CINXE.COM

Search results for: automated programming

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: automated programming</title> <meta name="description" content="Search results for: automated programming"> <meta name="keywords" content="automated programming"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="automated programming" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="automated programming"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1770</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: automated programming</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1590</span> Numerical Solution of Portfolio Selecting Semi-Infinite Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alina%20Fedossova">Alina Fedossova</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20Jorge%20Sierra%20Molina"> Jose Jorge Sierra Molina </a> </p> <p class="card-text"><strong>Abstract:</strong></p> SIP problems are part of non-classical optimization. There are problems in which the number of variables is finite, and the number of constraints is infinite. These are semi-infinite programming problems. Most algorithms for semi-infinite programming problems reduce the semi-infinite problem to a finite one and solve it by classical methods of linear or nonlinear programming. Typically, any of the constraints or the objective function is nonlinear, so the problem often involves nonlinear programming. An investment portfolio is a set of instruments used to reach the specific purposes of investors. The risk of the entire portfolio may be less than the risks of individual investment of portfolio. For example, we could make an investment of M euros in N shares for a specified period. Let yi> 0, the return on money invested in stock i for each dollar since the end of the period (i = 1, ..., N). The logical goal here is to determine the amount xi to be invested in stock i, i = 1, ..., N, such that we maximize the period at the end of ytx value, where x = (x1, ..., xn) and y = (y1, ..., yn). For us the optimal portfolio means the best portfolio in the ratio "risk-return" to the investor portfolio that meets your goals and risk ways. Therefore, investment goals and risk appetite are the factors that influence the choice of appropriate portfolio of assets. The investment returns are uncertain. Thus we have a semi-infinite programming problem. We solve a semi-infinite optimization problem of portfolio selection using the outer approximations methods. This approach can be considered as a developed Eaves-Zangwill method applying the multi-start technique in all of the iterations for the search of relevant constraints' parameters. The stochastic outer approximations method, successfully applied previously for robotics problems, Chebyshev approximation problems, air pollution and others, is based on the optimal criteria of quasi-optimal functions. As a result we obtain mathematical model and the optimal investment portfolio when yields are not clear from the beginning. Finally, we apply this algorithm to a specific case of a Colombian bank. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=outer%20approximation%20methods" title="outer approximation methods">outer approximation methods</a>, <a href="https://publications.waset.org/abstracts/search?q=portfolio%20problem" title=" portfolio problem"> portfolio problem</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-infinite%20programming" title=" semi-infinite programming"> semi-infinite programming</a>, <a href="https://publications.waset.org/abstracts/search?q=numerial%20solution" title=" numerial solution"> numerial solution</a> </p> <a href="https://publications.waset.org/abstracts/29163/numerical-solution-of-portfolio-selecting-semi-infinite-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1589</span> Meteorological Risk Assessment for Ships with Fuzzy Logic Designer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Karaca">Ismail Karaca</a>, <a href="https://publications.waset.org/abstracts/search?q=Ridvan%20Saracoglu"> Ridvan Saracoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Omer%20Soner"> Omer Soner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fuzzy Logic, an advanced method to support decision-making, is used by various scientists in many disciplines. Fuzzy programming is a product of fuzzy logic, fuzzy rules, and implication. In marine science, fuzzy programming for ships is dramatically increasing together with autonomous ship studies. In this paper, a program to support the decision-making process for ship navigation has been designed. The program is produced in fuzzy logic and rules, by taking the marine accidents and expert opinions into account. After the program was designed, the program was tested by 46 ship accidents reported by the Transportation Safety Investigation Center of Turkey. Wind speed, sea condition, visibility, day/night ratio have been used as input data. They have been converted into a risk factor within the Fuzzy Logic Designer application and fuzzy rules set by marine experts. Finally, the expert&#39;s meteorological risk factor for each accident is compared with the program&#39;s risk factor, and the error rate was calculated. The main objective of this study is to improve the navigational safety of ships, by using the advance decision support model. According to the study result, fuzzy programming is a robust model that supports safe navigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calculation%20of%20risk%20factor" title="calculation of risk factor">calculation of risk factor</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20programming%20for%20ship" title=" fuzzy programming for ship"> fuzzy programming for ship</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20navigation%20of%20ships" title=" safety navigation of ships"> safety navigation of ships</a> </p> <a href="https://publications.waset.org/abstracts/122512/meteorological-risk-assessment-for-ships-with-fuzzy-logic-designer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122512.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1588</span> Extending the AOP Joinpoint Model for Memory and Type Safety</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amjad%20Nusayr">Amjad Nusayr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Software security is a general term used to any type of software architecture or model in which security aspects are incorporated in this architecture. These aspects are not part of the main logic of the underlying program. Software security can be achieved using a combination of approaches, including but not limited to secure software designs, third part component validation, and secure coding practices. Memory safety is one feature in software security where we ensure that any object in memory has a valid pointer or a reference with a valid type. Aspect-Oriented Programming (AOP) is a paradigm that is concerned with capturing the cross-cutting concerns in code development. AOP is generally used for common cross-cutting concerns like logging and DB transaction managing. In this paper, we introduce the concepts that enable AOP to be used for the purpose of memory and type safety. We also present ideas for extending AOP in software security practices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aspect%20oriented%20programming" title="aspect oriented programming">aspect oriented programming</a>, <a href="https://publications.waset.org/abstracts/search?q=programming%20languages" title=" programming languages"> programming languages</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20security" title=" software security"> software security</a>, <a href="https://publications.waset.org/abstracts/search?q=memory%20and%20type%20safety" title=" memory and type safety"> memory and type safety</a> </p> <a href="https://publications.waset.org/abstracts/144771/extending-the-aop-joinpoint-model-for-memory-and-type-safety" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1587</span> A Comparison of Sequential Quadratic Programming, Genetic Algorithm, Simulated Annealing, Particle Swarm Optimization for the Design and Optimization of a Beam Column</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nima%20Khosravi">Nima Khosravi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes an integrated optimization technique with concurrent use of sequential quadratic programming, genetic algorithm, and simulated annealing particle swarm optimization for the design and optimization of a beam column. In this research, the comparison between 4 different types of optimization methods. The comparison is done and it is found out that all the methods meet the required constraints and the lowest value of the objective function is achieved by SQP, which was also the fastest optimizer to produce the results. SQP is a gradient based optimizer hence its results are usually the same after every run. The only thing which affects the results is the initial conditions given. The initial conditions given in the various test run were very large as compared. Hence, the value converged at a different point. Rest of the methods is a heuristic method which provides different values for different runs even if every parameter is kept constant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beam%20column" title="beam column">beam column</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=sequential%20quadratic%20programming" title=" sequential quadratic programming"> sequential quadratic programming</a>, <a href="https://publications.waset.org/abstracts/search?q=simulated%20annealing" title=" simulated annealing"> simulated annealing</a> </p> <a href="https://publications.waset.org/abstracts/58973/a-comparison-of-sequential-quadratic-programming-genetic-algorithm-simulated-annealing-particle-swarm-optimization-for-the-design-and-optimization-of-a-beam-column" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58973.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1586</span> Lego Mindstorms as a Simulation of Robotic Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miroslav%20Popelka">Miroslav Popelka</a>, <a href="https://publications.waset.org/abstracts/search?q=Jakub%20No%C5%BEi%C4%8Dka"> Jakub Nožička</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we deal with using Lego Mindstorms in simulation of robotic systems with respect to cost reduction. Lego Mindstorms kit contains broad variety of hardware components which are required to simulate, program and test the robotics systems in practice. Algorithm programming went in development environment supplied together with Lego kit as in programming language C# as well. Algorithm following the line, which we dealt with in this paper, uses theoretical findings from area of controlling circuits. PID controller has been chosen as controlling circuit whose individual components were experimentally adjusted for optimal motion of robot tracking the line. Data which are determined to process by algorithm are collected by sensors which scan the interface between black and white surfaces followed by robot. Based on discovered facts Lego Mindstorms can be considered for low-cost and capable kit to simulate real robotics systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LEGO%20Mindstorms" title="LEGO Mindstorms">LEGO Mindstorms</a>, <a href="https://publications.waset.org/abstracts/search?q=PID%20controller" title=" PID controller"> PID controller</a>, <a href="https://publications.waset.org/abstracts/search?q=low-cost%20robotics%20systems" title=" low-cost robotics systems"> low-cost robotics systems</a>, <a href="https://publications.waset.org/abstracts/search?q=line%20follower" title=" line follower"> line follower</a>, <a href="https://publications.waset.org/abstracts/search?q=sensors" title=" sensors"> sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=programming%20language%20C%23" title=" programming language C#"> programming language C#</a>, <a href="https://publications.waset.org/abstracts/search?q=EV3%20Home%20Edition%20Software" title=" EV3 Home Edition Software"> EV3 Home Edition Software</a> </p> <a href="https://publications.waset.org/abstracts/10889/lego-mindstorms-as-a-simulation-of-robotic-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10889.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1585</span> Iterative Dynamic Programming for 4D Flight Trajectory Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kawser%20Ahmed">Kawser Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Bousson"> K. Bousson</a>, <a href="https://publications.waset.org/abstracts/search?q=Milca%20F.%20Coelho"> Milca F. Coelho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 4D flight trajectory optimization is one of the key ingredients to improve flight efficiency and to enhance the air traffic capacity in the current air traffic management (ATM). The present paper explores the iterative dynamic programming (IDP) as a potential numerical optimization method for 4D flight trajectory optimization. IDP is an iterative version of the Dynamic programming (DP) method. Due to the numerical framework, DP is very suitable to deal with nonlinear discrete dynamic systems. The 4D waypoint representation of the flight trajectory is similar to the discretization by a grid system; thus DP is a natural method to deal with the 4D flight trajectory optimization. However, the computational time and space complexity demanded by the DP is enormous due to the immense number of grid points required to find the optimum, which prevents the use of the DP in many practical high dimension problems. On the other hand, the IDP has shown potentials to deal successfully with high dimension optimal control problems even with a few numbers of grid points at each stage, which reduces the computational effort over the traditional DP approach. Although the IDP has been applied successfully in chemical engineering problems, IDP is yet to be validated in 4D flight trajectory optimization problems. In this paper, the IDP has been successfully used to generate minimum length 4D optimal trajectory avoiding any obstacle in its path, such as a no-fly zone or residential areas when flying in low altitude to reduce noise pollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=4D%20waypoint%20navigation" title="4D waypoint navigation">4D waypoint navigation</a>, <a href="https://publications.waset.org/abstracts/search?q=iterative%20dynamic%20programming" title=" iterative dynamic programming"> iterative dynamic programming</a>, <a href="https://publications.waset.org/abstracts/search?q=obstacle%20avoidance" title=" obstacle avoidance"> obstacle avoidance</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectory%20optimization" title=" trajectory optimization"> trajectory optimization</a> </p> <a href="https://publications.waset.org/abstracts/106496/iterative-dynamic-programming-for-4d-flight-trajectory-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1584</span> Enhancing the Recruitment Process through Machine Learning: An Automated CV Screening System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaoutar%20Ben%20Azzou">Kaoutar Ben Azzou</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanaa%20Talei"> Hanaa Talei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human resources is an important department in each organization as it manages the life cycle of employees from recruitment training to retirement or termination of contracts. The recruitment process starts with a job opening, followed by a selection of the best-fit candidates from all applicants. Matching the best profile for a job position requires a manual way of looking at many CVs, which requires hours of work that can sometimes lead to choosing not the best profile. The work presented in this paper aims at reducing the workload of HR personnel by automating the preliminary stages of the candidate screening process, thereby fostering a more streamlined recruitment workflow. This tool introduces an automated system designed to help with the recruitment process by scanning candidates' CVs, extracting pertinent features, and employing machine learning algorithms to decide the most fitting job profile for each candidate. Our work employs natural language processing (NLP) techniques to identify and extract key features from unstructured text extracted from a CV, such as education, work experience, and skills. Subsequently, the system utilizes these features to match candidates with job profiles, leveraging the power of classification algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automated%20recruitment" title="automated recruitment">automated recruitment</a>, <a href="https://publications.waset.org/abstracts/search?q=candidate%20screening" title=" candidate screening"> candidate screening</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20resources%20management" title=" human resources management"> human resources management</a> </p> <a href="https://publications.waset.org/abstracts/183436/enhancing-the-recruitment-process-through-machine-learning-an-automated-cv-screening-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">56</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1583</span> Adaptive Optimal Controller for Uncertain Inverted Pendulum System: A Dynamic Programming Approach for Continuous Time System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dao%20Phuong%20Nam">Dao Phuong Nam</a>, <a href="https://publications.waset.org/abstracts/search?q=Tran%20Van%20Tuyen"> Tran Van Tuyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Do%20Trong%20Tan"> Do Trong Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Bui%20Minh%20Dinh"> Bui Minh Dinh</a>, <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Van%20Huong"> Nguyen Van Huong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we investigate the adaptive optimal control law for continuous-time systems with input disturbances and unknown parameters. This paper extends previous works to obtain the robust control law of uncertain systems. Through theoretical analysis, an adaptive dynamic programming (ADP) based optimal control is proposed to stabilize the closed-loop system and ensure the convergence properties of proposed iterative algorithm. Moreover, the global asymptotic stability (GAS) for closed system is also analyzed. The theoretical analysis for continuous-time systems and simulation results demonstrate the performance of the proposed algorithm for an inverted pendulum system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=approximate%2Fadaptive%20dynamic%20programming" title="approximate/adaptive dynamic programming">approximate/adaptive dynamic programming</a>, <a href="https://publications.waset.org/abstracts/search?q=ADP" title=" ADP"> ADP</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20optimal%20control%20law" title=" adaptive optimal control law"> adaptive optimal control law</a>, <a href="https://publications.waset.org/abstracts/search?q=input%20state%20stability" title=" input state stability"> input state stability</a>, <a href="https://publications.waset.org/abstracts/search?q=ISS" title=" ISS"> ISS</a>, <a href="https://publications.waset.org/abstracts/search?q=inverted%20pendulum" title=" inverted pendulum"> inverted pendulum</a> </p> <a href="https://publications.waset.org/abstracts/80356/adaptive-optimal-controller-for-uncertain-inverted-pendulum-system-a-dynamic-programming-approach-for-continuous-time-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1582</span> The Effective of Training Program Using Neuro- Linguistic Programming (NLP) to Reduce the Test Anxiety through the Use of Biological Feedback</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Fakehy">Mohammed Fakehy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Haggag"> Mohammed Haggag</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of test anxiety considered as one of the most important and most complex psychological problems faced by students of King Saud University, where university students in a need to bring their reassurance and psychological comfort, relieves feeling pain and difficulties of the study. Recently, there are programs and science that help human to change, including the science Linguistic Programming this neural science stems from not just the tips of the need to make the effort or continue to work, but provides the keys in which one can be controlled in the internal environment. Even human potential energy is extracted seeking to achieve success and happiness and excellence. Through the work of the researchers as members of the teaching staff at King Saud University and specialists in the field of psychology noticed the suffering of some students of King Saud University, test anxiety. In an attempt by the researchers to mitigate as much as possible of the unity of this concern, students will have a training program in Neuro Linguistic Programming. The main Question of this study is What is the effectiveness of the impact of a training program using NLP to reduce test anxiety by using a biological feedback. Therefore, the results of this study might serve as a good announcement about the usefulness of NLP programs which influence future research to significant effect of NLP on test anxiety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neuro%20linguistic%20programming" title="neuro linguistic programming">neuro linguistic programming</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20anxiety" title=" test anxiety"> test anxiety</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20feedback" title=" biological feedback"> biological feedback</a>, <a href="https://publications.waset.org/abstracts/search?q=king%20saud" title=" king saud"> king saud</a> </p> <a href="https://publications.waset.org/abstracts/27185/the-effective-of-training-program-using-neuro-linguistic-programming-nlp-to-reduce-the-test-anxiety-through-the-use-of-biological-feedback" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27185.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">526</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1581</span> Robotic Arm-Automated Spray Painting with One-Shot Object Detection and Region-Based Path Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iqraq%20Kamal">Iqraq Kamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Akmal%20Razif"> Akmal Razif</a>, <a href="https://publications.waset.org/abstracts/search?q=Sivadas%20Chandra%20Sekaran"> Sivadas Chandra Sekaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Syazwan%20Hisaburi"> Ahmad Syazwan Hisaburi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Painting plays a crucial role in the aerospace manufacturing industry, serving both protective and cosmetic purposes for components. However, the traditional manual painting method is time-consuming and labor-intensive, posing challenges for the sector in achieving higher efficiency. Additionally, the current automated robot path planning has been a bottleneck for spray painting processes, as typical manual teaching methods are time-consuming, error-prone, and skill-dependent. Therefore, it is essential to develop automated tool path planning methods to replace manual ones, reducing costs and improving product quality. Focusing on flat panel painting in aerospace manufacturing, this study aims to address issues related to unreliable part identification techniques caused by the high-mixture, low-volume nature of the industry. The proposed solution involves using a spray gun and a UR10 robotic arm with a vision system that utilizes one-shot object detection (OS2D) to identify parts accurately. Additionally, the research optimizes path planning by concentrating on the region of interest—specifically, the identified part, rather than uniformly covering the entire painting tray. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerospace%20manufacturing" title="aerospace manufacturing">aerospace manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=one-shot%20object%20detection" title=" one-shot object detection"> one-shot object detection</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20spray%20painting" title=" automated spray painting"> automated spray painting</a>, <a href="https://publications.waset.org/abstracts/search?q=vision-based%20path%20optimization" title=" vision-based path optimization"> vision-based path optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=automation" title=" automation"> automation</a>, <a href="https://publications.waset.org/abstracts/search?q=robotic%20arm" title=" robotic arm"> robotic arm</a> </p> <a href="https://publications.waset.org/abstracts/176471/robotic-arm-automated-spray-painting-with-one-shot-object-detection-and-region-based-path-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1580</span> Credit Risk Evaluation Using Genetic Programming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ines%20Gasmi">Ines Gasmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Salima%20Smiti"> Salima Smiti</a>, <a href="https://publications.waset.org/abstracts/search?q=Makram%20Soui"> Makram Soui</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Ghedira"> Khaled Ghedira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Credit risk is considered as one of the important issues for financial institutions. It provokes great losses for banks. To this objective, numerous methods for credit risk evaluation have been proposed. Many evaluation methods are black box models that cannot adequately reveal information hidden in the data. However, several works have focused on building transparent rules-based models. For credit risk assessment, generated rules must be not only highly accurate, but also highly interpretable. In this paper, we aim to build both, an accurate and transparent credit risk evaluation model which proposes a set of classification rules. In fact, we consider the credit risk evaluation as an optimization problem which uses a genetic programming (GP) algorithm, where the goal is to maximize the accuracy of generated rules. We evaluate our proposed approach on the base of German and Australian credit datasets. We compared our finding with some existing works; the result shows that the proposed GP outperforms the other models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=credit%20risk%20assessment" title="credit risk assessment">credit risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=rule%20generation" title=" rule generation"> rule generation</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20programming" title=" genetic programming"> genetic programming</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20selection" title=" feature selection"> feature selection</a> </p> <a href="https://publications.waset.org/abstracts/81801/credit-risk-evaluation-using-genetic-programming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1579</span> Integer Programming-Based Generation of Difficulty Level for a Racing Game</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sangchul%20Kim">Sangchul Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Dosaeng%20Park"> Dosaeng Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is one of the important design issues to provide various levels of difficulty in order to suit the skillfulness of an individual. In this paper we propose an integer programming-based method for selecting a mixture of challenges for a racing game that meet a given degree of difficulty. The proposed method can also be used to dynamically adjust the difficulty of the game during the progression of playing. By experiments, it is shown that our method performs well enough to generate games with various degrees of difficulty that match the perception of players. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=level%20generation" title="level generation">level generation</a>, <a href="https://publications.waset.org/abstracts/search?q=level%20adjustment" title=" level adjustment"> level adjustment</a>, <a href="https://publications.waset.org/abstracts/search?q=racing%20game" title=" racing game"> racing game</a>, <a href="https://publications.waset.org/abstracts/search?q=ip" title=" ip"> ip</a> </p> <a href="https://publications.waset.org/abstracts/31407/integer-programming-based-generation-of-difficulty-level-for-a-racing-game" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1578</span> Study of ANFIS and ARIMA Model for Weather Forecasting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bandreddy%20Anand%20Babu">Bandreddy Anand Babu</a>, <a href="https://publications.waset.org/abstracts/search?q=Srinivasa%20Rao%20Mandadi"> Srinivasa Rao Mandadi</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Pradeep%20Reddy"> C. Pradeep Reddy</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Ramesh%20Babu"> N. Ramesh Babu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper quickly illustrate the correlation investigation of Auto-Regressive Integrated Moving and Average (ARIMA) and daptive Network Based Fuzzy Inference System (ANFIS) models done by climate estimating. The climate determining is taken from University of Waterloo. The information is taken as Relative Humidity, Ambient Air Temperature, Barometric Pressure and Wind Direction utilized within this paper. The paper is carried out by analyzing the exhibitions are seen by demonstrating of ARIMA and ANIFIS model like with Sum of average of errors. Versatile Network Based Fuzzy Inference System (ANFIS) demonstrating is carried out by Mat lab programming and Auto-Regressive Integrated Moving and Average (ARIMA) displaying is produced by utilizing XLSTAT programming. ANFIS is carried out in Fuzzy Logic Toolbox in Mat Lab programming. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ARIMA" title="ARIMA">ARIMA</a>, <a href="https://publications.waset.org/abstracts/search?q=ANFIS" title=" ANFIS"> ANFIS</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20surmising%20tool%20stash" title=" fuzzy surmising tool stash"> fuzzy surmising tool stash</a>, <a href="https://publications.waset.org/abstracts/search?q=weather%20forecasting" title=" weather forecasting"> weather forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=MATLAB" title=" MATLAB"> MATLAB</a> </p> <a href="https://publications.waset.org/abstracts/13743/study-of-anfis-and-arima-model-for-weather-forecasting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13743.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1577</span> Welding Process Selection for Storage Tank by Integrated Data Envelopment Analysis and Fuzzy Credibility Constrained Programming Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahmad%20Wisnu%20Wardana">Rahmad Wisnu Wardana</a>, <a href="https://publications.waset.org/abstracts/search?q=Eakachai%20Warinsiriruk"> Eakachai Warinsiriruk</a>, <a href="https://publications.waset.org/abstracts/search?q=Sutep%20Joy-A-Ka"> Sutep Joy-A-Ka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Selecting the most suitable welding process usually depends on experiences or common application in similar companies. However, this approach generally ignores many criteria that can be affecting the suitable welding process selection. Therefore, knowledge automation through knowledge-based systems will significantly improve the decision-making process. The aims of this research propose integrated data envelopment analysis (DEA) and fuzzy credibility constrained programming approach for identifying the best welding process for stainless steel storage tank in the food and beverage industry. The proposed approach uses fuzzy concept and credibility measure to deal with uncertain data from experts&#39; judgment. Furthermore, 12 parameters are used to determine the most appropriate welding processes among six competitive welding processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=welding%20process%20selection" title="welding process selection">welding process selection</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20envelopment%20analysis" title=" data envelopment analysis"> data envelopment analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20credibility%20constrained%20programming" title=" fuzzy credibility constrained programming"> fuzzy credibility constrained programming</a>, <a href="https://publications.waset.org/abstracts/search?q=storage%20tank" title=" storage tank"> storage tank</a> </p> <a href="https://publications.waset.org/abstracts/96188/welding-process-selection-for-storage-tank-by-integrated-data-envelopment-analysis-and-fuzzy-credibility-constrained-programming-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1576</span> Interval Bilevel Linear Fractional Programming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Hamidi">F. Hamidi</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Amiri"> N. Amiri</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Mishmast%20Nehi"> H. Mishmast Nehi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Bilevel Programming (BP) model has been presented for a decision making process that consists of two decision makers in a hierarchical structure. In fact, BP is a model for a static two person game (the leader player in the upper level and the follower player in the lower level) wherein each player tries to optimize his/her personal objective function under dependent constraints; this game is sequential and non-cooperative. The decision making variables are divided between the two players and one’s choice affects the other’s benefit and choices. In other words, BP consists of two nested optimization problems with two objective functions (upper and lower) where the constraint region of the upper level problem is implicitly determined by the lower level problem. In real cases, the coefficients of an optimization problem may not be precise, i.e. they may be interval. In this paper we develop an algorithm for solving interval bilevel linear fractional programming problems. That is to say, bilevel problems in which both objective functions are linear fractional, the coefficients are interval and the common constraint region is a polyhedron. From the original problem, the best and the worst bilevel linear fractional problems have been derived and then, using the extended Charnes and Cooper transformation, each fractional problem can be reduced to a linear problem. Then we can find the best and the worst optimal values of the leader objective function by two algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=best%20and%20worst%20optimal%20solutions" title="best and worst optimal solutions">best and worst optimal solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=bilevel%20programming" title=" bilevel programming"> bilevel programming</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional" title=" fractional"> fractional</a>, <a href="https://publications.waset.org/abstracts/search?q=interval%20coefficients" title=" interval coefficients"> interval coefficients</a> </p> <a href="https://publications.waset.org/abstracts/34778/interval-bilevel-linear-fractional-programming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1575</span> Automated Natural Hazard Zonation System with Internet-SMS Warning: Distributed GIS for Sustainable Societies Creating Schema and Interface for Mapping and Communication</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Devanjan%20Bhattacharya">Devanjan Bhattacharya</a>, <a href="https://publications.waset.org/abstracts/search?q=Jitka%20Komarkova"> Jitka Komarkova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research describes the implementation of a novel and stand-alone system for dynamic hazard warning. The system uses all existing infrastructure already in place like mobile networks, a laptop/PC and the small installation software. The geospatial dataset are the maps of a region which are again frugal. Hence there is no need to invest and it reaches everyone with a mobile. A novel architecture of hazard assessment and warning introduced where major technologies in ICT interfaced to give a unique WebGIS based dynamic real time geohazard warning communication system. A never before architecture introduced for integrating WebGIS with telecommunication technology. Existing technologies interfaced in a novel architectural design to address a neglected domain in a way never done before–through dynamically updatable WebGIS based warning communication. The work publishes new architecture and novelty in addressing hazard warning techniques in sustainable way and user friendly manner. Coupling of hazard zonation and hazard warning procedures into a single system has been shown. Generalized architecture for deciphering a range of geo-hazards has been developed. Hence the developmental work presented here can be summarized as the development of internet-SMS based automated geo-hazard warning communication system; integrating a warning communication system with a hazard evaluation system; interfacing different open-source technologies towards design and development of a warning system; modularization of different technologies towards development of a warning communication system; automated data creation, transformation and dissemination over different interfaces. The architecture of the developed warning system has been functionally automated as well as generalized enough that can be used for any hazard and setup requirement has been kept to a minimum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geospatial" title="geospatial">geospatial</a>, <a href="https://publications.waset.org/abstracts/search?q=web-based%20GIS" title=" web-based GIS"> web-based GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=geohazard" title=" geohazard"> geohazard</a>, <a href="https://publications.waset.org/abstracts/search?q=warning%20system" title=" warning system"> warning system</a> </p> <a href="https://publications.waset.org/abstracts/5232/automated-natural-hazard-zonation-system-with-internet-sms-warning-distributed-gis-for-sustainable-societies-creating-schema-and-interface-for-mapping-and-communication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5232.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1574</span> Highly Automated Trucks In Intermodal Logistics: Findings From a Field Test in Railport and Container Depot Operations in Germany</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dustin%20Sch%C3%B6der">Dustin Schöder</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The potential benefits of the utilization of highly automated and autonomous trucks in logistics operations are the subject of interest to the entire logistics industry. The benefits of the use of these new technologies were scientifically investigated and implemented in roadmaps. So far, reliable data and experiences from real life use cases are still limited. A German research consortium of both academics and industry developed a highly automated (SAE level 4) vehicle for yard operations at railports and container depots. After development and testing, a several month field test at the DUSS Terminal in Ulm-Dornstadt (Germany) and the nearby DB Intermodal Services Container Depot in Ulm-Dornstadt was conducted. The truck was piloted in a shuttle service between both sites. In a holistic automation approach, the vehicle was integrated into a digital communication platform so that the truck could move autonomously without a driver and his manual interactions with a wide variety of stakeholders. The main goal is to investigate the effects of highly automated trucks in the key processes of container loading, unloading and container relocation on holistic railport yard operation. The field test data were used to investigate changes in process efficiency of key processes of railport and container yard operations. Moreover, effects on the capacity utilization and potentials for smothering peak workloads were analyzed. The results state that process efficiency in the piloted use case was significantly higher. The reason for that could be found in the digitalized data exchange and automated dispatch. However, the field test has shown that the effect is greatly varying depending on the ratio of highly automated and manual trucks in the yard as well as on the congestion level in the loading area. Furthermore, the data confirmed that under the right conditions, the capacity utilization of highly automated trucks could be increased. In regard to the potential for smothering peak workloads, no significant findings could be made based on the limited requirements and regulations of railway operation in Germany. In addition, an empirical survey among railport managers, operational supervisors, innovation managers and strategists (n=15) within the logistics industry in Germany was conducted. The goal was to identify key characteristics of future railports and terminals as well as requirements that railports will have to meet in the future. Furthermore, the railport processes where automation and autonomization make the greatest impact, as well as hurdles and challenges in the introduction of new technologies, have been surveyed. Hence, further potential use cases of highly automated and autonomous applications could be identified, and expectations have been mapped. As a result, a highly detailed and practice-based roadmap towards a ‘terminal 4.0’ was developed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=highly%20automated%20driving" title="highly automated driving">highly automated driving</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20driving" title=" autonomous driving"> autonomous driving</a>, <a href="https://publications.waset.org/abstracts/search?q=SAE%20level%204" title=" SAE level 4"> SAE level 4</a>, <a href="https://publications.waset.org/abstracts/search?q=railport%20operations" title=" railport operations"> railport operations</a>, <a href="https://publications.waset.org/abstracts/search?q=container%20depot" title=" container depot"> container depot</a>, <a href="https://publications.waset.org/abstracts/search?q=intermodal%20logistics" title=" intermodal logistics"> intermodal logistics</a>, <a href="https://publications.waset.org/abstracts/search?q=potentials%20of%20autonomization" title=" potentials of autonomization"> potentials of autonomization</a> </p> <a href="https://publications.waset.org/abstracts/165311/highly-automated-trucks-in-intermodal-logistics-findings-from-a-field-test-in-railport-and-container-depot-operations-in-germany" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165311.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1573</span> A User-Directed Approach to Optimization via Metaprogramming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eashan%20Hatti">Eashan Hatti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In software development, programmers often must make a choice between high-level programming and high-performance programs. High-level programming encourages the use of complex, pervasive abstractions. However, the use of these abstractions degrades performance-high performance demands that programs be low-level. In a compiler, the optimizer attempts to let the user have both. The optimizer takes high-level, abstract code as an input and produces low-level, performant code as an output. However, there is a problem with having the optimizer be a built-in part of the compiler. Domain-specific abstractions implemented as libraries are common in high-level languages. As a language’s library ecosystem grows, so does the number of abstractions that programmers will use. If these abstractions are to be performant, the optimizer must be extended with new optimizations to target them, or these abstractions must rely on existing general-purpose optimizations. The latter is often not as effective as needed. The former presents too significant of an effort for the compiler developers, as they are the only ones who can extend the language with new optimizations. Thus, the language becomes more high-level, yet the optimizer – and, in turn, program performance – falls behind. Programmers are again confronted with a choice between high-level programming and high-performance programs. To investigate a potential solution to this problem, we developed Peridot, a prototype programming language. Peridot’s main contribution is that it enables library developers to easily extend the language with new optimizations themselves. This allows the optimization workload to be taken off the compiler developers’ hands and given to a much larger set of people who can specialize in each problem domain. Because of this, optimizations can be much more effective while also being much more numerous. To enable this, Peridot supports metaprogramming designed for implementing program transformations. The language is split into two fragments or “levels”, one for metaprogramming, the other for high-level general-purpose programming. The metaprogramming level supports logic programming. Peridot’s key idea is that optimizations are simply implemented as metaprograms. The meta level supports several specific features which make it particularly suited to implementing optimizers. For instance, metaprograms can automatically deduce equalities between the programs they are optimizing via unification, deal with variable binding declaratively via higher-order abstract syntax, and avoid the phase-ordering problem via non-determinism. We have found that this design centered around logic programming makes optimizers concise and easy to write compared to their equivalents in functional or imperative languages. Overall, implementing Peridot has shown that its design is a viable solution to the problem of writing code which is both high-level and performant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimization" title="optimization">optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=metaprogramming" title=" metaprogramming"> metaprogramming</a>, <a href="https://publications.waset.org/abstracts/search?q=logic%20programming" title=" logic programming"> logic programming</a>, <a href="https://publications.waset.org/abstracts/search?q=abstraction" title=" abstraction"> abstraction</a> </p> <a href="https://publications.waset.org/abstracts/156564/a-user-directed-approach-to-optimization-via-metaprogramming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156564.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1572</span> A Robust Optimization Model for the Single-Depot Capacitated Location-Routing Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdolsalam%20Ghaderi">Abdolsalam Ghaderi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the single-depot capacitated location-routing problem under uncertainty is presented. The problem aims to find the optimal location of a single depot and the routing of vehicles to serve the customers when the parameters may change under different circumstances. This problem has many applications, especially in the area of supply chain management and distribution systems. To get closer to real-world situations, travel time of vehicles, the fixed cost of vehicles usage and customers&rsquo; demand are considered as a source of uncertainty. A combined approach including robust optimization and stochastic programming was presented to deal with the uncertainty in the problem at hand. For this purpose, a mixed integer programming model is developed and a heuristic algorithm based on Variable Neighborhood Search(VNS) is presented to solve the model. Finally, the computational results are presented and future research directions are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=location-routing%20problem" title="location-routing problem">location-routing problem</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20optimization" title=" robust optimization"> robust optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20programming" title=" stochastic programming"> stochastic programming</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20neighborhood%20search" title=" variable neighborhood search"> variable neighborhood search</a> </p> <a href="https://publications.waset.org/abstracts/83797/a-robust-optimization-model-for-the-single-depot-capacitated-location-routing-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1571</span> Airport Pavement Crack Measurement Systems and Crack Density for Pavement Evaluation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Ashtiani">Ali Ashtiani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Shirazi"> Hamid Shirazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reviews the status of existing practice and research related to measuring pavement cracking and using crack density as a pavement surface evaluation protocol. Crack density for pavement evaluation is currently not widely used within the airport community and its use by the highway community is limited. However, surface cracking is a distress that is closely monitored by airport staff and significantly influences the development of maintenance, rehabilitation and reconstruction plans for airport pavements. Therefore crack density has the potential to become an important indicator of pavement condition if the type, severity and extent of surface cracking can be accurately measured. A pavement distress survey is an essential component of any pavement assessment. Manual crack surveying has been widely used for decades to measure pavement performance. However, the accuracy and precision of manual surveys can vary depending upon the surveyor and performing surveys may disrupt normal operations. Given the variability of manual surveys, this method has shown inconsistencies in distress classification and measurement. This can potentially impact the planning for pavement maintenance, rehabilitation and reconstruction and the associated funding strategies. A substantial effort has been devoted for the past 20 years to reduce the human intervention and the error associated with it by moving toward automated distress collection methods. The automated methods refer to the systems that identify, classify and quantify pavement distresses through processes that require no or very minimal human intervention. This principally involves the use of a digital recognition software to analyze and characterize pavement distresses. The lack of established protocols for measurement and classification of pavement cracks captured using digital images is a challenge to developing a reliable automated system for distress assessment. Variations in types and severity of distresses, different pavement surface textures and colors and presence of pavement joints and edges all complicate automated image processing and crack measurement and classification. This paper summarizes the commercially available systems and technologies for automated pavement distress evaluation. A comprehensive automated pavement distress survey involves collection, interpretation, and processing of the surface images to identify the type, quantity and severity of the surface distresses. The outputs can be used to quantitatively calculate the crack density. The systems for automated distress survey using digital images reviewed in this paper can assist the airport industry in the development of a pavement evaluation protocol based on crack density. Analysis of automated distress survey data can lead to a crack density index. This index can be used as a means of assessing pavement condition and to predict pavement performance. This can be used by airport owners to determine the type of pavement maintenance and rehabilitation in a more consistent way. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airport%20pavement%20management" title="airport pavement management">airport pavement management</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20density" title=" crack density"> crack density</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement%20evaluation" title=" pavement evaluation"> pavement evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement%20management" title=" pavement management"> pavement management</a> </p> <a href="https://publications.waset.org/abstracts/80770/airport-pavement-crack-measurement-systems-and-crack-density-for-pavement-evaluation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80770.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1570</span> Fully Automated Methods for the Detection and Segmentation of Mitochondria in Microscopy Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Blessing%20Ojeme">Blessing Ojeme</a>, <a href="https://publications.waset.org/abstracts/search?q=Frederick%20Quinn"> Frederick Quinn</a>, <a href="https://publications.waset.org/abstracts/search?q=Russell%20Karls"> Russell Karls</a>, <a href="https://publications.waset.org/abstracts/search?q=Shannon%20Quinn"> Shannon Quinn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The detection and segmentation of mitochondria from fluorescence microscopy are crucial for understanding the complex structure of the nervous system. However, the constant fission and fusion of mitochondria and image distortion in the background make the task of detection and segmentation challenging. In the literature, a number of open-source software tools and artificial intelligence (AI) methods have been described for analyzing mitochondrial images, achieving remarkable classification and quantitation results. However, the availability of combined expertise in the medical field and AI required to utilize these tools poses a challenge to its full adoption and use in clinical settings. Motivated by the advantages of automated methods in terms of good performance, minimum detection time, ease of implementation, and cross-platform compatibility, this study proposes a fully automated framework for the detection and segmentation of mitochondria using both image shape information and descriptive statistics. Using the low-cost, open-source python and openCV library, the algorithms are implemented in three stages: pre-processing, image binarization, and coarse-to-fine segmentation. The proposed model is validated using the mitochondrial fluorescence dataset. Ground truth labels generated using a Lab kit were also used to evaluate the performance of our detection and segmentation model. The study produces good detection and segmentation results and reports the challenges encountered during the image analysis of mitochondrial morphology from the fluorescence mitochondrial dataset. A discussion on the methods and future perspectives of fully automated frameworks conclude the paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2D" title="2D">2D</a>, <a href="https://publications.waset.org/abstracts/search?q=binarization" title=" binarization"> binarization</a>, <a href="https://publications.waset.org/abstracts/search?q=CLAHE" title=" CLAHE"> CLAHE</a>, <a href="https://publications.waset.org/abstracts/search?q=detection" title=" detection"> detection</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence%20microscopy" title=" fluorescence microscopy"> fluorescence microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondria" title=" mitochondria"> mitochondria</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation" title=" segmentation"> segmentation</a> </p> <a href="https://publications.waset.org/abstracts/153306/fully-automated-methods-for-the-detection-and-segmentation-of-mitochondria-in-microscopy-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153306.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1569</span> A Simplified Model of the Control System with PFM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bekmurza%20H.%20Aitchanov">Bekmurza H. Aitchanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Sholpan%20K.%20Aitchanova"> Sholpan K. Aitchanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Olimzhon%20A.%20Baimuratov"> Olimzhon A. Baimuratov</a>, <a href="https://publications.waset.org/abstracts/search?q=Aitkul%20N.%20Aldibekova"> Aitkul N. Aldibekova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work considers the automated control system (ACS) of milk quality during its magnetic field processing. For achieving high level of quality control methods were applied transformation of complex nonlinear systems in a linearized system with a less complex structure. Presented ACS is adjustable by seven parameters: mass fraction of fat, mass fraction of dry skim milk residues (DSMR), density, mass fraction of added water, temperature, mass fraction of protein, acidity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluids%20magnetization" title="fluids magnetization">fluids magnetization</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20magnetic%20resonance" title=" nuclear magnetic resonance"> nuclear magnetic resonance</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20control%20system" title=" automated control system"> automated control system</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20pulse-frequency%20modulator" title=" dynamic pulse-frequency modulator"> dynamic pulse-frequency modulator</a>, <a href="https://publications.waset.org/abstracts/search?q=PFM" title=" PFM"> PFM</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20systems" title=" nonlinear systems"> nonlinear systems</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20model" title=" structural model"> structural model</a> </p> <a href="https://publications.waset.org/abstracts/26701/a-simplified-model-of-the-control-system-with-pfm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1568</span> Manual to Automated Testing: An Effort-Based Approach for Determining the Priority of Software Test Automation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peter%20Sabev">Peter Sabev</a>, <a href="https://publications.waset.org/abstracts/search?q=Katalina%20Grigorova"> Katalina Grigorova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Test automation allows performing difficult and time consuming manual software testing tasks efficiently, quickly and repeatedly. However, development and maintenance of automated tests is expensive, so it needs a proper prioritization what to automate first. This paper describes a simple yet efficient approach for such prioritization of test cases based on the effort needed for both manual execution and software test automation. The suggested approach is very flexible because it allows working with a variety of assessment methods, and adding or removing new candidates at any time. The theoretical ideas presented in this article have been successfully applied in real world situations in several software companies by the authors and their colleagues including testing of real estate websites, cryptographic and authentication solutions, OSGi-based middleware framework that has been applied in various systems for smart homes, connected cars, production plants, sensors, home appliances, car head units and engine control units (ECU), vending machines, medical devices, industry equipment and other devices that either contain or are connected to an embedded service gateway. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automated%20testing" title="automated testing">automated testing</a>, <a href="https://publications.waset.org/abstracts/search?q=manual%20testing" title=" manual testing"> manual testing</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20automation" title=" test automation"> test automation</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20testing" title=" software testing"> software testing</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20prioritization" title=" test prioritization"> test prioritization</a> </p> <a href="https://publications.waset.org/abstracts/40860/manual-to-automated-testing-an-effort-based-approach-for-determining-the-priority-of-software-test-automation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40860.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1567</span> Study on Optimal Control Strategy of PM2.5 in Wuhan, China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qiuling%20Xie">Qiuling Xie</a>, <a href="https://publications.waset.org/abstracts/search?q=Shanliang%20Zhu"> Shanliang Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zongdi%20Sun"> Zongdi Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we analyzed the correlation relationship among PM2.5 from other five Air Quality Indices (AQIs) based on the grey relational degree, and built a multivariate nonlinear regression equation model of PM2.5 and the five monitoring indexes. For the optimal control problem of PM2.5, we took the partial large Cauchy distribution of membership equation as satisfaction function. We established a nonlinear programming model with the goal of maximum performance to price ratio. And the optimal control scheme is given. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grey%20relational%20degree" title="grey relational degree">grey relational degree</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20linear%20regression" title=" multiple linear regression"> multiple linear regression</a>, <a href="https://publications.waset.org/abstracts/search?q=membership%20function" title=" membership function"> membership function</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20programming" title=" nonlinear programming"> nonlinear programming</a> </p> <a href="https://publications.waset.org/abstracts/54538/study-on-optimal-control-strategy-of-pm25-in-wuhan-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1566</span> Adaptive Programming for Indigenous Early Learning: The Early Years Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rachel%20Buchanan">Rachel Buchanan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rebecca%20LaRiviere"> Rebecca LaRiviere</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Context: The ongoing effects of colonialism continue to be experienced through paternalistic policies and funding processes that cause disjuncture between and across Indigenous early childhood programming on-reserve and in urban and Northern settings in Canada. While various educational organizations and social service providers have risen to address these challenges in the short, medium and long term, there continues to be a lack in nation-wide cohesive, culturally grounded, and meaningful early learning programming for Indigenous children in Canada. Indigenous-centered early learning programs tend to face one of two scaling dilemmas: their program goals are too prescriptive to enable the program to be meaningfully replicated in different cultural/ community settings, or their program goals are too broad to be meaningfully adapted to the unique cultural and contextual needs and desires of Indigenous communities (the “franchise approach”). There are over 600 First Nations communities in Canada representing more than 50 Nations and languages. Consequently, Indigenous early learning programming cannot be applied with a universal or “one size fits all” approach. Sustainable and comprehensive programming must be responsive to each community context, building upon existing strengths and assets to avoid program duplication and irrelevance. Thesis: Community-driven and culturally adapted early childhood programming is critical but cannot be achieved on a large scale within traditional program models that are constrained by prescriptive overarching program goals. Principles, rather than goals, are an effective way to navigate and evaluate complex and dynamic systems. Principles guide an intervention to be adaptable, flexible and scalable. The Martin Family Initiative (MFI) ’s Early Years program engages a principles-based approach to programming. As will be discussed in this paper, this approach enables the program to catalyze existing community-based strengths and organizational assets toward bridging gaps across and disjuncture between Indigenous early learning programs, as well as to scale programming in sustainable, context-responsive and dynamic ways. This paper argues that using a principles-driven and adaptive scaling approach, the Early Years model establishes important learnings for culturally adapted Indigenous early learning programming in Canada. Methodology: The Early Years has leveraged this approach to develop an array of programming with partner organizations and communities across the country. The Early Years began as a singular pilot project in one First Nation. In just three years, it has expanded to five different regions and community organizations. In each context, the program supports the partner organization through different means and to different ends, the extent to which is determined in partnership with each community-based organization: in some cases, this means supporting the organization to build home visiting programming from the ground-up; in others, it means offering organization-specific culturally adapted early learning resources to support the programming that already exists in communities. Principles underpin but do not define the practices of the program in each of these relationships. This paper will explore numerous examples of principles-based adaptability with the context of the Early Years, concluding that the program model offers theadaptability and dynamism necessary to respond to unique and ever-evolving community contexts and needs of Indigenous children today. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=culturally%20adapted%20programming" title="culturally adapted programming">culturally adapted programming</a>, <a href="https://publications.waset.org/abstracts/search?q=indigenous%20early%20learning" title=" indigenous early learning"> indigenous early learning</a>, <a href="https://publications.waset.org/abstracts/search?q=principles-based%20approach" title=" principles-based approach"> principles-based approach</a>, <a href="https://publications.waset.org/abstracts/search?q=program%20scaling" title=" program scaling"> program scaling</a> </p> <a href="https://publications.waset.org/abstracts/143007/adaptive-programming-for-indigenous-early-learning-the-early-years-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143007.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1565</span> TutorBot+: Automatic Programming Assistant with Positive Feedback based on LLMs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Claudia%20Mart%C3%ADnez-Araneda">Claudia Martínez-Araneda</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariella%20Guti%C3%A9rrez"> Mariella Gutiérrez</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20G%C3%B3mez"> Pedro Gómez</a>, <a href="https://publications.waset.org/abstracts/search?q=Diego%20Maldonado"> Diego Maldonado</a>, <a href="https://publications.waset.org/abstracts/search?q=Alejandra%20Segura"> Alejandra Segura</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Vidal-Castro"> Christian Vidal-Castro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this document is to showcase the preliminary work in developing an EduChatbot-type tool and measuring the effects of its use aimed at providing effective feedback to students in programming courses. This bot, hereinafter referred to as tutorBot+, was constructed based on chatGPT and is tasked with assisting and delivering timely positive feedback to students in the field of computer science at the Universidad Católica de Concepción. The proposed working method consists of four stages: (1) Immersion in the domain of Large Language Models (LLMs), (2) Development of the tutorBot+ prototype and integration, (3) Experiment design, and (4) Intervention. The first stage involves a literature review on the use of artificial intelligence in education and the evaluation of intelligent tutors, as well as research on types of feedback for learning and the domain of chatGPT. The second stage encompasses the development of tutorBot+, and the final stage involves a quasi-experimental study with students from the Programming and Database labs, where the learning outcome involves the development of computational thinking skills, enabling the use and measurement of the tool's effects. The preliminary results of this work are promising, as a functional chatBot prototype has been developed in both conversational and non-conversational versions integrated into an open-source online judge and programming contest platform system. There is also an exploration of the possibility of generating a custom model based on a pre-trained one tailored to the domain of programming. This includes the integration of the created tool and the design of the experiment to measure its utility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assessment" title="assessment">assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=chatGPT" title=" chatGPT"> chatGPT</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20strategies" title=" learning strategies"> learning strategies</a>, <a href="https://publications.waset.org/abstracts/search?q=LLMs" title=" LLMs"> LLMs</a>, <a href="https://publications.waset.org/abstracts/search?q=timely%20feedback" title=" timely feedback"> timely feedback</a> </p> <a href="https://publications.waset.org/abstracts/172610/tutorbot-automatic-programming-assistant-with-positive-feedback-based-on-llms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172610.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1564</span> Human-Automation Interaction in Law: Mapping Legal Decisions and Judgments, Cognitive Processes, and Automation Levels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dovile%20Petkeviciute-Barysiene">Dovile Petkeviciute-Barysiene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Legal technologies not only create new ways for accessing and providing legal services but also transform the role of legal practitioners. Both lawyers and users of legal services expect automated solutions to outperform people with objectivity and impartiality. Although fairness of the automated decisions is crucial, research on assessing various characteristics of automated processes related to the perceived fairness has only begun. One of the major obstacles to this research is the lack of comprehensive understanding of what legal actions are automated and could be meaningfully automated, and to what extent. Neither public nor legal practitioners oftentimes cannot envision technological input due to the lack of general without illustrative examples. The aim of this study is to map decision making stages and automation levels which are and/or could be achieved in legal actions related to pre-trial and trial processes. Major legal decisions and judgments are identified during the consultations with legal practitioners. The dual-process model of information processing is used to describe cognitive processes taking place while making legal decisions and judgments during pre-trial and trial action. Some of the existing legal technologies are incorporated into the analysis as well. Several published automation level taxonomies are considered because none of them fit well into the legal context, as they were all created for avionics, teleoperation, unmanned aerial vehicles, etc. From the information processing perspective, analysis of the legal decisions and judgments expose situations that are most sensitive to cognitive bias, among others, also help to identify areas that would benefit from the automation the most. Automation level analysis, in turn, provides a systematic approach to interaction and cooperation between humans and algorithms. Moreover, an integrated map of legal decisions and judgments, information processing characteristics, and automation levels all together provide some groundwork for the research of legal technology perceived fairness and acceptance. Acknowledgment: This project has received funding from European Social Fund (project No 09.3.3-LMT-K-712-19-0116) under grant agreement with the Research Council of Lithuania (LMTLT). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automation%20levels" title="automation levels">automation levels</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20processing" title=" information processing"> information processing</a>, <a href="https://publications.waset.org/abstracts/search?q=legal%20judgment%20and%20decision%20making" title=" legal judgment and decision making"> legal judgment and decision making</a>, <a href="https://publications.waset.org/abstracts/search?q=legal%20technology" title=" legal technology"> legal technology</a> </p> <a href="https://publications.waset.org/abstracts/130250/human-automation-interaction-in-law-mapping-legal-decisions-and-judgments-cognitive-processes-and-automation-levels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1563</span> Apply Commitment Method in Power System to Minimize the Fuel Cost</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Shaban">Mohamed Shaban</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20Yahya"> Adel Yahya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of this paper study is to schedule the power generation units to minimize fuel consumption cost based on a model that solves unit commitment problems. This can be done by utilizing forward dynamic programming method to determine the most economic scheduling of generating units. The model was applied to a power station, which consists of four generating units. The obtained results show that the applications of forward dynamic programming method offer a substantial reduction in fuel consumption cost. The fuel consumption cost has been reduced from $116,326 to $102,181 within a 24-hour period. This means saving about 12.16 % of fuel consumption cost. The study emphasizes the importance of applying modeling schedule programs to the operation of power generation units. As a consequence less consumption of fuel, less loss of power and less pollution <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unit%20commitment" title="unit commitment">unit commitment</a>, <a href="https://publications.waset.org/abstracts/search?q=forward%20dynamic" title=" forward dynamic"> forward dynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20cost" title=" fuel cost"> fuel cost</a>, <a href="https://publications.waset.org/abstracts/search?q=programming" title=" programming"> programming</a>, <a href="https://publications.waset.org/abstracts/search?q=generation%20scheduling" title=" generation scheduling"> generation scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=operation%20cost" title=" operation cost"> operation cost</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20system" title=" power system"> power system</a>, <a href="https://publications.waset.org/abstracts/search?q=generating%20units" title=" generating units"> generating units</a> </p> <a href="https://publications.waset.org/abstracts/33870/apply-commitment-method-in-power-system-to-minimize-the-fuel-cost" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33870.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">611</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1562</span> Type–2 Fuzzy Programming for Optimizing the Heat Rate of an Industrial Gas Turbine via Absorption Chiller Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Ganesan">T. Ganesan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Aris"> M. S. Aris</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Elamvazuthi"> I. Elamvazuthi</a>, <a href="https://publications.waset.org/abstracts/search?q=Momen%20Kamal%20Tageldeen"> Momen Kamal Tageldeen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Terms set in power purchase agreements (PPA) challenge power utility companies in balancing between the returns (from maximizing power production) and securing long term supply contracts at capped production. The production limitation set in the PPA has driven efforts to maximize profits through efficient and economic power production. In this paper, a combined industrial-scale gas turbine (GT) - absorption chiller (AC) system is considered to cool the GT air intake for reducing the plant&rsquo;s heat rate (HR). This GT-AC system is optimized while considering power output limitations imposed by the PPA. In addition, the proposed formulation accounts for uncertainties in the ambient temperature using Type-2 fuzzy programming. Using the enhanced chaotic differential evolution (CEDE), the Pareto frontier was constructed and the optimization results are analyzed in detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorption%20chillers%20%28AC%29" title="absorption chillers (AC)">absorption chillers (AC)</a>, <a href="https://publications.waset.org/abstracts/search?q=turbine%20inlet%20air%20cooling%20%28TIC%29" title=" turbine inlet air cooling (TIC)"> turbine inlet air cooling (TIC)</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20purchase%20agreement%20%28PPA%29" title=" power purchase agreement (PPA)"> power purchase agreement (PPA)</a>, <a href="https://publications.waset.org/abstracts/search?q=multiobjective%20optimization" title=" multiobjective optimization"> multiobjective optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=type-2%20fuzzy%20programming" title=" type-2 fuzzy programming"> type-2 fuzzy programming</a>, <a href="https://publications.waset.org/abstracts/search?q=chaotic%20differential%20evolution%20%28CDDE%29" title=" chaotic differential evolution (CDDE)"> chaotic differential evolution (CDDE)</a> </p> <a href="https://publications.waset.org/abstracts/64966/type-2-fuzzy-programming-for-optimizing-the-heat-rate-of-an-industrial-gas-turbine-via-absorption-chiller-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1561</span> Optimal Placement of Phasor Measurement Units (PMU) Using Mixed Integer Programming (MIP) for Complete Observability in Power System Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harshith%20Gowda%20K.%20S">Harshith Gowda K. S</a>, <a href="https://publications.waset.org/abstracts/search?q=Tejaskumar%20N"> Tejaskumar N</a>, <a href="https://publications.waset.org/abstracts/search?q=Shubhanga%20R.%20B"> Shubhanga R. B</a>, <a href="https://publications.waset.org/abstracts/search?q=Gowtham%20N"> Gowtham N</a>, <a href="https://publications.waset.org/abstracts/search?q=Deekshith%20Gowda%20H.%20S"> Deekshith Gowda H. S</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phasor measurement units (PMU) are playing an important role in the current power system for state estimation. It is necessary to have complete observability of the power system while minimizing the cost. For this purpose, the optimal location of the phasor measurement units in the power system is essential. In a bus system, zero injection buses need to be evaluated to minimize the number of PMUs. In this paper, the optimization problem is formulated using mixed integer programming to obtain the optimal location of the PMUs with increased observability. The formulation consists of with and without zero injection bus as constraints. The formulated problem is simulated using a CPLEX solver in the GAMS software package. The proposed method is tested on IEEE 30, IEEE 39, IEEE 57, and IEEE 118 bus systems. The results obtained show that the number of PMUs required is minimal with increased observability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PMU" title="PMU">PMU</a>, <a href="https://publications.waset.org/abstracts/search?q=observability" title=" observability"> observability</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20integer%20programming%20%28MIP%29" title=" mixed integer programming (MIP)"> mixed integer programming (MIP)</a>, <a href="https://publications.waset.org/abstracts/search?q=zero%20injection%20buses%20%28ZIB%29" title=" zero injection buses (ZIB)"> zero injection buses (ZIB)</a> </p> <a href="https://publications.waset.org/abstracts/143686/optimal-placement-of-phasor-measurement-units-pmu-using-mixed-integer-programming-mip-for-complete-observability-in-power-system-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20programming&amp;page=6" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20programming&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20programming&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20programming&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20programming&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20programming&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20programming&amp;page=6">6</a></li> <li class="page-item active"><span class="page-link">7</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20programming&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20programming&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20programming&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20programming&amp;page=58">58</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20programming&amp;page=59">59</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20programming&amp;page=8" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10