.0% between 8-16 weeks and 10.7% at 1 year. Conclusions: The results of this audit show a similar incidence rate to the research gold standard at the one-year follow-up. Future Recommendations: No changes to surgical procedure or technique are indicated, but a need for improved documentation and a standardized approach for assessment of post-operative nerve dysfunction would be beneficial. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bilateral%20sagittal%20split%20osteotomy" title="bilateral sagittal split osteotomy">bilateral sagittal split osteotomy</a>, <a href="https://publications.waset.org/abstracts/search?q=inferior%20alveolar%20nerve" title=" inferior alveolar nerve"> inferior alveolar nerve</a>, <a href="https://publications.waset.org/abstracts/search?q=mandible" title=" mandible"> mandible</a>, <a href="https://publications.waset.org/abstracts/search?q=nerve%20dysfunction" title=" nerve dysfunction"> nerve dysfunction</a> </p> <a href="https://publications.waset.org/abstracts/139078/the-incidence-of-inferior-alveolar-nerve-dysfunction-following-bilateral-sagittal-split-osteotomies-a-single-centre-retrospective-audit-in-the-united-kingdom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139078.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12261</span> Bio-Functionalized Silk Nanofibers for Peripheral Nerve Regeneration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kayla%20Belanger">Kayla Belanger</a>, <a href="https://publications.waset.org/abstracts/search?q=Pascale%20Vigneron"> Pascale Vigneron</a>, <a href="https://publications.waset.org/abstracts/search?q=Guy%20Schlatter"> Guy Schlatter</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernard%20Devauchelle"> Bernard Devauchelle</a>, <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Egles"> Christophe Egles</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A severe injury to a peripheral nerve leads to its degeneration and the loss of sensory and motor function. To this day, there still lacks a more effective alternative to the autograft which has long been considered the gold standard for nerve repair. In order to overcome the numerous drawbacks of the autograft, tissue engineered biomaterials may be effective alternatives. Silk fibroin is a favorable biomaterial due to its many advantageous properties such as its biocompatibility, its biodegradability, and its robust mechanical properties. In this study, bio-mimicking multi-channeled nerve guidance conduits made of aligned nanofibers achieved by electrospinning were functionalized with signaling biomolecules and were tested in vitro and in vivo for nerve regeneration support. Silk fibroin (SF) extracted directly from silkworm cocoons was put in solution at a concentration of 10wt%. Poly(ethylene oxide) (PEO) was added to the resulting SF solution to increase solution viscosity and the following three electrospinning solutions were made: (1) SF/PEO solution, (2) SF/PEO solution with nerve growth factor and ciliary neurotrophic factor, and (3) SF/PEO solution with nerve growth factor and neurotrophin-3. Each of these solutions was electrospun into a multi-layer architecture to obtain mechanically optimized aligned nanofibrous mats. For in vitro studies, aligned fibers were treated to induce β-sheet formation and thoroughly rinsed to eliminate presence of PEO. Each material was tested using rat embryo neuron cultures to evaluate neurite extension and the interaction with bio-functionalized or non-functionalized aligned fibers. For in vivo studies, the mats were rolled into 5mm long multi-, micro-channeled conduits then treated and thoroughly rinsed. The conduits were each subsequently implanted between a severed rat sciatic nerve. The effectiveness of nerve repair over a period of 8 months was extensively evaluated by cross-referencing electrophysiological, histological, and movement analysis results to comprehensively evaluate the progression of nerve repair. In vitro results show a more favorable interaction between growing neurons and bio-functionalized silk fibers compared to pure silk fibers. Neurites can also be seen having extended unidirectionally along the alignment of the nanofibers which confirms a guidance factor for the electrospun material. The in vivo study has produced positive results for the regeneration of the sciatic nerve over the length of the study, showing contrasts between the bio-functionalized material and the non-functionalized material along with comparisons to the experimental control. Nerve regeneration has been evaluated not only by histological analysis, but also by electrophysiological assessment and motion analysis of two separate natural movements. By studying these three components in parallel, the most comprehensive evaluation of nerve repair for the conduit designs can be made which can, therefore, more accurately depict their overall effectiveness. This work was supported by La Région Picardie and FEDER. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrospinning" title="electrospinning">electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=nerve%20guidance%20conduit" title=" nerve guidance conduit"> nerve guidance conduit</a>, <a href="https://publications.waset.org/abstracts/search?q=peripheral%20nerve%20regeneration" title=" peripheral nerve regeneration"> peripheral nerve regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=silk%20fibroin" title=" silk fibroin"> silk fibroin</a> </p> <a href="https://publications.waset.org/abstracts/64271/bio-functionalized-silk-nanofibers-for-peripheral-nerve-regeneration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64271.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12260</span> The Effect of Ice in Pain Control before Digital Nerve Block</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Rasooli">Fatemeh Rasooli</a>, <a href="https://publications.waset.org/abstracts/search?q=Behzad%20Simiari"> Behzad Simiari</a>, <a href="https://publications.waset.org/abstracts/search?q=Pooya%20Payandemehr"> Pooya Payandemehr</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Nejati"> Amir Nejati</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Bahreini"> Maryam Bahreini</a>, <a href="https://publications.waset.org/abstracts/search?q=Atefeh%20Abdollahi"> Atefeh Abdollahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Pain is a complex physiological reaction to tissue injury. In the course of painful procedures such as nerve block, ice has been shown to be a feasible and inexpensive material to control pain. It delays nerve conduction, actives other senses and reduces inflammatory and painful responses. This study assessed the effect of ice in reducing pain caused by needling and infiltration during digital block. Patient satisfaction recorded as a secondary outcome. Methods: This study was designed as a non-blinded randomized clinical trial approved by Tehran University of Medical Sciences Ethical Committee. Informed consent was taken from all the participants who were then randomly divided into two groups. Digital block performed by standard approach in selected patients. Tubes of ice were prepared in gloves and were fragmented at a time of application for circling around the finger. Tubes were applied for 6 minutes before digital nerve block in the site of needling in the case group. Patients in the control group underwent digital nerve block with the conventional method without ice administration. Numeric Rating Scale (NRS) used for grading pain. 0 used for no pain and 10 for the worst pain that patient had experienced until now. Scores were analyzed by Wilcoxon Rank Sum test and compared in case and control groups. Results: 100 patients aged 16-50 years were enrolled. Mean NRS scores with and without ice were 1.5 mm (S.D ± 1.44) and 6.8 mm (S.D ± 1.40) for needling pain and for infiltration pain were 2.7mm ( S.D ±1.65) and 8.5mm ( S.D ± 1.47), respectively (p<0.001). Besides, patients’ satisfactions were significantly higher in the ice group (p<0.001). Conclusion: Application of ice for 6 minutes significantly reduced pain of needling and infiltration in digital nerve block; thus, it seems to be a feasible and inexpensive material which acts effectively to decrease pain and stress before the procedure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20block" title="digital block">digital block</a>, <a href="https://publications.waset.org/abstracts/search?q=ice" title=" ice"> ice</a>, <a href="https://publications.waset.org/abstracts/search?q=needle" title=" needle"> needle</a>, <a href="https://publications.waset.org/abstracts/search?q=pain" title=" pain"> pain</a> </p> <a href="https://publications.waset.org/abstracts/77303/the-effect-of-ice-in-pain-control-before-digital-nerve-block" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nerve%20system&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nerve%20system&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nerve%20system&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nerve%20system&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nerve%20system&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nerve%20system&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nerve%20system&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nerve%20system&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nerve%20system&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nerve%20system&amp;page=409">409</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nerve%20system&amp;page=410">410</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nerve%20system&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10