CINXE.COM
Search results for: Spintronic
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Spintronic</title> <meta name="description" content="Search results for: Spintronic"> <meta name="keywords" content="Spintronic"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Spintronic" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Spintronic"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 25</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Spintronic</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Investigation of the Stability and Spintronic Properties of NbrhgeX (X= Cr, Co, Mn, Fe, Ni) Using Density Functional Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shittu%20Akinpelu">Shittu Akinpelu</a>, <a href="https://publications.waset.org/abstracts/search?q=Issac%20Popoola"> Issac Popoola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The compound NbRhGe has been predicted to be a semiconductor with excellent mechanical properties. It is an indirect band gap material. The potential of NbRhGe for non-volatile data storage via element addition is being studied using the Density Functional Theory (DFT). Preliminary results on the electronic and magnetic properties are suggestive for their application in spintronic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=half-metals" title="half-metals">half-metals</a>, <a href="https://publications.waset.org/abstracts/search?q=Heusler%20compound" title=" Heusler compound"> Heusler compound</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor" title=" semiconductor"> semiconductor</a>, <a href="https://publications.waset.org/abstracts/search?q=spintronic" title=" spintronic "> spintronic </a> </p> <a href="https://publications.waset.org/abstracts/124973/investigation-of-the-stability-and-spintronic-properties-of-nbrhgex-x-cr-co-mn-fe-ni-using-density-functional-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124973.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Magnetic versus Non-Magnetic Adatoms in Graphene Nanoribbons: Tuning of Spintronic Applications and the Quantum Spin Hall Phase</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saurabh%20Basu">Saurabh Basu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudin%20Ganguly"> Sudin Ganguly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conductance in graphene nanoribbons (GNR) in presence of magnetic (for example, Iron) and non-magnetic (for example, Gold) adatoms are explored theoretically within a Kane-Mele model for their possible spintronic applications and topologically non-trivial properties. In our work, we have considered the magnetic adatoms to induce a Rashba spin-orbit coupling (RSOC) and an exchange bias field, while the non-magnetic ones induce an RSOC and an intrinsic spin-orbit (SO) coupling. Even though RSOC is present in both, they, however, represent very different physical situations, where the magnetic adatoms do not preserve the time reversal symmetry, while the non-magnetic case does. This has important implications on the topological properties. For example, the non-magnetic adatoms, for moderately strong values of SO, the GNR denotes a quantum spin Hall insulator as evident from a 2e²/h plateau in the longitudinal conductance and presence of distinct conducting edge states with an insulating bulk. Since the edge states are protected by time reversal symmetry, the magnetic adatoms in GNR yield trivial insulators and do not possess any non-trivial topological property. However, they have greater utility than the non-magnetic adatoms from the point of view of spintronic applications. Owing to the broken spatial symmetry induced by the presence of adatoms of either type, all the x, y and z components of the spin-polarized conductance become non-zero (only the y-component survives in pristine Graphene owing to a mirror symmetry present there) and hence become suitable for spintronic applications. However, the values of the spin polarized conductances are at least two orders of magnitude larger in the case of magnetic adatoms than their non-magnetic counterpart, thereby ensuring more efficient spintronic applications. Further the applications are tunable by altering the adatom densities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20and%20non-magnetic%20adatoms" title="magnetic and non-magnetic adatoms">magnetic and non-magnetic adatoms</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20spin%20hall%20phase" title=" quantum spin hall phase"> quantum spin hall phase</a>, <a href="https://publications.waset.org/abstracts/search?q=spintronic%20applications" title=" spintronic applications"> spintronic applications</a>, <a href="https://publications.waset.org/abstracts/search?q=spin%20polarized%20conductance" title=" spin polarized conductance"> spin polarized conductance</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20reversal%20symmetry" title=" time reversal symmetry"> time reversal symmetry</a> </p> <a href="https://publications.waset.org/abstracts/76194/magnetic-versus-non-magnetic-adatoms-in-graphene-nanoribbons-tuning-of-spintronic-applications-and-the-quantum-spin-hall-phase" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Investigation on Electronic and Magnetic Properties of Transition Metals Doped Zinc Selenide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Bentata">S. Bentata</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Benstaali"> W. Benstaali</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Abbad"> A. Abbad</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20A.%20Bentounes"> H. A. Bentounes</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Bouadjemi"> B. Bouadjemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The full potential linear augmented plane wave (FPLAPW) based on density-functional theory (DFT) is employed to study the electronic, magnetic and optical properties of some transition metals doped ZnSe. Calculations are carried out by varying the doped atoms. Four 3D transition elements were used as a dopant: Cr, Mn, Co and Cu in order to induce spin polarization. Our results show that, Mn and Cu-doped ZnSe could be used in spintronic devices only if additional dopants are introduced, on the contrary, transition elements showing delocalized quality such as Cr, and Co doped ZnSe might be promising candidates for application in spintronic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spin-up" title="spin-up">spin-up</a>, <a href="https://publications.waset.org/abstracts/search?q=spin-down" title=" spin-down"> spin-down</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20properties" title=" magnetic properties"> magnetic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20metal" title=" transition metal"> transition metal</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20materials" title=" composite materials"> composite materials</a> </p> <a href="https://publications.waset.org/abstracts/1433/investigation-on-electronic-and-magnetic-properties-of-transition-metals-doped-zinc-selenide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Electrical and Magnetic Properties of Neodymium and Erbium Doped Bismuth Ferrite Multifunctional Materials for Spintronic Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravinder%20Dachepalli">Ravinder Dachepalli</a>, <a href="https://publications.waset.org/abstracts/search?q=Naveena%20Gadwala"> Naveena Gadwala</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Vani"> K. Vani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nd and Er substituted bismuth nano crystalline multifunctional materials were prepared by citrate gel autocombution technique. The structural characterization was carried out by XRD and SEM. Electrical properties such are electrical conductivity and dielectric properties have been measured. Plots of electrical conductivity versus temperature increases with increasing temperature and shown a transition near Curie temperature. Dielectric properties such are dielectric constant and dielectric loss tangent have been measured from 20Hz to 2 MHz at room temperature. Plots of dielectric constant versus frequency show a normal dielectric behaviour of multifunctional materials. Temperature dependence of magnetic properties of Bi-Nd and Bi-Er multi-functional materials were carried out by using Vibrating sample magnetometer (VSM). The magnetization as a function of an applied field ±100 Oe was carried out at 3K and 360 K. Zero field Cooled (ZFC) and Field Cooled (FC) magnetization measurements under an applied field of 100Oe a in the temperature range of 5-375K. The observed results can be explained for spintronic devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bi-Nd%20and%20Bi-Er%20%20Multifunctional%20Materia" title="Bi-Nd and Bi-Er Multifunctional Materia">Bi-Nd and Bi-Er Multifunctional Materia</a>, <a href="https://publications.waset.org/abstracts/search?q=Citrate%20Gel%20Auto%20combustion%20Technique" title=" Citrate Gel Auto combustion Technique"> Citrate Gel Auto combustion Technique</a>, <a href="https://publications.waset.org/abstracts/search?q=FC-ZFC%20magnetization" title=" FC-ZFC magnetization"> FC-ZFC magnetization</a>, <a href="https://publications.waset.org/abstracts/search?q=Dielectric%20constant" title=" Dielectric constant"> Dielectric constant</a> </p> <a href="https://publications.waset.org/abstracts/123192/electrical-and-magnetic-properties-of-neodymium-and-erbium-doped-bismuth-ferrite-multifunctional-materials-for-spintronic-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123192.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> First Principls Study of Structural, Electronic, Magnetic and Optical Properties of SiNi₂O₄ Spinel Oxide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karkour%20Selma">Karkour Selma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We conducted first principles full potential calculations using the Wien2k code to explore the structural, electronic, magnetic, and optical properties of SiNi₂O₄, a cubic normal spinel oxide. Our calculations, based on the GGA-PBEsol of the generalized gradient approximation, revealed several key findings. The spinel oxides exhibited a stable cubic structure in the ferromagnetic phase and showed 100% spin polarization. We determined the equilibrium lattice constant and internal parameter values. In terms of the electronic properties, we observed a direct bandgap of 2.68 eV for the spin-up configuration, while the spin-down configuration exhibited an indirect bandgap of 0.82 eV. Additionally, we calculated the total density of states and partial densities for each atom, finding a magnetic moment spin density of states of 8.0 μB per formula unit. The optical properties have been calculated. The real, Ԑ₁(ω) and the imaginary, Ԑ₂(ω) parts of the complex dielectric constants, refractivity, reflection and energy loss when light scattered from the material. The absorption region spanned from 1.5 eV to 14 eV, with significant intensity. The calculated results confirm the suitability of this material for optical and spintronic devices application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFT" title="DFT">DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=spintronic" title=" spintronic"> spintronic</a>, <a href="https://publications.waset.org/abstracts/search?q=GGA" title=" GGA"> GGA</a>, <a href="https://publications.waset.org/abstracts/search?q=spinel" title=" spinel"> spinel</a> </p> <a href="https://publications.waset.org/abstracts/167851/first-principls-study-of-structural-electronic-magnetic-and-optical-properties-of-sini2o4-spinel-oxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Structural, Magnetic, and Dielectric Studies of Tetragonally Ordered Sm₂Fe₂O₇ Pyrochlore Nanostructures for Spintronic Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Nqayi">S. Nqayi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding the structural, electronic, and magnetic properties of nanomaterials is essential for developing next-generation electronic and spintronic devices, contributing to the progress of nanoscience and nanotechnology applications. Multiferroic materials, with intimately coupled ferroic-order parameters, are widely considered to breed fascinating physical properties and provide unique opportunities for the development of next-generation devices, like multistate non-volatile memory. In this study, we are set to investigate the structural, electronic, and magnetic properties of the frustrated Feᴵᴵ/Smⱽᴵ sublattice in relation to the widely studied perovskites for spintronics applications. The atomic composition, microstructure, crystallography, magnetization, thermal, and dielectric properties of a pyrochlore Sm₂Fe₂O₇ system synthesized using sol-gel methods are currently being investigated. Precursor powders were dissolved in citric acid monohydrate to obtain a solution. The obtained solution was stirred and heated using a magnetic stirrer to obtain the gel phase. Then, the gel was dried at 200°C to remove water and organic compounds and form an orange powder. The X-ray diffraction analysis confirms that the structure crystallized as a pyrochlore structure with a tetragonal F4mm (107) symmetry. The presence of Fe³⁺/Fe⁴⁺ mixed states is also revealed by XPS analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanostructures" title="nanostructures">nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=multiferroic%20materials" title=" multiferroic materials"> multiferroic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrochlores" title=" pyrochlores"> pyrochlores</a>, <a href="https://publications.waset.org/abstracts/search?q=spintronics" title=" spintronics"> spintronics</a> </p> <a href="https://publications.waset.org/abstracts/181464/structural-magnetic-and-dielectric-studies-of-tetragonally-ordered-sm2fe2o7-pyrochlore-nanostructures-for-spintronic-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">55</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Exploration into Bio Inspired Computing Based on Spintronic Energy Efficiency Principles and Neuromorphic Speed Pathways</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anirudh%20Lahiri">Anirudh Lahiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neuromorphic computing, inspired by the intricate operations of biological neural networks, offers a revolutionary approach to overcoming the limitations of traditional computing architectures. This research proposes the integration of spintronics with neuromorphic systems, aiming to enhance computational performance, scalability, and energy efficiency. Traditional computing systems, based on the Von Neumann architecture, struggle with scalability and efficiency due to the segregation of memory and processing functions. In contrast, the human brain exemplifies high efficiency and adaptability, processing vast amounts of information with minimal energy consumption. This project explores the use of spintronics, which utilizes the electron's spin rather than its charge, to create more energy-efficient computing systems. Spintronic devices, such as magnetic tunnel junctions (MTJs) manipulated through spin-transfer torque (STT) and spin-orbit torque (SOT), offer a promising pathway to reducing power consumption and enhancing the speed of data processing. The integration of these devices within a neuromorphic framework aims to replicate the efficiency and adaptability of biological systems. The research is structured into three phases: an exhaustive literature review to build a theoretical foundation, laboratory experiments to test and optimize the theoretical models, and iterative refinements based on experimental results to finalize the system. The initial phase focuses on understanding the current state of neuromorphic and spintronic technologies. The second phase involves practical experimentation with spintronic devices and the development of neuromorphic systems that mimic synaptic plasticity and other biological processes. The final phase focuses on refining the systems based on feedback from the testing phase and preparing the findings for publication. The expected contributions of this research are twofold. Firstly, it aims to significantly reduce the energy consumption of computational systems while maintaining or increasing processing speed, addressing a critical need in the field of computing. Secondly, it seeks to enhance the learning capabilities of neuromorphic systems, allowing them to adapt more dynamically to changing environmental inputs, thus better mimicking the human brain's functionality. The integration of spintronics with neuromorphic computing could revolutionize how computational systems are designed, making them more efficient, faster, and more adaptable. This research aligns with the ongoing pursuit of energy-efficient and scalable computing solutions, marking a significant step forward in the field of computational technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=material%20science" title="material science">material science</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20engineering" title=" biological engineering"> biological engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20engineering" title=" mechanical engineering"> mechanical engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=neuromorphic%20computing" title=" neuromorphic computing"> neuromorphic computing</a>, <a href="https://publications.waset.org/abstracts/search?q=spintronics" title=" spintronics"> spintronics</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20scalability" title=" computational scalability"> computational scalability</a>, <a href="https://publications.waset.org/abstracts/search?q=synaptic%20plasticity." title=" synaptic plasticity."> synaptic plasticity.</a> </p> <a href="https://publications.waset.org/abstracts/186920/exploration-into-bio-inspired-computing-based-on-spintronic-energy-efficiency-principles-and-neuromorphic-speed-pathways" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">43</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Magnetic and Optical Properties of Quaternary GaFeMnN</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Bouadjemi">B. Bouadjemi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bentata"> S. Bentata</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Abbad"> A. Abbad</a>, <a href="https://publications.waset.org/abstracts/search?q=W.Benstaali"> W.Benstaali </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The full-potential linearized augmented plane wave method (FP-LAPW) within the Generalized Gradient Approximation (GGA) is used to calculate the magnetic and optical properties of quaternary GaFeMnN. The results show that the compound becomes magnetic and half metallic and there is an apparition of peaks at low frequencies for the optical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title="optical properties">optical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=Spintronic" title=" Spintronic"> Spintronic</a>, <a href="https://publications.waset.org/abstracts/search?q=wave" title=" wave "> wave </a> </p> <a href="https://publications.waset.org/abstracts/19957/magnetic-and-optical-properties-of-quaternary-gafemnn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19957.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">551</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> NanoFrazor Lithography for advanced 2D and 3D Nanodevices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhengming%20Wu">Zhengming Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> NanoFrazor lithography systems were developed as a first true alternative or extension to standard mask-less nanolithography methods like electron beam lithography (EBL). In contrast to EBL they are based on thermal scanning probe lithography (t-SPL). Here a heatable ultra-sharp probe tip with an apex of a few nm is used for patterning and simultaneously inspecting complex nanostructures. The heat impact from the probe on a thermal responsive resist generates those high-resolution nanostructures. The patterning depth of each individual pixel can be controlled with better than 1 nm precision using an integrated in-situ metrology method. Furthermore, the inherent imaging capability of the Nanofrazor technology allows for markerless overlay, which has been achieved with sub-5 nm accuracy as well as it supports stitching layout sections together with < 10 nm error. Pattern transfer from such resist features below 10 nm resolution were demonstrated. The technology has proven its value as an enabler of new kinds of ultra-high resolution nanodevices as well as for improving the performance of existing device concepts. The application range for this new nanolithography technique is very broad spanning from ultra-high resolution 2D and 3D patterning to chemical and physical modification of matter at the nanoscale. Nanometer-precise markerless overlay and non-invasiveness to sensitive materials are among the key strengths of the technology. However, while patterning at below 10 nm resolution is achieved, significantly increasing the patterning speed at the expense of resolution is not feasible by using the heated tip alone. Towards this end, an integrated laser write head for direct laser sublimation (DLS) of the thermal resist has been introduced for significantly faster patterning of micrometer to millimeter-scale features. Remarkably, the areas patterned by the tip and the laser are seamlessly stitched together and both processes work on the very same resist material enabling a true mix-and-match process with no developing or any other processing steps in between. The presentation will include examples for (i) high-quality metal contacting of 2D materials, (ii) tuning photonic molecules, (iii) generating nanofluidic devices and (iv) generating spintronic circuits. Some of these applications have been enabled only due to the various unique capabilities of NanoFrazor lithography like the absence of damage from a charged particle beam. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanofabrication" title="nanofabrication">nanofabrication</a>, <a href="https://publications.waset.org/abstracts/search?q=grayscale%20lithography" title=" grayscale lithography"> grayscale lithography</a>, <a href="https://publications.waset.org/abstracts/search?q=2D%20materials%20device" title=" 2D materials device"> 2D materials device</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-optics" title=" nano-optics"> nano-optics</a>, <a href="https://publications.waset.org/abstracts/search?q=photonics" title=" photonics"> photonics</a>, <a href="https://publications.waset.org/abstracts/search?q=spintronic%20circuits" title=" spintronic circuits"> spintronic circuits</a> </p> <a href="https://publications.waset.org/abstracts/160133/nanofrazor-lithography-for-advanced-2d-and-3d-nanodevices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Band Structure Computation of GaMnAs Using the Multiband k.p Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khadijah%20B.%20Alziyadi">Khadijah B. Alziyadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Khawlh%20A.%20Alzubaidi"> Khawlh A. Alzubaidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Amor%20M.%20Alsayari"> Amor M. Alsayari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, GaMnAs diluted magnetic semiconductors(DMSs) have received considerable attention because they combine semiconductor and magnetic properties. GaMnAs has been used as a model DMS and as a test bed for many concepts and functionalities of spintronic devices. In this paper, a theoretical study on the band structure ofGaMnAswill be presented. The model that we used in this study is the 8-band k.p methodwherespin-orbit interaction, spin splitting, and strain are considered. The band structure of GaMnAs will be calculated in different directions in the reciprocal space. The effect of manganese content on the GaMnAs band structure will be discussed. Also, the influence of strain, which varied continuously from tensile to compressive, on the different bands will be studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=band%20structure" title="band structure">band structure</a>, <a href="https://publications.waset.org/abstracts/search?q=diluted%20magnetic%20semiconductor" title=" diluted magnetic semiconductor"> diluted magnetic semiconductor</a>, <a href="https://publications.waset.org/abstracts/search?q=k.p%20method" title=" k.p method"> k.p method</a>, <a href="https://publications.waset.org/abstracts/search?q=strain" title=" strain"> strain</a> </p> <a href="https://publications.waset.org/abstracts/152997/band-structure-computation-of-gamnas-using-the-multiband-kp-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152997.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Composition Dependence of Exchange Anisotropy in PtₓMn₁₋ₓ/Co₇₀Fe₃₀ Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sina%20Ranjbar">Sina Ranjbar</a>, <a href="https://publications.waset.org/abstracts/search?q=Masakiyo%20Tsunoda"> Masakiyo Tsunoda</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikihiko%20Oogane"> Mikihiko Oogane</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasuo%20Ando"> Yasuo Ando</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We systematically investigated the exchange anisotropy for ferromagnetic Co70Fe30 and antiferromagnetic PtMn bilayer films. We focused on the relevance between the exchange bias and the composition of the Ptₓ Mn₁₋ₓ (14 < x < 22 and 45 < x < 56 at %) films, and we successfully optimized the composition. The crystal structure of the Ptₓ Mn₁₋ₓ films was FCC for 14 < x < 22 at % and FCT for 45 < x < 56 at % after annealing at 370 ◦C for 6 hours. The unidirectional anisotropy constant (Jₖ) for fcc-Pt₁₅Mn₈₅ (20 nm) and fct-Pt₄₈Mn₅₂ (20 nm) prepared under optimum conditions in composition were 0.16 and 0.20 erg/cm², respectively. Both Pt₁₅Mn₈₅ and Pt₄₈Mn₅₂ films showed a larger unidirectional anisotropy constant (Jₖ) than in other reports. They also showed a flatter surface than that of other antiferromagnetic materials. The obtained PtMn films with a large exchange anisotropy and slight roughness are useful as an antiferromagnetic layer in spintronic applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antiferromagnetic%20material" title="antiferromagnetic material">antiferromagnetic material</a>, <a href="https://publications.waset.org/abstracts/search?q=PtMn%20thin%20film" title=" PtMn thin film"> PtMn thin film</a>, <a href="https://publications.waset.org/abstracts/search?q=exchange%20anisotropy" title=" exchange anisotropy"> exchange anisotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=composition%20dependence" title=" composition dependence"> composition dependence</a> </p> <a href="https://publications.waset.org/abstracts/101129/composition-dependence-of-exchange-anisotropy-in-ptmn1co70fe30-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Half-Metallic Ferromagnetism in CdCoTe and CdMnTe: Ab-Initio Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.Zitouni">A.Zitouni</a>, <a href="https://publications.waset.org/abstracts/search?q=S.Bentata"> S.Bentata</a>, <a href="https://publications.waset.org/abstracts/search?q=B.Bouadjemi"> B.Bouadjemi</a>, <a href="https://publications.waset.org/abstracts/search?q=T.Lantri"> T.Lantri</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Benstaali"> W. Benstaali</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.Aziz"> Z.Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=S.Cherid"> S.Cherid</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sefir"> A. Sefir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using the first-principles method, we investigate the structural, electronic, and magnetic properties of the diluted magnetic semiconductors CdCoTe and CdMnTe in the zinc blende phase with 12.5% of Cr. The calculations are performed by a developed full potential augmented plane wave (FP-L/APW) method within the spin density functional theory (DFT). As exchange–correlation potential, we used the new generalized gradient approximation GGA. Structural properties are determined from the total energy calculations and we found that these compounds are stable in the ferromagnetic phase. We discuss the electronic structures, total and partial densities of states and local moments. Finally, CdCoTe and CdMnTe in the zinc-blend phase show the half-metallic ferromagnetic nature and are expected to be potential materials for spintronic devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFT" title="DFT">DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=GGA" title=" GGA"> GGA</a>, <a href="https://publications.waset.org/abstracts/search?q=band%20structures" title=" band structures"> band structures</a>, <a href="https://publications.waset.org/abstracts/search?q=half-metallic" title=" half-metallic"> half-metallic</a>, <a href="https://publications.waset.org/abstracts/search?q=spintronics" title=" spintronics"> spintronics</a> </p> <a href="https://publications.waset.org/abstracts/33807/half-metallic-ferromagnetism-in-cdcote-and-cdmnte-ab-initio-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33807.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Calculation of Effective Masses and Curie Temperature of (Ga, Mn) as Diluted Magnetic Semiconductor from the Eight-band k.p Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khawlh%20A.%20Alzubaidi">Khawlh A. Alzubaidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Khadijah%20B.%20Alziyadi"> Khadijah B. Alziyadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Amor%20M.%20Alsayari"> Amor M. Alsayari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The discovery of a dilute magnetic semiconductor (DMS) in which ferromagnetism is carrier-mediated and persists above room temperature is a major step toward the implementation of spintronic devices for processing, transferring, and storing of information. Among the many types of DMS materials which have been investigated, Mn-doped GaAs has become one of the best candidates for technological application. However, despite major developments over the last few decades, the maximum Curie temperature (~200 K) remains well below room temperature. In this work, we have studied the effect of Mn content and strain on the GaMnAs effective masses of electron, heavy and light holes calculated in the different crystallographic direction. Also, the Curie temperature in the DMS GaMnAs alloy is determined. Compilation of GaMnAs band parameters have been carried out using the 8-band k.p model based on Lowdin perturbation theory where spin orbit, sp-d exchange interaction, and biaxial strain are taken into account. Our results show that effective masses, calculated along the different crystallographic directions, have a strong dependence on strain, ranging from -2% (tensile strain) to 2% (compressive strain), and Mn content increased from 1 to 5%. The Curie temperature is determined within the mean-field approach based on the Zener model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diluted%20magnetic%20semiconductors" title="diluted magnetic semiconductors">diluted magnetic semiconductors</a>, <a href="https://publications.waset.org/abstracts/search?q=k.p%20method" title=" k.p method"> k.p method</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20masses" title=" effective masses"> effective masses</a>, <a href="https://publications.waset.org/abstracts/search?q=curie%20temperature" title=" curie temperature"> curie temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=strain" title=" strain"> strain</a> </p> <a href="https://publications.waset.org/abstracts/162897/calculation-of-effective-masses-and-curie-temperature-of-ga-mn-as-diluted-magnetic-semiconductor-from-the-eight-band-kp-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162897.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Computational Determination of the Magneto Electronic Properties of Ce₁₋ₓCuₓO₂ (x=12.5%): Emerging Material for Spintronic Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aicha%20Bouhlala">Aicha Bouhlala</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabah%20Chettibi"> Sabah Chettibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Doping CeO₂ with transition metals is an effective way of tuning its properties. In the present work, we have performed self-consistent ab-initio calculation using the full-potential linearized augmented plane-wave method (FP-LAPW), based on the density functional theory (DFT) as implemented in the Wien2k simulation code to study the structural, electronic, and magnetic properties of the compound Ce₁₋ₓCuₓO₂ (x=12.5%) fluorite type oxide and to explore the effects of dopant Cu in ceria. The exchange correlation potential has been treated using the Perdew-Burke-Eenzerhof revised of solid (PBEsol). In structural properties, the equilibrium lattice constant is observed for the compound, which exists within the value of 5.382 A°. In electronic properties, the spin-polarized electronic bandstructure elucidates the semiconductor nature of the material in both spin channels, with the compound was observed to have a narrow bandgap on the spin-down configuration (0.162 EV) and bandgap on the spin-up (2.067 EV). Hence, the doped atom Cu plays a vital role in increasing the magnetic moments of the supercell, and the value of the total magnetic moment is found to be 2.99438 μB. Therefore, the compound Cu-doped CeO₂ shows a strong ferromagnetic behavior. The predicted results propose the compound could be a good candidate for spintronics applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cu-doped%20CeO%E2%82%82" title="Cu-doped CeO₂">Cu-doped CeO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=Wien2k" title=" Wien2k"> Wien2k</a>, <a href="https://publications.waset.org/abstracts/search?q=properties" title=" properties"> properties</a> </p> <a href="https://publications.waset.org/abstracts/138828/computational-determination-of-the-magneto-electronic-properties-of-ce1cuo2-x125-emerging-material-for-spintronic-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138828.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Optical Bands Splitting in Tm₃Fe₅O₁₂ Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Vidyasagar">R. Vidyasagar</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20L.%20S.%20Vilela"> G. L. S. Vilela</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20M.%20Guiraldelli"> B. M. Guiraldelli</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Henriques"> A. B. Henriques</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20%20Moodera"> J. Moodera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nano-scaled magnetic systems that can have both magnetic and optical transitions controlled and manipulated by external means have received enormous research attention for their potential applications in magneto-optics and spintronic devices. Among several ferrimagnetic insulators, the Tm₃Fe₅O₁₂ (TmIG) has become a prototype material displaying huge perpendicular magnetic anisotropy. Nevertheless, the optical properties of nano-scale TnIG films have not yet been investigated. We report the observation of giant splitting in the optical transitions of high-quality thin films of Tm₃Fe₅O₁₂ (TmIG) grown by rf sputtering on gadolinium gallium garnet substrates (GGG-111) substrate. The optical absorbance profiles measured with optical absorption spectroscopy show a dual optical transition in visible frequency regimes attributed to the transitions of electrons from the O-2p valence band to the Fe-3d conduction band and from the O-2p valence band to the Fe-2p⁵3d⁶ excitonic states at the Γ-symmetric point of the TmIG Brillouin zone. When the thickness of the film is reduced from 120 nm to 7.5 nm, the 1st optical transition energy shifted from 2.98 to 3.11 eV ( ~130 meV), and the 2nd transition energy shifted from 2.62 to 2.56 eV (~ 60 meV). The giant band splitting of both transitions can be attributed to the population of excited states associated with the atomic modification pertaining to the compressive or tensile strains. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optical%20transitions" title="optical transitions">optical transitions</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title=" thin films"> thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=ferrimagnetic%20insulator" title=" ferrimagnetic insulator"> ferrimagnetic insulator</a>, <a href="https://publications.waset.org/abstracts/search?q=strains" title=" strains"> strains</a> </p> <a href="https://publications.waset.org/abstracts/186490/optical-bands-splitting-in-tm3fe5o12-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186490.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">49</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> First Principles Study of a New Half-Metallic Ferrimagnets Mn2–Based Full Heusler Compounds: Mn2ZrSi and Mn2ZrGe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Abada">Ahmed Abada</a>, <a href="https://publications.waset.org/abstracts/search?q=Kadda%20Amara"> Kadda Amara</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Hiadsi"> Said Hiadsi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouhalouane%20Amrani"> Bouhalouane Amrani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Half-metallic properties of new predicted Mn2-based full Heusler alloys Mn2ZrSi and Mn2ZrGe have been studied by first-principles full-potential linearized augmented plane wave plus local orbital (FP-LAPW+lo) method based on density functional theory (DFT). Our investigation is focused on the structural, elastic, electronic and magnetic properties of these compounds. The AlCu2Mn-type structure is found to be energetically more favorable than the CuHg2Ti-type structure for both compounds and are half-metallic ferrimagnets (HMFIs) with total magnetic moments of 2.000 µB per formula unit, well consistent with Slater-Pauling rule (Mtot = ( 24 – Ztot ) µB). Calculations show that both the alloys have an indirect band gaps, in the majority-spin channel, with values of 0.505 eV and 0.278 eV for Mn2ZrSi and Mn2ZrGe, respectively. It was found that Mn2ZrSi and Mn2ZrGe preserved their half-metallicity for lattice constants range of 5.85–6.38 Å and 6.05–6.38 Å, respectively, and kept a 100% of spin polarization at the Fermi level. Moreover, the calculated formation energies and elastic constants confirm that these compounds are stable chemically and mechanically, and the good crystallographic compatibility with the lattice of semiconductors used industrially makes them promising magnetic materials in spintronic applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=first-principles%20calculations" title="first-principles calculations">first-principles calculations</a>, <a href="https://publications.waset.org/abstracts/search?q=full%20Heusler%20structure" title=" full Heusler structure"> full Heusler structure</a>, <a href="https://publications.waset.org/abstracts/search?q=half-metallic%20ferrimagnets" title=" half-metallic ferrimagnets"> half-metallic ferrimagnets</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20properties" title=" elastic properties"> elastic properties</a> </p> <a href="https://publications.waset.org/abstracts/36774/first-principles-study-of-a-new-half-metallic-ferrimagnets-mn2-based-full-heusler-compounds-mn2zrsi-and-mn2zrge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Bismuth Telluride Topological Insulator: Physical Vapor Transport vs Molecular Beam Epitaxy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20Concepcion">Omar Concepcion</a>, <a href="https://publications.waset.org/abstracts/search?q=Osvaldo%20De%20Melo"> Osvaldo De Melo</a>, <a href="https://publications.waset.org/abstracts/search?q=Arturo%20Escobosa"> Arturo Escobosa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Topological insulator (TI) materials are insulating in the bulk and conducting in the surface. The unique electronic properties associated with these surface states make them strong candidates for exploring innovative quantum phenomena and as practical applications for quantum computing, spintronic and nanodevices. Many materials, including Bi₂Te₃, have been proposed as TIs and, in some cases, it has been demonstrated experimentally by angle-resolved photoemission spectroscopy (ARPES), scanning tunneling spectroscopy (STM) and/or magnetotransport measurements. A clean surface is necessary in order to make any of this measurements. Several techniques have been used to produce films and different kinds of nanostructures. Growth and characterization in situ is usually the best option although cleaving the films can be an alternative to have a suitable surface. In the present work, we report a comparison of Bi₂Te₃ grown by physical vapor transport (PVT) and molecular beam epitaxy (MBE). The samples were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and ARPES. The Bi₂Te₃ samples grown by PVT, were cleaved in the ultra-high vacuum in order to obtain a surface free of contaminants. In both cases, the XRD shows a c-axis orientation and the pole diagrams proved the epitaxial relationship between film and substrate. The ARPES image shows the linear dispersion characteristic of the surface states of the TI materials. The samples grown by PVT, a relatively simple and cost-effective technique shows the same high quality and TI properties than the grown by MBE. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bismuth%20telluride" title="Bismuth telluride">Bismuth telluride</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20beam%20epitaxy" title=" molecular beam epitaxy"> molecular beam epitaxy</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20vapor%20transport" title=" physical vapor transport"> physical vapor transport</a>, <a href="https://publications.waset.org/abstracts/search?q=topological%20insulator" title=" topological insulator"> topological insulator</a> </p> <a href="https://publications.waset.org/abstracts/90278/bismuth-telluride-topological-insulator-physical-vapor-transport-vs-molecular-beam-epitaxy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Characterization of Single-Walled Carbon Nano Tubes Forest Decorated with Chromium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ana%20Paula%20Mousinho">Ana Paula Mousinho</a>, <a href="https://publications.waset.org/abstracts/search?q=Ronaldo%20D.%20Mansano"> Ronaldo D. Mansano</a>, <a href="https://publications.waset.org/abstracts/search?q=Nelson%20Ordonez"> Nelson Ordonez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon nanotubes are one of the main elements in nanotechnologies; their applications are in microelectronics, nano-electronics devices (photonics, spintronic), chemical sensors, structural material and currently in clean energy devices (supercapacitors and fuel cells). The use of magnetic particle decorated carbon nanotubes increases the applications in magnetic devices, magnetic memory, and magnetic oriented drug delivery. In this work, single-walled carbon nanotubes (CNTs) forest decorated with chromium were deposited at room temperature by high-density plasma chemical vapor deposition (HDPCVD) system. The CNTs forest was obtained using pure methane plasmas and chromium, as precursor material (seed) and for decorating the CNTs. Magnetron sputtering deposited the chromium on silicon wafers before the CNTs' growth. Scanning electron microscopy, atomic force microscopy, micro-Raman spectroscopy, and X-ray diffraction characterized the single-walled CNTs forest decorated with chromium. In general, the CNTs' spectra show a unique emission band, but due to the presence of the chromium, the spectra obtained in this work showed many bands that are related to the CNTs with different diameters. The CNTs obtained by the HDPCVD system are highly aligned and showed metallic features, and they can be used as photonic material, due to the unique structural and electrical properties. The results of this work proved the possibility of obtaining the controlled deposition of aligned single-walled CNTs forest films decorated with chromium by high-density plasma chemical vapor deposition system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CNTs%20forest" title="CNTs forest">CNTs forest</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20density%20plasma%20deposition" title=" high density plasma deposition"> high density plasma deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=high-aligned%20CNTs" title=" high-aligned CNTs"> high-aligned CNTs</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a> </p> <a href="https://publications.waset.org/abstracts/110542/characterization-of-single-walled-carbon-nano-tubes-forest-decorated-with-chromium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Two-Dimensional Van-Der Waals Heterostructure for Highly Energy-Efficient Field-Free Deterministic Spin-Orbit Torque Switching at Room Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pradeep%20Raj%20Sharma">Pradeep Raj Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Bogeun%20Jang"> Bogeun Jang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jongill%20Hong"> Jongill Hong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spin-orbit torque (SOT) is an efficient approach for manipulating the magnetization of ferromagnetic materials (FMs), providing improved device performance, better compatibility, and ultra-fast switching with lower power consumption compared to spin-transfer torque (STT). Among the various materials and structural designs, two-dimensional (2D) van-der Waals (vdW) layered materials and their heterostructures have been demonstrated as highly scalable and promising device architecture for SOT. In particular, a bilayer heterostructure consisting of fully 2D-vdW-FM, non-magnetic material (NM) offers a potential platform for controlling the magnetization using SOT because of the advantages of being easy to scale and less energy to switch. Here, we report filed-free deterministic switching driven by SOT at room temperature, integrating perpendicularly magnetized 2D-vdW material Fe₃GaTe₂ (FGaT) and NM WTe₂. Pulse current-induced magnetization switching with an ultra-low current density of about 6.5×10⁵ A/cm², yielding a SOT efficiency close to double-digits at 300 K, is reported. These values are two orders of magnitude higher than those observed in conventional heavy metal (HM) based SOT and exceed those reported with 2D-vdW layered materials. WTe₂, a topological semimetal possessing strong SOC and high spin Hall angle, can induce significant spin accumulation with negligible spin loss across the transparent 2D bilayer heterointerface. This promising device architecture enables highly compatible, energy-efficient, non-volatile memory and lays the foundation for designing efficient, flexible, and miniaturized spintronic devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spintronics" title="spintronics">spintronics</a>, <a href="https://publications.waset.org/abstracts/search?q=spin-orbit%20torque" title=" spin-orbit torque"> spin-orbit torque</a>, <a href="https://publications.waset.org/abstracts/search?q=spin%20Hall%20effect" title=" spin Hall effect"> spin Hall effect</a>, <a href="https://publications.waset.org/abstracts/search?q=spin%20Hall%20angle" title=" spin Hall angle"> spin Hall angle</a>, <a href="https://publications.waset.org/abstracts/search?q=topological%20semimetal" title=" topological semimetal"> topological semimetal</a>, <a href="https://publications.waset.org/abstracts/search?q=perpendicular%20magnetic%20anisotropy" title=" perpendicular magnetic anisotropy"> perpendicular magnetic anisotropy</a> </p> <a href="https://publications.waset.org/abstracts/194481/two-dimensional-van-der-waals-heterostructure-for-highly-energy-efficient-field-free-deterministic-spin-orbit-torque-switching-at-room-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">5</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Metallic and Semiconductor Thin Film and Nanoparticles for Novel Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanan.%20Al%20Chaghouri">Hanan. Al Chaghouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Azad%20Malik"> Mohammad Azad Malik</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20John%20Thomas"> P. John Thomas</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20O%E2%80%99Brien"> Paul O’Brien</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The process of assembling metal nanoparticles at the interface of two liquids has received a great interest over the past few years due to a wide range of important applications and their unusual properties compared to bulk materials. We present a low cost, simple and cheap synthesis of metal nanoparticles, core/shell structures and semiconductors followed by assembly of these particles between immiscible liquids. The aim of this talk is divided to three parts: firstly, to describe the achievement of a closed loop recycling for producing cadmium sulphide as powders and/or nanostructured thin films for solar cells or other optoelectronic devices applications by using a different chain length of commercially available secondary amines of dithiocarbamato complexes. The approach can be extended to other metal sulphides such as those of Zn, Pb, Cu, or Fe and many transition metals and oxides. Secondly, to synthesis significantly cheaper magnetic particles suited for the mass market. Ni/NiO nanoparticles with ferromagnetic properties at room temperature were among the smallest and strongest magnets (5 nm) were made in solution. The applications of this work can be applied to produce viable storage devices and the other possibility is to disperse these nanocrystals in solution and use it to make ferro-fluids which have a number of mature applications. The third part is about preparing and assembling of submicron silver, cobalt and nickel particles by using polyol methods and liquid/liquid interface, respectively. Noble metal like gold, copper and silver are suitable for plasmonic thin film solar cells because of their low resistivity and strong interactions with visible light waves. Silver is the best choice for solar cell application since it has low absorption losses and high radiative efficiency compared to gold and copper. Assembled cobalt and nickel as films are promising for spintronic, magnetic and magneto-electronic and biomedics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assembling%20nanoparticles" title="assembling nanoparticles">assembling nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%2Fliquid%20interface" title=" liquid/liquid interface"> liquid/liquid interface</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film" title=" thin film"> thin film</a>, <a href="https://publications.waset.org/abstracts/search?q=core%2Fshell" title=" core/shell"> core/shell</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cells" title=" solar cells"> solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=recording%20media" title=" recording media"> recording media</a> </p> <a href="https://publications.waset.org/abstracts/29137/metallic-and-semiconductor-thin-film-and-nanoparticles-for-novel-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29137.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Novel Routes to the Synthesis and Functionalization of Metallic and Semiconductor Thin Film and Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanan.%20Al%20Chaghouri">Hanan. Al Chaghouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Azad%20Malik"> Mohammad Azad Malik</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20John%20Thomas"> P. John Thomas</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20O%E2%80%99Brien"> Paul O’Brien</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The process of assembling metal nanoparticles at the interface of two liquids has received a great deal of attention over the past few years due to a wide range of important applications and their unusual properties as compared to bulk materials. We present a low cost, simple and cheap synthesis of metal nanoparticles, core/shell structures and semiconductors followed by assembly of these particles between immiscible liquids. The aim of this talk is divided to three parts: Firstly, to describe the achievement of a closed loop recycling for producing cadmium sulfide as powders and/or nanostructured thin films for solar cells or other optoelectronic devices applications by using a different chain length of commercially available secondary amines of dithiocarbamato complexes. The approach can be extended to other metal sulfides such as those of Zn, Pb, Cu, or Fe and many transition metals and oxides. Secondly, to synthesis significantly cheaper magnetic particles suited for the mass market. Ni/NiO nanoparticles with ferromagnetic properties at room temperature were among the smallest and strongest magnets (5 nm) were made in solution. The applications of this work can be to produce viable storage devices and the other possibility is to disperse these nanocrystals in solution and use it to make ferrofluids which have a number of mature applications. The third part is about preparing and assembling of submicron silver, cobalt and nickel particles by using polyol methods and liquid/liquid interface, respectively. Coinage metals like gold, copper and silver are suitable for plasmonic thin film solar cells because of their low resistivity and strong interactions with visible light waves. Silver is the best choice for solar cell application since it has low absorption losses and high radiative efficiency compared to gold and copper. Assembled cobalt and nickel as films are promising for spintronic, magnetic and magneto-electronic and biomedics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20nanoparticles" title="metal nanoparticles">metal nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=core%2Fshell%20structures%20and%20semiconductors" title=" core/shell structures and semiconductors"> core/shell structures and semiconductors</a>, <a href="https://publications.waset.org/abstracts/search?q=ferromagnetic%20properties" title=" ferromagnetic properties"> ferromagnetic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=closed%20loop%20recycling" title=" closed loop recycling"> closed loop recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%2Fliquid%20interface" title=" liquid/liquid interface"> liquid/liquid interface</a> </p> <a href="https://publications.waset.org/abstracts/20182/novel-routes-to-the-synthesis-and-functionalization-of-metallic-and-semiconductor-thin-film-and-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20182.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Magnetoelastically Induced Perpendicular Magnetic Anisotropy and Perpendicular Exchange Bias of CoO/CoPt Multilayer Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guo%20Lei">Guo Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Yue"> Wang Yue</a>, <a href="https://publications.waset.org/abstracts/search?q=Nakamura%20Yoshio"> Nakamura Yoshio</a>, <a href="https://publications.waset.org/abstracts/search?q=Shi%20Ji"> Shi Ji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, perpendicular exchange bias (PEB) is introduced as an active topic attracting continuous efforts. Since its discovery, extrinsic control of PEB has been proposed, due to its scientific significance in spintronic devices and potential application in high density magnetic random access memory with perpendicular magnetic tunneling junction (p-MTJ). To our knowledge, the researches aiming to controlling PEB so far are focused mainly on enhancing the interfacial exchange coupling by adjusting the FM/AFM interface roughness, or optimizing the crystalline structures of FM or AFM layer by employing different seed layers. In present work, the effects of magnetoelastically induced PMA on PEB have been explored in [CoO5nm/CoPt5nm]5 multilayer films. We find the PMA strength of FM layer also plays an important role on PEB at the FM/AFM interface and it is effective to control PEB of [CoO5nm/CoPt5nm]5 multilayer films by changing the magnetoelastically induced PMA of CoPt layer. [CoO5nm/CoPt5nm]5 multilayer films were deposited by magnetron sputtering on fused quartz substrate at room temperature, then annealed at 100°C, 250°C, 300°C and 375°C for 3h, respectively. XRD results reveal that all the samples are well crystallized with preferred fcc CoPt (111) orientation. The continuous multilayer structure with sharp component transition at the CoO5nm/CoPt5nm interface are identified clearly by transmission electron microscopy (TEM), x-ray reflectivity (XRR) and atomic force microscope (AFM). CoPt layer in-plane tensile stress is calculated by sin2φ method, and we find it increases gradually upon annealing from 0.99 GPa (as-deposited) up to 3.02 GPa (300oC-annealed). As to the magnetic property, significant enhancement of PMA is achieved in [CoO5nm/CoPt5nm]5 multilayer films after annealing due to the increase of CoPt layer in-plane tensile stress. With the enhancement of magnetoelastically induced PMA, great improvement of PEB is also achieved in [CoO5nm/CoPt5nm]5 multilayer films, which increases from 130 Oe (as-deposited) up to 1060 Oe (300oC-annealed), showing the same change tendency as PMA and the strong correlation with CoPt layer in-plane tensile stress. We consider it is the increase of CoPt layer in-plane tensile stress that leads to the enhancement of PMA, and thus the enhancement of magnetoelastically induced PMA results in the improvement of PEB in [CoO5nm/CoPt5nm]5 multilayer films. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=perpendicular%20exchange%20bias" title="perpendicular exchange bias">perpendicular exchange bias</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetoelastically%20induced%20perpendicular%20magnetic%20anisotropy" title=" magnetoelastically induced perpendicular magnetic anisotropy"> magnetoelastically induced perpendicular magnetic anisotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=CoO5nm%2FCoPt5nm%5D5%20multilayer%20film%20with%20in-plane%20stress" title=" CoO5nm/CoPt5nm]5 multilayer film with in-plane stress"> CoO5nm/CoPt5nm]5 multilayer film with in-plane stress</a>, <a href="https://publications.waset.org/abstracts/search?q=perpendicular%20magnetic%20tunneling%20junction" title=" perpendicular magnetic tunneling junction"> perpendicular magnetic tunneling junction</a> </p> <a href="https://publications.waset.org/abstracts/29146/magnetoelastically-induced-perpendicular-magnetic-anisotropy-and-perpendicular-exchange-bias-of-coocopt-multilayer-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> The Influence of Morphology and Interface Treatment on Organic 6,13-bis (triisopropylsilylethynyl)-Pentacene Field-Effect Transistors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20B%C3%BClz">Daniel Bülz</a>, <a href="https://publications.waset.org/abstracts/search?q=Franziska%20L%C3%BCttich"> Franziska Lüttich</a>, <a href="https://publications.waset.org/abstracts/search?q=Sreetama%20Banerjee"> Sreetama Banerjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgeta%20Salvan"> Georgeta Salvan</a>, <a href="https://publications.waset.org/abstracts/search?q=Dietrich%20R.%20T.%20Zahn"> Dietrich R. T. Zahn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For the development of electronics, organic semiconductors are of great interest due to their adjustable optical and electrical properties. Especially for spintronic applications they are interesting because of their weak spin scattering, which leads to longer spin life times compared to inorganic semiconductors. It was shown that some organic materials change their resistance if an external magnetic field is applied. Pentacene is one of the materials which exhibit the so called photoinduced magnetoresistance which results in a modulation of photocurrent when varying the external magnetic field. Also the soluble derivate of pentacene, the 6,13-bis (triisopropylsilylethynyl)-pentacene (TIPS-pentacene) exhibits the same negative magnetoresistance. Aiming for simpler fabrication processes, in this work, we compare TIPS-pentacene organic field effect transistors (OFETs) made from solution with those fabricated by thermal evaporation. Because of the different processing, the TIPS-pentacene thin films exhibit different morphologies in terms of crystal size and homogeneity of the substrate coverage. On the other hand, the interface treatment is known to have a high influence on the threshold voltage, eliminating trap states of silicon oxide at the gate electrode and thereby changing the electrical switching response of the transistors. Therefore, we investigate the influence of interface treatment using octadecyltrichlorosilane (OTS) or using a simple cleaning procedure with acetone, ethanol, and deionized water. The transistors consist of a prestructured OFET substrates including gate, source, and drain electrodes, on top of which TIPS-pentacene dissolved in a mixture of tetralin and toluene is deposited by drop-, spray-, and spin-coating. Thereafter we keep the sample for one hour at a temperature of 60 °C. For the transistor fabrication by thermal evaporation the prestructured OFET substrates are also kept at a temperature of 60 °C during deposition with a rate of 0.3 nm/min and at a pressure below 10-6 mbar. The OFETs are characterized by means of optical microscopy in order to determine the overall quality of the sample, i.e. crystal size and coverage of the channel region. The output and transfer characteristics are measured in the dark and under illumination provided by a white light LED in the spectral range from 450 nm to 650 nm with a power density of (8±2) mW/cm2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20field%20effect%20transistors" title="organic field effect transistors">organic field effect transistors</a>, <a href="https://publications.waset.org/abstracts/search?q=solution%20processed" title=" solution processed"> solution processed</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20treatment" title=" surface treatment"> surface treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=TIPS-pentacene" title=" TIPS-pentacene"> TIPS-pentacene</a> </p> <a href="https://publications.waset.org/abstracts/25632/the-influence-of-morphology-and-interface-treatment-on-organic-613-bis-triisopropylsilylethynyl-pentacene-field-effect-transistors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Temperature Dependent Magneto-Transport Properties of MnAl Binary Alloy Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vineet%20Barwal">Vineet Barwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sajid%20Husain"> Sajid Husain</a>, <a href="https://publications.waset.org/abstracts/search?q=Nanhe%20Kumar%20Gupta"> Nanhe Kumar Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Soumyarup%20Hait"> Soumyarup Hait</a>, <a href="https://publications.waset.org/abstracts/search?q=Sujeet%20Chaudhary"> Sujeet Chaudhary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High perpendicular magnetic anisotropy (PMA) and low damping constant (α) in ferromagnets are one of the few necessary requirements for their potential applications in the field of spintronics. In this regards, ferromagnetic τ-phase of MnAl possesses the highest PMA (Ku > 107 erg/cc) at room temperature, high saturation magnetization (Ms~800 emu/cc) and a Curie temperature of ~395K. In this work, we have investigated the magnetotransport behaviour of this potentially useful binary system MnₓAl₁₋ₓ films were synthesized by co-sputtering (pulsed DC magnetron sputtering) on Si/SiO₂ (where SiO₂ is native oxide layer) substrate using 99.99% pure Mn and Al sputtering targets. Films of constant thickness (~25 nm) were deposited at the different growth temperature (Tₛ) viz. 30, 300, 400, 500, and 600 ºC with a deposition rate of ~5 nm/min. Prior to deposition, the chamber was pumped down to a base pressure of 2×10⁻⁷ Torr. During sputtering, the chamber was maintained at a pressure of 3.5×10⁻³ Torr with the 55 sccm Ar flow rate. Films were not capped for the purpose of electronic transport measurement, which leaves a possibility of metal oxide formation on the surface of MnAl (both Mn and Al have an affinity towards oxide formation). In-plane and out-of-plane transverse magnetoresistance (MR) measurements on films sputtered under optimized growth conditions revealed non-saturating behavior with MR values ~6% and 40% at 9T, respectively at 275 K. Resistivity shows a parabolic dependence on the field H, when the H is weak. At higher H, non-saturating positive MR that increases exponentially with the strength of magnetic field is observed, a typical character of hopping type conduction mechanism. An anomalous decrease in MR is observed on lowering the temperature. From the temperature dependence of reistivity, it is inferred that the two competing states are metallic and semiconducting, respectively and the energy scale of the phenomenon produces the most interesting effects, i.e., the metal-insulator transition and hence the maximum sensitivity to external fields, at room temperature. Theory of disordered 3D systems effectively explains the crossover temperature coefficient of resistivity from positive to negative with lowering of temperature. These preliminary findings on the MR behavior of MnAl thin films will be presented in detail. The anomalous large MR in mixed phase MnAl system is evidently useful for future spintronic applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetoresistance" title="magnetoresistance">magnetoresistance</a>, <a href="https://publications.waset.org/abstracts/search?q=perpendicular%20magnetic%20anisotropy" title=" perpendicular magnetic anisotropy"> perpendicular magnetic anisotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=spintronics" title=" spintronics"> spintronics</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title=" thin films"> thin films</a> </p> <a href="https://publications.waset.org/abstracts/96012/temperature-dependent-magneto-transport-properties-of-mnal-binary-alloy-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96012.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Different Types of Bismuth Selenide Nanostructures for Targeted Applications: Synthesis and Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jana%20Andzane">Jana Andzane</a>, <a href="https://publications.waset.org/abstracts/search?q=Gunta%20Kunakova"> Gunta Kunakova</a>, <a href="https://publications.waset.org/abstracts/search?q=Margarita%20Baitimirova"> Margarita Baitimirova</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikelis%20Marnauza"> Mikelis Marnauza</a>, <a href="https://publications.waset.org/abstracts/search?q=Floriana%20Lombardi"> Floriana Lombardi</a>, <a href="https://publications.waset.org/abstracts/search?q=Donats%20Erts"> Donats Erts</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bismuth selenide (Bi₂Se₃) is known as a narrow band gap semiconductor with pronounced thermoelectric (TE) and topological insulator (TI) properties. Unique TI properties offer exciting possibilities for fundamental research as observing the exciton condensate and Majorana fermions, as well as practical application in spintronic and quantum information. In turn, TE properties of this material can be applied for wide range of thermoelectric applications, as well as for broadband photodetectors and near-infrared sensors. Nanostructuring of this material results in improvement of TI properties due to suppression of the bulk conductivity, and enhancement of TE properties because of increased phonon scattering at the nanoscale grains and interfaces. Regarding TE properties, crystallographic growth direction, as well as orientation of the nanostructures relative to the growth substrate, play significant role in improvement of TE performance of nanostructured material. For instance, Bi₂Se₃ layers consisting of randomly oriented nanostructures and/or of combination of them with planar nanostructures show significantly enhanced in comparison with bulk and only planar Bi₂Se₃ nanostructures TE properties. In this work, a catalyst-free vapour-solid deposition technique was applied for controlled obtaining of different types of Bi₂Se₃ nanostructures and continuous nanostructured layers for targeted applications. For example, separated Bi₂Se₃ nanoplates, nanobelts and nanowires can be used for investigations of TI properties; consisting from merged planar and/or randomly oriented nanostructures Bi₂Se₃ layers are useful for applications in heat-to-power conversion devices and infrared detectors. The vapour-solid deposition was carried out using quartz tube furnace (MTI Corp), equipped with an inert gas supply and pressure/temperature control system. Bi₂Se₃ nanostructures/nanostructured layers of desired type were obtained by adjustment of synthesis parameters (process temperature, deposition time, pressure, carrier gas flow) and selection of deposition substrate (glass, quartz, mica, indium-tin-oxide, graphene and carbon nanotubes). Morphology, structure and composition of obtained Bi₂Se₃ nanostructures and nanostructured layers were inspected using SEM, AFM, EDX and HRTEM techniques, as well as home-build experimental setup for thermoelectric measurements. It was found that introducing of temporary carrier gas flow into the process tube during the synthesis and deposition substrate choice significantly influence nanostructures formation mechanism. Electrical, thermoelectric, and topological insulator properties of different types of deposited Bi₂Se₃ nanostructures and nanostructured coatings are characterized as a function of thickness and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bismuth%20seleinde" title="bismuth seleinde">bismuth seleinde</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructures" title=" nanostructures"> nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=topological%20insulator" title=" topological insulator"> topological insulator</a>, <a href="https://publications.waset.org/abstracts/search?q=vapour-solid%20deposition" title=" vapour-solid deposition"> vapour-solid deposition</a> </p> <a href="https://publications.waset.org/abstracts/74999/different-types-of-bismuth-selenide-nanostructures-for-targeted-applications-synthesis-and-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>