CINXE.COM

Russian Mathematical Surveys - IOPscience

<!DOCTYPE html> <html xml:lang="en" lang="en"> <head> <!-- Start cookieyes banner --> <!-- End cookieyes banner --> <title>Russian Mathematical Surveys - IOPscience</title> <meta charset="utf-8" /> <meta http-equiv="x-ua-compatible" content="IE=edge" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, minimum-scale=1.0" /> <script> function DeferJS(src) { function downloadJSAtOnload() { var element = document.createElement("script"); element.src = src; document.body.appendChild(element); } if (window.addEventListener) window.addEventListener("load", downloadJSAtOnload, false); else if (window.attachEvent) window.attachEvent("onload", downloadJSAtOnload); else window.onload = downloadJSAtOnload; } </script> <!-- start metadata--><!-- end metadata--> <script type="text/javascript"> //start common.config (function () { let config = {"ENABLE_MATHJAX_BY_DEFAULT":"true","SECURED_ENVIRONMENT":"true","SHOW_REFERENCE_ENTITLEMENT":"false"} || {}; window.config = {...config, ...window.config}; })(); //end common.config </script> <script> var _urconfig = { sid: "defc3a7d-4b34-4b6f-ad1c-0716e0a05a65", aip: 0, usePageProtocol: false }; (function (d, s) { var js = d.createElement(s), sc = d.getElementsByTagName(s)[0]; js.src = "https://hit.uptrendsdata.com/rum.min.js"; js.async = "async"; sc.parentNode.insertBefore(js, sc); } (document, "script")); </script> <!-- uptrends--> <meta name="robots" content="noarchive" /> <!--start home.baiduWebmasterTools.verification--> <!--end home.baiduWebmasterTools.verification--> <!--start home.google.verification--> <!--end home.google.verification--> <!--start common.baidu.statistics.script> --> <!--end common.baidu.statistics.script--> <!--start common.styles--> <link rel="stylesheet" href="https://static.iopscience.com/3.72.0/css/critical-styles.min.css" type="text/css"/> <link rel="stylesheet" href="https://static.iopscience.com/3.72.0/css/main-styles.min.css" media="print" onload="this.media='all'"/> <!--[if lte IE 10]> <link rel="stylesheet" href="https://static.iopscience.com/3.72.0/css/gridset-ie-lte8.css" type="text/css"/> <![endif]--> <!--end common.styles--> <!--start common.gs.head--> <!-- Google Scholar Universal Casa --> <!-- End Google Scholar Universal Casa --> <!--end common.gs.head--> <!--start common.ga.head--> <script> window.iabConfig = { allowedVendors: ['755','804', '1020'], allowedGoogleVendors: [] } </script> <!-- Google Tag Manager --> <script type="text/javascript"> (function (w, d, s, l, i) { w[l] = w[l] || []; w[l].push( {'gtm.start': new Date().getTime(), event: 'gtm.js'} ); var f = d.getElementsByTagName(s)[0], j = d.createElement(s), dl = l != 'dataLayer' ? '&l=' + l : ''; j.async = true; j.src = 'https://www.googletagmanager.com/gtm.js?id=' + i + dl; f.parentNode.insertBefore(j, f); })(window, document, 'script', 'dataLayer', 'GTM-M73Z4W'); </script> <!-- End Google Tag Manager --> <!--end common.ga.head--> <script> const mathjaxVersion = 3; </script> <script>var __uzdbm_1 = "fa4708f2-c97e-4c2b-a024-70b4af50e738";var __uzdbm_2 = "NTY4MmIwMmItY252ai00ODg3LTk1YmQtYmVkYTZkOWZmMWVhJDguMjIyLjIwOC4xNDY=";var __uzdbm_3 = "7f6000023ca493-eb27-4835-8c09-c421d01f3cf417323900706020-db7868dfe16e687810";var __uzdbm_4 = "false";var __uzdbm_5 = "uzmx";var __uzdbm_6 = "7f9000b128a503-6dd4-4651-a599-17f52bcf48211-17323900706020-048e8ec0f27dbe5510";var __uzdbm_7 = "iop.org";</script> <script> (function (w, d, e, u, c, g, a, b) { w["SSJSConnectorObj"] = w["SSJSConnectorObj"] || { ss_cid: c, domain_info: "auto", }; w[g] = function (i, j) { w["SSJSConnectorObj"][i] = j; }; a = d.createElement(e); a.async = true; if ( navigator.userAgent.indexOf('MSIE') !== -1 || navigator.appVersion.indexOf('Trident/') > -1 ) { u = u.replace("/advanced/", "/advanced/ie/"); } a.src = u; b = d.getElementsByTagName(e)[0]; b.parentNode.insertBefore(a, b); })( window, document, "script", "https://new.iopscience.iop.org/18f5227b-e27b-445a-a53f-f845fbe69b40/stormcaster.js", "cnvl", "ssConf" ); ssConf("c1", "https://new.iopscience.iop.org"); ssConf("c3", "c99a4269-161c-4242-a3f0-28d44fa6ce24"); ssConf("au", "new.iopscience.iop.org"); ssConf("cu", "validate.perfdrive.com, ssc"); </script></head> <body itemscope itemtype="http://schema.org/Organization" class="issn-0036-0279"> <a id="back-to-top-target" tabindex="-1"></a> <!-- Google Tag Manager (noscript) --> <noscript><iframe title="GA" src="https://www.googletagmanager.com/ns.html?id=GTM-M73Z4W" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <!-- End Google Tag Manager (noscript) --> <div class="content-grid"> <!-- Start Production toolbar --> <!-- End Production toolbar --> <!-- Start Downtime Banner --> <!-- End Downtime Banner --> <!-- Header starts --> <header class="content-grid__full-width" role="banner" data-nav-group> <a class="sr-skip sr-skip--overlay header__skip" href="#skip-to-content-link-target">Skip to content</a> <div class="accessibility" style="display: none;"> <p><strong>Accessibility Links</strong></p> <ul> <li><a href="#page-content">Skip to content</a></li> <li><a href="/search#contentCol">Skip to search IOPscience</a></li> <li><a href="/journals#contentCol">Skip to Journals list</a></li> <li><a href="/page/accessibility#contentCol">Accessibility help</a></li> </ul> </div> <div class="dgh-showgrid tgh-showgrid cf" name="contentCol"> <nav role="navigation" class="wd-main-nav" aria-label="Site"> <a href="#sidr-main" id="simple-menu" class="nav-top-link" aria-label="Menu"><svg aria-hidden="true" class="fa-icon fa-icon--xlrg" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><!--bars--><!--!Font Awesome Free 6.5.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M0 96C0 78.3 14.3 64 32 64H416c17.7 0 32 14.3 32 32s-14.3 32-32 32H32C14.3 128 0 113.7 0 96zM0 256c0-17.7 14.3-32 32-32H416c17.7 0 32 14.3 32 32s-14.3 32-32 32H32c-17.7 0-32-14.3-32-32zM448 416c0 17.7-14.3 32-32 32H32c-17.7 0-32-14.3-32-32s14.3-32 32-32H416c17.7 0 32 14.3 32 32z"/></svg></a> <a href="/" itemprop="url" class="header-logo wd-header-graphic"> <meta itemprop="name" content="IOPscience"> <img height="15" width="100" src="" alt=""> <span class="offscreen-hidden">IOP Science home</span> </a> <a class="btn btn-default" id="accessibility-help" href="/page/accessibility">Accessibility Help</a> <ul id="sidr" class="nav__list"> <li class="nav-search nav-item"> <button class="nav-top-link-drop-down nav-top-link-drop-down--icon" data-nav-trigger="articlelookup"> <svg class="fa-icon fa-icon--lrg" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--!Font Awesome Free 6.6.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><title>Search</title><path d="M416 208c0 45.9-14.9 88.3-40 122.7L502.6 457.4c12.5 12.5 12.5 32.8 0 45.3s-32.8 12.5-45.3 0L330.7 376c-34.4 25.2-76.8 40-122.7 40C93.1 416 0 322.9 0 208S93.1 0 208 0S416 93.1 416 208zM208 352a144 144 0 1 0 0-288 144 144 0 1 0 0 288z"/></svg> </button> <div class="nav-drop-down nav-drop-down--full-width" data-nav-item="articlelookup"> <div class="wrapper--search cf"> <div id="search" class="wd-header-search art-lookup__search"> <form accept-charset="utf-8,iso-8859-1" class="primary-search" method="get" action="/nsearch" role="search"> <div class="art-lookup__fields-wrapper"> <label for="quickSearch">Search all IOPscience content</label> <input type="search" x-webkit-speech="" name="terms" id="quickSearch" class="art-lookup__field--grow" placeholder="Search all IOPscience content" value="" escapeXml="true"/> <button type="submit" x-webkit-speech="" class="btn btn-default hdr-search-btn bd-0 art-lookup__submit">Search</button> </div> </form> </div> <div id="wd-content-finder" class="art-lookup__content-finder"> <form accept-charset="utf-8,iso-8859-1" method="get" action="/findcontent" name="contentFinderForm" id="wd-find-art-form" class="find-article-issue-display" autocomplete="OFF" aria-labelledby="article-lookup"> <fieldset> <legend id="article-lookup" class="eyebrow eyebrow--blue">Article Lookup</legend> <div class="art-lookup__fields-wrapper"> <label for="CF_JOURNAL" class="offscreen-hidden">Select journal (required)</label> <select name="CF_JOURNAL" class="find-article-select art-lookup__content-finder-field art-lookup__field--grow art-lookup__content-finder-field--first" id="CF_JOURNAL"> <option value="none">Select journal (required)</option><option value="2053-1583">2D Mater. (2014 - present)</option><option value="1004-423X">Acta Phys. Sin. (Overseas Edn) (1992 - 1999)</option><option value="2043-6262">Adv. Nat. Sci: Nanosci. Nanotechnol. (2010 - present)</option><option value="1882-0786">Appl. Phys. Express (2008 - present)</option><option value="1758-5090">Biofabrication (2009 - present)</option><option value="1748-3190">Bioinspir. Biomim. (2006 - present)</option><option value="1748-605X">Biomed. Mater. (2006 - present)</option><option value="2057-1976">Biomed. Phys. Eng. Express (2015 - present)</option><option value="0508-3443">Br. J. Appl. Phys. (1950 - 1967)</option><option value="1009-9271">Chin. J. Astron. Astrophys. (2001 - 2008)</option><option value="1003-7713">Chin. J. Chem. Phys. (1987 - 2007)</option><option value="1674-0068">Chin. J. Chem. Phys. (2008 - 2012)</option><option value="1009-1963">Chinese Phys. (2000 - 2007)</option><option value="1674-1056">Chinese Phys. B (2008 - present)</option><option value="1674-1137">Chinese Phys. C (2008 - present)</option><option value="0256-307X">Chinese Phys. Lett. (1984 - present)</option><option value="0264-9381">Class. Quantum Grav. (1984 - present)</option><option value="0143-0815">Clin. Phys. Physiol. Meas. (1980 - 1992)</option><option value="1364-7830">Combustion Theory and Modelling (1997 - 2004)</option><option value="0253-6102">Commun. Theor. Phys. (1982 - present)</option><option value="1749-4699">Comput. Sci. Discov. (2008 - 2015)</option><option value="2057-1739">Converg. Sci. Phys. Oncol. (2015 - 2018)</option><option value="0967-1846">Distrib. Syst. Engng. (1993 - 1999)</option><option value="2754-2734">ECS Adv. (2022 - present)</option><option value="2162-8734">ECS Electrochem. Lett. (2012 - 2015)</option><option value="2162-8777">ECS J. Solid State Sci. Technol. (2012 - present)</option><option value="2754-2726">ECS Sens. Plus (2022 - present)</option><option value="2162-8750">ECS Solid State Lett. (2012 - 2015)</option><option value="1938-5862">ECS Trans. (2005 - present)</option><option value="0295-5075">EPL (1986 - present)</option><option value="1944-8783">Electrochem. Soc. Interface (1992 - present)</option><option value="1944-8775">Electrochem. Solid-State Lett. (1998 - 2012)</option><option value="2516-1075">Electron. Struct. (2019 - present)</option><option value="2631-8695">Eng. Res. Express (2019 - present)</option><option value="2515-7620">Environ. Res. Commun. (2018 - present)</option><option value="1748-9326">Environ. Res. Lett. (2006 - present)</option><option value="2752-5295">Environ. Res.: Climate (2022 - present)</option><option value="2752-664X">Environ. Res.: Ecology (2022 - present)</option><option value="2753-3751">Environ. Res.: Energy (2024 - present)</option><option value="2976-601X">Environ. Res.: Food Syst. (2024 - present)</option><option value="2752-5309">Environ. Res.: Health (2022 - present)</option><option value="2634-4505">Environ. Res.: Infrastruct. Sustain. (2021 - present)</option><option value="3033-4942">Environ. Res.: Water (2025 - present)</option><option value="0143-0807">Eur. J. Phys. (1980 - present)</option><option value="2058-8585">Flex. Print. Electron. (2015 - present)</option><option value="1873-7005">Fluid Dyn. Res. (1986 - present)</option><option value="2631-6331">Funct. Compos. Struct. (2018 - present)</option><option value="1755-1315">IOP Conf. Ser.: Earth Environ. Sci. (2008 - present)</option><option value="1757-899X">IOP Conf. Ser.: Mater. Sci. Eng. (2009 - present)</option><option value="2633-1357">IOPSciNotes (2020 - 2022)</option><option value="2631-7990">Int. J. Extrem. Manuf. (2019 - present)</option><option value="0266-5611">Inverse Problems (1985 - present)</option><option value="1064-5632">Izv. Math. (1993 - present)</option><option value="1752-7163">J. Breath Res. (2007 - present)</option><option value="1475-7516">J. Cosmol. Astropart. Phys. (2003 - present)</option><option value="1945-7111">J. Electrochem. Soc. (1902 - present)</option><option value="1742-2140">J. Geophys. Eng. (2004 - 2018)</option><option value="1126-6708">J. High Energy Phys. (1997 - 2009)</option><option value="1748-0221">J. Inst. (2006 - present)</option><option value="0960-1317">J. Micromech. Microeng. (1991 - present)</option><option value="1741-2552">J. Neural Eng. (2004 - present)</option><option value="0368-3281">J. Nucl. Energy, Part C Plasma Phys. (1959 - 1966)</option><option value="0150-536X">J. Opt. (1977 - 1998)</option><option value="2040-8986">J. Opt. (2010 - present)</option><option value="1464-4258">J. Opt. A: Pure Appl. Opt. (1999 - 2009)</option><option value="1464-4266">J. Opt. B: Quantum Semiclass. Opt. (1999 - 2005)</option><option value="0022-3689">J. Phys. A: Gen. Phys. (1968 - 1972)</option><option value="0305-4470">J. Phys. A: Math. Gen. (1975 - 2006)</option><option value="0301-0015">J. Phys. A: Math. Nucl. Gen. (1973 - 1974)</option><option value="1751-8121">J. Phys. A: Math. Theor. (2007 - present)</option><option value="0953-4075">J. Phys. B: At. Mol. Opt. Phys. (1988 - present)</option><option value="0022-3700">J. Phys. B: Atom. Mol. Phys. (1968 - 1987)</option><option value="0022-3719">J. Phys. C: Solid State Phys. (1968 - 1988)</option><option value="2399-6528">J. Phys. Commun. (2017 - present)</option><option value="2632-072X">J. Phys. Complex. (2019 - present)</option><option value="0022-3727">J. Phys. D: Appl. Phys. (1968 - present)</option><option value="0022-3735">J. Phys. E: Sci. Instrum. (1968 - 1989)</option><option value="2515-7655">J. Phys. Energy (2018 - present)</option><option value="0305-4608">J. Phys. F: Met. Phys. (1971 - 1988)</option><option value="0954-3899">J. Phys. G: Nucl. Part. Phys. (1989 - present)</option><option value="0305-4616">J. Phys. G: Nucl. Phys. (1975 - 1988)</option><option value="2515-7639">J. Phys. Mater. (2018 - present)</option><option value="2515-7647">J. Phys. Photonics (2018 - present)</option><option value="0953-8984">J. Phys.: Condens. Matter (1989 - present)</option><option value="1742-6596">J. Phys.: Conf. Ser. (2004 - present)</option><option value="0952-4746">J. Radiol. Prot. (1988 - present)</option><option value="3050-2454">J. Reliab. Sci. Eng. (2025 - present)</option><option value="0950-7671">J. Sci. Instrum. (1923 - 1967)</option><option value="1674-4926">J. Semicond. (2009 - present)</option><option value="0260-2814">J. Soc. Radiol. Prot. (1981 - 1987)</option><option value="1742-5468">J. Stat. Mech. (2004 - present)</option><option value="1468-5248">JoT (2000 - 2004)</option><option value="1347-4065">Jpn. J. Appl. Phys. (1962 - present)</option><option value="1555-6611">Laser Phys. (2013 - present)</option><option value="1612-202X">Laser Phys. Lett. (2004 - present)</option><option value="3049-4753">Mach. Learn.: Earth (2025 - present)</option><option value="3049-4761">Mach. Learn.: Eng. (2025 - present)</option><option value="3049-477X">Mach. Learn.: Health (2025 - present)</option><option value="2632-2153">Mach. Learn.: Sci. Technol. (2019 - present)</option><option value="2752-5724">Mater. Futures (2022 - present)</option><option value="2633-4356">Mater. Quantum. Technol. (2020 - present)</option><option value="2053-1591">Mater. Res. Express (2014 - present)</option><option value="0025-5726">Math. USSR Izv. (1967 - 1992)</option><option value="0025-5734">Math. USSR Sb. (1967 - 1993)</option><option value="0957-0233">Meas. Sci. Technol. (1990 - present)</option><option value="2151-2043">Meet. Abstr. (2002 - present)</option><option value="2050-6120">Methods Appl. Fluoresc. (2013 - present)</option><option value="0026-1394">Metrologia (1965 - present)</option><option value="0965-0393">Modelling Simul. Mater. Sci. Eng. (1992 - present)</option><option value="2399-7532">Multifunct. Mater. (2018 - 2022)</option><option value="2632-959X">Nano Ex. (2020 - present)</option><option value="2399-1984">Nano Futures (2017 - present)</option><option value="0957-4484">Nanotechnology (1990 - present)</option><option value="0954-898X">Network (1990 - 2004)</option><option value="2634-4386">Neuromorph. Comput. Eng. (2021 - present)</option><option value="1367-2630">New J. Phys. (1998 - present)</option><option value="0951-7715">Nonlinearity (1988 - present)</option><option value="0335-7368">Nouvelle Revue d'Optique (1973 - 1976)</option><option value="0029-4780">Nouvelle Revue d'Optique Appliquée (1970 - 1972)</option><option value="0029-5515">Nucl. Fusion (1960 - present)</option><option value="1538-3873">PASP (1889 - present)</option><option value="1478-3975">Phys. Biol. (2004 - present)</option><option value="0031-9112">Phys. Bull. (1950 - 1988)</option><option value="0031-9120">Phys. Educ. (1966 - present)</option><option value="0031-9155">Phys. Med. Biol. (1956 - present)</option><option value="1402-4896">Phys. Scr. (1970 - present)</option><option value="2058-7058">Phys. World (1988 - present)</option><option value="1063-7869">Phys.-Usp. (1993 - present)</option><option value="0305-4624">Physics in Technology (1973 - 1988)</option><option value="0967-3334">Physiol. Meas. (1993 - present)</option><option value="0741-3335">Plasma Phys. Control. Fusion (1984 - present)</option><option value="0032-1028">Plasma Physics (1967 - 1983)</option><option value="2516-1067">Plasma Res. Express (2018 - 2022)</option><option value="1009-0630">Plasma Sci. Technol. (1999 - present)</option><option value="0963-0252">Plasma Sources Sci. Technol. (1992 - present)</option><option value="0959-5309">Proc. Phys. Soc. (1926 - 1948)</option><option value="0370-1328">Proc. Phys. Soc. (1958 - 1967)</option><option value="0370-1298">Proc. Phys. Soc. A (1949 - 1957)</option><option value="0370-1301">Proc. Phys. Soc. B (1949 - 1957)</option><option value="1478-7814">Proc. Phys. Soc. London (1874 - 1925)</option><option value="2576-1579">Proc. Vol. (1967 - 2005)</option><option value="2516-1091">Prog. Biomed. Eng. (2018 - present)</option><option value="2516-1083">Prog. Energy (2018 - present)</option><option value="0963-6625">Public Understand. Sci. (1992 - 2002)</option><option value="0963-9659">Pure Appl. Opt. (1992 - 1998)</option><option value="1469-7688">Quantitative Finance (2001 - 2004)</option><option value="1063-7818">Quantum Electron. (1993 - present)</option><option value="0954-8998">Quantum Opt. (1989 - 1994)</option><option value="2058-9565">Quantum Sci. Technol. (2015 - present)</option><option value="1355-5111">Quantum Semiclass. Opt. (1995 - 1998)</option><option value="0034-4885">Rep. Prog. Phys. (1934 - present)</option><option value="1674-4527">Res. Astron. Astrophys. (2009 - present)</option><option value="2515-5172">Research Notes of the AAS (2017 - present)</option><option value="0034-6683">RevPhysTech (1970 - 1972)</option><option value="0036-021X">Russ. Chem. Rev. (1960 - present)</option><option value="0036-0279" selected="selected">Russ. Math. Surv. (1960 - present)</option><option value="1064-5616">Sb. Math. (1993 - present)</option><option value="1468-6996">Sci. Technol. Adv. Mater. (2000 - 2015)</option><option value="0268-1242">Semicond. Sci. Technol. (1986 - present)</option><option value="0964-1726">Smart Mater. Struct. (1992 - present)</option><option value="0049-1748">Sov. J. Quantum Electron. (1971 - 1992)</option><option value="0038-5670">Sov. Phys. Usp. (1958 - 1992)</option><option value="0953-2048">Supercond. Sci. Technol. (1988 - present)</option><option value="2051-672X">Surf. Topogr.: Metrol. Prop. (2013 - present)</option><option value="2977-3504">Sustain. Sci. Technol. (2024 - present)</option><option value="1538-3881">The Astronomical Journal (1849 - present)</option><option value="0004-637X">The Astrophysical Journal (1996 - present)</option><option value="2041-8205">The Astrophysical Journal Letters (2010 - present)</option><option value="0067-0049">The Astrophysical Journal Supplement Series (1996 - present)</option><option value="2632-3338">The Planetary Science Journal (2020 - present)</option><option value="2156-7395">Trans. Amer: Electrochem. Soc. (1930 - 1930)</option><option value="1945-6859">Trans. Electrochem. Soc. (1931 - 1948)</option><option value="1475-4878">Trans. Opt. Soc. (1899 - 1932)</option><option value="2053-1613">Transl. Mater. Res. (2014 - 2018)</option><option value="0959-7174">Waves Random Media (1991 - 2004)</option> </select> <label for="CF_VOLUME" class="offscreen-hidden">Volume number:</label> <input type="text" name="CF_VOLUME" id="CF_VOLUME" class="art-lookup__content-finder-field" placeholder="Volume" x-webkit-speech=""> <label for="CF_ISSUE" class="offscreen-hidden">Issue number (if known):</label> <input type="text" name="CF_ISSUE" id="CF_ISSUE" class="art-lookup__content-finder-field" placeholder="Issue" x-webkit-speech=""> <label for="CF_PAGE" class="offscreen-hidden">Article or page number:</label> <input type="text" name="CF_PAGE" id="CF_PAGE" class="art-lookup__content-finder-field art-lookup__content-finder-field--last" placeholder="Article or page" x-webkit-speech=""> <button type="submit" class="btn btn-default art-lookup__submit" name="submit">Lookup</button> </div> </fieldset> </form> </div> </div> </div> </li> <li class="nav-journals nav-item wd-nav-journal"> <button class="nav-top-link-drop-down" data-nav-trigger="journals">Journals<svg aria-hidden="true" class="fa-icon fa-icon--right fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg></button> <div class="nav-drop-down wd-nav-journal-dd" data-nav-item="journals"> <div class="nav-drop-down__grid"> <div class="nav-drop-down__item"> <a class="nav-drop-down__item-title" href="/journals">Journals list</a> <span class="nav-drop-down__item-info m-hide">Browse more than 100 science journal titles</span> </div> <div class="nav-drop-down__item"> <a class="nav-drop-down__item-title" href="/page/subjects">Subject collections</a> <span class="nav-drop-down__item-info m-hide">Read the very best research published in IOP journals</span> </div> <div class="nav-drop-down__item"> <a class="nav-drop-down__item-title" href="/journals?type=partner#js-tab-pubpart">Publishing partners</a> <span class="nav-drop-down__item-info m-hide">Partner organisations and publications</span> </div> <div class="nav-drop-down__item"> <a class="nav-drop-down__item-title" href="/info/page/openaccess">Open access</a> <span class="nav-drop-down__item-info m-hide">IOP Publishing open access policy guide</span> </div> <div class="nav-drop-down__item"> <a class="nav-drop-down__item-title" href="/conference-series">IOP Conference Series</a> <span class="nav-drop-down__item-info m-hide">Read open access proceedings from science conferences worldwide</span> </div> </div> </div> </li> <li class="nav-books nav-item wd-nav-books"> <a href="/booklistinfo/home" class="nav-top-link">Books</a> </li> <li class="nav-publishing-support nav-item wd-publishing-support"> <a href="https://publishingsupport.iopscience.iop.org" class="nav-top-link">Publishing Support</a> </li> <!-- Header Login starts here --> <li class="nav-login nav-item wd-nav-login"> <button class="nav-top-link-drop-down" id="login-drop-down-user" data-nav-trigger="login"><svg aria-hidden="true" class="fa-icon fa-icon--left" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--circle-user--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M399 384.2C376.9 345.8 335.4 320 288 320H224c-47.4 0-88.9 25.8-111 64.2c35.2 39.2 86.2 63.8 143 63.8s107.8-24.7 143-63.8zM0 256a256 256 0 1 1 512 0A256 256 0 1 1 0 256zm256 16a72 72 0 1 0 0-144 72 72 0 1 0 0 144z"/></svg>Login<svg aria-hidden="true" class="fa-icon fa-icon--right fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg></button> <div class="nav-drop-down wd-nav-login-dd" data-nav-item="login"> <a href="https://myiopscience.iop.org/signin?origin=a0&amp;return=https%3A%2F%2Fiopscience.iop.org%2Fjournal%2F0036-0279" id="wd-login-link">IOPscience login / Sign Up</a> </div> </li> <!-- Header Login ends here --> </ul> </nav> </div> </header> <div class="page-body" > <!-- Start two column layout --> <!-- Start two column layout --> <div class="grid-2-col db-showgrid tb-showgrid cf"> <main id="skip-to-content-link-target"> <!-- Secondary header starts --> <div class="secondary-header cf" id="wd-secondary-header"> <!-- Branded journal header starts --> <!-- Branded journal header starts --> <div class="branded"> <div class="publication-name" id="wd-pub-name"> <h1 class="publication-title" itemprop="name" itemid="periodical"> <!-- Branded journal header starts --> <a href="/journal/0036-0279" itemprop="url">Russian Mathematical Surveys</a> <!-- Journal image link starts --> <!-- Journal image link ends --> </h1> </div> <div class="partner-logos m-hide" id="wd-partner-logos"> <div class="partner-logo-alignment"> <!-- Partner logo starts --> <button class="overlay-launch partner-logo" aria-expanded="false"> <img src="https://cms.iopscience.org/16fd95b2-088b-11e2-8d2d-4d5160a0f0b4/lms.gif?guest=true" alt="The London Mathematical Society, find out more."> </button> <span class="overlay-set"> <div class="tint-screen"></div> <div role="dialog" aria-label="The London Mathematical Society" aria-modal="true" class="overlay-panel"> <button class="close-icon close-overlay" aria-label="Close"><svg aria-hidden="true" class="fa-icon fa-icon--xlrg" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--circle-xmark--><!--!Font Awesome Free 6.5.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M256 512A256 256 0 1 0 256 0a256 256 0 1 0 0 512zM175 175c9.4-9.4 24.6-9.4 33.9 0l47 47 47-47c9.4-9.4 24.6-9.4 33.9 0s9.4 24.6 0 33.9l-47 47 47 47c9.4 9.4 9.4 24.6 0 33.9s-24.6 9.4-33.9 0l-47-47-47 47c-9.4 9.4-24.6 9.4-33.9 0s-9.4-24.6 0-33.9l47-47-47-47c-9.4-9.4-9.4-24.6 0-33.9z"/></svg></button> <div class="overlay-img"> <img src="https://cms.iopscience.org/16fd95b2-088b-11e2-8d2d-4d5160a0f0b4/lms.gif?guest=true" alt="The London Mathematical Society logo."/> </div> <div class="overlay-text"> <a href="https://www.lms.ac.uk/">The London Mathematical Society</a> </div> </div> </span> <!-- Partner logo ends --> <!-- Partner logo starts --> <button class="overlay-launch partner-logo" aria-expanded="false"> <img src="https://cms.iopscience.org/5069e680-088b-11e2-8d2d-4d5160a0f0b4/ras.gif?guest=true" alt="Russian Academy of Sciences, find out more."> </button> <span class="overlay-set"> <div class="tint-screen"></div> <div role="dialog" aria-label="Russian Academy of Sciences" aria-modal="true" class="overlay-panel"> <button class="close-icon close-overlay" aria-label="Close"><svg aria-hidden="true" class="fa-icon fa-icon--xlrg" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--circle-xmark--><!--!Font Awesome Free 6.5.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M256 512A256 256 0 1 0 256 0a256 256 0 1 0 0 512zM175 175c9.4-9.4 24.6-9.4 33.9 0l47 47 47-47c9.4-9.4 24.6-9.4 33.9 0s9.4 24.6 0 33.9l-47 47 47 47c9.4 9.4 9.4 24.6 0 33.9s-24.6 9.4-33.9 0l-47-47-47 47c-9.4 9.4-24.6 9.4-33.9 0s-9.4-24.6 0-33.9l47-47-47-47c-9.4-9.4-9.4-24.6 0-33.9z"/></svg></button> <div class="overlay-img"> <img src="https://cms.iopscience.org/5069e680-088b-11e2-8d2d-4d5160a0f0b4/ras.gif?guest=true" alt="Russian Academy of Sciences logo."/> </div> <div class="overlay-text"> <a href="https://www.ras.ru/">Russian Academy of Sciences</a> </div> </div> </span> <!-- Partner logo ends --> <!-- Partner logo starts --> <button class="overlay-launch partner-logo" aria-expanded="false"> <img src="https://cms.iopscience.org/a24da56a-088b-11e2-8d2d-4d5160a0f0b4/turpion.gif?guest=true" alt="Turpion, find out more."> </button> <span class="overlay-set"> <div class="tint-screen"></div> <div role="dialog" aria-label="Turpion" aria-modal="true" class="overlay-panel"> <button class="close-icon close-overlay" aria-label="Close"><svg aria-hidden="true" class="fa-icon fa-icon--xlrg" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--circle-xmark--><!--!Font Awesome Free 6.5.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M256 512A256 256 0 1 0 256 0a256 256 0 1 0 0 512zM175 175c9.4-9.4 24.6-9.4 33.9 0l47 47 47-47c9.4-9.4 24.6-9.4 33.9 0s9.4 24.6 0 33.9l-47 47 47 47c9.4 9.4 9.4 24.6 0 33.9s-24.6 9.4-33.9 0l-47-47-47 47c-9.4 9.4-24.6 9.4-33.9 0s-9.4-24.6 0-33.9l47-47-47-47c-9.4-9.4-9.4-24.6 0-33.9z"/></svg></button> <div class="overlay-img"> <img src="https://cms.iopscience.org/a24da56a-088b-11e2-8d2d-4d5160a0f0b4/turpion.gif?guest=true" alt="Turpion logo."/> </div> <div class="overlay-text"> <a href="http://www.turpion.org/">Turpion</a> </div> </div> </span> <!-- Partner logo ends --> </div> </div> </div> <!-- Branded journal header ends --> </div> <!-- Secondary header ends --> <div class="db1 tb1"> <!-- Start Journal Content --> <div class="flex-container"> <!-- Start Journal introduction --> <div class="mb-2" id="wd-jnl-hm-intro"> <div class="pull-left"> <img alt="" width="125" src="https://cms.iopscience.org/ff59b0a7-ec1e-11e5-b0b6-759f86a2008e/journal_cover?guest=true" border="0"/> <span><br><strong>ISSN: </strong>1468-4829</span> </div> <div class="media-body"> <p><em>Russian Mathem</em><em>atical Survey</em><em>s</em> is the English translation of the Russian bimonthly journal<em> Uspekhi Matematicheskikh Nauk</em>, founded in 1936. Until the last issue of 1997, the journal was published jointly by the London Mathematical Society and the British Library. Since 1998,&nbsp;<em>Russian Mathem</em><em>atical Survey</em><em>s</em>&nbsp;has been published by Turpion Ltd.&nbsp;The English language version is a cover-to-cover translation of all the material: that is, the survey articles, the Communications of the Moscow Mathematical Society, and the biographical material.</p> <div class="btn-multi-block"> <div class="jnl-notifications print-hide"> <!-- BEGIN JHP RSS feed link --> <div class="jnl-notifications-wrapper"> <a class="link--decoration-none" href="/journal/rss/0036-0279"> <svg aria-hidden="true" class="fa-icon fa-icon--left" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><!--rss--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M0 64C0 46.3 14.3 32 32 32c229.8 0 416 186.2 416 416c0 17.7-14.3 32-32 32s-32-14.3-32-32C384 253.6 226.4 96 32 96C14.3 96 0 81.7 0 64zM0 416a64 64 0 1 1 128 0A64 64 0 1 1 0 416zM32 160c159.1 0 288 128.9 288 288c0 17.7-14.3 32-32 32s-32-14.3-32-32c0-123.7-100.3-224-224-224c-17.7 0-32-14.3-32-32s14.3-32 32-32z"/></svg>RSS</a> </div> <!-- END JHP RSS feed link --> <!-- Start Email Alert --> <div class="jnl-notifications-wrapper"> <a class="link--decoration-none loginRequired" href="https://myiopscience.iop.org/signin?origin=a0&amp;return=https%3A%2F%2Fiopscience.iop.org%2Fmyiopscience%2Falerts%2Fsubscribe%3Fjournal%3D0036-0279" id="noId" data-ga-event="journal_alert_sign_up" > <svg aria-hidden="true" class="fa-icon fa-icon--left" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><!--bell--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M224 0c-17.7 0-32 14.3-32 32V51.2C119 66 64 130.6 64 208v18.8c0 47-17.3 92.4-48.5 127.6l-7.4 8.3c-8.4 9.4-10.4 22.9-5.3 34.4S19.4 416 32 416H416c12.6 0 24-7.4 29.2-18.9s3.1-25-5.3-34.4l-7.4-8.3C401.3 319.2 384 273.9 384 226.8V208c0-77.4-55-142-128-156.8V32c0-17.7-14.3-32-32-32zm45.3 493.3c12-12 18.7-28.3 18.7-45.3H224 160c0 17 6.7 33.3 18.7 45.3s28.3 18.7 45.3 18.7s33.3-6.7 45.3-18.7z"/></svg>Sign up for new issue notifications </a> </div> <!-- End Email Alert --> <!-- End Email Alert --> <!-- End Email Alert --> </div> </div> </div> </div> <!-- End Journal intro --> <!-- Start Journal home volume listings --> <div id="wd-jnl-hm-vol-forms" class="mb-2 mid-table-mb-25 clear-fl"> <div class="cf"> <div class="mid-tablet-half-left"> <form id="currentVolumeIssuesForm" class="select-w-btn mb-1 cf" name="currentVolumeIssuesForm" action="/issue" method="get" onsubmit="return false" accept-charset="utf-8,iso-8859-1"> <label for="latestVolumeIssuesSelector" class="cf">Current volume</label> <select name="latestVolumeIssuesSelect" id="latestVolumeIssuesSelector"> <option value="/issue/0036-0279/77/2">Number 2, April 2022</option><option value="/issue/0036-0279/77/1">Number 1, February 2022</option> </select> <button type="submit" id="latestVolumeIssues" class="btn btn-primary-2 select-w-btn__submit">Go</button> </form> </div> <div class="mid-tablet-half-right"> <form id="allVolumesForm" name="allVolumesForm" class="select-w-btn mb-1 cf" action="/volume" method="get" onsubmit="return false" accept-charset="utf-8,iso-8859-1"> <label for="allVolumesSelector" class="cf">Journal archive</label> <select name="allVolumesSelect" id="allVolumesSelector"> <option value="/volume/0036-0279/77">Vol 77, 2022</option><option value="/volume/0036-0279/76">Vol 76, 2021</option><option value="/volume/0036-0279/75">Vol 75, 2020</option><option value="/volume/0036-0279/74">Vol 74, 2019</option><option value="/volume/0036-0279/73">Vol 73, 2018</option><option value="/volume/0036-0279/72">Vol 72, 2017</option><option value="/volume/0036-0279/71">Vol 71, 2016</option><option value="/volume/0036-0279/70">Vol 70, 2015</option><option value="/volume/0036-0279/69">Vol 69, 2014</option><option value="/volume/0036-0279/68">Vol 68, 2013</option><option value="/volume/0036-0279/67">Vol 67, 2012</option><option value="/volume/0036-0279/66">Vol 66, 2011</option><option value="/volume/0036-0279/65">Vol 65, 2010</option><option value="/volume/0036-0279/64">Vol 64, 2009</option><option value="/volume/0036-0279/63">Vol 63, 2008</option><option value="/volume/0036-0279/62">Vol 62, 2007</option><option value="/volume/0036-0279/61">Vol 61, 2006</option><option value="/volume/0036-0279/60">Vol 60, 2005</option><option value="/volume/0036-0279/59">Vol 59, 2004</option><option value="/volume/0036-0279/58">Vol 58, 2003</option><option value="/volume/0036-0279/57">Vol 57, 2002</option><option value="/volume/0036-0279/56">Vol 56, 2001</option><option value="/volume/0036-0279/55">Vol 55, 2000</option><option value="/volume/0036-0279/54">Vol 54, 1999</option><option value="/volume/0036-0279/53">Vol 53, 1998</option><option value="/volume/0036-0279/52">Vol 52, 1997</option><option value="/volume/0036-0279/51">Vol 51, 1996</option><option value="/volume/0036-0279/50">Vol 50, 1995</option><option value="/volume/0036-0279/49">Vol 49, 1994</option><option value="/volume/0036-0279/48">Vol 48, 1993</option><option value="/volume/0036-0279/47">Vol 47, 1992</option><option value="/volume/0036-0279/46">Vol 46, 1991</option><option value="/volume/0036-0279/45">Vol 45, 1990</option><option value="/volume/0036-0279/44">Vol 44, 1989</option><option value="/volume/0036-0279/43">Vol 43, 1988</option><option value="/volume/0036-0279/42">Vol 42, 1987</option><option value="/volume/0036-0279/41">Vol 41, 1986</option><option value="/volume/0036-0279/40">Vol 40, 1985</option><option value="/volume/0036-0279/39">Vol 39, 1984</option><option value="/volume/0036-0279/38">Vol 38, 1983</option><option value="/volume/0036-0279/37">Vol 37, 1982</option><option value="/volume/0036-0279/36">Vol 36, 1981</option><option value="/volume/0036-0279/35">Vol 35, 1980</option><option value="/volume/0036-0279/34">Vol 34, 1979</option><option value="/volume/0036-0279/33">Vol 33, 1978</option><option value="/volume/0036-0279/32">Vol 32, 1977</option><option value="/volume/0036-0279/31">Vol 31, 1976</option><option value="/volume/0036-0279/30">Vol 30, 1975</option><option value="/volume/0036-0279/29">Vol 29, 1974</option><option value="/volume/0036-0279/28">Vol 28, 1973</option><option value="/volume/0036-0279/27">Vol 27, 1972</option><option value="/volume/0036-0279/26">Vol 26, 1971</option><option value="/volume/0036-0279/25">Vol 25, 1970</option><option value="/volume/0036-0279/24">Vol 24, 1969</option><option value="/volume/0036-0279/23">Vol 23, 1968</option><option value="/volume/0036-0279/22">Vol 22, 1967</option><option value="/volume/0036-0279/21">Vol 21, 1966</option><option value="/volume/0036-0279/20">Vol 20, 1965</option><option value="/volume/0036-0279/19">Vol 19, 1964</option><option value="/volume/0036-0279/18">Vol 18, 1963</option><option value="/volume/0036-0279/17">Vol 17, 1962</option><option value="/volume/0036-0279/16">Vol 16, 1961</option><option value="/volume/0036-0279/15">Vol 15, 1960</option> </select> <button type="submit" id="allVolumes" class="btn btn-primary-2 select-w-btn__submit event_journal-vol">Go</button> </form> </div> <!-- For Conference Series Journal --> <!-- Start Focus issues --> <!-- End Focus issues --> </div> </div> <!-- End Journal home volume listings --> </div> <!-- Start Journal Metrics --> <div id="wd-journal-metrics" class="metrics"> <div class="metrics__grid"> <div class="metrics__metric"> <span class="metrics__description">Impact factor</span> <span class="metrics__score">2.000</span> </div> <div class="metrics__metric"> <span class="metrics__description">Citescore</span> <span class="metrics__score">2.1</span> </div> </div> </div> <!-- End Journal Metrics --> <div class="cf mb-1"> <!-- Start of Editorial news section --> <!-- End of Editorial news section --> <!-- Start Article listing tabs --> <div class="tabs cf mb-2 mt-1 tabs--vertical" id="wd-jnl-hm-art-list"> <!-- Start Tabs list --> <div role="tablist"> <button role="tab" aria-selected="false" aria-controls="most-read-tab" id="most-read" class="event_tabs" tabindex="-1"> Most read </button> <button role="tab" aria-selected="true" aria-controls="latest-articles-tab" id="latest-articles" class="event_tabs"> Latest articles </button> <button role="tab" aria-selected="false" aria-controls="review-articles-tab" id="review-articles" class="event_tabs" tabindex="-1"> Review articles </button> </div> <!-- End Tabs list --> <!-- Start Most read tabpanel --> <div tabindex="0" role="tabpanel" id="most-read-tab" aria-labelledby="most-read" hidden="hidden"> <div class=" reveal-container reveal-closed reveal-enabled reveal-container--jnl-tab"> <h2 class="tabpanel__title"> <button type="button" class="reveal-trigger event_tabs-accordion" aria-expanded="false"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg>Most read</button> </h2> <div class="reveal-content tabpanel__content" style="display: none"> <p> <button data-reveal-label-alt="Close all abstracts" class="reveal-all-trigger mr-2 small" data-reveal-text="Open all abstracts" data-link-purpose-append="in this tab" data-link-purpose-append-open="in this tab"> Open all abstracts<span class="offscreen-hidden">,&nbsp;in this tab</span> </button> </p> <!-- articleEntryList start--> <div class="art-list"> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1070/RM1997v052n06ABEH002155" class="art-list-item-title event_main-link">Quantum computations: algorithms and error correction</a> <p class="small art-list-item-meta"> A Yu Kitaev 1997 <em>Russ. Math. Surv.</em> <b>52</b> 1191 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Quantum computations: algorithms and error correction" data-link-purpose-append-open="Quantum computations: algorithms and error correction">Open abstract</span> </button> <a href="/article/10.1070/RM1997v052n06ABEH002155/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">,&nbsp;Quantum computations: algorithms and error correction</span></a> <a href="/article/10.1070/RM1997v052n06ABEH002155/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">,&nbsp;Quantum computations: algorithms and error correction</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>Contents §0. Introduction §1. Abelian problem on the stabilizer §2. Classical models of computations 2.1. Boolean schemes and sequences of operations 2.2. Reversible computations §3. Quantum formalism 3.1. Basic notions and notation 3.2. Transformations of mixed states 3.3. Accuracy §4. Quantum models of computations 4.1. Definitions and basic properties 4.2. Construction of various operators from the elements of a basis 4.3. Generalized quantum control and universal schemes §5. Measurement operators §6. Polynomial quantum algorithm for the stabilizer problem §7. Computations with perturbations: the choice of a model §8. Quantum codes (definitions and general properties) 8.1. Basic notions and ideas 8.2. One-to-one codes 8.3. Many-to-one codes §9. Symplectic (additive) codes 9.1. Algebraic preparation 9.2. The basic construction 9.3. Error correction procedure 9.4. Torus codes §10. Error correction in the computation process: general principles 10.1. Definitions and results 10.2. Proofs §11. Error correction: concrete procedures 11.1. The symplecto-classical case 11.2. The case of a complete basis</p><p>Bibliography </p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1070/RM1997v052n06ABEH002155">https://doi.org/10.1070/RM1997v052n06ABEH002155</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1070/RM9937" class="art-list-item-title event_main-link">Newton polytopes and tropical geometry</a> <p class="small art-list-item-meta"> B. Ya. Kazarnovskii <em>et al</em> 2021 <em>Russ. Math. Surv.</em> <b>76</b> 91 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Newton polytopes and tropical geometry" data-link-purpose-append-open="Newton polytopes and tropical geometry">Open abstract</span> </button> <a href="/article/10.1070/RM9937/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">,&nbsp;Newton polytopes and tropical geometry</span></a> <a href="/article/10.1070/RM9937/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">,&nbsp;Newton polytopes and tropical geometry</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p> The practice of bringing together the concepts of 'Newton polytopes', 'toric varieties', 'tropical geometry', and 'Gröbner bases' has led to the formation of stable and mutually beneficial connections between algebraic geometry and convex geometry. This survey is devoted to the current state of the area of mathematics that describes the interaction and applications of these concepts. </p><p> Bibliography: 68 titles. </p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1070/RM9937">https://doi.org/10.1070/RM9937</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1070/RM9956" class="art-list-item-title event_main-link">Semantic limits of dense combinatorial objects</a> <p class="small art-list-item-meta"> L. N. Coregliano and A. A. Razborov 2020 <em>Russ. Math. Surv.</em> <b>75</b> 627 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Semantic limits of dense combinatorial objects" data-link-purpose-append-open="Semantic limits of dense combinatorial objects">Open abstract</span> </button> <a href="/article/10.1070/RM9956/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">,&nbsp;Semantic limits of dense combinatorial objects</span></a> <a href="/article/10.1070/RM9956/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">,&nbsp;Semantic limits of dense combinatorial objects</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p> The theory of limits of discrete combinatorial objects has been thriving for the last decade or so. The syntactic, algebraic approach to the subject is popularly known as 'flag algebras', while the semantic, geometric approach is often associated with the name 'graph limits'. The language of graph limits is generally more intuitive and expressible, but a price that one has to pay for it is that it is better suited for the case of ordinary graphs than for more general combinatorial objects. Accordingly, there have been several attempts in the literature, of varying degree of generality, to define limit objects for more complicated combinatorial structures. This paper is another attempt at a workable general theory of dense limit objects. Unlike previous efforts in this direction (with the notable exception of [5] by Aroskar and Cummings), our account is based on the same concepts from first-order logic and model theory as in the theory of flag algebras. It is shown how our definitions naturally encompass a host of previously considered cases (graphons, hypergraphons, digraphons, permutons, posetons, coloured graphs, and so on), and the fundamental properties of existence and uniqueness are extended to this more general case. Also given is an intuitive general proof of the continuous version of the Induced Removal Lemma based on the compactness theorem for propositional calculus. Use is made of the notion of open interpretation that often allows one to transfer methods and results from one situation to another. Again, it is shown that some previous arguments can be quite naturally framed using this language. </p><p> Bibliography: 68 titles. </p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1070/RM9956">https://doi.org/10.1070/RM9956</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1070/RM9990" class="art-list-item-title event_main-link">Equivariant minimal model program</a> <p class="small art-list-item-meta"> Yu. G. Prokhorov 2021 <em>Russ. Math. Surv.</em> <b>76</b> 461 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Equivariant minimal model program" data-link-purpose-append-open="Equivariant minimal model program">Open abstract</span> </button> <a href="/article/10.1070/RM9990/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">,&nbsp;Equivariant minimal model program</span></a> <a href="/article/10.1070/RM9990/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">,&nbsp;Equivariant minimal model program</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p> The purpose of the survey is to systematize a vast amount of information about the minimal model program for varieties with group actions. We discuss the basic methods of the theory and give sketches of the proofs of some principal results. </p><p> Bibliography: 243 titles. </p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1070/RM9990">https://doi.org/10.1070/RM9990</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1070/RM10023" class="art-list-item-title event_main-link">Dynamical phenomena connected with stability loss of equilibria and periodic trajectories</a> <p class="small art-list-item-meta"> A. I. Neishtadt and D. V. Treschev 2021 <em>Russ. Math. Surv.</em> <b>76</b> 883 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Dynamical phenomena connected with stability loss of equilibria and periodic trajectories" data-link-purpose-append-open="Dynamical phenomena connected with stability loss of equilibria and periodic trajectories">Open abstract</span> </button> <a href="/article/10.1070/RM10023/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">,&nbsp;Dynamical phenomena connected with stability loss of equilibria and periodic trajectories</span></a> <a href="/article/10.1070/RM10023/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">,&nbsp;Dynamical phenomena connected with stability loss of equilibria and periodic trajectories</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p> This is a study of a dynamical system depending on a parameter <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/76/5/883/revision1/RMS_76_5_883ieqn1.gif" style="max-width: 100%;" alt="$\kappa$" align="top"></img></span><script type="math/tex">\kappa</script></span></span>. Under the assumption that the system has a family of equilibrium positions or periodic trajectories smoothly depending on <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/76/5/883/revision1/RMS_76_5_883ieqn1.gif" style="max-width: 100%;" alt="$\kappa$" align="top"></img></span><script type="math/tex">\kappa</script></span></span>, the focus is on details of stability loss through various bifurcations (Poincaré–Andronov– Hopf, period-doubling, and so on). Two basic formulations of the problem are considered. In the first, <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/76/5/883/revision1/RMS_76_5_883ieqn1.gif" style="max-width: 100%;" alt="$\kappa$" align="top"></img></span><script type="math/tex">\kappa</script></span></span> is constant and the subject of the analysis is the phenomenon of a soft or hard loss of stability. In the second, <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/76/5/883/revision1/RMS_76_5_883ieqn1.gif" style="max-width: 100%;" alt="$\kappa$" align="top"></img></span><script type="math/tex">\kappa</script></span></span> varies slowly with time (the case of a dynamic bifurcation). In the simplest situation <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/76/5/883/revision1/RMS_76_5_883ieqn2.gif" style="max-width: 100%;" alt="$\kappa=\varepsilon t$" align="top"></img></span><script type="math/tex">\kappa=\varepsilon t</script></span></span>, where <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/76/5/883/revision1/RMS_76_5_883ieqn3.gif" style="max-width: 100%;" alt="$\varepsilon$" align="top"></img></span><script type="math/tex">\varepsilon</script></span></span> is a small parameter. More generally, <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/76/5/883/revision1/RMS_76_5_883ieqn4.gif" style="max-width: 100%;" alt="$\kappa(t)$" align="top"></img></span><script type="math/tex">\kappa(t)</script></span></span> may be a solution of a slow differential equation. In the case of a dynamic bifurcation the analysis is mainly focused around the phenomenon of stability loss delay. </p><p> Bibliography: 88 titles. </p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1070/RM10023">https://doi.org/10.1070/RM10023</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1070/RM10001" class="art-list-item-title event_main-link">Analytic moduli for parabolic Dulac germs</a> <p class="small art-list-item-meta"> P. Mardešić and M. Resman 2021 <em>Russ. Math. Surv.</em> <b>76</b> 389 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Analytic moduli for parabolic Dulac germs" data-link-purpose-append-open="Analytic moduli for parabolic Dulac germs">Open abstract</span> </button> <a href="/article/10.1070/RM10001/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">,&nbsp;Analytic moduli for parabolic Dulac germs</span></a> <a href="/article/10.1070/RM10001/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">,&nbsp;Analytic moduli for parabolic Dulac germs</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p> This paper gives moduli of analytic classification for parabolic <i>Dulac</i> germs (that is, <i>almost regular</i> germs). Dulac germs appear as first return maps of hyperbolic polycycles. Their moduli are given by a sequence of <i>Écalle–Voronin</i>-type germs of analytic diffeomorphisms. The result is stated in a broader class of <i>parabolic generalized Dulac germs</i> having power- logarithmic asymptotic expansions. </p><p> Bibliography: 23 titles. </p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1070/RM10001">https://doi.org/10.1070/RM10001</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1070/RM9963" class="art-list-item-title event_main-link">Adjunction in 2-categories</a> <p class="small art-list-item-meta"> D. B. Kaledin 2020 <em>Russ. Math. Surv.</em> <b>75</b> 883 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Adjunction in 2-categories" data-link-purpose-append-open="Adjunction in 2-categories">Open abstract</span> </button> <a href="/article/10.1070/RM9963/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">,&nbsp;Adjunction in 2-categories</span></a> <a href="/article/10.1070/RM9963/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">,&nbsp;Adjunction in 2-categories</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p> The aim of the paper is to introduce an approach to the theory of 2-categories which is based on systematic use of the Grothendieck construction and the Segal Machine and to show how adjunction questions can be investigated by means of this approach and what its connections are with more traditional approaches. As an application, the derived Morita 2-category and the Fourier–Mukai 2-category over a Noetherian ring are constructed and the embedding of the latter in the former is demonstrated. </p><p> Bibliography: 15 titles. </p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1070/RM9963">https://doi.org/10.1070/RM9963</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1070/RM9972" class="art-list-item-title event_main-link">Fenchel–Nielsen coordinates and Goldman brackets</a> <p class="small art-list-item-meta"> L. O. Chekhov 2020 <em>Russ. Math. Surv.</em> <b>75</b> 929 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Fenchel–Nielsen coordinates and Goldman brackets" data-link-purpose-append-open="Fenchel–Nielsen coordinates and Goldman brackets">Open abstract</span> </button> <a href="/article/10.1070/RM9972/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">,&nbsp;Fenchel–Nielsen coordinates and Goldman brackets</span></a> <a href="/article/10.1070/RM9972/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">,&nbsp;Fenchel–Nielsen coordinates and Goldman brackets</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p> It is explicitly shown that the Poisson bracket on the set of shear coordinates defined by V. V. Fock in 1997 induces the Fenchel–Nielsen bracket on the set of gluing parameters (length and twist parameters) for pair-of-pants decompositions of Riemann surfaces <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/75/5/929/revision3/RMS_75_5_929ieqn1.gif" style="max-width: 100%;" alt="$\Sigma_{g,s}$" align="top"></img></span><script type="math/tex">\Sigma_{g,s}</script></span></span> with holes. These structures are generalized to the case of Riemann surfaces <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/75/5/929/revision3/RMS_75_5_929ieqn2.gif" style="max-width: 100%;" alt="$\Sigma_{g,s,n}$" align="top"></img></span><script type="math/tex">\Sigma_{g,s,n}</script></span></span> with holes and bordered cusps. </p><p> Bibliography: 49 titles. </p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1070/RM9972">https://doi.org/10.1070/RM9972</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1070/RM10009" class="art-list-item-title event_main-link">Tetrahedron equation: algebra, topology, and integrability</a> <p class="small art-list-item-meta"> D. V. Talalaev 2021 <em>Russ. Math. Surv.</em> <b>76</b> 685 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Tetrahedron equation: algebra, topology, and integrability" data-link-purpose-append-open="Tetrahedron equation: algebra, topology, and integrability">Open abstract</span> </button> <a href="/article/10.1070/RM10009/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">,&nbsp;Tetrahedron equation: algebra, topology, and integrability</span></a> <a href="/article/10.1070/RM10009/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">,&nbsp;Tetrahedron equation: algebra, topology, and integrability</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p> The Zamolodchikov tetrahedron equation inherits almost all the richness of structures and topics in which the Yang–Baxter equation is involved. At the same time, this transition symbolizes the growth of the order of the problem, the step from the Yang–Baxter equation to the local Yang–Baxter equation, from the Lie algebra to the 2-Lie algebra, from ordinary knots in <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/76/4/685/revision1/RMS_76_4_685ieqn1.gif" style="max-width: 100%;" alt="$\mathbb{R}^3$" align="top"></img></span><script type="math/tex">\mathbb{R}^3</script></span></span> to 2-knots in <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/76/4/685/revision1/RMS_76_4_685ieqn2.gif" style="max-width: 100%;" alt="$\mathbb{R}^4$" align="top"></img></span><script type="math/tex">\mathbb{R}^4</script></span></span>. These transitions are followed in several examples, and there are also discussions of the manifestation of the tetrahedron equation in the long-standing question of integrability of the three-dimensional Ising model and a related model of neural network theory: the Hopfield model on a two-dimensional lattice. </p><p> Bibliography: 82 titles. </p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1070/RM10009">https://doi.org/10.1070/RM10009</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1070/RM10008" class="art-list-item-title event_main-link">Chaos and integrability in <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="https://content.cld.iop.org/journals/0036-0279/76/4/557/revision1/RMS_76_4_557ieqn1.gif" alt="$\operatorname{SL}(2,\mathbb R)$" align="top"></img></span><script type="math/tex">\operatorname{SL}(2,\mathbb R)</script></span></span>-geometry</a> <p class="small art-list-item-meta"> A. V. Bolsinov <em>et al</em> 2021 <em>Russ. Math. Surv.</em> <b>76</b> 557 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Chaos and integrability in -geometry" data-link-purpose-append-open="Chaos and integrability in -geometry">Open abstract</span> </button> <a href="/article/10.1070/RM10008/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">,&nbsp;Chaos and integrability in -geometry</span></a> <a href="/article/10.1070/RM10008/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">,&nbsp;Chaos and integrability in -geometry</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p> We review the integrability of the geodesic flow on a threefold <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/76/4/557/revision1/RMS_76_4_557ieqn2.gif" style="max-width: 100%;" alt="$\mathcal M^3$" align="top"></img></span><script type="math/tex">\mathcal M^3</script></span></span> admitting one of the three group geometries in Thurston's sense. We focus on the <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/76/4/557/revision1/RMS_76_4_557ieqn1.gif" style="max-width: 100%;" alt="$\operatorname{SL}(2,\mathbb R)$" align="top"></img></span><script type="math/tex">\operatorname{SL}(2,\mathbb R)</script></span></span> case. The main examples are the quotients <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/76/4/557/revision1/RMS_76_4_557ieqn3.gif" style="max-width: 100%;" alt="$\mathcal M^3_\Gamma=\Gamma\backslash \operatorname{PSL}(2,\mathbb R)$" align="top"></img></span><script type="math/tex">\mathcal M^3_\Gamma=\Gamma\backslash \operatorname{PSL}(2,\mathbb R)</script></span></span>, where <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/76/4/557/revision1/RMS_76_4_557ieqn4.gif" style="max-width: 100%;" alt="$\Gamma \subset \operatorname{PSL}(2,\mathbb R)$" align="top"></img></span><script type="math/tex">\Gamma \subset \operatorname{PSL}(2,\mathbb R)</script></span></span> is a cofinite Fuchsian group. We show that the corresponding phase space <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/76/4/557/revision1/RMS_76_4_557ieqn5.gif" style="max-width: 100%;" alt="$T^*\mathcal M_\Gamma^3$" align="top"></img></span><script type="math/tex">T^*\mathcal M_\Gamma^3</script></span></span> contains two open regions with integrable and chaotic behaviour, with zero and positive topological entropy, respectively. </p><p> As a concrete example we consider the case of the modular threefold with the modular group <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/76/4/557/revision1/RMS_76_4_557ieqn6.gif" style="max-width: 100%;" alt="$\Gamma=\operatorname{PSL}(2,\mathbb Z)$" align="top"></img></span><script type="math/tex">\Gamma=\operatorname{PSL}(2,\mathbb Z)</script></span></span>. In this case <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/76/4/557/revision1/RMS_76_4_557ieqn7.gif" style="max-width: 100%;" alt="$\mathcal M^3_\Gamma$" align="top"></img></span><script type="math/tex">\mathcal M^3_\Gamma</script></span></span> is known to be homeomorphic to the complement of a trefoil knot <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/76/4/557/revision1/RMS_76_4_557ieqn8.gif" style="max-width: 100%;" alt="$\mathcal K$" align="top"></img></span><script type="math/tex">\mathcal K</script></span></span> in a 3-sphere. Ghys proved the remarkable fact that the lift of a periodic geodesic on the modular surface to <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/76/4/557/revision1/RMS_76_4_557ieqn7.gif" style="max-width: 100%;" alt="$\mathcal M^3_\Gamma$" align="top"></img></span><script type="math/tex">\mathcal M^3_\Gamma</script></span></span> produces the same isotopy class of knots as that which appears in the chaotic version of the celebrated Lorenz system and was studied in detail by Birman and Williams. We show that these knots are replaced by trefoil knot cables in the integrable limit of the geodesic system on <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/76/4/557/revision1/RMS_76_4_557ieqn7.gif" style="max-width: 100%;" alt="$\mathcal M^3_\Gamma$" align="top"></img></span><script type="math/tex">\mathcal M^3_\Gamma</script></span></span>. </p><p> Bibliography: 60 titles. </p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1070/RM10008">https://doi.org/10.1070/RM10008</a> </div> </div> </div> </div> </div> <!-- articleEntryList end--> </div> </div> </div> <!-- End Most read tabpanel --> <!-- Start Latest tabpanel --> <div tabindex="0" role="tabpanel" id="latest-articles-tab" aria-labelledby="latest-articles"> <div class=" reveal-container reveal-closed reveal-enabled reveal-container--jnl-tab"> <h2 class="tabpanel__title"> <button type="button" class="reveal-trigger event_tabs-accordion" aria-expanded="false"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg>Latest articles</button> </h2> <div class="reveal-content tabpanel__content" style="display: none"> <p> <button data-reveal-label-alt="Close all abstracts" class="reveal-all-trigger mr-2 small" data-reveal-text="Open all abstracts" data-link-purpose-append="in this tab" data-link-purpose-append-open="in this tab"> Open all abstracts<span class="offscreen-hidden">,&nbsp;in this tab</span> </button> </p> <!-- articleEntryList start--> <div class="art-list"> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1070/RM10011" class="art-list-item-title event_main-link">On the Dirichlet problem for not strongly elliptic second-order equations</a> <p class="small art-list-item-meta"> A. O. Bagapsh <em>et al</em> 2022 <em>Russ. Math. Surv.</em> <b>77</b> 372 </p> <div class="art-list-item-tools small wd-abstr-upper"> <a href="/article/10.1070/RM10011/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">,&nbsp;On the Dirichlet problem for not strongly elliptic second-order equations</span></a> <a href="/article/10.1070/RM10011/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">,&nbsp;On the Dirichlet problem for not strongly elliptic second-order equations</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1070/RM10011">https://doi.org/10.1070/RM10011</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1070/RM10035" class="art-list-item-title event_main-link">On a canonical basis of a pair of compatible Poisson brackets on a symplectic Lie algebra</a> <p class="small art-list-item-meta"> A. A. Garazha 2022 <em>Russ. Math. Surv.</em> <b>77</b> 375 </p> <div class="art-list-item-tools small wd-abstr-upper"> <a href="/article/10.1070/RM10035/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">,&nbsp;On a canonical basis of a pair of compatible Poisson brackets on a symplectic Lie algebra</span></a> <a href="/article/10.1070/RM10035/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">,&nbsp;On a canonical basis of a pair of compatible Poisson brackets on a symplectic Lie algebra</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1070/RM10035">https://doi.org/10.1070/RM10035</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1070/RM10039" class="art-list-item-title event_main-link">Effective results in the theory of birational rigidity</a> <p class="small art-list-item-meta"> A. V. Pukhlikov 2022 <em>Russ. Math. Surv.</em> <b>77</b> 301 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Effective results in the theory of birational rigidity" data-link-purpose-append-open="Effective results in the theory of birational rigidity">Open abstract</span> </button> <a href="/article/10.1070/RM10039/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">,&nbsp;Effective results in the theory of birational rigidity</span></a> <a href="/article/10.1070/RM10039/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">,&nbsp;Effective results in the theory of birational rigidity</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p> This paper is a survey of recent effective results in the theory of birational rigidity of higher-dimensional Fano varieties and Fano–Mori fibre spaces. </p><p> Bibliography: 59 titles. </p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1070/RM10039">https://doi.org/10.1070/RM10039</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1070/RM10040" class="art-list-item-title event_main-link">R. Thompson's group <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="https://content.cld.iop.org/journals/0036-0279/77/2/251/revision2/RMS_77_2_251ieqn1.gif" alt="$F$" align="top"></img></span><script type="math/tex">F</script></span></span> and the amenability problem</a> <p class="small art-list-item-meta"> V. S. Guba 2022 <em>Russ. Math. Surv.</em> <b>77</b> 251 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="R. Thompson’s group and the amenability problem" data-link-purpose-append-open="R. Thompson’s group and the amenability problem">Open abstract</span> </button> <a href="/article/10.1070/RM10040/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">,&nbsp;R. Thompson's group and the amenability problem</span></a> <a href="/article/10.1070/RM10040/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">,&nbsp;R. Thompson's group and the amenability problem</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p> This paper focuses on Richard Thompson's group <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/77/2/251/revision2/RMS_77_2_251ieqn1.gif" style="max-width: 100%;" alt="$F$" align="top"></img></span><script type="math/tex">F</script></span></span>, which was discovered in the 1960s. Many papers have been devoted to this group. We are interested primarily in the famous problem of amenability of this group, which was posed by Geoghegan in 1979. Numerous attempts have been made to solve this problem in one way or the other, but it remains open. </p><p> In this survey we describe the most important known properties of this group related to the word problem and representations of elements of the group by piecewise linear functions as well as by diagrams and other geometric objects. We describe the classical results of Brin and Squier concerning free subgroups and laws. We include a description of more modern important results relating to the properties of the Cayley graphs (the Belk–Brown construction) as well as Bartholdi's theorem about the properties of equations in group rings. We consider separately the criteria for (non-)amenability of groups that are useful in the work on the main problem. At the end we describe a number of our own results about the structure of the Cayley graphs and a new algorithm for solving the word problem. </p><p> Bibliography: 69 titles. </p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1070/RM10040">https://doi.org/10.1070/RM10040</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1070/RM10049" class="art-list-item-title event_main-link">The normal derivative lemma and surrounding issues</a> <p class="small art-list-item-meta"> D. E. Apushkinskaya and A. I. Nazarov 2022 <em>Russ. Math. Surv.</em> <b>77</b> 189 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="The normal derivative lemma and surrounding issues" data-link-purpose-append-open="The normal derivative lemma and surrounding issues">Open abstract</span> </button> <a href="/article/10.1070/RM10049/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">,&nbsp;The normal derivative lemma and surrounding issues</span></a> <a href="/article/10.1070/RM10049/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">,&nbsp;The normal derivative lemma and surrounding issues</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p> In this survey we describe the history and current state of one of the key areas in the qualitative theory of elliptic partial differential equations related to the strong maximum principle and the boundary point principle (normal derivative lemma). </p><p> Bibliography: 234 titles. </p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1070/RM10049">https://doi.org/10.1070/RM10049</a> </div> </div> </div> </div> </div> <!-- articleEntryList end--> </div> </div> </div> <!-- End Latest tabpanel --> <!-- Express Letters tabpanel --> <!-- Express Letters tabpanel --> <!-- Start Review tabpanel --> <div tabindex="0" role="tabpanel" id="review-articles-tab" aria-labelledby="review-articles" hidden="hidden"> <div class=" reveal-container reveal-closed reveal-enabled reveal-container--jnl-tab"> <h2 class="tabpanel__title"> <button type="button" class="reveal-trigger event_tabs-accordion" aria-expanded="false"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg>Review articles</button> </h2> <div class="reveal-content tabpanel__content" style="display: none"> <p> <button data-reveal-label-alt="Close all abstracts" class="reveal-all-trigger mr-2 small" data-reveal-text="Open all abstracts" data-link-purpose-append="in this tab" data-link-purpose-append-open="in this tab"> Open all abstracts<span class="offscreen-hidden">,&nbsp;in this tab</span> </button> </p> <!-- articleEntryList start--> <div class="art-list"> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1070/RM2014v069n03ABEH004896" class="art-list-item-title event_main-link">Local formulae for the hydrodynamic pressure and applications</a> <p class="small art-list-item-meta"> P. Constantin 2014 <em>Russ. Math. Surv.</em> <b>69</b> 395 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Local formulae for the hydrodynamic pressure and applications" data-link-purpose-append-open="Local formulae for the hydrodynamic pressure and applications">Open abstract</span> </button> <a href="/article/10.1070/RM2014v069n03ABEH004896/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">,&nbsp;Local formulae for the hydrodynamic pressure and applications</span></a> <a href="/article/10.1070/RM2014v069n03ABEH004896/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">,&nbsp;Local formulae for the hydrodynamic pressure and applications</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>We provide local formulae for the pressure of incompressible fluids. The pressure can be expressed in terms of its average and averages of squares of velocity increments in arbitrarily small neighbourhoods. As an application, we give a brief proof of the fact that <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/69/3/395/revision1/rms_69_3_395ieqn1.gif" style="max-width: 100%;" alt="$C^{\alpha}$" align="top"></img></span><script type="math/tex">C^{\alpha}</script></span></span> velocities have <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/69/3/395/revision1/rms_69_3_395ieqn2.gif" style="max-width: 100%;" alt="$C^{2\alpha}$" align="top"></img></span><script type="math/tex">C^{2\alpha}</script></span></span> (or Lipschitz) pressures. We also give some regularity criteria for 3D incompressible Navier–Stokes equations.</p><p>Bibliography: 9 titles.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1070/RM2014v069n03ABEH004896">https://doi.org/10.1070/RM2014v069n03ABEH004896</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1070/RM2014v069n03ABEH004897" class="art-list-item-title event_main-link">An explicit Lyapunov function for reflection symmetric parabolic partial differential equations on the circle</a> <p class="small art-list-item-meta"> B. Fiedler <em>et al</em> 2014 <em>Russ. Math. Surv.</em> <b>69</b> 419 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="An explicit Lyapunov function for reflection symmetric parabolic partial differential equations on the circle" data-link-purpose-append-open="An explicit Lyapunov function for reflection symmetric parabolic partial differential equations on the circle">Open abstract</span> </button> <a href="/article/10.1070/RM2014v069n03ABEH004897/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">,&nbsp;An explicit Lyapunov function for reflection symmetric parabolic partial differential equations on the circle</span></a> <a href="/article/10.1070/RM2014v069n03ABEH004897/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">,&nbsp;An explicit Lyapunov function for reflection symmetric parabolic partial differential equations on the circle</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>An explicit Lyapunov function is constructed for scalar parabolic reaction-advection-diffusion equations under periodic boundary conditions. The non-linearity is assumed to be even with respect to the advection term. The method followed was originally suggested by H. Matano for, and limited to, separated boundary conditions.</p><p>Bibliography: 20 titles.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1070/RM2014v069n03ABEH004897">https://doi.org/10.1070/RM2014v069n03ABEH004897</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1070/RM2014v069n03ABEH004898" class="art-list-item-title event_main-link">Boundary layer theory for convection-diffusion equations in a circle</a> <p class="small art-list-item-meta"> C.-Y. Jung and R. Temam 2014 <em>Russ. Math. Surv.</em> <b>69</b> 435 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Boundary layer theory for convection-diffusion equations in a circle" data-link-purpose-append-open="Boundary layer theory for convection-diffusion equations in a circle">Open abstract</span> </button> <a href="/article/10.1070/RM2014v069n03ABEH004898/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">,&nbsp;Boundary layer theory for convection-diffusion equations in a circle</span></a> <a href="/article/10.1070/RM2014v069n03ABEH004898/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">,&nbsp;Boundary layer theory for convection-diffusion equations in a circle</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>This paper is devoted to boundary layer theory for singularly perturbed convection-diffusion equations in the unit circle. Two characteristic points appear, <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/69/3/435/revision1/rms_69_3_435ieqn1.gif" style="max-width: 100%;" alt="$(\pm 1,0)$" align="top"></img></span><script type="math/tex">(\pm 1,0)</script></span></span>, in the context of the equations considered here, and singularities may occur at these points depending on the behaviour there of a given function <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/69/3/435/revision1/rms_69_3_435ieqn2.gif" style="max-width: 100%;" alt="$f$" align="top"></img></span><script type="math/tex">f</script></span></span>, namely, the flatness or compatibility of <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/69/3/435/revision1/rms_69_3_435ieqn3.gif" style="max-width: 100%;" alt="$f$" align="top"></img></span><script type="math/tex">f</script></span></span> at these points as explained below. Two previous articles addressed two particular cases: [24] dealt with the case where the function <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/69/3/435/revision1/rms_69_3_435ieqn4.gif" style="max-width: 100%;" alt="$f$" align="top"></img></span><script type="math/tex">f</script></span></span> is sufficiently flat at the characteristic points, the so-called compatible case; [25] dealt with a generic non-compatible case (<span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/69/3/435/revision1/rms_69_3_435ieqn5.gif" style="max-width: 100%;" alt="$f$" align="top"></img></span><script type="math/tex">f</script></span></span> polynomial). This survey article recalls the essential results from those papers, and continues with the general case (<span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/69/3/435/revision1/rms_69_3_435ieqn6.gif" style="max-width: 100%;" alt="$f$" align="top"></img></span><script type="math/tex">f</script></span></span> non-flat and non-polynomial) for which new specific boundary layer functions of parabolic type are introduced in addition.</p><p>Bibliography: 49 titles.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1070/RM2014v069n03ABEH004898">https://doi.org/10.1070/RM2014v069n03ABEH004898</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1070/RM2014v069n03ABEH004899" class="art-list-item-title event_main-link">Non-holonomic dynamics and Poisson geometry</a> <p class="small art-list-item-meta"> A. V. Borisov <em>et al</em> 2014 <em>Russ. Math. Surv.</em> <b>69</b> 481 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Non-holonomic dynamics and Poisson geometry" data-link-purpose-append-open="Non-holonomic dynamics and Poisson geometry">Open abstract</span> </button> <a href="/article/10.1070/RM2014v069n03ABEH004899/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">,&nbsp;Non-holonomic dynamics and Poisson geometry</span></a> <a href="/article/10.1070/RM2014v069n03ABEH004899/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">,&nbsp;Non-holonomic dynamics and Poisson geometry</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>This is a survey of basic facts presently known about non-linear Poisson structures in the analysis of integrable systems in non-holonomic mechanics. It is shown that by using the theory of Poisson deformations it is possible to reduce various non-holonomic systems to dynamical systems on well-understood phase spaces equipped with linear Lie–Poisson brackets. As a result, not only can different non-holonomic systems be compared, but also fairly advanced methods of Poisson geometry and topology can be used for investigating them.</p><p>Bibliography: 95 titles.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1070/RM2014v069n03ABEH004899">https://doi.org/10.1070/RM2014v069n03ABEH004899</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1070/RM2014v069n03ABEH004900" class="art-list-item-title event_main-link">A system of three quantum particles with point-like interactions</a> <p class="small art-list-item-meta"> R. A. Minlos 2014 <em>Russ. Math. Surv.</em> <b>69</b> 539 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="A system of three quantum particles with point-like interactions" data-link-purpose-append-open="A system of three quantum particles with point-like interactions">Open abstract</span> </button> <a href="/article/10.1070/RM2014v069n03ABEH004900/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">,&nbsp;A system of three quantum particles with point-like interactions</span></a> <a href="/article/10.1070/RM2014v069n03ABEH004900/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">,&nbsp;A system of three quantum particles with point-like interactions</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>Consider a quantum three-particle system consisting of two fermions of unit mass and another particle of mass <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/69/3/539/revision1/rms_69_3_539ieqn1.gif" style="max-width: 100%;" alt="$m\gt 0$" align="top"></img></span><script type="math/tex">m\gt 0</script></span></span> interacting in a point-like manner with the fermions. Such systems are studied here using the theory of self-adjoint extensions of symmetric operators: the Hamiltonian of the system is constructed as an extension of the symmetric energy operator <div xmlns:xlink="http://www.w3.org/1999/xlink" class="display-eqn" id="rms_69_3_539ueq1"><span class="tex"><span class="texImage"><img src="" style="max-width: 100%;" data-src="https://content.cld.iop.org/journals/0036-0279/69/3/539/revision1/rms_69_3_539ueqn1.gif" alt=""></img></span><script type="math/tex; mode=display">\begin{equation*} H_0=-\frac{1}{2}\biggl(\frac{1}{m}\Delta_y+\Delta_{x_1}+\Delta_{x_2}\biggr), \end{equation*}</script></span></div>which is defined on the functions in <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/69/3/539/revision1/rms_69_3_539ieqn2.gif" style="max-width: 100%;" alt="$L_2(\mathbb{R}^3)\otimes L_2^{\operatorname{asym}}(\mathbb{R}^3\times\mathbb{R}^3)$" align="top"></img></span><script type="math/tex">L_2(\mathbb{R}^3)\otimes L_2^{\operatorname{asym}}(\mathbb{R}^3\times\mathbb{R}^3)</script></span></span> that vanish whenever the position of the third particle coincides with the position of a fermion. To construct a natural family of extensions of <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/69/3/539/revision1/rms_69_3_539ieqn3.gif" style="max-width: 100%;" alt="$H_0$" align="top"></img></span><script type="math/tex">H_0</script></span></span>, one must solve the problem of self-adjoint extensions for an auxiliary sequence <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/69/3/539/revision1/rms_69_3_539ieqn4.gif" style="max-width: 100%;" alt="$\{T_l,\ l=0,1,2,\dots\}$" align="top"></img></span><script type="math/tex">\{T_l,\ l=0,1,2,\dots\}</script></span></span> of symmetric operators acting in <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/69/3/539/revision1/rms_69_3_539ieqn5.gif" style="max-width: 100%;" alt="$L_2(\mathbb{R}^3)$" align="top"></img></span><script type="math/tex">L_2(\mathbb{R}^3)</script></span></span>. All the operators <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/69/3/539/revision1/rms_69_3_539ieqn6.gif" style="max-width: 100%;" alt="$T_l$" align="top"></img></span><script type="math/tex">T_l</script></span></span> with even <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/69/3/539/revision1/rms_69_3_539ieqn7.gif" style="max-width: 100%;" alt="$l$" align="top"></img></span><script type="math/tex">l</script></span></span> are self-adjoint, and for every odd <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/69/3/539/revision1/rms_69_3_539ieqn8.gif" style="max-width: 100%;" alt="$l$" align="top"></img></span><script type="math/tex">l</script></span></span> there are two numbers <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/69/3/539/revision1/rms_69_3_539ieqn9.gif" style="max-width: 100%;" alt="$0\lt m_l^{(1)} \lt m_l^{(2)} \lt \infty$" align="top"></img></span><script type="math/tex">0\lt m_l^{(1)} \lt m_l^{(2)} \lt \infty</script></span></span> such that <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/69/3/539/revision1/rms_69_3_539ieqn10.gif" style="max-width: 100%;" alt="$T_l$" align="top"></img></span><script type="math/tex">T_l</script></span></span> is self-adjoint and lower semibounded for <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/69/3/539/revision1/rms_69_3_539ieqn11.gif" style="max-width: 100%;" alt="$m \gt m_l^{(2)}$" align="top"></img></span><script type="math/tex">m \gt m_l^{(2)}</script></span></span>, and has deficiency indices for <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/69/3/539/revision1/rms_69_3_539ieqn12.gif" style="max-width: 100%;" alt="$m\leqslant m_l^{(2)}$" align="top"></img></span><script type="math/tex">m\leqslant m_l^{(2)}</script></span></span>. When <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/69/3/539/revision1/rms_69_3_539ieqn13.gif" style="max-width: 100%;" alt="$m\in[m_l^{(1)}, m_l^{(2)}]$" align="top"></img></span><script type="math/tex">m\in[m_l^{(1)}, m_l^{(2)}]</script></span></span>, every self-adjoint extension of <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/69/3/539/revision1/rms_69_3_539ieqn14.gif" style="max-width: 100%;" alt="$T_l$" align="top"></img></span><script type="math/tex">T_l</script></span></span> which is invariant under rotations of <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/69/3/539/revision1/rms_69_3_539ieqn15.gif" style="max-width: 100%;" alt="$\mathbb{R}^3$" align="top"></img></span><script type="math/tex">\mathbb{R}^3</script></span></span> is lower semibounded, but if <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/69/3/539/revision1/rms_69_3_539ieqn16.gif" style="max-width: 100%;" alt="$0 \lt m \lt m_l^{(1)}$" align="top"></img></span><script type="math/tex">0 \lt m \lt m_l^{(1)}</script></span></span>, then it has an infinite sequence of eigenvalues <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/69/3/539/revision1/rms_69_3_539ieqn17.gif" style="max-width: 100%;" alt="$\{\lambda_n\}$" align="top"></img></span><script type="math/tex">\{\lambda_n\}</script></span></span> of multiplicity <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/69/3/539/revision1/rms_69_3_539ieqn18.gif" style="max-width: 100%;" alt="$2l+1$" align="top"></img></span><script type="math/tex">2l+1</script></span></span> such that <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/69/3/539/revision1/rms_69_3_539ieqn19.gif" style="max-width: 100%;" alt="$\lambda_n\to-\infty$" align="top"></img></span><script type="math/tex">\lambda_n\to-\infty</script></span></span> as <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/69/3/539/revision1/rms_69_3_539ieqn20.gif" style="max-width: 100%;" alt="$n\to\infty$" align="top"></img></span><script type="math/tex">n\to\infty</script></span></span> (the Thomas effect). It follows from the last fact that there is a sequence of bound states of <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/69/3/539/revision1/rms_69_3_539ieqn21.gif" style="max-width: 100%;" alt="$H_0$" align="top"></img></span><script type="math/tex">H_0</script></span></span> with spectrum <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/69/3/539/revision1/rms_69_3_539ieqn22.gif" style="max-width: 100%;" alt="$P^2/(2(m+2))+z_n$" align="top"></img></span><script type="math/tex">P^2/(2(m+2))+z_n</script></span></span>, where the numbers <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/0036-0279/69/3/539/revision1/rms_69_3_539ieqn23.gif" style="max-width: 100%;" alt="$z_n&lt;0$" align="top"></img></span><script type="math/tex">z_n<0</script></span></span> cluster at 0 (Efimov's effect).</p><p>Bibliography: 19 titles.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1070/RM2014v069n03ABEH004900">https://doi.org/10.1070/RM2014v069n03ABEH004900</a> </div> </div> </div> </div> </div> <!-- articleEntryList end--> </div> </div> </div> <!-- End Review tabpanel --> <!-- Start Featured tabpanel --> <!-- End Featured tabpanel --> <!-- Start Editor's chocie tabpanel --> <!-- End Editor's chocie tabpanel --> <!-- Start AM tabpanel --> <!-- End AM tabpanel --> <!-- Start Trending tabpanel --> <!-- End Trending tabpanel --> <!-- Start Open Access tabpanel --> <!-- End Open Access tabpanel --> <!-- Start Spotlights tabpanel --> <!-- End Spotlights tabpanel --> </div> <!-- End Article listing tabs --> </div> <!-- End Journal Content --> </div> </main> <div class="db2 tb2"> <div class="side-and-below"> <!-- Start Journal links --> <div class="sidebar-list" id="wd-jnl-links"> <h2 class="sidebar-list__heading">Journal links</h2> <ul class="sidebar-list__list"><li><a href="http://www.mathnet.ru/php/esubmission.phtml?jrnid=rm&wshow=snote&option_lang=eng"><b>Submit an article</b></a></li> <li><a href="/0036-0279/page/About">About the journal</a></li> <li><a href="/0036-0279/page/Editorial Board">Editorial board</a></li> <li><a href="http://www.turpion.org/php/homes/pa.phtml?jrnid=rm&page=auth">Author guidelines</a></li> <li><a href="/0036-0279/page/News_and_editorial">News and editorial</a></li> <li><a href="/0036-0279/page/Journal_collections">Journal collections</a></li> <li><a href="/0036-0279/page/Prices and ordering"><a href="http://librarians.iop.org/instinfo">Pricing and ordering</a></a></li> <li><a href="/0036-0279/page/Contact_us">Contact us</a></li></ul> </div> <!-- End Journal links --> <!-- Start journal partners list --> <!-- End journal partners list --> <!-- Start Journal history --> <div class="sidebar-list" id="wd-jnl-history"> <h2 class="sidebar-list__heading">Journal information</h2> <ul class="sidebar-list__list"> <li class="sidebar-list__list-item">1960-present <br/> Russian Mathematical Surveys <br/> Online ISSN: 1468-4829<br/> Print ISSN: 0036-0279<br/> </li> </ul> <br/> </div> <!-- End Journal history --> <!-- End Journal Sidebar --> </div> </div> </div> <!-- End two column layout --> </div> <div data-scroll-header="" class="data-header-anchor" id="exp"></div> <!-- Footer starts --> <footer class="footer content-grid__full-width" data-footer-content role="contentinfo"> <nav aria-label="Further resources" class="footer__grid"> <div> <h2 class="footer__heading">IOPscience</h2> <ul class="footer__list"> <li class="footer__item"> <a class="link--colour--white" href="/journalList">Journals</a> </li> <li class="footer__item"> <a class="link--colour--white" href="/booklistinfo/home">Books</a> </li> <li class="footer__item"> <a class="link--colour--white" href="/conference-series">IOP Conference Series</a> </li> <li class="footer__item"> <a class="link--colour--white" href="/page/aboutiopscience">About IOPscience</a> </li> <li class="footer__item"> <a class="link--colour--white" href="https://ioppublishing.org/about-us/contact-us/">Contact Us</a> </li> <li class="footer__item"> <a class="link--colour--white" href="/info/page/developing-countries-access">Developing countries access</a> </li> <li class="footer__item"> <a class="link--colour--white" href="https://publishingsupport.iopscience.iop.org/open_access/">IOP Publishing open access policy</a> </li> <li class="footer__item"> <a class="link--colour--white" href="/page/accessibility">Accessibility</a> </li> </ul> </div> <div> <h2 class="footer__heading">IOP Publishing</h2> <ul class="footer__list"> <li class="footer__item"> <a class="link--colour--white" href="https://ioppublishing.org/legal/copyright/">Copyright 2024 IOP Publishing</a> </li> <li class="footer__item"> <a class="link--colour--white" href="/page/terms">Terms and Conditions</a> </li> <li class="footer__item"> <a class="link--colour--white" href="/page/disclaimer">Disclaimer</a> </li> <li class="footer__item"> <a class="link--colour--white" href="https://ioppublishing.org/legal/privacy-cookies-policy/">Privacy and Cookie Policy</a> </li> <li class="footer__item"> <a class="link--colour--white" href="https://ioppublishing.org/legal/textanddataminingpolicy/">Text and Data mining policy</a> </li> </ul> </div> <div> <h2 class="footer__heading">Publishing Support</h2> <ul class="footer__list"> <li class="footer__item"> <a class="link--colour--white" href="https://publishingsupport.iopscience.iop.org/">Authors</a> </li> <li class="footer__item"> <a class="link--colour--white" href="https://publishingsupport.iopscience.iop.org/publishing-support/reviewers/">Reviewers</a> </li> <li class="footer__item"> <a class="link--colour--white" href="https://publishingsupport.iopscience.iop.org/publishing-support/organisers/">Conference Organisers</a> </li> </ul> </div> </nav> <!-- end nav --> <div class="footer__notice"> <div class="footer__notice-inner"> <div class="footer__notice-text"> <svg aria-hidden="true" class="footer__cookie fa-icon" focusable="false" viewBox="0 0 512 512" xmlns="http://www.w3.org/2000/svg"> <!--! Font Awesome Free 6.4.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license (Commercial License) Copyright 2023 Fonticons, Inc. --> <path d="M257.5 27.6c-.8-5.4-4.9-9.8-10.3-10.6c-22.1-3.1-44.6 .9-64.4 11.4l-74 39.5C89.1 78.4 73.2 94.9 63.4 115L26.7 190.6c-9.8 20.1-13 42.9-9.1 64.9l14.5 82.8c3.9 22.1 14.6 42.3 30.7 57.9l60.3 58.4c16.1 15.6 36.6 25.6 58.7 28.7l83 11.7c22.1 3.1 44.6-.9 64.4-11.4l74-39.5c19.7-10.5 35.6-27 45.4-47.2l36.7-75.5c9.8-20.1 13-42.9 9.1-64.9c-.9-5.3-5.3-9.3-10.6-10.1c-51.5-8.2-92.8-47.1-104.5-97.4c-1.8-7.6-8-13.4-15.7-14.6c-54.6-8.7-97.7-52-106.2-106.8zM208 144a32 32 0 1 1 0 64 32 32 0 1 1 0-64zM144 336a32 32 0 1 1 64 0 32 32 0 1 1 -64 0zm224-64a32 32 0 1 1 0 64 32 32 0 1 1 0-64z"/> </svg> <span><strong>This site uses cookies</strong>. By continuing to use this site you agree to our use of cookies.</span></div> <div class="footer__socials"> <div class="footer__social-icons"> <a class="link--colour--white replicate-hover" href="https://twitter.com/ioppublishing?lang=en"> <span class="sr-only">IOP Publishing Twitter page</span> <svg aria-hidden="true" class="fa-icon fa-icon--xlrg" focusable="false" viewBox="0 0 512 512" xmlns="http://www.w3.org/2000/svg"> <!--! Font Awesome Free 6.4.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license (Commercial License) Copyright 2023 Fonticons, Inc. --> <path d="M459.37 151.716c.325 4.548.325 9.097.325 13.645 0 138.72-105.583 298.558-298.558 298.558-59.452 0-114.68-17.219-161.137-47.106 8.447.974 16.568 1.299 25.34 1.299 49.055 0 94.213-16.568 130.274-44.832-46.132-.975-84.792-31.188-98.112-72.772 6.498.974 12.995 1.624 19.818 1.624 9.421 0 18.843-1.3 27.614-3.573-48.081-9.747-84.143-51.98-84.143-102.985v-1.299c13.969 7.797 30.214 12.67 47.431 13.319-28.264-18.843-46.781-51.005-46.781-87.391 0-19.492 5.197-37.36 14.294-52.954 51.655 63.675 129.3 105.258 216.365 109.807-1.624-7.797-2.599-15.918-2.599-24.04 0-57.828 46.782-104.934 104.934-104.934 30.213 0 57.502 12.67 76.67 33.137 23.715-4.548 46.456-13.32 66.599-25.34-7.798 24.366-24.366 44.833-46.132 57.827 21.117-2.273 41.584-8.122 60.426-16.243-14.292 20.791-32.161 39.308-52.628 54.253z"/> </svg> </a> <a class="link--colour--white replicate-hover" href="https://www.facebook.com/ioppublishing/"> <span class="sr-only">IOP Publishing Facebook page</span> <svg aria-hidden="true" class="fa-icon fa-icon--xlrg" focusable="false" viewBox="0 0 512 512" xmlns="http://www.w3.org/2000/svg"> <!--! Font Awesome Free 6.4.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license (Commercial License) Copyright 2023 Fonticons, Inc. --> <path d="M504 256C504 119 393 8 256 8S8 119 8 256c0 123.78 90.69 226.38 209.25 245V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.28c-30.8 0-40.41 19.12-40.41 38.73V256h68.78l-11 71.69h-57.78V501C413.31 482.38 504 379.78 504 256z"/> </svg> </a> <a class="link--colour--white replicate-hover" href="https://www.linkedin.com/company/iop-publishing"> <span class="sr-only">IOP Publishing LinkedIn page</span> <svg aria-hidden="true" class="fa-icon fa-icon--xlrg" focusable="false" viewBox="0 0 448 512" xmlns="http://www.w3.org/2000/svg"> <!--! Font Awesome Free 6.4.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license (Commercial License) Copyright 2023 Fonticons, Inc. --> <path d="M100.28 448H7.4V148.9h92.88zM53.79 108.1C24.09 108.1 0 83.5 0 53.8a53.79 53.79 0 0 1 107.58 0c0 29.7-24.1 54.3-53.79 54.3zM447.9 448h-92.68V302.4c0-34.7-.7-79.2-48.29-79.2-48.29 0-55.69 37.7-55.69 76.7V448h-92.78V148.9h89.08v40.8h1.3c12.4-23.5 42.69-48.3 87.88-48.3 94 0 111.28 61.9 111.28 142.3V448z"/> </svg> </a> <a class="link--colour--white replicate-hover" href="https://www.youtube.com/channel/UC6sGrQTcmY8NpmfGEfRqRrg"> <span class="sr-only">IOP Publishing Youtube page</span> <svg aria-hidden="true" class="fa-icon fa-icon--xlrg" focusable="false" viewBox="0 60 576 395" xmlns="http://www.w3.org/2000/svg"> <!--! Font Awesome Free 6.4.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license (Commercial License) Copyright 2023 Fonticons, Inc. --> <path d="M549.655 124.083c-6.281-23.65-24.787-42.276-48.284-48.597C458.781 64 288 64 288 64S117.22 64 74.629 75.486c-23.497 6.322-42.003 24.947-48.284 48.597-11.412 42.867-11.412 132.305-11.412 132.305s0 89.438 11.412 132.305c6.281 23.65 24.787 41.5 48.284 47.821C117.22 448 288 448 288 448s170.78 0 213.371-11.486c23.497-6.321 42.003-24.171 48.284-47.821 11.412-42.867 11.412-132.305 11.412-132.305s0-89.438-11.412-132.305zm-317.51 213.508V175.185l142.739 81.205-142.739 81.201z"/> </svg> </a> <a class="link--colour--white replicate-hover" href="https://ioppublishing.org/wp-content/uploads/2020/11/WeChat-QR-Code.png"> <span class="sr-only">IOP Publishing WeChat QR code</span> <svg aria-hidden="true" class="fa-icon fa-icon--xlrg" focusable="false" viewBox="0 0 576 512" xmlns="http://www.w3.org/2000/svg"> <!--! Font Awesome Free 6.4.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license (Commercial License) Copyright 2023 Fonticons, Inc. --> <path d="M385.2 167.6c6.4 0 12.6.3 18.8 1.1C387.4 90.3 303.3 32 207.7 32 100.5 32 13 104.8 13 197.4c0 53.4 29.3 97.5 77.9 131.6l-19.3 58.6 68-34.1c24.4 4.8 43.8 9.7 68.2 9.7 6.2 0 12.1-.3 18.3-.8-4-12.9-6.2-26.6-6.2-40.8-.1-84.9 72.9-154 165.3-154zm-104.5-52.9c14.5 0 24.2 9.7 24.2 24.4 0 14.5-9.7 24.2-24.2 24.2-14.8 0-29.3-9.7-29.3-24.2.1-14.7 14.6-24.4 29.3-24.4zm-136.4 48.6c-14.5 0-29.3-9.7-29.3-24.2 0-14.8 14.8-24.4 29.3-24.4 14.8 0 24.4 9.7 24.4 24.4 0 14.6-9.6 24.2-24.4 24.2zM563 319.4c0-77.9-77.9-141.3-165.4-141.3-92.7 0-165.4 63.4-165.4 141.3S305 460.7 397.6 460.7c19.3 0 38.9-5.1 58.6-9.9l53.4 29.3-14.8-48.6C534 402.1 563 363.2 563 319.4zm-219.1-24.5c-9.7 0-19.3-9.7-19.3-19.6 0-9.7 9.7-19.3 19.3-19.3 14.8 0 24.4 9.7 24.4 19.3 0 10-9.7 19.6-24.4 19.6zm107.1 0c-9.7 0-19.3-9.7-19.3-19.6 0-9.7 9.7-19.3 19.3-19.3 14.5 0 24.4 9.7 24.4 19.3.1 10-9.9 19.6-24.4 19.6z"/> </svg> </a> <a class="link--colour--white replicate-hover" href="https://www.weibo.com/u/2931886367"> <span class="sr-only">IOP Publishing Weibo page</span> <svg aria-hidden="true" class="fa-icon fa-icon--xlrg" focusable="false" viewBox="0 0 512 512" xmlns="http://www.w3.org/2000/svg"> <!--! Font Awesome Free 6.4.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license (Commercial License) Copyright 2023 Fonticons, Inc. --> <path d="M407 177.6c7.6-24-13.4-46.8-37.4-41.7-22 4.8-28.8-28.1-7.1-32.8 50.1-10.9 92.3 37.1 76.5 84.8-6.8 21.2-38.8 10.8-32-10.3zM214.8 446.7C108.5 446.7 0 395.3 0 310.4c0-44.3 28-95.4 76.3-143.7C176 67 279.5 65.8 249.9 161c-4 13.1 12.3 5.7 12.3 6 79.5-33.6 140.5-16.8 114 51.4-3.7 9.4 1.1 10.9 8.3 13.1 135.7 42.3 34.8 215.2-169.7 215.2zm143.7-146.3c-5.4-55.7-78.5-94-163.4-85.7-84.8 8.6-148.8 60.3-143.4 116s78.5 94 163.4 85.7c84.8-8.6 148.8-60.3 143.4-116zM347.9 35.1c-25.9 5.6-16.8 43.7 8.3 38.3 72.3-15.2 134.8 52.8 111.7 124-7.4 24.2 29.1 37 37.4 12 31.9-99.8-55.1-195.9-157.4-174.3zm-78.5 311c-17.1 38.8-66.8 60-109.1 46.3-40.8-13.1-58-53.4-40.3-89.7 17.7-35.4 63.1-55.4 103.4-45.1 42 10.8 63.1 50.2 46 88.5zm-86.3-30c-12.9-5.4-30 .3-38 12.9-8.3 12.9-4.3 28 8.6 34 13.1 6 30.8.3 39.1-12.9 8-13.1 3.7-28.3-9.7-34zm32.6-13.4c-5.1-1.7-11.4.6-14.3 5.4-2.9 5.1-1.4 10.6 3.7 12.9 5.1 2 11.7-.3 14.6-5.4 2.8-5.2 1.1-10.9-4-12.9z"/> </svg> </a> </div> <a href="https://ioppublishing.org/"> <img alt="IOP Publishing" class="footer__social-logo" src=''/> </a> </div> </div> </div> </footer> <!-- Footer ends --> </div> <script> let imgBase = "https://static.iopscience.com/3.72.0/img"; let scriptBase = "https://static.iopscience.com/3.72.0/js"; /* Cutting the mustard - http://responsivenews.co.uk/post/18948466399/cutting-the-mustard */ /* This is the original if statement, from the link above. I have amended it to turn of JS on all IE browsers less than 10. This is due to a function in the iop.jquery.toolbar.js line 35/36. Uses .remove which is not native js supported in IE9 or lower */ /* if('querySelector' in document && 'localStorage' in window && 'addEventListener' in window) { */ /* This is the updated selector, taken from: https://justmarkup.com/log/2015/02/26/cut-the-mustard-revisited/ */ if('visibilityState' in document) { /*! loadJS: load a JS file asynchronously. [c]2014 @scottjehl, Filament Group, Inc. (Based on http://goo.gl/REQGQ by Paul Irish).. Licensed MIT */ function loadJS( src, cb ){ "use strict"; let ref = window.document.getElementsByTagName( "script" )[ 0 ]; let script = window.document.createElement( "script" ); script.src = src; script.async = true; ref.parentNode.insertBefore( script, ref ); if (cb && typeof(cb) === "function") { script.onload = cb; } return script; } } </script> <script>loadJS( scriptBase + "/scripts.min.js" );</script> <!-- Pop-up banner --> <script> (function(g,e,o,t,a,r,ge,tl,y){ t=g.getElementsByTagName(e)[0];y=g.createElement(e);y.async=true; var a=window,b=g.documentElement,c=g.getElementsByTagName('body')[0],w=a.innerWidth||b.clientWidth||c.clientWidth,h=a.innerHeight||b.clientHeight||c.clientHeight; y.src='https://g9706132415.co/gp?id=-N-2MD8QdW3dNu4Sq7Do&refurl='+g.referrer+'&winurl='+encodeURIComponent(window.location)+'&cw='+w+'&ch='+h; t.parentNode.insertBefore(y,t); })(document,'script');</script> <script> (function(g,e,o,t,a,r,ge,tl,y){ let s=function(){let def="geotargetlygeocontent1630585676742_default",len=g.getElementsByClassName(def).length; if(len>0){for(let i=0;i<len;i++){g.getElementsByClassName(def)[i].style.display='inline';}}}; t=g.getElementsByTagName(e)[0];y=g.createElement(e); y.async=true;y.src='https://g1584674684.co/gc?winurl='+encodeURIComponent(window.location)+'&refurl='+g.referrer+'&id='+"-MiaTiCEOcFuuh3oEof1"; t.parentNode.insertBefore(y,t);y.onerror=function(){s()};})(document,'script'); </script> <noscript> <style>.geotargetlygeocontent1630585676742_default{display:inline !important}</style> </noscript> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10