CINXE.COM

Search results for: large scale calorimeter

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: large scale calorimeter</title> <meta name="description" content="Search results for: large scale calorimeter"> <meta name="keywords" content="large scale calorimeter"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="large scale calorimeter" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="large scale calorimeter"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 11604</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: large scale calorimeter</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11604</span> Prediction of Fire Growth of the Office by Real-Scale Fire Experiment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kweon%20Oh-Sang">Kweon Oh-Sang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kim%20Heung-Youl"> Kim Heung-Youl</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Estimating the engineering properties of fires is important to be prepared for the complex and various fire risks of large-scale structures such as super-tall buildings, large stadiums, and multi-purpose structures. In this study, a mock-up of a compartment which was 2.4(L) x 3.6 (W) x 2.4 (H) meter in dimensions was fabricated at the 10MW LSC (Large Scale Calorimeter) and combustible office supplies were placed in the compartment for a real-scale fire test. Maximum heat release rate was 4.1 MW and total energy release obtained through the application of t2 fire growth rate was 6705.9 MJ. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fire%20growth" title="fire growth">fire growth</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20experiment" title=" fire experiment"> fire experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=t2%20curve" title=" t2 curve"> t2 curve</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20scale%20calorimeter" title=" large scale calorimeter"> large scale calorimeter</a> </p> <a href="https://publications.waset.org/abstracts/50330/prediction-of-fire-growth-of-the-office-by-real-scale-fire-experiment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50330.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11603</span> Thermal Analysis of a Graphite Calorimeter for the Measurement of Absorbed Dose for Therapeutic X-Ray Beam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.J.%20Kim">I.J. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=B.C.%20Kim"> B.C. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=J.H.%20Kim"> J.H. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=C.-Y.%20Yi"> C.-Y. Yi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat transfer in a graphite calorimeter is analyzed by using the finite elements method. The calorimeter is modeled in 3D geometry. Quasi-adiabatic mode operation is realized in the simulation and the temperature rise by different sources of the ionizing radiation and electric heaters is compared, directly. The temperature distribution caused by the electric power was much different from that by the ionizing radiation because of its point-like localized heating. However, the temperature rise which was finally read by sensing thermistors agreed well to each other within 0.02 %. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphite%20calorimeter" title="graphite calorimeter">graphite calorimeter</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=quasi-adiabatic%20mode" title=" quasi-adiabatic mode "> quasi-adiabatic mode </a> </p> <a href="https://publications.waset.org/abstracts/24560/thermal-analysis-of-a-graphite-calorimeter-for-the-measurement-of-absorbed-dose-for-therapeutic-x-ray-beam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11602</span> Optimization of Heat Insulation Structure and Heat Flux Calculation Method of Slug Calorimeter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhu%20Xinxin">Zhu Xinxin</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Hui"> Wang Hui</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Kai"> Yang Kai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat flux is one of the most important test parameters in the ground thermal protection test. Slug calorimeter is selected as the main sensor measuring heat flux in arc wind tunnel test due to the convenience and low cost. However, because of excessive lateral heat transfer and the disadvantage of the calculation method, the heat flux measurement error of the slug calorimeter is large. In order to enhance measurement accuracy, the heat insulation structure and heat flux calculation method of slug calorimeter were improved. The heat transfer model of the slug calorimeter was built according to the energy conservation principle. Based on the heat transfer model, the insulating sleeve of the hollow structure was designed, which helped to greatly decrease lateral heat transfer. And the slug with insulating sleeve of hollow structure was encapsulated using a package shell. The improved insulation structure reduced heat loss and ensured that the heat transfer characteristics were almost the same when calibrated and tested. The heat flux calibration test was carried out in arc lamp system for heat flux sensor calibration, and the results show that test accuracy and precision of slug calorimeter are improved greatly. In the meantime, the simulation model of the slug calorimeter was built. The heat flux values in different temperature rise time periods were calculated by the simulation model. The results show that extracting the data of the temperature rise rate as soon as possible can result in a smaller heat flux calculation error. Then the different thermal contact resistance affecting calculation error was analyzed by the simulation model. The contact resistance between the slug and the insulating sleeve was identified as the main influencing factor. The direct comparison calibration correction method was proposed based on only heat flux calibration. The numerical calculation correction method was proposed based on the heat flux calibration and simulation model of slug calorimeter after the simulation model was solved by solving the contact resistance between the slug and the insulating sleeve. The simulation and test results show that two methods can greatly reduce the heat flux measurement error. Finally, the improved slug calorimeter was tested in the arc wind tunnel. And test results show that the repeatability accuracy of improved slug calorimeter is less than 3%. The deviation of measurement value from different slug calorimeters is less than 3% in the same fluid field. The deviation of measurement value between slug calorimeter and Gordon Gage is less than 4% in the same fluid field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correction%20method" title="correction method">correction method</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20flux%20calculation" title=" heat flux calculation"> heat flux calculation</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20insulation%20structure" title=" heat insulation structure"> heat insulation structure</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20model" title=" heat transfer model"> heat transfer model</a>, <a href="https://publications.waset.org/abstracts/search?q=slug%20calorimeter" title=" slug calorimeter"> slug calorimeter</a> </p> <a href="https://publications.waset.org/abstracts/116493/optimization-of-heat-insulation-structure-and-heat-flux-calculation-method-of-slug-calorimeter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11601</span> Use of Numerical Tools Dedicated to Fire Safety Engineering for the Rolling Stock</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guillaume%20Craveur">Guillaume Craveur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study shows the opportunity to use numerical tools dedicated to Fire Safety Engineering for the Rolling Stock. Indeed, some lawful requirements can now be demonstrated by using numerical tools. The first part of this study presents the use of modelling evacuation tool to satisfy the criteria of evacuation time for the rolling stock. The buildingEXODUS software is used to model and simulate the evacuation of rolling stock. Firstly, in order to demonstrate the reliability of this tool to calculate the complete evacuation time, a comparative study was achieved between a real test and simulations done with buildingEXODUS. Multiple simulations are performed to capture the stochastic variations in egress times. Then, a new study is done to calculate the complete evacuation time of a train with the same geometry but with a different interior architecture. The second part of this study shows some applications of Computational Fluid Dynamics. This work presents the approach of a multi scales validation of numerical simulations of standardized tests with Fire Dynamics Simulations software developed by the National Institute of Standards and Technology (NIST). This work highlights in first the cone calorimeter test, described in the standard ISO 5660, in order to characterize the fire reaction of materials. The aim of this process is to readjust measurement results from the cone calorimeter test in order to create a data set usable at the seat scale. In the second step, the modelisation concerns the fire seat test described in the standard EN 45545-2. The data set obtained thanks to the validation of the cone calorimeter test was set up in the fire seat test. To conclude with the third step, after controlled the data obtained for the seat from the cone calorimeter test, a larger scale simulation with a real part of train is achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fire%20safety%20engineering" title="fire safety engineering">fire safety engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20tools" title=" numerical tools"> numerical tools</a>, <a href="https://publications.waset.org/abstracts/search?q=rolling%20stock" title=" rolling stock"> rolling stock</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-scales%20validation" title=" multi-scales validation"> multi-scales validation</a> </p> <a href="https://publications.waset.org/abstracts/72044/use-of-numerical-tools-dedicated-to-fire-safety-engineering-for-the-rolling-stock" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72044.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11600</span> Identification of Potential Large Scale Floating Solar Sites in Peninsular Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nur%20Iffika%20Ruslan">Nur Iffika Ruslan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Rosly%20Abbas"> Ahmad Rosly Abbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Munirah%20Stapah%40Salleh"> Munirah Stapah@Salleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurfaziera%20Rahim"> Nurfaziera Rahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increased concerns and awareness of environmental hazards by fossil fuels burning for energy have become the major factor driving the transition toward green energy. It is expected that an additional of 2,000 MW of renewable energy is to be recorded from the renewable sources by 2025 following the implementation of Large Scale Solar projects in Peninsular Malaysia, including Large Scale Floating Solar projects. Floating Solar has better advantages over its landed counterparts such as the requirement for land acquisition is relatively insignificant. As part of the site selection process established by TNB Research Sdn. Bhd., a set of mandatory and rejection criteria has been developed in order to identify only sites that are feasible for the future development of Large Scale Floating Solar power plant. There are a total of 85 lakes and reservoirs identified within Peninsular Malaysia. Only lakes and reservoirs with a minimum surface area of 120 acres will be considered as potential sites for the development of Large Scale Floating Solar power plant. The result indicates a total of 10 potential Large Scale Floating Solar sites identified which are located in Selangor, Johor, Perak, Pulau Pinang, Perlis and Pahang. This paper will elaborate on the various mandatory and rejection criteria, as well as on the various site selection process required to identify potential (suitable) Large Scale Floating Solar sites in Peninsular Malaysia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Large%20Scale%20Floating%20Solar" title="Large Scale Floating Solar">Large Scale Floating Solar</a>, <a href="https://publications.waset.org/abstracts/search?q=Peninsular%20Malaysia" title=" Peninsular Malaysia"> Peninsular Malaysia</a>, <a href="https://publications.waset.org/abstracts/search?q=Potential%20Sites" title=" Potential Sites"> Potential Sites</a>, <a href="https://publications.waset.org/abstracts/search?q=Renewable%20Energy" title=" Renewable Energy"> Renewable Energy</a> </p> <a href="https://publications.waset.org/abstracts/129340/identification-of-potential-large-scale-floating-solar-sites-in-peninsular-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129340.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11599</span> Evaluate the Possibility of Using ArcGIS Basemaps as GCP for Large Scale Maps</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jali%20Octariady">Jali Octariady</a>, <a href="https://publications.waset.org/abstracts/search?q=Ida%20Herliningsih"> Ida Herliningsih</a>, <a href="https://publications.waset.org/abstracts/search?q=Ade%20K.%20Mulyana"> Ade K. Mulyana</a>, <a href="https://publications.waset.org/abstracts/search?q=Annisa%20Fitria"> Annisa Fitria</a>, <a href="https://publications.waset.org/abstracts/search?q=Diaz%20C.%20K.%20Yuwana"> Diaz C. K. Yuwana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Awareness of the importance large-scale maps for development of a country is growing in all walks of life, especially for governments in Indonesia. Various parties, especially local governments throughout Indonesia demanded for immediate availability the large-scale maps of 1:5000 for regional development. But in fact, the large-scale maps of 1:5000 is only available less than 5% of the entire territory of Indonesia. Unavailability precise GCP at the entire territory of Indonesia is one of causes of slow availability the large scale maps of 1:5000. This research was conducted to find an alternative solution to this problem. This study was conducted to assess the accuracy of ArcGIS base maps coordinate when it shall be used as GCP for creating a map scale of 1:5000. The study was conducted by comparing the GCP coordinate from Field survey using GPS Geodetic than the coordinate from ArcGIS basemaps in various locations in Indonesia. Some areas are used as a study area are Lombok Island, Kupang City, Surabaya City and Kediri District. The differences value of the coordinates serve as the basis for assessing the accuracy of ArcGIS basemaps coordinates. The results of the study at various study area show the variation of the amount of the coordinates value given. Differences coordinate value in the range of millimeters (mm) to meters (m) in the entire study area. This is shown the inconsistency quality of ArcGIS base maps coordinates. This inconsistency shows that the coordinate value from ArcGIS Basemaps is careless. The Careless coordinate from ArcGIS Basemaps indicates that its cannot be used as GCP for large-scale mapping on the entire territory of Indonesia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accuracy" title="accuracy">accuracy</a>, <a href="https://publications.waset.org/abstracts/search?q=ArcGIS%20base%20maps" title=" ArcGIS base maps"> ArcGIS base maps</a>, <a href="https://publications.waset.org/abstracts/search?q=GCP" title=" GCP"> GCP</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20scale%20maps" title=" large scale maps"> large scale maps</a> </p> <a href="https://publications.waset.org/abstracts/66927/evaluate-the-possibility-of-using-arcgis-basemaps-as-gcp-for-large-scale-maps" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11598</span> A Clustering Algorithm for Massive Texts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ming%20Liu">Ming Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chong%20Wu"> Chong Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Bingquan%20Liu"> Bingquan Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lei%20Chen"> Lei Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Internet users have to face the massive amount of textual data every day. Organizing texts into categories can help users dig the useful information from large-scale text collection. Clustering, in fact, is one of the most promising tools for categorizing texts due to its unsupervised characteristic. Unfortunately, most of traditional clustering algorithms lose their high qualities on large-scale text collection. This situation mainly attributes to the high- dimensional vectors generated from texts. To effectively and efficiently cluster large-scale text collection, this paper proposes a vector reconstruction based clustering algorithm. Only the features that can represent the cluster are preserved in cluster’s representative vector. This algorithm alternately repeats two sub-processes until it converges. One process is partial tuning sub-process, where feature’s weight is fine-tuned by iterative process. To accelerate clustering velocity, an intersection based similarity measurement and its corresponding neuron adjustment function are proposed and implemented in this sub-process. The other process is overall tuning sub-process, where the features are reallocated among different clusters. In this sub-process, the features useless to represent the cluster are removed from cluster’s representative vector. Experimental results on the three text collections (including two small-scale and one large-scale text collections) demonstrate that our algorithm obtains high quality on both small-scale and large-scale text collections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vector%20reconstruction" title="vector reconstruction">vector reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=large-scale%20text%20clustering" title=" large-scale text clustering"> large-scale text clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20tuning%20sub-process" title=" partial tuning sub-process"> partial tuning sub-process</a>, <a href="https://publications.waset.org/abstracts/search?q=overall%20tuning%20sub-process" title=" overall tuning sub-process"> overall tuning sub-process</a> </p> <a href="https://publications.waset.org/abstracts/22681/a-clustering-algorithm-for-massive-texts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22681.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11597</span> The Challenges of Scaling Agile to Large-Scale Distributed Development: An Overview of the Agile Factory Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bernard%20Doherty">Bernard Doherty</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Jelfs"> Andrew Jelfs</a>, <a href="https://publications.waset.org/abstracts/search?q=Aveek%20Dasgupta"> Aveek Dasgupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20Holden"> Patrick Holden</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many companies have moved to agile and hybrid agile methodologies where portions of the Software Design Life-cycle (SDLC) and Software Test Life-cycle (STLC) can be time boxed in order to enhance delivery speed, quality and to increase flexibility to changes in software requirements. Despite widespread proliferation of agile practices, implementation often fails due to lack of adequate project management support, decreased motivation or fear of increased interaction. Consequently, few organizations effectively adopt agile processes with tailoring often required to integrate agile methodology in large scale environments. This paper provides an overview of the challenges in implementing an innovative large-scale tailored realization of the agile methodology termed the Agile Factory Model (AFM), with the aim of comparing and contrasting issues of specific importance to organizations undertaking large scale agile development. The conclusions demonstrate that agile practices can be effectively translated to a globally distributed development environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agile" title="agile">agile</a>, <a href="https://publications.waset.org/abstracts/search?q=agile%20factory%20model" title=" agile factory model"> agile factory model</a>, <a href="https://publications.waset.org/abstracts/search?q=globally%20distributed%20development" title=" globally distributed development"> globally distributed development</a>, <a href="https://publications.waset.org/abstracts/search?q=large-scale%20agile" title=" large-scale agile"> large-scale agile</a> </p> <a href="https://publications.waset.org/abstracts/54089/the-challenges-of-scaling-agile-to-large-scale-distributed-development-an-overview-of-the-agile-factory-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54089.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11596</span> Study of Large-Scale Atmospheric Convection over the Tropical Indian Ocean and Its Association with Oceanic Variables</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Supriya%20Manikrao%20Ovhal">Supriya Manikrao Ovhal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In India, the summer monsoon rainfall occurs owing to large scale convection with reference to continental ITCZ. It was found that convection over tropical ocean increases with SST from 26 to 28 degree C, and when SST is above 29 degree C, it sharply decreases for warm pool areas of Indian and for monsoon areas of West Pacific Ocean. The reduction in convection can be influenced by large scale subsidence forced by nearby or remotely generated deep convection, thus it was observed that under the influence of strong large scale rising motion, convection does not decreases but increases monotonically with SST even if SST value is higher than 29.5 degree C. Since convection is related to SST gradient, that helps to generate low level moisture convergence and upward vertical motion in the atmosphere. Strong wind fields like cross equatorial low level jet stream on equator ward side of the warm pool are produced due to convection initiated by SST gradient. Areas having maximum SST have low SST gradient, and that result in feeble convection. Hence it is imperative to mention that the oceanic role (other than SST) could be prominent in influencing large Scale Atmospheric convection. Since warm oceanic surface somewhere or the other contributes to penetrate the heat radiation to the subsurface of the ocean, and as there is no studies seen related to oceanic subsurface role in large Scale Atmospheric convection, in the present study, we are concentrating on the oceanic subsurface contribution in large Scale Atmospheric convection by considering the SST gradient, mixed layer depth (MLD), thermocline, barrier layer. The present study examines the probable role of subsurface ocean parameters in influencing convection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sst" title="sst">sst</a>, <a href="https://publications.waset.org/abstracts/search?q=d20" title=" d20"> d20</a>, <a href="https://publications.waset.org/abstracts/search?q=olr" title=" olr"> olr</a>, <a href="https://publications.waset.org/abstracts/search?q=wind" title=" wind"> wind</a> </p> <a href="https://publications.waset.org/abstracts/156972/study-of-large-scale-atmospheric-convection-over-the-tropical-indian-ocean-and-its-association-with-oceanic-variables" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156972.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11595</span> Thermal Network Model for a Large Scale AC Induction Motor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sushil%20Kumar">Sushil Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Dakshina%20Murty"> M. Dakshina Murty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal network modelling has proven to be important tool for thermal analysis of electrical machine. This article investigates numerical thermal network model and experimental performance of a large-scale AC motor. Experimental temperatures were measured using RTD in the stator which have been compared with the numerical data. Thermal network modelling fairly predicts the temperature of various components inside the large-scale AC motor. Results of stator winding temperature is compared with experimental results which are in close agreement with accuracy of 6-10%. This method of predicting hot spots within AC motors can be readily used by the motor designers for estimating the thermal hot spots of the machine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AC%20motor" title="AC motor">AC motor</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20network" title=" thermal network"> thermal network</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a> </p> <a href="https://publications.waset.org/abstracts/84284/thermal-network-model-for-a-large-scale-ac-induction-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84284.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11594</span> Characterization and the Study of Energy Potential of Municipal Solid Waste Disposed in Bauchi Town and Environs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aliyu%20Mohammed%20Lawal">Aliyu Mohammed Lawal</a>, <a href="https://publications.waset.org/abstracts/search?q=Dahiru%20Yau%20Gital"> Dahiru Yau Gital</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The characterisation and the energy potential of the municipal solid wastes in Bauchi town and environs were studied. It was found that, 35,000 tonnes of waste was generated annually at 0.19 kg/capital/day of which, the combination of plastics, rubber, polyethene bags constituted about 33%, followed by textile materials, leathers, wood 26%, combination of papers, cartons 19%, crop stalks/grass 11% and the remaining incombustible materials 11%. The heating value or calorific value of the wastes was determined using a digital calorimeter to be 6.43 MJ/kg, almost one-third of the energy content of peat which has a value of 15.9 MJ/kg. The calorific value of the fuel was found to be significant; hence, the waste could be used for energy generation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calorific%20value" title="calorific value">calorific value</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20calorimeter" title=" digital calorimeter"> digital calorimeter</a>, <a href="https://publications.waset.org/abstracts/search?q=incombustible" title=" incombustible"> incombustible</a>, <a href="https://publications.waset.org/abstracts/search?q=municipal%20solid%20waste" title=" municipal solid waste"> municipal solid waste</a> </p> <a href="https://publications.waset.org/abstracts/37903/characterization-and-the-study-of-energy-potential-of-municipal-solid-waste-disposed-in-bauchi-town-and-environs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37903.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11593</span> Deproteinization of Moroccan Sardine (Sardina pilchardus) Scales: A Pilot-Scale Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Bellali">F. Bellali</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kharroubi"> M. Kharroubi</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Rady"> Y. Rady</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Bourhim"> N. Bourhim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Morocco, fish processing industry is an important source income for a large amount of by-products including skins, bones, heads, guts, and scales. Those underutilized resources particularly scales contain a large amount of proteins and calcium. Sardina plichardus scales from resulting from the transformation operation have the potential to be used as raw material for the collagen production. Taking into account this strong expectation of the regional fish industry, scales sardine upgrading is well justified. In addition, political and societal demands for sustainability and environment-friendly industrial production systems, coupled with the depletion of fish resources, drive this trend forward. Therefore, fish scale used as a potential source to isolate collagen has a wide large of applications in food, cosmetic, and biomedical industry. The main aim of this study is to isolate and characterize the acid solubilize collagen from sardine fish scale, Sardina pilchardus. Experimental design methodology was adopted in collagen processing for extracting optimization. The first stage of this work is to investigate the optimization conditions of the sardine scale deproteinization on using response surface methodology (RSM). The second part focus on the demineralization with HCl solution or EDTA. And the last one is to establish the optimum condition for the isolation of collagen from fish scale by solvent extraction. The advancement from lab scale to pilot scale is a critical stage in the technological development. In this study, the optimal condition for the deproteinization which was validated at laboratory scale was employed in the pilot scale procedure. The deproteinization of fish scale was then demonstrated on a pilot scale (2Kg scales, 20l NaOH), resulting in protein content (0,2mg/ml) and hydroxyproline content (2,11mg/l). These results indicated that the pilot-scale showed similar performances to those of lab-scale one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deproteinization" title="deproteinization">deproteinization</a>, <a href="https://publications.waset.org/abstracts/search?q=pilot%20scale" title=" pilot scale"> pilot scale</a>, <a href="https://publications.waset.org/abstracts/search?q=scale" title=" scale"> scale</a>, <a href="https://publications.waset.org/abstracts/search?q=sardine%20pilchardus" title=" sardine pilchardus"> sardine pilchardus</a> </p> <a href="https://publications.waset.org/abstracts/17961/deproteinization-of-moroccan-sardine-sardina-pilchardus-scales-a-pilot-scale-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17961.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11592</span> A Survey on Data-Centric and Data-Aware Techniques for Large Scale Infrastructures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Silvina%20Ca%C3%ADno-Lores">Silvina Caíno-Lores</a>, <a href="https://publications.waset.org/abstracts/search?q=Jes%C3%BAs%20Carretero"> Jesús Carretero</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Large scale computing infrastructures have been widely developed with the core objective of providing a suitable platform for high-performance and high-throughput computing. These systems are designed to support resource-intensive and complex applications, which can be found in many scientific and industrial areas. Currently, large scale data-intensive applications are hindered by the high latencies that result from the access to vastly distributed data. Recent works have suggested that improving data locality is key to move towards exascale infrastructures efficiently, as solutions to this problem aim to reduce the bandwidth consumed in data transfers, and the overheads that arise from them. There are several techniques that attempt to move computations closer to the data. In this survey we analyse the different mechanisms that have been proposed to provide data locality for large scale high-performance and high-throughput systems. This survey intends to assist scientific computing community in understanding the various technical aspects and strategies that have been reported in recent literature regarding data locality. As a result, we present an overview of locality-oriented techniques, which are grouped in four main categories: application development, task scheduling, in-memory computing and storage platforms. Finally, the authors include a discussion on future research lines and synergies among the former techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20locality" title="data locality">data locality</a>, <a href="https://publications.waset.org/abstracts/search?q=data-centric%20computing" title=" data-centric computing"> data-centric computing</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20scale%20infrastructures" title=" large scale infrastructures"> large scale infrastructures</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title=" cloud computing"> cloud computing</a> </p> <a href="https://publications.waset.org/abstracts/43181/a-survey-on-data-centric-and-data-aware-techniques-for-large-scale-infrastructures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43181.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11591</span> System Survivability in Networks in the Context of Defense/Attack Strategies: The Large Scale</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asma%20Ben%20Yaghlane">Asma Ben Yaghlane</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Naceur%20Azaiez"> Mohamed Naceur Azaiez</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Mrad"> Mehdi Mrad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigate the large scale of networks in the context of network survivability under attack. We use appropriate techniques to evaluate and the attacker-based- and the defender-based-network survivability. The attacker is unaware of the operated links by the defender. Each attacked link has some pre-specified probability to be disconnected. The defender choice is so that to maximize the chance of successfully sending the flow to the destination node. The attacker however will select the cut-set with the highest chance to be disabled in order to partition the network. Moreover, we extend the problem to the case of selecting the best p paths to operate by the defender and the best k cut-sets to target by the attacker, for arbitrary integers p,k > 1. We investigate some variations of the problem and suggest polynomial-time solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=defense%2Fattack%20strategies" title="defense/attack strategies">defense/attack strategies</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20scale" title="large scale">large scale</a>, <a href="https://publications.waset.org/abstracts/search?q=networks" title=" networks"> networks</a>, <a href="https://publications.waset.org/abstracts/search?q=partitioning%20a%20network" title=" partitioning a network"> partitioning a network</a> </p> <a href="https://publications.waset.org/abstracts/40317/system-survivability-in-networks-in-the-context-of-defenseattack-strategies-the-large-scale" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40317.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11590</span> A Modified Nonlinear Conjugate Gradient Algorithm for Large Scale Unconstrained Optimization Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tsegay%20Giday%20Woldu">Tsegay Giday Woldu</a>, <a href="https://publications.waset.org/abstracts/search?q=Haibin%20Zhang"> Haibin Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xin%20Zhang"> Xin Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yemane%20Hailu%20Fissuh"> Yemane Hailu Fissuh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is well known that nonlinear conjugate gradient method is one of the widely used first order methods to solve large scale unconstrained smooth optimization problems. Because of the low memory requirement, attractive theoretical features, practical computational efficiency and nice convergence properties, nonlinear conjugate gradient methods have a special role for solving large scale unconstrained optimization problems. Large scale optimization problems are with important applications in practical and scientific world. However, nonlinear conjugate gradient methods have restricted information about the curvature of the objective function and they are likely less efficient and robust compared to some second order algorithms. To overcome these drawbacks, the new modified nonlinear conjugate gradient method is presented. The noticeable features of our work are that the new search direction possesses the sufficient descent property independent of any line search and it belongs to a trust region. Under mild assumptions and standard Wolfe line search technique, the global convergence property of the proposed algorithm is established. Furthermore, to test the practical computational performance of our new algorithm, numerical experiments are provided and implemented on the set of some large dimensional unconstrained problems. The numerical results show that the proposed algorithm is an efficient and robust compared with other similar algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conjugate%20gradient%20method" title="conjugate gradient method">conjugate gradient method</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20convergence" title=" global convergence"> global convergence</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20scale%20optimization" title=" large scale optimization"> large scale optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=sufficient%20descent%20property" title=" sufficient descent property"> sufficient descent property</a> </p> <a href="https://publications.waset.org/abstracts/102625/a-modified-nonlinear-conjugate-gradient-algorithm-for-large-scale-unconstrained-optimization-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11589</span> Performance Analysis of Routing Protocols for WLAN Based Wireless Sensor Networks (WSNs)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noman%20Shabbir">Noman Shabbir</a>, <a href="https://publications.waset.org/abstracts/search?q=Roheel%20Nawaz"> Roheel Nawaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20N.%20Iqbal"> Muhammad N. Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Junaid%20Zafar"> Junaid Zafar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on the performance evaluation of routing protocols in WLAN based Wireless Sensor Networks (WSNs). A comparative analysis of routing protocols such as Ad-hoc On-demand Distance Vector Routing System (AODV), Dynamic Source Routing (DSR) and Optimized Link State Routing (OLSR) is been made against different network parameters like network load, end to end delay and throughput in small, medium and large-scale sensor network scenarios to identify the best performing protocol. Simulation results indicate that OLSR gives minimum network load in all three scenarios while AODV gives the best throughput in small scale network but in medium and large scale networks, DSR is better. In terms of delay, OLSR is more efficient in small and medium scale network while AODV is slightly better in large networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=WLAN" title="WLAN">WLAN</a>, <a href="https://publications.waset.org/abstracts/search?q=WSN" title=" WSN"> WSN</a>, <a href="https://publications.waset.org/abstracts/search?q=AODV" title=" AODV"> AODV</a>, <a href="https://publications.waset.org/abstracts/search?q=DSR" title=" DSR"> DSR</a>, <a href="https://publications.waset.org/abstracts/search?q=OLSR" title=" OLSR"> OLSR</a> </p> <a href="https://publications.waset.org/abstracts/48412/performance-analysis-of-routing-protocols-for-wlan-based-wireless-sensor-networks-wsns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11588</span> Optimization Model for Identification of Assembly Alternatives of Large-Scale, Make-to-Order Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Henrik%20Prinzhorn">Henrik Prinzhorn</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Nyhuis"> Peter Nyhuis</a>, <a href="https://publications.waset.org/abstracts/search?q=Johannes%20Wagner"> Johannes Wagner</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Burggr%C3%A4f"> Peter Burggräf</a>, <a href="https://publications.waset.org/abstracts/search?q=Torben%20Schmitz"> Torben Schmitz</a>, <a href="https://publications.waset.org/abstracts/search?q=Christina%20Reuter"> Christina Reuter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Assembling large-scale products, such as airplanes, locomotives, or wind turbines, involves frequent process interruptions induced by e.g. delayed material deliveries or missing availability of resources. This leads to a negative impact on the logistical performance of a producer of xxl-products. In industrial practice, in case of interruptions, the identification, evaluation and eventually the selection of an alternative order of assembly activities (&lsquo;assembly alternative&rsquo;) leads to an enormous challenge, especially if an optimized logistical decision should be reached. Therefore, in this paper, an innovative, optimization model for the identification of assembly alternatives that addresses the given problem is presented. It describes make-to-order, large-scale product assembly processes as a resource constrained project scheduling (RCPS) problem which follows given restrictions in practice. For the evaluation of the assembly alternative, a cost-based definition of the logistical objectives (delivery reliability, inventory, make-span and workload) is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assembly%20scheduling" title="assembly scheduling">assembly scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=large-scale%20products" title=" large-scale products"> large-scale products</a>, <a href="https://publications.waset.org/abstracts/search?q=make-to-order" title=" make-to-order"> make-to-order</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=rescheduling" title=" rescheduling"> rescheduling</a> </p> <a href="https://publications.waset.org/abstracts/40012/optimization-model-for-identification-of-assembly-alternatives-of-large-scale-make-to-order-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40012.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11587</span> Numerical Simulation of Large-Scale Landslide-Generated Impulse Waves With a Soil‒Water Coupling Smooth Particle Hydrodynamics Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Can%20Huang">Can Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoliang%20Wang"> Xiaoliang Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qingquan%20Liu"> Qingquan Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil‒water coupling is an important process in landslide-generated impulse waves (LGIW) problems, accompanied by large deformation of soil, strong interface coupling and three-dimensional effect. A meshless particle method, smooth particle hydrodynamics (SPH) has great advantages in dealing with complex interface and multiphase coupling problems. This study presents an improved soil‒water coupled model to simulate LGIW problems based on an open source code DualSPHysics (v4.0). Aiming to solve the low efficiency problem in modeling real large-scale LGIW problems, graphics processing unit (GPU) acceleration technology is implemented into this code. An experimental example, subaerial landslide-generated water waves, is simulated to demonstrate the accuracy of this model. Then, the Huangtian LGIW, a real large-scale LGIW problem is modeled to reproduce the entire disaster chain, including landslide dynamics, fluid‒solid interaction, and surge wave generation. The convergence analysis shows that a particle distance of 5.0 m can provide a converged landslide deposit and surge wave for this example. Numerical simulation results are in good agreement with the limited field survey data. The application example of the Huangtian LGIW provides a typical reference for large-scale LGIW assessments, which can provide reliable information on landslide dynamics, interface coupling behavior, and surge wave characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%E2%80%92water%20coupling" title="soil‒water coupling">soil‒water coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=landslide-generated%20impulse%20wave" title=" landslide-generated impulse wave"> landslide-generated impulse wave</a>, <a href="https://publications.waset.org/abstracts/search?q=large-scale" title=" large-scale"> large-scale</a>, <a href="https://publications.waset.org/abstracts/search?q=SPH" title=" SPH"> SPH</a> </p> <a href="https://publications.waset.org/abstracts/179371/numerical-simulation-of-large-scale-landslide-generated-impulse-waves-with-a-soilwater-coupling-smooth-particle-hydrodynamics-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11586</span> CFD Simulation of a Large Scale Unconfined Hydrogen Deflagration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20C.%20Tolias">I. C. Tolias</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20G.%20Venetsanos"> A. G. Venetsanos</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Markatos"> N. Markatos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work, CFD simulations of a large scale open deflagration experiment are performed. Stoichiometric hydrogen-air mixture occupies a 20 m hemisphere. Two combustion models are compared and are evaluated against the experiment. The Eddy Dissipation Model and a Multi-physics combustion model which is based on Yakhot’s equation for the turbulent flame speed. The values of models’ critical parameters are investigated. The effect of the turbulence model is also examined. k-ε model and LES approach were tested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=deflagration" title=" deflagration"> deflagration</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion%20model" title=" combustion model"> combustion model</a> </p> <a href="https://publications.waset.org/abstracts/25634/cfd-simulation-of-a-large-scale-unconfined-hydrogen-deflagration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">502</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11585</span> Impact of Large Scale Solar Power Plant on Airports and Aviation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Munirah%20Stapah%20Salleh">Munirah Stapah Salleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Rosly%20Abbas"> Ahmad Rosly Abbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Sazalina%20Zakaria"> Sazalina Zakaria</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Iffika%20Ruslan"> Nur Iffika Ruslan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurfaziera%0D%0ARahim"> Nurfaziera Rahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the areas that require a massive amount of energy is the airport. Hence, several airports have increased their reliance on renewable energy, specifically solar photovoltaic (PV) systems, to solve the issue. The interest regarding the installations of airport-based solar farms caught much attention. This, at the same time, helps to minimize the reliance on conventional energy sources that are fossil-based. However, many concerns were raised on the solar PV systems, especially on the effect of potential glare occurrence to the pilots during their flies. This paper will be discussing both the positive and negative impact of the large scale solar power plant on airports and aviation. Installing the large scale solar have negative impacts on airport and aviation, such as physical collision hazards, potential interference, or voltage problems with aircraft navigational and surveillance equipment as well as potential glare. On the positive side, it helps to lower environmental footprint, acquiring less energy from the utility provider, which are traditionally highly relying on other energy sources that have larger effects on the environment, and, last but not least, reduce the power supply uncertainty. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20photovoltaic%20systems" title="solar photovoltaic systems">solar photovoltaic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20scale%20solar" title=" large scale solar"> large scale solar</a>, <a href="https://publications.waset.org/abstracts/search?q=airport" title=" airport"> airport</a>, <a href="https://publications.waset.org/abstracts/search?q=glare%20effects" title=" glare effects"> glare effects</a> </p> <a href="https://publications.waset.org/abstracts/129339/impact-of-large-scale-solar-power-plant-on-airports-and-aviation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129339.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11584</span> Effect of External Radiative Heat Flux on Combustion Characteristics of Rigid Polyurethane Foam under Piloted-Ignition and Radiative Auto-Ignition Modes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jia-Jia%20He">Jia-Jia He</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin%20Jiang"> Lin Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Hua%20Sun"> Jin-Hua Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rigid polyurethane foam (RPU) has been extensively applied in building insulation system, yet with high flammability for being easily ignited by high temperature spark or radiative heat flux from other flaming materials or surrounding building facade. Using a cone calorimeter by Fire Testing Technology and thermal couple tree, this study systematically investigated the effect of radiative heat flux on the ignition time and characteristic temperature distribution during RPU combustion under different heat fluxes gradient (12, 15, 20, 25, 30, 35, 40, 45, and 50 kW/m²) with spark ignition/ignition by radiation. The ignition time decreases proportionally with increase of external heat flux, meanwhile increasing the external heat flux raises the peak heat release rate and impresses on the vertical temperature distribution greatly. The critical ignition heat flux is found to be 15 and 25 kW/m² for spark ignition and radiative ignition, respectively. Based on previous experienced ignition formula, a methodology to predict ignition times in both modes has been developed theoretically. By analyzing the heat transfer mechanism around the sample surroundings, both radiation from cone calorimeter and convection flow are considered and calculated theoretically. The experimental ignition times agree well with the theoretical ones in both radiative and convective conditions; however, the observed critical ignition heat flux is higher than the calculated one under piloted-ignition mode because the heat loss process, especially in lower heat flux radiation, is not considered in this developed methodology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rigid%20polyurethane%20foam" title="rigid polyurethane foam">rigid polyurethane foam</a>, <a href="https://publications.waset.org/abstracts/search?q=cone%20calorimeter" title=" cone calorimeter"> cone calorimeter</a>, <a href="https://publications.waset.org/abstracts/search?q=ignition%20time" title=" ignition time"> ignition time</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20heat%20flux" title=" external heat flux"> external heat flux</a> </p> <a href="https://publications.waset.org/abstracts/77115/effect-of-external-radiative-heat-flux-on-combustion-characteristics-of-rigid-polyurethane-foam-under-piloted-ignition-and-radiative-auto-ignition-modes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11583</span> Iterative Solver for Solving Large-Scale Frictional Contact Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thierno%20Diop">Thierno Diop</a>, <a href="https://publications.waset.org/abstracts/search?q=Michel%20Fortin"> Michel Fortin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean%20Deteix"> Jean Deteix</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since the precise formulation of the elastic part is irrelevant for the description of the algorithm, we shall consider a generic case. In practice, however, we will have to deal with a non linear material (for instance a Mooney-Rivlin model). We are interested in solving a finite element approximation of the problem, leading to large-scale non linear discrete problems and, after linearization, to large linear systems and ultimately to calculations needing iterative methods. This also implies that penalty method, and therefore augmented Lagrangian method, are to be banned because of their negative effect on the condition number of the underlying discrete systems and thus on the convergence of iterative methods. This is in rupture to the mainstream of methods for contact in which augmented Lagrangian is the principal tool. We shall first present the problem and its discretization; this will lead us to describe a general solution algorithm relying on a preconditioner for saddle-point problems which we shall describe in some detail as it is not entirely standard. We will propose an iterative approach for solving three-dimensional frictional contact problems between elastic bodies, including contact with a rigid body, contact between two or more bodies and also self-contact. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frictional%20contact" title="frictional contact">frictional contact</a>, <a href="https://publications.waset.org/abstracts/search?q=three-dimensional" title=" three-dimensional"> three-dimensional</a>, <a href="https://publications.waset.org/abstracts/search?q=large-scale" title=" large-scale"> large-scale</a>, <a href="https://publications.waset.org/abstracts/search?q=iterative%20method" title=" iterative method"> iterative method</a> </p> <a href="https://publications.waset.org/abstracts/90130/iterative-solver-for-solving-large-scale-frictional-contact-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11582</span> Grating Scale Thermal Expansion Error Compensation for Large Machine Tools Based on Multiple Temperature Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wenlong%20Feng">Wenlong Feng</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhenchun%20Du"> Zhenchun Du</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianguo%20Yang"> Jianguo Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To decrease the grating scale thermal expansion error, a novel method which based on multiple temperature detections is proposed. Several temperature sensors are installed on the grating scale and the temperatures of these sensors are recorded. The temperatures of every point on the grating scale are calculated by interpolating between adjacent sensors. According to the thermal expansion principle, the grating scale thermal expansion error model can be established by doing the integral for the variations of position and temperature. A novel compensation method is proposed in this paper. By applying the established error model, the grating scale thermal expansion error is decreased by 90% compared with no compensation. The residual positioning error of the grating scale is less than 15um/10m and the accuracy of the machine tool is significant improved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20expansion%20error%20of%20grating%20scale" title="thermal expansion error of grating scale">thermal expansion error of grating scale</a>, <a href="https://publications.waset.org/abstracts/search?q=error%20compensation" title=" error compensation"> error compensation</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20tools" title=" machine tools"> machine tools</a>, <a href="https://publications.waset.org/abstracts/search?q=integral%20method" title=" integral method"> integral method</a> </p> <a href="https://publications.waset.org/abstracts/34355/grating-scale-thermal-expansion-error-compensation-for-large-machine-tools-based-on-multiple-temperature-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11581</span> Evaluation of Shock Sensitivity of Nano-Scaled 1,3,5-Trinitro-1,3,5-Triazacyclohexane Using Small Scale Gap Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kang-In%20Lee">Kang-In Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Woo-Jin%20Lee"> Woo-Jin Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Keun-Deuk%20Lee"> Keun-Deuk Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Ju-Seung%20Chae"> Ju-Seung Chae</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, small scale gap test (SSGT) was performed to measure shock sensitivity of nano-scaled 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) samples. The shock sensitivity of energetic materials is usually evaluated by the method of large-scale gap test (LSGT) that has a higher reliability than other methods. But LSGT has the disadvantage that it takes a high cost and time by using a large amount of explosive. In this experiment, nano-scaled RDX samples were prepared by spray crystallization in two different drying methods. In addition, 30μm RDX sample produced by precipitation crystallization and 5μm RDX sample produced by fluid energy mill process were tested to compare shock sensitivity. The study of shock sensitivity measured by small-scale gap test shows that small sized RDX particles have greater insensitivity. As a result, we infer SSGT method has higher reliability compared to the literature as measurement of shock sensitivity of energetic materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano-scaled%20RDX" title="nano-scaled RDX">nano-scaled RDX</a>, <a href="https://publications.waset.org/abstracts/search?q=SSGT%28small%20scale%20gap%20test%29" title=" SSGT(small scale gap test)"> SSGT(small scale gap test)</a>, <a href="https://publications.waset.org/abstracts/search?q=shock%20sensitivity" title=" shock sensitivity"> shock sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=RDX" title=" RDX"> RDX</a> </p> <a href="https://publications.waset.org/abstracts/73492/evaluation-of-shock-sensitivity-of-nano-scaled-135-trinitro-135-triazacyclohexane-using-small-scale-gap-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11580</span> Thermal Characterization of Smart and Large-Scale Building Envelope System in a Subtropical Climate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrey%20A.%20Chernousov">Andrey A. Chernousov</a>, <a href="https://publications.waset.org/abstracts/search?q=Ben%20Y.%20B.%20Chan"> Ben Y. B. Chan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The thermal behavior of a large-scale, phase change material (PCM) enhanced building envelope system was studied in regard to the need for pre-fabricated construction in subtropical regions. The proposed large-scale envelope consists of a reinforced aluminum skin, insulation core, phase change material and reinforced gypsum board. The PCM impact on an energy efficiency of an enveloped room was resolved by validation of the Energy Plus numerical scheme and optimization of a smart material location in the core. The PCM location was optimized by a minimization method of a cooling energy demand. It has been shown that there is good agreement between the test and simulation results. The optimal location of the PCM layer in Hong Kong summer conditions has been then recomputed for core thicknesses of 40, 60 and 80 mm. A non-dimensional value of the optimal PCM location was obtained to be same for all the studied cases and the considered external and internal conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20performance" title="thermal performance">thermal performance</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20change%20material" title=" phase change material"> phase change material</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=PCM%20optimization" title=" PCM optimization"> PCM optimization</a> </p> <a href="https://publications.waset.org/abstracts/25300/thermal-characterization-of-smart-and-large-scale-building-envelope-system-in-a-subtropical-climate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25300.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11579</span> Observation of Large-Scale Traveling Ionospheric Disturbance over Peninsular Malaysia Using GPS Receivers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Intan%20Izafina%20Idrus">Intan Izafina Idrus</a>, <a href="https://publications.waset.org/abstracts/search?q=Mardina%20Abdullah"> Mardina Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Alina%20Marie%20Hasbi"> Alina Marie Hasbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Asnawi%20Husin"> Asnawi Husin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the result of large-scale traveling ionospheric disturbance (LSTID) observation during moderate magnetic storm event on 25 October 2011 with SYM-H ~ -160 nT and Kp ~ 7 over Peninsular Malaysia at equatorial region using vertical total electron content (VTEC) from the Global Positioning System (GPS) observation measurement. The propagation of the LSTID signatures in the TEC measurements over Peninsular Malaysia was also investigated using VTEC map. The LSTID was found to propagate equator-ward during this event. The results showed that the LSTID propagated with an average phase velocity of 526.41 m/s and average periods of 140 min. The occurrence of this LSTID was also found to be the subsequent effects of substorm activities in the auroral region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Global%20Positioning%20System%20%28GPS%29" title="Global Positioning System (GPS)">Global Positioning System (GPS)</a>, <a href="https://publications.waset.org/abstracts/search?q=large-scale%20traveling%20ionospheric%20disturbance%20%28LSTID%29" title=" large-scale traveling ionospheric disturbance (LSTID)"> large-scale traveling ionospheric disturbance (LSTID)</a>, <a href="https://publications.waset.org/abstracts/search?q=moderate%20geomagnetic%20storm" title=" moderate geomagnetic storm"> moderate geomagnetic storm</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20total%20electron%20content%20%28VTEC%29" title=" vertical total electron content (VTEC)"> vertical total electron content (VTEC)</a> </p> <a href="https://publications.waset.org/abstracts/2812/observation-of-large-scale-traveling-ionospheric-disturbance-over-peninsular-malaysia-using-gps-receivers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11578</span> Studies on the Use of Sewage Sludge in Agriculture or in Incinerators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Catalina%20%20Iticescu">Catalina Iticescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucian%20Georgescu"> Lucian Georgescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mihaela%20%20Timofti"> Mihaela Timofti</a>, <a href="https://publications.waset.org/abstracts/search?q=Dumitru%20Dima"> Dumitru Dima</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriel%20Murariu"> Gabriel Murariu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The amounts of sludge resulting from the treatment of domestic and industrial wastewater can create serious environmental problems if no solutions are found to eliminate them. At present, the predominant method of sewage sludge disposal is to store and use them in agricultural applications. The sewage sludge has fertilizer properties and can be used to enrich agricultural soils due to the nutrient content. In addition to plant growth (nitrogen and phosphorus), the sludge also contains heavy metals in varying amounts. An increasingly used method is the incineration of sludge. Thermal processes can be used to convert large amounts of sludge into useful energy. The sewage sludge analyzed for the present paper was extracted from the Wastewater Treatment Station (WWTP) Galati, Romania. The physico-chemical parameters determined were: pH (upH), nutrients and heavy metals. The determination methods were electrochemical, spectrophotometric and energy dispersive X–ray analyses (EDX). The results of the tests made on the content of nutrients in the sewage sludge have shown that existing nutrients can be used to increase the fertility of agricultural soils. The conclusion reached was that these sludge can be safely used on agricultural land and with good agricultural productivity results. To be able to use sewage sludge as a fuel, we need to know its calorific values. For wet sludge, the caloric power is low, while for dry sludge it is high. Higher calorific value and lower calorific value are determined only for dry solids. The apparatus used to determine the calorific power was a Parr 6755 Solution Calorimeter Calorimeter (Parr Instrument Company USA 2010 model). The calorific capacities for the studied sludge indicate that they can be used successfully in incinerators. Mixed with coal, they can also be used to produce electricity. The advantages are: it reduces the cost of obtaining electricity and considerably reduces the amount of sewage sludge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture" title="agriculture">agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=incinerators" title=" incinerators"> incinerators</a>, <a href="https://publications.waset.org/abstracts/search?q=properties" title=" properties"> properties</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage%20sludge" title=" sewage sludge"> sewage sludge</a> </p> <a href="https://publications.waset.org/abstracts/78346/studies-on-the-use-of-sewage-sludge-in-agriculture-or-in-incinerators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11577</span> Analyzing Large Scale Recurrent Event Data with a Divide-And-Conquer Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jerry%20Q.%20Cheng">Jerry Q. Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, in analyzing large-scale recurrent event data, there are many challenges such as memory limitations, unscalable computing time, etc. In this research, a divide-and-conquer method is proposed using parametric frailty models. Specifically, the data is randomly divided into many subsets, and the maximum likelihood estimator from each individual data set is obtained. Then a weighted method is proposed to combine these individual estimators as the final estimator. It is shown that this divide-and-conquer estimator is asymptotically equivalent to the estimator based on the full data. Simulation studies are conducted to demonstrate the performance of this proposed method. This approach is applied to a large real dataset of repeated heart failure hospitalizations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=big%20data%20analytics" title="big data analytics">big data analytics</a>, <a href="https://publications.waset.org/abstracts/search?q=divide-and-conquer" title=" divide-and-conquer"> divide-and-conquer</a>, <a href="https://publications.waset.org/abstracts/search?q=recurrent%20event%20data" title=" recurrent event data"> recurrent event data</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20computing" title=" statistical computing"> statistical computing</a> </p> <a href="https://publications.waset.org/abstracts/100777/analyzing-large-scale-recurrent-event-data-with-a-divide-and-conquer-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100777.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11576</span> The Scale of Farms and Development Perspectives in Georgia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Chavleishvili">M. Chavleishvili</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Kharaishvili"> E. Kharaishvili</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Erkomaishvili"> G. Erkomaishvili </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article presents the development trends of farms, estimates on the optimal scope of farming, as well as the experience of local and foreign countries in this area. As well, the advantages of small and large farms are discussed; herewith, the scales of farms are compared to the local reality. The study analyzes the results of farm operations and the possibilities of diversification of farms. The indicators of an effective use of land resources and land fragmentation are measured; also, a comparative analysis with other countries is presented, in particular, the measurements of agricultural lands for farming, as well as the indicators of population ensuring. The conducted research shows that most of the farms in Georgia are small and their development is at the initial stage, which outlines that the country has a high resource potential to increase the scale of the farming industry and its full integration into market relations. On the basis of the obtained results, according to the research on the scale of farming in Georgia and the identification of hampering factors of farming development, the conclusions are presented and the relevant recommendations are suggested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=farm%20cooperatives.farms" title="farm cooperatives.farms">farm cooperatives.farms</a>, <a href="https://publications.waset.org/abstracts/search?q=farm%20scale" title=" farm scale"> farm scale</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20fragmentation" title=" land fragmentation"> land fragmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20and%20large%20farms" title=" small and large farms"> small and large farms</a> </p> <a href="https://publications.waset.org/abstracts/76712/the-scale-of-farms-and-development-perspectives-in-georgia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76712.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11575</span> Multiscale Structures and Their Evolution in a Screen Cylinder Wake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azlin%20Mohd%20Azmi">Azlin Mohd Azmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tongming%20Zhou"> Tongming Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Akira%20Rinoshika"> Akira Rinoshika</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang%20Cheng"> Liang Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The turbulent structures in the wake (x/d =10 to 60) of a screen cylinder have been reduced to understand the roles of the various structures as evolving downstream by comparing with those obtained in a solid circular cylinder wake at Reynolds number, Re of 7000. Using a wavelet multi-resolution technique, the flow structures are decomposed into a number of wavelet components based on their central frequencies. It is observed that in the solid cylinder wake, large-scale structures (of frequency f0 and 1.2 f0) make the largest contribution to the Reynolds stresses although they start to lose their roles significantly at x/d > 20. In the screen cylinder wake, the intermediate-scale structures (2f0 and 4f0) contribute the most to the Reynolds stresses at x/d =10 before being taken over by the large-scale structures (f0) further downstream. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turbulent%20structure" title="turbulent structure">turbulent structure</a>, <a href="https://publications.waset.org/abstracts/search?q=screen%20cylinder" title=" screen cylinder"> screen cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex" title=" vortex"> vortex</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%20multi-resolution%20analysis" title=" wavelet multi-resolution analysis"> wavelet multi-resolution analysis</a> </p> <a href="https://publications.waset.org/abstracts/2815/multiscale-structures-and-their-evolution-in-a-screen-cylinder-wake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=large%20scale%20calorimeter&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=large%20scale%20calorimeter&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=large%20scale%20calorimeter&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=large%20scale%20calorimeter&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=large%20scale%20calorimeter&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=large%20scale%20calorimeter&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=large%20scale%20calorimeter&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=large%20scale%20calorimeter&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=large%20scale%20calorimeter&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=large%20scale%20calorimeter&amp;page=386">386</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=large%20scale%20calorimeter&amp;page=387">387</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=large%20scale%20calorimeter&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10