CINXE.COM
MSC2020 database
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en"> <head> <title> MSC2020 database </title> <link rel="shortcut icon" href="https://www.ams.org/images/content/bubbles.png" type="image/x-icon"> <link rel="icon" href="https://www.ams.org/images/content/bubbles.png" type="image/x-icon"> <link rel="stylesheet" type="text/css" href="/mathscinet/css/print.css" /> <link rel="stylesheet" type="text/css" href="/mathscinet/javascript/jquery/jquery.autocomplete.css" /> <style type="text/css" media="screen"> @import url(/mathscinet/css/msn.css); </style> <link rel="stylesheet" type="text/css" href="/mathscinet/css/styles-primary.css" /> <style type="text/css"> body, input, select { font-family: Verdana, "Bitstream Vera Sans", Arial, Helvetica, sans-serif; } h3, ul.tabContainer, .erdosNumber, .helptopic, .helpsubtopic { font-family: "Trebuchet MS", "Bitstream Vera Sans", "Lucida Grande", "Nimbus Sans L", Verdana, Arial, Helvetica, sans-serif; } </style> <script type="text/javascript" language="javascript" src="/mathscinet/javascript/jquery-142/js/jquery-1.4.2.min.js"></script> <script type="text/javascript" language="javascript" src="/mathscinet/javascript/msnAjax.js"></script> <script type="text/javascript" language="javascript" src="/mathscinet/javascript/tabs.js"></script> <script type="text/javascript" language="javascript" src="/mathscinet/javascript/onload.js"></script> <script type="text/javascript" language="javascript" src="/mathscinet/javascript/cookies.js"></script> <script type="text/javascript" language="javascript" src="/mathscinet/javascript/jquery/jquery.autocomplete.js"></script> <script type="text/javascript"> <!-- if( getRequestObject() && getCookie('hasJavascript')==null ){ setCookie( 'hasJavascript', 1 ); if( getCookie('hasJavascript') ) { window.location.reload(); } } --> </script> </head> <body> <form name="backButtonTest" action=""> <input type="hidden" name="dummy" value="1" /> </form> <script type="text/javascript"> <!-- var backStatus; backStatus = ("1" != document.backButtonTest.dummy.value); document.backButtonTest.dummy.value = 0; document.backButtonTest.dummy.defaultValue = 0; --> </script> <div class="container" id="container"> <ul class="tabContainer"> <li class="lowerTabEdge" id="tab1"> <div> <div> <a href="msc2010.html" onclick="return toggleTab( 'freeTools', 'tab1', 'folder1' )" id="tab1link" title=" MSC2010 database " accesskey="">MSC2010 database</a> </div> </div> </li> <li class="upperTab" id="tab2"> <div> <div> <a href="msc2020.html" onclick="return toggleTab( 'freeTools', 'tab2', 'folder2' )" id="tab2link" title=" MSC2020 database " accesskey="">MSC2020 database</a> </div> </div> </li> <li class="lowerTab" id="tab3"> <div> <div> <a href="useMSC.html" onclick="return toggleTab( 'freeTools', 'tab3', 'folder3' )" id="tab3link" title=" How to use the MSC " accesskey="">How to use the MSC</a> </div> </div> </li> </ul> <div class="topFolder" id="folder2"> <script type="text/javascript"> $(document).ready(function() { $("#search2").autocomplete("search.html",{autoFill:false, matchContains: 1, onItemSelect: function() {$("form").submit()}}); }); </script> <div class="folderWrap1"> <div class="folderWrap2"> <div class="folderWrap4"> <div class="folderContent"> <form name="searchMSC2" method="get" action="msc2020.html" style="width: auto;"> <div class="summary" id="summary2"> </div> <br style="clear: both;" /> <div class="widgets"> <div class="controlsPosition2"> <h3>Browse Classification</h3> <span class="enter_msc" style="float:both;">Select a 2 digit classification</span><br /> <select name="t" id="selectTarget2" tabindex="1" onchange="if (this.value != '') { this.form.elements[2].click(); }"> <option value="">Select a Mathematics subject classification</option> <option value="00-XX">00 General and overarching topics; collections</option> <option value="01-XX">01 History and biography</option> <option value="03-XX">03 Mathematical logic and foundations</option> <option value="05-XX">05 Combinatorics </option> <option value="06-XX">06 Order, lattices, ordered algebraic structures</option> <option value="08-XX">08 General algebraic systems</option> <option value="11-XX">11 Number theory</option> <option value="12-XX">12 Field theory and polynomials</option> <option value="13-XX">13 Commutative algebra</option> <option value="14-XX">14 Algebraic geometry</option> <option value="15-XX">15 Linear and multilinear algebra; matrix theory</option> <option value="16-XX">16 Associative rings and algebras </option> <option value="17-XX">17 Nonassociative rings and algebras</option> <option value="18-XX">18 Category theory; homological algebra </option> <option value="19-XX">19 $K$-theory</option> <option value="20-XX">20 Group theory and generalizations</option> <option value="22-XX">22 Topological groups, Lie groups </option> <option value="26-XX">26 Real functions</option> <option value="28-XX">28 Measure and integration </option> <option value="30-XX">30 Functions of a complex variable</option> <option value="31-XX">31 Potential theory </option> <option value="32-XX">32 Several complex variables and analytic spaces </option> <option value="33-XX">33 Special functions (33-XX deals with the properties of functions as functions) </option> <option value="34-XX">34 Ordinary differential equations</option> <option selected="selected" value="35-02">35 Partial differential equations</option> <option value="37-XX">37 Dynamical systems and ergodic theory</option> <option value="39-XX">39 Difference and functional equations</option> <option value="40-XX">40 Sequences, series, summability</option> <option value="41-XX">41 Approximations and expansions </option> <option value="42-XX">42 Harmonic analysis on Euclidean spaces</option> <option value="43-XX">43 Abstract harmonic analysis </option> <option value="44-XX">44 Integral transforms, operational calculus </option> <option value="45-XX">45 Integral equations</option> <option value="46-XX">46 Functional analysis </option> <option value="47-XX">47 Operator theory</option> <option value="49-XX">49 Calculus of variations and optimal control; optimization</option> <option value="51-XX">51 Geometry </option> <option value="52-XX">52 Convex and discrete geometry</option> <option value="53-XX">53 Differential geometry </option> <option value="54-XX">54 General topology </option> <option value="55-XX">55 Algebraic topology</option> <option value="57-XX">57 Manifolds and cell complexes </option> <option value="58-XX">58 Global analysis, analysis on manifolds</option> <option value="60-XX">60 Probability theory and stochastic processes </option> <option value="62-XX">62 Statistics</option> <option value="65-XX">65 Numerical analysis</option> <option value="68-XX">68 Computer science </option> <option value="70-XX">70 Mechanics of particles and systems </option> <option value="74-XX">74 Mechanics of deformable solids</option> <option value="76-XX">76 Fluid mechanics </option> <option value="78-XX">78 Optics, electromagnetic theory </option> <option value="80-XX">80 Classical thermodynamics, heat transfer </option> <option value="81-XX">81 Quantum theory</option> <option value="82-XX">82 Statistical mechanics, structure of matter</option> <option value="83-XX">83 Relativity and gravitational theory</option> <option value="85-XX">85 Astronomy and astrophysics </option> <option value="86-XX">86 Geophysics</option> <option value="90-XX">90 Operations research, mathematical programming</option> <option value="91-XX">91 Game theory, economics, finance, and other social and behavioral sciences</option> <option value="92-XX">92 Biology and other natural sciences</option> <option value="93-XX">93 Systems theory; control </option> <option value="94-XX">94 Information and communication theory, circuits</option> <option value="97-XX">97 Mathematics education</option> </select> </div> <div class="controlsPosition"> <h3>Search Classifications</h3> <span class="enter_msc">Enter a keyword, phrase or a 2-, 3-, or 5-digit classification</span><br /> <input size="40" autocomplete="off" name="s" value="" id="search2" /> <div class="buttonBox"> <input name="btn" type="submit" value="Search" class="button" /> </div> </div> </div> <input type="hidden" name="ls" value="Ct" /> <div class="resultSet" id="resultSet2"> <div class="buttonBox"> <input type="submit" name="btn" value="Clear" class="button" /> </div> <span class="legend"> < <a href="msc2020.html?t=34-XX&btn=Current">34-XX</a> | <a href="msc2020.html?t=&btn=Current">Up</a> | <a href="msc2020.html?t=37-XX&btn=Current">37-XX</a> > </span> <table class="results"> <tr class="current"> <td><a href="msc2020.html?t=35-XX&btn=Current" title=""><b>35-XX</b></a></td> <td></td> <td></td> <td><b>Partial differential equations</b></td> </tr> <tr class="current"> <td></td> <td></td> <td>35-00 </td> <td>General reference works (handbooks, dictionaries, bibliographies, etc.) pertaining to partial differential equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35-01 </td> <td>Introductory exposition (textbooks, tutorial papers, etc.) pertaining to partial differential equations</td> </tr> <tr class="current"> <td></td> <td></td> <td><span class="highlight">35-02</span> </td> <td>Research exposition (monographs, survey articles) pertaining to partial differential equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35-03 </td> <td>History of partial differential equations [Consider also classification numbers from Section <a href="msc2020.html?t=01-XX&btn=Current">01-XX</a>]</td> </tr> <tr class="current"> <td></td> <td></td> <td>35-04 </td> <td>Software, source code, etc. for problems pertaining to partial differential equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35-06 </td> <td>Proceedings, conferences, collections, etc. pertaining to partial differential equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35-11 </td> <td>Research data for problems pertaining to partial differential equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35A01 </td> <td>Existence problems for PDEs: global existence, local existence, non-existence</td> </tr> <tr class="current"> <td></td> <td></td> <td>35A02 </td> <td>Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness</td> </tr> <tr class="current"> <td></td> <td></td> <td>35A08 </td> <td>Fundamental solutions to PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35A09 </td> <td>Classical solutions to PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35A10 </td> <td>Cauchy-Kovalevskaya theorems</td> </tr> <tr class="current"> <td></td> <td></td> <td>35A15 </td> <td>Variational methods applied to PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35A16 </td> <td>Topological and monotonicity methods applied to PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35A17 </td> <td>Parametrices in context of PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35A18 </td> <td>Wave front sets in context of PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35A20 </td> <td>Analyticity in context of PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35A21 </td> <td>Singularity in context of PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35A22 </td> <td>Transform methods (e.g., integral transforms) applied to PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35A23 </td> <td>Inequalities applied to PDEs involving derivatives, differential and integral operators, or integrals</td> </tr> <tr class="current"> <td></td> <td></td> <td>35A24 </td> <td>Methods of ordinary differential equations applied to PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35A25 </td> <td>Other special methods applied to PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35A27 </td> <td>Microlocal methods and methods of sheaf theory and homological algebra applied to PDEs [See also <a href="msc2020.html?t=32C38&btn=Current">32C38</a>, <a href="msc2020.html?t=58J15&btn=Current">58J15</a>]</td> </tr> <tr class="current"> <td></td> <td></td> <td>35A30 </td> <td>Geometric theory, characteristics, transformations in context of PDEs [See also <a href="msc2020.html?t=58J70&btn=Current">58J70</a>, <a href="msc2020.html?t=58J72&btn=Current">58J72</a>]</td> </tr> <tr class="current"> <td></td> <td></td> <td>35A35 </td> <td>Theoretical approximation in context of PDEs {For numerical analysis, see <a href="msc2020.html?t=65Mxx&btn=Current">65Mxx</a>, <a href="msc2020.html?t=65Nxx&btn=Current">65Nxx</a>}</td> </tr> <tr class="current"> <td></td> <td></td> <td>35A99 </td> <td>None of the above, but in this section</td> </tr> <tr class="current"> <td></td> <td></td> <td>35B05 </td> <td>Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35B06 </td> <td>Symmetries, invariants, etc. in context of PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35B07 </td> <td>Axially symmetric solutions to PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35B08 </td> <td>Entire solutions to PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35B09 </td> <td>Positive solutions to PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35B10 </td> <td>Periodic solutions to PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35B15 </td> <td>Almost and pseudo-almost periodic solutions to PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35B20 </td> <td>Perturbations in context of PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35B25 </td> <td>Singular perturbations in context of PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35B27 </td> <td>Homogenization in context of PDEs; PDEs in media with periodic structure [See also <a href="msc2020.html?t=74Q05&btn=Current">74Q05</a>, <a href="msc2020.html?t=74Q10&btn=Current">74Q10</a>, <a href="msc2020.html?t=76M50&btn=Current">76M50</a>, <a href="msc2020.html?t=78M40&btn=Current">78M40</a>, <a href="msc2020.html?t=80M40&btn=Current">80M40</a>]</td> </tr> <tr class="current"> <td></td> <td></td> <td>35B30 </td> <td>Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs [See also <a href="msc2020.html?t=37Cxx&btn=Current">37Cxx</a>]</td> </tr> <tr class="current"> <td></td> <td></td> <td>35B32 </td> <td>Bifurcations in context of PDEs [See also <a href="msc2020.html?t=34C23&btn=Current">34C23</a>, <a href="msc2020.html?t=34F10&btn=Current">34F10</a>, <a href="msc2020.html?t=34H20&btn=Current">34H20</a>, <a href="msc2020.html?t=37F46&btn=Current">37F46</a>, <a href="msc2020.html?t=37Gxx&btn=Current">37Gxx</a>, <a href="msc2020.html?t=37H20&btn=Current">37H20</a>, <a href="msc2020.html?t=37J20&btn=Current">37J20</a>, <a href="msc2020.html?t=37K50&btn=Current">37K50</a>, <a href="msc2020.html?t=37L10&btn=Current">37L10</a>, <a href="msc2020.html?t=37M20&btn=Current">37M20</a>, <a href="msc2020.html?t=47J15&btn=Current">47J15</a>, <a href="msc2020.html?t=58E05&btn=Current">58E05</a>, <a href="msc2020.html?t=58E07&btn=Current">58E07</a>, <a href="msc2020.html?t=58J55&btn=Current">58J55</a>]</td> </tr> <tr class="current"> <td></td> <td></td> <td>35B33 </td> <td>Critical exponents in context of PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35B34 </td> <td>Resonance in context of PDEs [See also <a href="msc2020.html?t=34F15&btn=Current">34F15</a>, <a href="msc2020.html?t=70J40&btn=Current">70J40</a>, <a href="msc2020.html?t=70K28&btn=Current">70K28</a>, <a href="msc2020.html?t=70K30&btn=Current">70K30</a>, <a href="msc2020.html?t=81U24&btn=Current">81U24</a>]</td> </tr> <tr class="current"> <td></td> <td></td> <td>35B35 </td> <td>Stability in context of PDEs [See also <a href="msc2020.html?t=34Dxx&btn=Current">34Dxx</a>, <a href="msc2020.html?t=37B25&btn=Current">37B25</a>, <a href="msc2020.html?t=37C20&btn=Current">37C20</a>, <a href="msc2020.html?t=37C75&btn=Current">37C75</a>, <a href="msc2020.html?t=37F15&btn=Current">37F15</a>, <a href="msc2020.html?t=37J25&btn=Current">37J25</a>, <a href="msc2020.html?t=37K45&btn=Current">37K45</a>, <a href="msc2020.html?t=37L15&btn=Current">37L15</a>, <a href="msc2020.html?t=49K40&btn=Current">49K40</a>, <a href="msc2020.html?t=58K25&btn=Current">58K25</a>, <a href="msc2020.html?t=93Dxx&btn=Current">93Dxx</a>]</td> </tr> <tr class="current"> <td></td> <td></td> <td>35B36 </td> <td>Pattern formations in context of PDEs [See also <a href="msc2020.html?t=92C15&btn=Current">92C15</a>]</td> </tr> <tr class="current"> <td></td> <td></td> <td>35B38 </td> <td>Critical points of functionals in context of PDEs (e.g., energy functionals) [See also <a href="msc2020.html?t=57R70&btn=Current">57R70</a>, <a href="msc2020.html?t=58K05&btn=Current">58K05</a>, <a href="msc2020.html?t=58E05&btn=Current">58E05</a>]</td> </tr> <tr class="current"> <td></td> <td></td> <td>35B40 </td> <td>Asymptotic behavior of solutions to PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35B41 </td> <td>Attractors [See also <a href="msc2020.html?t=34D45&btn=Current">34D45</a>, <a href="msc2020.html?t=37B35&btn=Current">37B35</a>, <a href="msc2020.html?t=37C70&btn=Current">37C70</a>, <a href="msc2020.html?t=37D45&btn=Current">37D45</a>, <a href="msc2020.html?t=37G35&btn=Current">37G35</a>, <a href="msc2020.html?t=37L30&btn=Current">37L30</a>, <a href="msc2020.html?t=37M22&btn=Current">37M22</a>]</td> </tr> <tr class="current"> <td></td> <td></td> <td>35B42 </td> <td>Inertial manifolds [See also <a href="msc2020.html?t=37L25&btn=Current">37L25</a>]</td> </tr> <tr class="current"> <td></td> <td></td> <td>35B44 </td> <td>Blow-up in context of PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35B45 </td> <td>A priori estimates in context of PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35B50 </td> <td>Maximum principles in context of PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35B51 </td> <td>Comparison principles in context of PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35B53 </td> <td>Liouville theorems and Phragm茅n-Lindel枚f theorems in context of PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35B60 </td> <td>Continuation and prolongation of solutions to PDEs [See also <a href="msc2020.html?t=58A15&btn=Current">58A15</a>, <a href="msc2020.html?t=58A17&btn=Current">58A17</a>, <a href="msc2020.html?t=58Hxx&btn=Current">58Hxx</a>]</td> </tr> <tr class="current"> <td></td> <td></td> <td>35B65 </td> <td>Smoothness and regularity of solutions to PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35B99 </td> <td>None of the above, but in this section</td> </tr> <tr class="current"> <td></td> <td></td> <td>35C05 </td> <td>Solutions to PDEs in closed form</td> </tr> <tr class="current"> <td></td> <td></td> <td>35C06 </td> <td>Self-similar solutions to PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35C07 </td> <td>Traveling wave solutions</td> </tr> <tr class="current"> <td></td> <td></td> <td>35C08 </td> <td>Soliton solutions [See also <a href="msc2020.html?t=37K40&btn=Current">37K40</a>]</td> </tr> <tr class="current"> <td></td> <td></td> <td>35C09 </td> <td>Trigonometric solutions to PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35C10 </td> <td>Series solutions to PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35C11 </td> <td>Polynomial solutions to PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35C15 </td> <td>Integral representations of solutions to PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35C20 </td> <td>Asymptotic expansions of solutions to PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35C99 </td> <td>None of the above, but in this section</td> </tr> <tr class="current"> <td></td> <td></td> <td>35D30 </td> <td>Weak solutions to PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35D35 </td> <td>Strong solutions to PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35D40 </td> <td>Viscosity solutions to PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35D99 </td> <td>None of the above, but in this section</td> </tr> <tr class="current"> <td></td> <td></td> <td>35E05 </td> <td>Fundamental solutions to PDEs and systems of PDEs with constant coefficients</td> </tr> <tr class="current"> <td></td> <td></td> <td>35E10 </td> <td>Convexity properties of solutions to PDEs with constant coefficients</td> </tr> <tr class="current"> <td></td> <td></td> <td>35E15 </td> <td>Initial value problems for PDEs and systems of PDEs with constant coefficients</td> </tr> <tr class="current"> <td></td> <td></td> <td>35E20 </td> <td>General theory of PDEs and systems of PDEs with constant coefficients</td> </tr> <tr class="current"> <td></td> <td></td> <td>35E99 </td> <td>None of the above, but in this section</td> </tr> <tr class="current"> <td></td> <td></td> <td>35F05 </td> <td>Linear first-order PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35F10 </td> <td>Initial value problems for linear first-order PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35F15 </td> <td>Boundary value problems for linear first-order PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35F16 </td> <td>Initial-boundary value problems for linear first-order PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35F20 </td> <td>Nonlinear first-order PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35F21 </td> <td>Hamilton-Jacobi equations {For calculus of variations and optimal control, see <a href="msc2020.html?t=49Lxx&btn=Current">49Lxx</a>; for mechanics of particles and systems, see <a href="msc2020.html?t=70H20&btn=Current">70H20</a>}</td> </tr> <tr class="current"> <td></td> <td></td> <td>35F25 </td> <td>Initial value problems for nonlinear first-order PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35F30 </td> <td>Boundary value problems for nonlinear first-order PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35F31 </td> <td>Initial-boundary value problems for nonlinear first-order PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35F35 </td> <td>Systems of linear first-order PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35F40 </td> <td>Initial value problems for systems of linear first-order PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35F45 </td> <td>Boundary value problems for systems of linear first-order PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35F46 </td> <td>Initial-boundary value problems for systems of linear first-order PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35F50 </td> <td>Systems of nonlinear first-order PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35F55 </td> <td>Initial value problems for systems of nonlinear first-order PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35F60 </td> <td>Boundary value problems for systems of nonlinear first-order PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35F61 </td> <td>Initial-boundary value problems for systems of nonlinear first-order PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35F99 </td> <td>None of the above, but in this section</td> </tr> <tr class="current"> <td></td> <td></td> <td>35G05 </td> <td>Linear higher-order PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35G10 </td> <td>Initial value problems for linear higher-order PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35G15 </td> <td>Boundary value problems for linear higher-order PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35G16 </td> <td>Initial-boundary value problems for linear higher-order PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35G20 </td> <td>Nonlinear higher-order PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35G25 </td> <td>Initial value problems for nonlinear higher-order PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35G30 </td> <td>Boundary value problems for nonlinear higher-order PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35G31 </td> <td>Initial-boundary value problems for nonlinear higher-order PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35G35 </td> <td>Systems of linear higher-order PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35G40 </td> <td>Initial value problems for systems of linear higher-order PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35G45 </td> <td>Boundary value problems for systems of linear higher-order PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35G46 </td> <td>Initial-boundary value problems for systems of linear higher-order PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35G50 </td> <td>Systems of nonlinear higher-order PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35G55 </td> <td>Initial value problems for systems of nonlinear higher-order PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35G60 </td> <td>Boundary value problems for systems of nonlinear higher-order PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35G61 </td> <td>Initial-boundary value problems for systems of nonlinear higher-order PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35G99 </td> <td>None of the above, but in this section</td> </tr> <tr class="current"> <td></td> <td></td> <td>35H10 </td> <td>Hypoelliptic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35H20 </td> <td>Subelliptic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35H30 </td> <td>Quasielliptic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35H99 </td> <td>None of the above, but in this section</td> </tr> <tr class="current"> <td></td> <td></td> <td>35J05 </td> <td>Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation [See also <a href="msc2020.html?t=31Axx&btn=Current">31Axx</a>, <a href="msc2020.html?t=31Bxx&btn=Current">31Bxx</a>]</td> </tr> <tr class="current"> <td></td> <td></td> <td>35J08 </td> <td>Green's functions for elliptic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35J10 </td> <td>Schr枚dinger operator, Schr枚dinger equation {For ordinary differential equations, see <a href="msc2020.html?t=34L40&btn=Current">34L40</a>; for operator theory, see <a href="msc2020.html?t=47D08&btn=Current">47D08</a>; for quantum theory, see <a href="msc2020.html?t=81Q05&btn=Current">81Q05</a>; for statistical mechanics, see <a href="msc2020.html?t=82B44&btn=Current">82B44</a>}</td> </tr> <tr class="current"> <td></td> <td></td> <td>35J15 </td> <td>Second-order elliptic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35J20 </td> <td>Variational methods for second-order elliptic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35J25 </td> <td>Boundary value problems for second-order elliptic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35J30 </td> <td>Higher-order elliptic equations [See also <a href="msc2020.html?t=31A30&btn=Current">31A30</a>, <a href="msc2020.html?t=31B30&btn=Current">31B30</a>]</td> </tr> <tr class="current"> <td></td> <td></td> <td>35J35 </td> <td>Variational methods for higher-order elliptic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35J40 </td> <td>Boundary value problems for higher-order elliptic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35J46 </td> <td>First-order elliptic systems</td> </tr> <tr class="current"> <td></td> <td></td> <td>35J47 </td> <td>Second-order elliptic systems</td> </tr> <tr class="current"> <td></td> <td></td> <td>35J48 </td> <td>Higher-order elliptic systems</td> </tr> <tr class="current"> <td></td> <td></td> <td>35J50 </td> <td>Variational methods for elliptic systems</td> </tr> <tr class="current"> <td></td> <td></td> <td>35J56 </td> <td>Boundary value problems for first-order elliptic systems</td> </tr> <tr class="current"> <td></td> <td></td> <td>35J57 </td> <td>Boundary value problems for second-order elliptic systems</td> </tr> <tr class="current"> <td></td> <td></td> <td>35J58 </td> <td>Boundary value problems for higher-order elliptic systems</td> </tr> <tr class="current"> <td></td> <td></td> <td>35J60 </td> <td>Nonlinear elliptic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35J61 </td> <td>Semilinear elliptic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35J62 </td> <td>Quasilinear elliptic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35J65 </td> <td>Nonlinear boundary value problems for linear elliptic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35J66 </td> <td>Nonlinear boundary value problems for nonlinear elliptic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35J67 </td> <td>Boundary values of solutions to elliptic equations and elliptic systems</td> </tr> <tr class="current"> <td></td> <td></td> <td>35J70 </td> <td>Degenerate elliptic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35J75 </td> <td>Singular elliptic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35J86 </td> <td>Unilateral problems for linear elliptic equations and variational inequalities with linear elliptic operators [See also <a href="msc2020.html?t=35R35&btn=Current">35R35</a>, <a href="msc2020.html?t=49J40&btn=Current">49J40</a>]</td> </tr> <tr class="current"> <td></td> <td></td> <td>35J87 </td> <td>Unilateral problems for nonlinear elliptic equations and variational inequalities with nonlinear elliptic operators [See also <a href="msc2020.html?t=35R35&btn=Current">35R35</a>, <a href="msc2020.html?t=49J40&btn=Current">49J40</a>]</td> </tr> <tr class="current"> <td></td> <td></td> <td>35J88 </td> <td>Unilateral problems for elliptic systems and systems of variational inequalities with elliptic operators [See also <a href="msc2020.html?t=35R35&btn=Current">35R35</a>, <a href="msc2020.html?t=49J40&btn=Current">49J40</a>]</td> </tr> <tr class="current"> <td></td> <td></td> <td>35J91 </td> <td>Semilinear elliptic equations with Laplacian, bi-Laplacian or poly-Laplacian</td> </tr> <tr class="current"> <td></td> <td></td> <td>35J92 </td> <td>Quasilinear elliptic equations with <span class="MathTeX">$p$</span><script type="math/tex">p</script>-Laplacian</td> </tr> <tr class="current"> <td></td> <td></td> <td>35J93 </td> <td>Quasilinear elliptic equations with mean curvature operator</td> </tr> <tr class="current"> <td></td> <td></td> <td>35J94 </td> <td>Elliptic equations with infinity-Laplacian</td> </tr> <tr class="current"> <td></td> <td></td> <td>35J96 </td> <td>Monge-Amp猫re equations {For complex Monge-Amp猫re operators, see <a href="msc2020.html?t=32W20&btn=Current">32W20</a>; for parabolic Monge-Amp猫re equations, see <a href="msc2020.html?t=35K96&btn=Current">35K96</a>}</td> </tr> <tr class="current"> <td></td> <td></td> <td>35J99 </td> <td>None of the above, but in this section</td> </tr> <tr class="current"> <td></td> <td></td> <td>35K05 </td> <td>Heat equation</td> </tr> <tr class="current"> <td></td> <td></td> <td>35K08 </td> <td>Heat kernel</td> </tr> <tr class="current"> <td></td> <td></td> <td>35K10 </td> <td>Second-order parabolic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35K15 </td> <td>Initial value problems for second-order parabolic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35K20 </td> <td>Initial-boundary value problems for second-order parabolic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35K25 </td> <td>Higher-order parabolic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35K30 </td> <td>Initial value problems for higher-order parabolic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35K35 </td> <td>Initial-boundary value problems for higher-order parabolic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35K40 </td> <td>Second-order parabolic systems</td> </tr> <tr class="current"> <td></td> <td></td> <td>35K41 </td> <td>Higher-order parabolic systems</td> </tr> <tr class="current"> <td></td> <td></td> <td>35K45 </td> <td>Initial value problems for second-order parabolic systems</td> </tr> <tr class="current"> <td></td> <td></td> <td>35K46 </td> <td>Initial value problems for higher-order parabolic systems</td> </tr> <tr class="current"> <td></td> <td></td> <td>35K51 </td> <td>Initial-boundary value problems for second-order parabolic systems</td> </tr> <tr class="current"> <td></td> <td></td> <td>35K52 </td> <td>Initial-boundary value problems for higher-order parabolic systems</td> </tr> <tr class="current"> <td></td> <td></td> <td>35K55 </td> <td>Nonlinear parabolic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35K57 </td> <td>Reaction-diffusion equations {For diffusion processes and reaction effects, see <a href="msc2020.html?t=47D07&btn=Current">47D07</a>, <a href="msc2020.html?t=58J65&btn=Current">58J65</a>, <a href="msc2020.html?t=60J60&btn=Current">60J60</a>, <a href="msc2020.html?t=60J70&btn=Current">60J70</a>, <a href="msc2020.html?t=74N25&btn=Current">74N25</a>, <a href="msc2020.html?t=76R50&btn=Current">76R50</a>, <a href="msc2020.html?t=76V05&btn=Current">76V05</a>, <a href="msc2020.html?t=80A23&btn=Current">80A23</a>, <a href="msc2020.html?t=82B24&btn=Current">82B24</a>, <a href="msc2020.html?t=82C24&btn=Current">82C24</a>, <a href="msc2020.html?t=92E20&btn=Current">92E20</a>}</td> </tr> <tr class="current"> <td></td> <td></td> <td>35K58 </td> <td>Semilinear parabolic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35K59 </td> <td>Quasilinear parabolic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35K60 </td> <td>Nonlinear initial, boundary and initial-boundary value problems for linear parabolic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35K61 </td> <td>Nonlinear initial, boundary and initial-boundary value problems for nonlinear parabolic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35K65 </td> <td>Degenerate parabolic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35K67 </td> <td>Singular parabolic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35K70 </td> <td>Ultraparabolic equations, pseudoparabolic equations, etc.</td> </tr> <tr class="current"> <td></td> <td></td> <td>35K85 </td> <td>Unilateral problems for linear parabolic equations and variational inequalities with linear parabolic operators [See also <a href="msc2020.html?t=35R35&btn=Current">35R35</a>, <a href="msc2020.html?t=49J40&btn=Current">49J40</a>]</td> </tr> <tr class="current"> <td></td> <td></td> <td>35K86 </td> <td>Unilateral problems for nonlinear parabolic equations and variational inequalities with nonlinear parabolic operators [See also <a href="msc2020.html?t=35R35&btn=Current">35R35</a>, <a href="msc2020.html?t=49J40&btn=Current">49J40</a>]</td> </tr> <tr class="current"> <td></td> <td></td> <td>35K87 </td> <td>Unilateral problems for parabolic systems and systems of variational inequalities with parabolic operators [See also <a href="msc2020.html?t=35R35&btn=Current">35R35</a>, <a href="msc2020.html?t=49J40&btn=Current">49J40</a>]</td> </tr> <tr class="current"> <td></td> <td></td> <td>35K90 </td> <td>Abstract parabolic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35K91 </td> <td>Semilinear parabolic equations with Laplacian, bi-Laplacian or poly-Laplacian</td> </tr> <tr class="current"> <td></td> <td></td> <td>35K92 </td> <td>Quasilinear parabolic equations with <span class="MathTeX">$p$</span><script type="math/tex">p</script>-Laplacian</td> </tr> <tr class="current"> <td></td> <td></td> <td>35K93 </td> <td>Quasilinear parabolic equations with mean curvature operator</td> </tr> <tr class="current"> <td></td> <td></td> <td>35K96 </td> <td>Parabolic Monge-Amp猫re equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35K99 </td> <td>None of the above, but in this section</td> </tr> <tr class="current"> <td></td> <td></td> <td>35L02 </td> <td>First-order hyperbolic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35L03 </td> <td>Initial value problems for first-order hyperbolic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35L04 </td> <td>Initial-boundary value problems for first-order hyperbolic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35L05 </td> <td>Wave equation</td> </tr> <tr class="current"> <td></td> <td></td> <td>35L10 </td> <td>Second-order hyperbolic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35L15 </td> <td>Initial value problems for second-order hyperbolic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35L20 </td> <td>Initial-boundary value problems for second-order hyperbolic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35L25 </td> <td>Higher-order hyperbolic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35L30 </td> <td>Initial value problems for higher-order hyperbolic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35L35 </td> <td>Initial-boundary value problems for higher-order hyperbolic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35L40 </td> <td>First-order hyperbolic systems</td> </tr> <tr class="current"> <td></td> <td></td> <td>35L45 </td> <td>Initial value problems for first-order hyperbolic systems</td> </tr> <tr class="current"> <td></td> <td></td> <td>35L50 </td> <td>Initial-boundary value problems for first-order hyperbolic systems</td> </tr> <tr class="current"> <td></td> <td></td> <td>35L51 </td> <td>Second-order hyperbolic systems</td> </tr> <tr class="current"> <td></td> <td></td> <td>35L52 </td> <td>Initial value problems for second-order hyperbolic systems</td> </tr> <tr class="current"> <td></td> <td></td> <td>35L53 </td> <td>Initial-boundary value problems for second-order hyperbolic systems</td> </tr> <tr class="current"> <td></td> <td></td> <td>35L55 </td> <td>Higher-order hyperbolic systems</td> </tr> <tr class="current"> <td></td> <td></td> <td>35L56 </td> <td>Initial value problems for higher-order hyperbolic systems</td> </tr> <tr class="current"> <td></td> <td></td> <td>35L57 </td> <td>Initial-boundary value problems for higher-order hyperbolic systems</td> </tr> <tr class="current"> <td></td> <td></td> <td>35L60 </td> <td>First-order nonlinear hyperbolic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35L65 </td> <td>Hyperbolic conservation laws</td> </tr> <tr class="current"> <td></td> <td></td> <td>35L67 </td> <td>Shocks and singularities for hyperbolic equations [See also <a href="msc2020.html?t=58Kxx&btn=Current">58Kxx</a>, <a href="msc2020.html?t=74J40&btn=Current">74J40</a>, <a href="msc2020.html?t=76L05&btn=Current">76L05</a>]</td> </tr> <tr class="current"> <td></td> <td></td> <td>35L70 </td> <td>Second-order nonlinear hyperbolic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35L71 </td> <td>Second-order semilinear hyperbolic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35L72 </td> <td>Second-order quasilinear hyperbolic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35L75 </td> <td>Higher-order nonlinear hyperbolic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35L76 </td> <td>Higher-order semilinear hyperbolic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35L77 </td> <td>Higher-order quasilinear hyperbolic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35L80 </td> <td>Degenerate hyperbolic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35L81 </td> <td>Singular hyperbolic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35L82 </td> <td>Pseudohyperbolic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35L85 </td> <td>Unilateral problems for linear hyperbolic equations and variational inequalities with linear hyperbolic operators [See also <a href="msc2020.html?t=35R35&btn=Current">35R35</a>, <a href="msc2020.html?t=49J40&btn=Current">49J40</a>]</td> </tr> <tr class="current"> <td></td> <td></td> <td>35L86 </td> <td>Unilateral problems for nonlinear hyperbolic equations and variational inequalities with nonlinear hyperbolic operators [See also <a href="msc2020.html?t=35R35&btn=Current">35R35</a>, <a href="msc2020.html?t=49J40&btn=Current">49J40</a>]</td> </tr> <tr class="current"> <td></td> <td></td> <td>35L87 </td> <td>Unilateral problems for hyperbolic systems and systems of variational inequalities with hyperbolic operators [See also <a href="msc2020.html?t=35R35&btn=Current">35R35</a>, <a href="msc2020.html?t=49J40&btn=Current">49J40</a>]</td> </tr> <tr class="current"> <td></td> <td></td> <td>35L90 </td> <td>Abstract hyperbolic equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35L99 </td> <td>None of the above, but in this section</td> </tr> <tr class="current"> <td></td> <td></td> <td>35M10 </td> <td>PDEs of mixed type</td> </tr> <tr class="current"> <td></td> <td></td> <td>35M11 </td> <td>Initial value problems for PDEs of mixed type</td> </tr> <tr class="current"> <td></td> <td></td> <td>35M12 </td> <td>Boundary value problems for PDEs of mixed type</td> </tr> <tr class="current"> <td></td> <td></td> <td>35M13 </td> <td>Initial-boundary value problems for PDEs of mixed type</td> </tr> <tr class="current"> <td></td> <td></td> <td>35M30 </td> <td>Mixed-type systems of PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35M31 </td> <td>Initial value problems for mixed-type systems of PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35M32 </td> <td>Boundary value problems for mixed-type systems of PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35M33 </td> <td>Initial-boundary value problems for mixed-type systems of PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35M85 </td> <td>Unilateral problems for linear PDEs of mixed type and variational inequalities with partial differential operators of mixed type [See also <a href="msc2020.html?t=35R35&btn=Current">35R35</a>, <a href="msc2020.html?t=49J40&btn=Current">49J40</a>]</td> </tr> <tr class="current"> <td></td> <td></td> <td>35M86 </td> <td>Unilateral problems for nonlinear PDEs of mixed type and variational inequalities with nonlinear partial differential operators of mixed type [See also <a href="msc2020.html?t=35R35&btn=Current">35R35</a>, <a href="msc2020.html?t=49J40&btn=Current">49J40</a>]</td> </tr> <tr class="current"> <td></td> <td></td> <td>35M87 </td> <td>Unilateral problems for mixed-type systems of PDEs and systems of variational inequalities with partial differential operators of mixed type [See also <a href="msc2020.html?t=35R35&btn=Current">35R35</a>, <a href="msc2020.html?t=49J40&btn=Current">49J40</a>]</td> </tr> <tr class="current"> <td></td> <td></td> <td>35M99 </td> <td>None of the above, but in this section</td> </tr> <tr class="current"> <td></td> <td></td> <td>35N05 </td> <td>Overdetermined systems of PDEs with constant coefficients</td> </tr> <tr class="current"> <td></td> <td></td> <td>35N10 </td> <td>Overdetermined systems of PDEs with variable coefficients</td> </tr> <tr class="current"> <td></td> <td></td> <td>35N15 </td> <td><span class="MathTeX">$\overline\partial$</span><script type="math/tex">\overline\partial</script>-Neumann problems and formal complexes in context of PDEs [See also <a href="msc2020.html?t=32W05&btn=Current">32W05</a>, <a href="msc2020.html?t=32W10&btn=Current">32W10</a>, <a href="msc2020.html?t=58J10&btn=Current">58J10</a>]</td> </tr> <tr class="current"> <td></td> <td></td> <td>35N20 </td> <td>Overdetermined initial value problems for PDEs and systems of PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35N25 </td> <td>Overdetermined boundary value problems for PDEs and systems of PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35N30 </td> <td>Overdetermined initial-boundary value problems for PDEs and systems of PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35N99 </td> <td>None of the above, but in this section</td> </tr> <tr class="current"> <td></td> <td></td> <td>35P05 </td> <td>General topics in linear spectral theory for PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35P10 </td> <td>Completeness of eigenfunctions and eigenfunction expansions in context of PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35P15 </td> <td>Estimates of eigenvalues in context of PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35P20 </td> <td>Asymptotic distributions of eigenvalues in context of PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35P25 </td> <td>Scattering theory for PDEs [See also <a href="msc2020.html?t=47A40&btn=Current">47A40</a>]</td> </tr> <tr class="current"> <td></td> <td></td> <td>35P30 </td> <td>Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35P99 </td> <td>None of the above, but in this section</td> </tr> <tr class="current"> <td></td> <td></td> <td>35Q05 </td> <td>Euler-Poisson-Darboux equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35Q07 </td> <td>Fuchsian PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35Q15 </td> <td>Riemann-Hilbert problems in context of PDEs [See also <a href="msc2020.html?t=30E25&btn=Current">30E25</a>, <a href="msc2020.html?t=31A25&btn=Current">31A25</a>, <a href="msc2020.html?t=31B20&btn=Current">31B20</a>]</td> </tr> <tr class="current"> <td></td> <td></td> <td>35Q20 </td> <td>Boltzmann equations {For fluid mechanics, see <a href="msc2020.html?t=76P05&btn=Current">76P05</a>; for statistical mechanics, see <a href="msc2020.html?t=82B40&btn=Current">82B40</a>, <a href="msc2020.html?t=82C40&btn=Current">82C40</a>, <a href="msc2020.html?t=82D05&btn=Current">82D05</a>}</td> </tr> <tr class="current"> <td></td> <td></td> <td>35Q30 </td> <td>Navier-Stokes equations {For fluid mechanics, see <a href="msc2020.html?t=76D05&btn=Current">76D05</a>, <a href="msc2020.html?t=76D07&btn=Current">76D07</a>, <a href="msc2020.html?t=76N10&btn=Current">76N10</a>}</td> </tr> <tr class="current"> <td></td> <td></td> <td>35Q31 </td> <td>Euler equations {For fluid mechanics, see <a href="msc2020.html?t=76D05&btn=Current">76D05</a>, <a href="msc2020.html?t=76D07&btn=Current">76D07</a>, <a href="msc2020.html?t=76N10&btn=Current">76N10</a>}</td> </tr> <tr class="current"> <td></td> <td></td> <td>35Q35 </td> <td>PDEs in connection with fluid mechanics</td> </tr> <tr class="current"> <td></td> <td></td> <td>35Q40 </td> <td>PDEs in connection with quantum mechanics</td> </tr> <tr class="current"> <td></td> <td></td> <td>35Q41 </td> <td>Time-dependent Schr枚dinger equations and Dirac equations {For quantum theory, see <a href="msc2020.html?t=81Q05&btn=Current">81Q05</a>; for relativity and gravitational theory, see <a href="msc2020.html?t=83A05&btn=Current">83A05</a>, <a href="msc2020.html?t=83C10&btn=Current">83C10</a>}</td> </tr> <tr class="current"> <td></td> <td></td> <td>35Q49 </td> <td>Transport equations {For calculus of variations and optimal control, see <a href="msc2020.html?t=49Q22&btn=Current">49Q22</a>; for fluid mechanics, see <a href="msc2020.html?t=76F25&btn=Current">76F25</a>; for statistical mechanics, see <a href="msc2020.html?t=82C70&btn=Current">82C70</a>, <a href="msc2020.html?t=82D75&btn=Current">82D75</a>; for operations research, see <a href="msc2020.html?t=90B06&btn=Current">90B06</a>; for mathematical programming, see <a href="msc2020.html?t=90C08&btn=Current">90C08</a>}</td> </tr> <tr class="current"> <td></td> <td></td> <td>35Q51 </td> <td>Soliton equations {For dynamical systems and ergodic theory, see <a href="msc2020.html?t=37K40&btn=Current">37K40</a>}</td> </tr> <tr class="current"> <td></td> <td></td> <td>35Q53 </td> <td>KdV equations (Korteweg-de Vries equations) {For dynamical systems and ergodic theory, see <a href="msc2020.html?t=37K10&btn=Current">37K10</a>}</td> </tr> <tr class="current"> <td></td> <td></td> <td>35Q55 </td> <td>NLS equations (nonlinear Schr枚dinger equations) {For dynamical systems and ergodic theory, see <a href="msc2020.html?t=37K10&btn=Current">37K10</a>}</td> </tr> <tr class="current"> <td></td> <td></td> <td>35Q56 </td> <td>Ginzburg-Landau equations {For optics and electromagnetic theory, see <a href="msc2020.html?t=78A25&btn=Current">78A25</a>}</td> </tr> <tr class="current"> <td></td> <td></td> <td>35Q60 </td> <td>PDEs in connection with optics and electromagnetic theory</td> </tr> <tr class="current"> <td></td> <td></td> <td>35Q61 </td> <td>Maxwell equations {For optics and electromagnetic theory, see <a href="msc2020.html?t=78A25&btn=Current">78A25</a>; for relativity and gravitational theory, see <a href="msc2020.html?t=83C22&btn=Current">83C22</a>}</td> </tr> <tr class="current"> <td></td> <td></td> <td>35Q62 </td> <td>PDEs in connection with statistics</td> </tr> <tr class="current"> <td></td> <td></td> <td>35Q68 </td> <td>PDEs in connection with computer science</td> </tr> <tr class="current"> <td></td> <td></td> <td>35Q70 </td> <td>PDEs in connection with mechanics of particles and systems of particles</td> </tr> <tr class="current"> <td></td> <td></td> <td>35Q74 </td> <td>PDEs in connection with mechanics of deformable solids</td> </tr> <tr class="current"> <td></td> <td></td> <td>35Q75 </td> <td>PDEs in connection with relativity and gravitational theory</td> </tr> <tr class="current"> <td></td> <td></td> <td>35Q76 </td> <td>Einstein equations {For several complex variables and analytic spaces, see <a href="msc2020.html?t=32Q40&btn=Current">32Q40</a>; for differential geometry, see <a href="msc2020.html?t=53C07&btn=Current">53C07</a>; for relativity and gravitational theory, see <a href="msc2020.html?t=83C05&btn=Current">83C05</a>, <a href="msc2020.html?t=83C25&btn=Current">83C25</a>, <a href="msc2020.html?t=83D05&btn=Current">83D05</a>}</td> </tr> <tr class="current"> <td></td> <td></td> <td>35Q79 </td> <td>PDEs in connection with classical thermodynamics and heat transfer</td> </tr> <tr class="current"> <td></td> <td></td> <td>35Q81 </td> <td>PDEs in connection with semiconductor devices {For statistical mechanics, see <a href="msc2020.html?t=82D37&btn=Current">82D37</a>}</td> </tr> <tr class="current"> <td></td> <td></td> <td>35Q82 </td> <td>PDEs in connection with statistical mechanics</td> </tr> <tr class="current"> <td></td> <td></td> <td>35Q83 </td> <td>Vlasov equations {For statistical mechanics, see <a href="msc2020.html?t=82C70&btn=Current">82C70</a>, <a href="msc2020.html?t=82D75&btn=Current">82D75</a>}</td> </tr> <tr class="current"> <td></td> <td></td> <td>35Q84 </td> <td>Fokker-Planck equations {For fluid mechanics, see <a href="msc2020.html?t=76X05&btn=Current">76X05</a>, <a href="msc2020.html?t=76W05&btn=Current">76W05</a>; for statistical mechanics, see <a href="msc2020.html?t=82C31&btn=Current">82C31</a>}</td> </tr> <tr class="current"> <td></td> <td></td> <td>35Q85 </td> <td>PDEs in connection with astronomy and astrophysics</td> </tr> <tr class="current"> <td></td> <td></td> <td>35Q86 </td> <td>PDEs in connection with geophysics</td> </tr> <tr class="current"> <td></td> <td></td> <td>35Q89 </td> <td>PDEs in connection with mean field game theory {For calculus of variations and optimal control, see <a href="msc2020.html?t=49N80&btn=Current">49N80</a>; for game theory, see <a href="msc2020.html?t=91A16&btn=Current">91A16</a>}</td> </tr> <tr class="current"> <td></td> <td></td> <td>35Q90 </td> <td>PDEs in connection with mathematical programming</td> </tr> <tr class="current"> <td></td> <td></td> <td>35Q91 </td> <td>PDEs in connection with game theory, economics, social and behavioral sciences</td> </tr> <tr class="current"> <td></td> <td></td> <td>35Q92 </td> <td>PDEs in connection with biology, chemistry and other natural sciences</td> </tr> <tr class="current"> <td></td> <td></td> <td>35Q93 </td> <td>PDEs in connection with control and optimization</td> </tr> <tr class="current"> <td></td> <td></td> <td>35Q94 </td> <td>PDEs in connection with information and communication</td> </tr> <tr class="current"> <td></td> <td></td> <td>35Q99 </td> <td>None of the above, but in this section</td> </tr> <tr class="current"> <td></td> <td></td> <td>35R01 </td> <td>PDEs on manifolds [See also <a href="msc2020.html?t=32Wxx&btn=Current">32Wxx</a>, <a href="msc2020.html?t=53Cxx&btn=Current">53Cxx</a>, <a href="msc2020.html?t=58Jxx&btn=Current">58Jxx</a>]</td> </tr> <tr class="current"> <td></td> <td></td> <td>35R02 </td> <td>PDEs on graphs and networks (ramified or polygonal spaces)</td> </tr> <tr class="current"> <td></td> <td></td> <td>35R03 </td> <td>PDEs on Heisenberg groups, Lie groups, Carnot groups, etc.</td> </tr> <tr class="current"> <td></td> <td></td> <td>35R05 </td> <td>PDEs with low regular coefficients and/or low regular data</td> </tr> <tr class="current"> <td></td> <td></td> <td>35R06 </td> <td>PDEs with measure</td> </tr> <tr class="current"> <td></td> <td></td> <td>35R07 </td> <td>PDEs on time scales</td> </tr> <tr class="current"> <td></td> <td></td> <td>35R09 </td> <td>Integro-partial differential equations [See also <a href="msc2020.html?t=34K30&btn=Current">34K30</a>, <a href="msc2020.html?t=45K05&btn=Current">45K05</a>]</td> </tr> <tr class="current"> <td></td> <td></td> <td>35R10 </td> <td>Partial functional-differential equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35R11 </td> <td>Fractional partial differential equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35R12 </td> <td>Impulsive partial differential equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35R13 </td> <td>Fuzzy partial differential equations</td> </tr> <tr class="current"> <td></td> <td></td> <td>35R15 </td> <td>PDEs on infinite-dimensional (e.g., function) spaces (= PDEs in infinitely many variables) [See also <a href="msc2020.html?t=46Gxx&btn=Current">46Gxx</a>, <a href="msc2020.html?t=58D25&btn=Current">58D25</a>]</td> </tr> <tr class="current"> <td></td> <td></td> <td>35R20 </td> <td>Operator partial differential equations (= PDEs on finite-dimensional spaces for abstract space valued functions) [See also <a href="msc2020.html?t=34Gxx&btn=Current">34Gxx</a>, <a href="msc2020.html?t=47A50&btn=Current">47A50</a>, <a href="msc2020.html?t=47D03&btn=Current">47D03</a>, <a href="msc2020.html?t=47D06&btn=Current">47D06</a>, <a href="msc2020.html?t=47D09&btn=Current">47D09</a>, <a href="msc2020.html?t=47H20&btn=Current">47H20</a>, <a href="msc2020.html?t=47Jxx&btn=Current">47Jxx</a>]</td> </tr> <tr class="current"> <td></td> <td></td> <td>35R25 </td> <td>Ill-posed problems for PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35R30 </td> <td>Inverse problems for PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35R35 </td> <td>Free boundary problems for PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35R37 </td> <td>Moving boundary problems for PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35R45 </td> <td>Partial differential inequalities and systems of partial differential inequalities</td> </tr> <tr class="current"> <td></td> <td></td> <td>35R50 </td> <td>PDEs of infinite order</td> </tr> <tr class="current"> <td></td> <td></td> <td>35R60 </td> <td>PDEs with randomness, stochastic partial differential equations [See also <a href="msc2020.html?t=60H15&btn=Current">60H15</a>]</td> </tr> <tr class="current"> <td></td> <td></td> <td>35R70 </td> <td>PDEs with multivalued right-hand sides</td> </tr> <tr class="current"> <td></td> <td></td> <td>35R99 </td> <td>None of the above, but in this section</td> </tr> <tr class="current"> <td></td> <td></td> <td>35S05 </td> <td>Pseudodifferential operators as generalizations of partial differential operators [See also <a href="msc2020.html?t=32W25&btn=Current">32W25</a>, <a href="msc2020.html?t=47G30&btn=Current">47G30</a>, <a href="msc2020.html?t=47L80&btn=Current">47L80</a>, <a href="msc2020.html?t=58J40&btn=Current">58J40</a>]</td> </tr> <tr class="current"> <td></td> <td></td> <td>35S10 </td> <td>Initial value problems for PDEs with pseudodifferential operators</td> </tr> <tr class="current"> <td></td> <td></td> <td>35S15 </td> <td>Boundary value problems for PDEs with pseudodifferential operators</td> </tr> <tr class="current"> <td></td> <td></td> <td>35S16 </td> <td>Initial-boundary value problems for PDEs with pseudodifferential operators</td> </tr> <tr class="current"> <td></td> <td></td> <td>35S30 </td> <td>Fourier integral operators applied to PDEs [See also <a href="msc2020.html?t=43A32&btn=Current">43A32</a>, <a href="msc2020.html?t=58J40&btn=Current">58J40</a>]</td> </tr> <tr class="current"> <td></td> <td></td> <td>35S35 </td> <td>Topological aspects for pseudodifferential operators in context of PDEs: intersection cohomology, stratified sets, etc. [See also <a href="msc2020.html?t=32C38&btn=Current">32C38</a>, <a href="msc2020.html?t=32S40&btn=Current">32S40</a>, <a href="msc2020.html?t=32S60&btn=Current">32S60</a>, <a href="msc2020.html?t=58J15&btn=Current">58J15</a>]</td> </tr> <tr class="current"> <td></td> <td></td> <td>35S50 </td> <td>Paradifferential operators as generalizations of partial differential operators in context of PDEs</td> </tr> <tr class="current"> <td></td> <td></td> <td>35S99 </td> <td>None of the above, but in this section</td> </tr> </table> <div class="buttonBox"> <input type="submit" name="btn" value="Clear" class="button" /> </div> <span class="legend"> < <a href="msc2020.html?t=34-XX&btn=Current">34-XX</a> | <a href="msc2020.html?t=&btn=Current">Up</a> | <a href="msc2020.html?t=37-XX&btn=Current">37-XX</a> > </span> </div> </form> </div> <div class="folderFooter"><div class="left"> </div><div class="right"> </div></div> </div> </div> </div> <div class="copyright"> <a href="http://www.ams.org/ams/copyright.html">© Copyright 2024, American Mathematical Society</a><br /> <a href="http://www.ams.org/ams/privacy.html">Privacy Statement</a> </div> <div class="amsAddress"> <a href="http://www.ams.org"><img src="/mathscinet/2006/mathscinet/images/ams-logo-msn-footer.jpg" alt="American Mathematical Society" /></a> </div> </div> <script type="text/javascript"> <!-- setCurrentTab( 2 ); focusTab( document.getElementById('folder2') ); --> </script> <script type="text/javascript"> <!-- if( 0 || backStatus ){ addLoadEvent( function() { rememberTab( 'freeTools' ); } ); } --> </script> </div> </body> </html>