CINXE.COM

Search results for: quantile forecasting

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: quantile forecasting</title> <meta name="description" content="Search results for: quantile forecasting"> <meta name="keywords" content="quantile forecasting"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="quantile forecasting" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="quantile forecasting"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 580</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: quantile forecasting</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">580</span> Currency Exchange Rate Forecasts Using Quantile Regression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuzhi%20Cai">Yuzhi Cai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we discuss a Bayesian approach to quantile autoregressive (QAR) time series model estimation and forecasting. Together with a combining forecasts technique, we then predict USD to GBP currency exchange rates. Combined forecasts contain all the information captured by the fitted QAR models at different quantile levels and are therefore better than those obtained from individual models. Our results show that an unequally weighted combining method performs better than other forecasting methodology. We found that a median AR model can perform well in point forecasting when the predictive density functions are symmetric. However, in practice, using the median AR model alone may involve the loss of information about the data captured by other QAR models. We recommend that combined forecasts should be used whenever possible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combining%20forecasts" title="combining forecasts">combining forecasts</a>, <a href="https://publications.waset.org/abstracts/search?q=MCMC" title=" MCMC"> MCMC</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20density%20functions" title=" predictive density functions"> predictive density functions</a>, <a href="https://publications.waset.org/abstracts/search?q=quantile%20forecasting" title=" quantile forecasting"> quantile forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=quantile%20modelling" title=" quantile modelling"> quantile modelling</a> </p> <a href="https://publications.waset.org/abstracts/45531/currency-exchange-rate-forecasts-using-quantile-regression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45531.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">579</span> Estimation and Forecasting with a Quantile AR Model for Financial Returns </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuzhi%20Cai">Yuzhi Cai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This talk presents a Bayesian approach to quantile autoregressive (QAR) time series model estimation and forecasting. We establish that the joint posterior distribution of the model parameters and future values is well defined. The associated MCMC algorithm for parameter estimation and forecasting converges to the posterior distribution quickly. We also present a combining forecasts technique to produce more accurate out-of-sample forecasts by using a weighted sequence of fitted QAR models. A moving window method to check the quality of the estimated conditional quantiles is developed. We verify our methodology using simulation studies and then apply it to currency exchange rate data. An application of the method to the USD to GBP daily currency exchange rates will also be discussed. The results obtained show that an unequally weighted combining method performs better than other forecasting methodology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combining%20forecasts" title="combining forecasts">combining forecasts</a>, <a href="https://publications.waset.org/abstracts/search?q=MCMC" title=" MCMC"> MCMC</a>, <a href="https://publications.waset.org/abstracts/search?q=quantile%20modelling" title=" quantile modelling"> quantile modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=quantile%20forecasting" title=" quantile forecasting"> quantile forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20density%20functions" title=" predictive density functions"> predictive density functions</a> </p> <a href="https://publications.waset.org/abstracts/33437/estimation-and-forecasting-with-a-quantile-ar-model-for-financial-returns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">578</span> Load Forecasting in Microgrid Systems with R and Cortana Intelligence Suite </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Lazzeri">F. Lazzeri</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Reiter"> I. Reiter </a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p class="Abstract"><span lang="EN-US">Energy production optimization has been traditionally very important for utilities in order to improve resource consumption. However, load forecasting is a challenging task, as there are a large number of relevant variables that must be considered, and several strategies have been used to deal with this complex problem. This is especially true also in microgrids where many elements have to adjust their performance depending on the future generation and consumption conditions. The goal of this paper is to present a solution for short-term load forecasting in microgrids, based on three machine learning experiments developed in R and web services built and deployed with different components of Cortana Intelligence Suite: Azure Machine Learning, a fully managed cloud service that enables to easily build, deploy, and share predictive analytics solutions; SQL database, a Microsoft database service for app developers; and PowerBI, a suite of business analytics tools to analyze data and share insights. Our results show that Boosted Decision Tree and Fast Forest Quantile regression methods can be very useful to predict hourly short-term consumption in microgrids; moreover, we found that for these types of forecasting models, weather data (temperature, wind, humidity and dew point) can play a crucial role in improving the accuracy of the forecasting solution. Data cleaning and feature engineering methods performed in R and different types of machine learning algorithms (Boosted Decision Tree, Fast Forest Quantile and ARIMA) will be presented, and results and performance metrics discussed.<o:p></o:p></span> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=time-series" title="time-series">time-series</a>, <a href="https://publications.waset.org/abstracts/search?q=features%20engineering%20methods%20for%20forecasting" title=" features engineering methods for forecasting"> features engineering methods for forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20demand%20forecasting" title=" energy demand forecasting"> energy demand forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=Azure%20Machine%20Learning" title=" Azure Machine Learning"> Azure Machine Learning</a> </p> <a href="https://publications.waset.org/abstracts/64137/load-forecasting-in-microgrid-systems-with-r-and-cortana-intelligence-suite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64137.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">577</span> Forecasting for Financial Stock Returns Using a Quantile Function Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuzhi%20Cai">Yuzhi Cai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we introduce a newly developed quantile function model that can be used for estimating conditional distributions of financial returns and for obtaining multi-step ahead out-of-sample predictive distributions of financial returns. Since we forecast the whole conditional distributions, any predictive quantity of interest about the future financial returns can be obtained simply as a by-product of the method. We also show an application of the model to the daily closing prices of Dow Jones Industrial Average (DJIA) series over the period from 2 January 2004 - 8 October 2010. We obtained the predictive distributions up to 15 days ahead for the DJIA returns, which were further compared with the actually observed returns and those predicted from an AR-GARCH model. The results show that the new model can capture the main features of financial returns and provide a better fitted model together with improved mean forecasts compared with conventional methods. We hope this talk will help audience to see that this new model has the potential to be very useful in practice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DJIA" title="DJIA">DJIA</a>, <a href="https://publications.waset.org/abstracts/search?q=financial%20returns" title=" financial returns"> financial returns</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20distribution" title=" predictive distribution"> predictive distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=quantile%20function%20model" title=" quantile function model"> quantile function model</a> </p> <a href="https://publications.waset.org/abstracts/33434/forecasting-for-financial-stock-returns-using-a-quantile-function-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33434.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">576</span> Quantile Coherence Analysis: Application to Precipitation Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yaeji%20Lim">Yaeji Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hee-Seok%20Oh"> Hee-Seok Oh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The coherence analysis measures the linear time-invariant relationship between two data sets and has been studied various fields such as signal processing, engineering, and medical science. However classical coherence analysis tends to be sensitive to outliers and focuses only on mean relationship. In this paper, we generalized cross periodogram to quantile cross periodogram and provide richer inter-relationship between two data sets. This is a general version of Laplace cross periodogram. We prove its asymptotic distribution under the long range process and compare them with ordinary coherence through numerical examples. We also present real data example to confirm the usefulness of quantile coherence analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coherence" title="coherence">coherence</a>, <a href="https://publications.waset.org/abstracts/search?q=cross%20periodogram" title=" cross periodogram"> cross periodogram</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrum" title=" spectrum"> spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=quantile" title=" quantile"> quantile</a> </p> <a href="https://publications.waset.org/abstracts/42812/quantile-coherence-analysis-application-to-precipitation-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">575</span> Integrated Nested Laplace Approximations For Quantile Regression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kajingulu%20Malandala">Kajingulu Malandala</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranganai%20Edmore"> Ranganai Edmore</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The asymmetric Laplace distribution (ADL) is commonly used as the likelihood function of the Bayesian quantile regression, and it offers different families of likelihood method for quantile regression. Notwithstanding their popularity and practicality, ADL is not smooth and thus making it difficult to maximize its likelihood. Furthermore, Bayesian inference is time consuming and the selection of likelihood may mislead the inference, as the Bayes theorem does not automatically establish the posterior inference. Furthermore, ADL does not account for greater skewness and Kurtosis. This paper develops a new aspect of quantile regression approach for count data based on inverse of the cumulative density function of the Poisson, binomial and Delaporte distributions using the integrated nested Laplace Approximations. Our result validates the benefit of using the integrated nested Laplace Approximations and support the approach for count data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantile%20regression" title="quantile regression">quantile regression</a>, <a href="https://publications.waset.org/abstracts/search?q=Delaporte%20distribution" title=" Delaporte distribution"> Delaporte distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=count%20data" title=" count data"> count data</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20nested%20Laplace%20approximation" title=" integrated nested Laplace approximation"> integrated nested Laplace approximation</a> </p> <a href="https://publications.waset.org/abstracts/123306/integrated-nested-laplace-approximations-for-quantile-regression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123306.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">574</span> Quantile Smoothing Splines: Application on Productivity of Enterprises</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Semra%20Turkan">Semra Turkan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we have examined the factors that affect the productivity of Turkey’s Top 500 Industrial Enterprises in 2014. The labor productivity of enterprises is taken as an indicator of productivity of industrial enterprises. When the relationships between some financial ratios and labor productivity, it is seen that there is a nonparametric relationship between labor productivity and return on sales. In addition, the distribution of labor productivity of enterprises is right-skewed. If the dependent distribution is skewed, the quantile regression is more suitable for this data. Hence, the nonparametric relationship between labor productivity and return on sales by quantile smoothing splines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantile%20regression" title="quantile regression">quantile regression</a>, <a href="https://publications.waset.org/abstracts/search?q=smoothing%20spline" title=" smoothing spline"> smoothing spline</a>, <a href="https://publications.waset.org/abstracts/search?q=labor%20productivity" title=" labor productivity"> labor productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=financial%20ratios" title=" financial ratios"> financial ratios</a> </p> <a href="https://publications.waset.org/abstracts/60552/quantile-smoothing-splines-application-on-productivity-of-enterprises" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">573</span> Urban-Rural Inequality in Mexico after Nafta: A Quantile Regression Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rene%20Valdiviezo-Issa">Rene Valdiviezo-Issa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we use Mexico’s Households Income and Expenditures (ENIGH) survey to explain the behaviour that the urban-rural expenditure gap has had since Mexico’s incorporation to the North American Free Trade Agreement (NAFTA) in 1994 and we compare it with the latest available survey, which took place in 2014. We use real trimestral expenditure per capita (RTEPC) as the measure of welfare. We use quantile regressions and a quantile regression decomposition to describe the gap between urban and rural distributions of log RTEPC. We discover that the decrease in the difference between the urban and rural distributions of log RTEPC, or inequality, is motivated because of a deprivation of the urban areas, in very specific characteristics, rather than an improvement of the urban areas. When using the decomposition we observe that the gap is primarily brought about because differences in returns to covariates between the urban and rural areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantile%20regression" title="quantile regression">quantile regression</a>, <a href="https://publications.waset.org/abstracts/search?q=urban-rural%20inequality" title=" urban-rural inequality"> urban-rural inequality</a>, <a href="https://publications.waset.org/abstracts/search?q=inequality%20in%20Mexico" title=" inequality in Mexico"> inequality in Mexico</a>, <a href="https://publications.waset.org/abstracts/search?q=income%20decompositon" title=" income decompositon"> income decompositon</a> </p> <a href="https://publications.waset.org/abstracts/43665/urban-rural-inequality-in-mexico-after-nafta-a-quantile-regression-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43665.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">572</span> Nonparametric Quantile Regression for Multivariate Spatial Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Arnaud%20Kanga">S. H. Arnaud Kanga</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Hili"> O. Hili</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Dabo-Niang"> S. Dabo-Niang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spatial prediction is an issue appealing and attracting several fields such as agriculture, environmental sciences, ecology, econometrics, and many others. Although multiple non-parametric prediction methods exist for spatial data, those are based on the conditional expectation. This paper took a different approach by examining a non-parametric spatial predictor of the conditional quantile. The study especially observes the stationary multidimensional spatial process over a rectangular domain. Indeed, the proposed quantile is obtained by inverting the conditional distribution function. Furthermore, the proposed estimator of the conditional distribution function depends on three kernels, where one of them controls the distance between spatial locations, while the other two control the distance between observations. In addition, the almost complete convergence and the convergence in mean order q of the kernel predictor are obtained when the sample considered is alpha-mixing. Such approach of the prediction method gives the advantage of accuracy as it overcomes sensitivity to extreme and outliers values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conditional%20quantile" title="conditional quantile">conditional quantile</a>, <a href="https://publications.waset.org/abstracts/search?q=kernel" title=" kernel"> kernel</a>, <a href="https://publications.waset.org/abstracts/search?q=nonparametric" title=" nonparametric"> nonparametric</a>, <a href="https://publications.waset.org/abstracts/search?q=stationary" title=" stationary"> stationary</a> </p> <a href="https://publications.waset.org/abstracts/109937/nonparametric-quantile-regression-for-multivariate-spatial-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109937.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">571</span> Bayesian Value at Risk Forecast Using Realized Conditional Autoregressive Expectiel Mdodel with an Application of Cryptocurrency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Niya%20Chen">Niya Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jennifer%20Chan"> Jennifer Chan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the financial market, risk management helps to minimize potential loss and maximize profit. There are two ways to assess risks; the first way is to calculate the risk directly based on the volatility. The most common risk measurements are Value at Risk (VaR), sharp ratio, and beta. Alternatively, we could look at the quantile of the return to assess the risk. Popular return models such as GARCH and stochastic volatility (SV) focus on modeling the mean of the return distribution via capturing the volatility dynamics; however, the quantile/expectile method will give us an idea of the distribution with the extreme return value. It will allow us to forecast VaR using return which is direct information. The advantage of using these non-parametric methods is that it is not bounded by the distribution assumptions from the parametric method. But the difference between them is that expectile uses a second-order loss function while quantile regression uses a first-order loss function. We consider several quantile functions, different volatility measures, and estimates from some volatility models. To estimate the expectile of the model, we use Realized Conditional Autoregressive Expectile (CARE) model with the bayesian method to achieve this. We would like to see if our proposed models outperform existing models in cryptocurrency, and we will test it by using Bitcoin mainly as well as Ethereum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=expectile" title="expectile">expectile</a>, <a href="https://publications.waset.org/abstracts/search?q=CARE%20Model" title=" CARE Model"> CARE Model</a>, <a href="https://publications.waset.org/abstracts/search?q=CARR%20Model" title=" CARR Model"> CARR Model</a>, <a href="https://publications.waset.org/abstracts/search?q=quantile" title=" quantile"> quantile</a>, <a href="https://publications.waset.org/abstracts/search?q=cryptocurrency" title=" cryptocurrency"> cryptocurrency</a>, <a href="https://publications.waset.org/abstracts/search?q=Value%20at%20Risk" title=" Value at Risk"> Value at Risk</a> </p> <a href="https://publications.waset.org/abstracts/159362/bayesian-value-at-risk-forecast-using-realized-conditional-autoregressive-expectiel-mdodel-with-an-application-of-cryptocurrency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">570</span> A New Model for Production Forecasting in ERP</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20F.%20Wong">S. F. Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20I.%20Ho"> W. I. Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Lin"> B. Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Q.%20Huang"> Q. Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> ERP has been used in many enterprises for management, the accuracy of the production forecasting module is vital to the decision making of the enterprise, and the profit is affected directly. Therefore, enhancing the accuracy of the production forecasting module can also increase the efficiency and profitability. To deal with a lot of data, a suitable, reliable and accurate statistics model is necessary. LSSVM and Grey System are two main models to be studied in this paper, and a case study is used to demonstrate how the combination model is effective to the result of forecasting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ERP" title="ERP">ERP</a>, <a href="https://publications.waset.org/abstracts/search?q=grey%20system" title=" grey system"> grey system</a>, <a href="https://publications.waset.org/abstracts/search?q=LSSVM" title=" LSSVM"> LSSVM</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20forecasting" title=" production forecasting"> production forecasting</a> </p> <a href="https://publications.waset.org/abstracts/3348/a-new-model-for-production-forecasting-in-erp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3348.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">569</span> Efficient Model Selection in Linear and Non-Linear Quantile Regression by Cross-Validation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yoonsuh%20Jung">Yoonsuh Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Steven%20N.%20MacEachern"> Steven N. MacEachern</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Check loss function is used to define quantile regression. In the prospect of cross validation, it is also employed as a validation function when underlying truth is unknown. However, our empirical study indicates that the validation with check loss often leads to choosing an over estimated fits. In this work, we suggest a modified or L2-adjusted check loss which rounds the sharp corner in the middle of check loss. It has a large effect of guarding against over fitted model in some extent. Through various simulation settings of linear and non-linear regressions, the improvement of check loss by L2 adjustment is empirically examined. This adjustment is devised to shrink to zero as sample size grows. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross-validation" title="cross-validation">cross-validation</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20selection" title=" model selection"> model selection</a>, <a href="https://publications.waset.org/abstracts/search?q=quantile%20regression" title=" quantile regression"> quantile regression</a>, <a href="https://publications.waset.org/abstracts/search?q=tuning%20parameter%20selection" title=" tuning parameter selection"> tuning parameter selection</a> </p> <a href="https://publications.waset.org/abstracts/44203/efficient-model-selection-in-linear-and-non-linear-quantile-regression-by-cross-validation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44203.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">568</span> Non-Parametric, Unconditional Quantile Estimation of Efficiency in Microfinance Institutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Komlan%20Sedzro">Komlan Sedzro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We apply the non-parametric, unconditional, hyperbolic order-α quantile estimator to appraise the relative efficiency of Microfinance Institutions in Africa in terms of outreach. Our purpose is to verify if these institutions, which must constantly try to strike a compromise between their social role and financial sustainability are operationally efficient. Using data on African MFIs extracted from the Microfinance Information eXchange (MIX) database and covering the 2004 to 2006 periods, we find that more efficient MFIs are also the most profitable. This result is in line with the view that social performance is not in contradiction with the pursuit of excellent financial performance. Our results also show that large MFIs in terms of asset and those charging the highest fees are not necessarily the most efficient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20envelopment%20analysis" title="data envelopment analysis">data envelopment analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=microfinance%20institutions" title=" microfinance institutions"> microfinance institutions</a>, <a href="https://publications.waset.org/abstracts/search?q=quantile%20estimation%20of%20efficiency" title=" quantile estimation of efficiency"> quantile estimation of efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20and%20financial%20performance" title=" social and financial performance"> social and financial performance</a> </p> <a href="https://publications.waset.org/abstracts/31841/non-parametric-unconditional-quantile-estimation-of-efficiency-in-microfinance-institutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31841.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">567</span> Electricity Demand Modeling and Forecasting in Singapore</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xian%20Li">Xian Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Qing-Guo%20Wang"> Qing-Guo Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiangshuai%20Huang"> Jiangshuai Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jidong%20Liu"> Jidong Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming%20Yu"> Ming Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Tan%20Kok%20Poh"> Tan Kok Poh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In power industry, accurate electricity demand forecasting for a certain leading time is important for system operation and control, etc. In this paper, we investigate the modeling and forecasting of Singapore’s electricity demand. Several standard models, such as HWT exponential smoothing model, the ARMA model and the ANNs model have been proposed based on historical demand data. We applied them to Singapore electricity market and proposed three refinements based on simulation to improve the modeling accuracy. Compared with existing models, our refined model can produce better forecasting accuracy. It is demonstrated in the simulation that by adding forecasting error into the forecasting equation, the modeling accuracy could be improved greatly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20industry" title="power industry">power industry</a>, <a href="https://publications.waset.org/abstracts/search?q=electricity%20demand" title=" electricity demand"> electricity demand</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting" title=" forecasting"> forecasting</a> </p> <a href="https://publications.waset.org/abstracts/13471/electricity-demand-modeling-and-forecasting-in-singapore" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">640</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">566</span> Load Forecasting in Short-Term Including Meteorological Variables for Balearic Islands Paper</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carolina%20Senabre">Carolina Senabre</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergio%20Valero"> Sergio Valero</a>, <a href="https://publications.waset.org/abstracts/search?q=Miguel%20Lopez"> Miguel Lopez</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Gabaldon"> Antonio Gabaldon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a comprehensive survey of the short-term load forecasting (STLF). Since the behavior of consumers and producers continue changing as new technologies, it is an ongoing process, and moreover, new policies become available. The results of a research study for the Spanish Transport System Operator (REE) is presented in this paper. It is presented the improvement of the forecasting accuracy in the Balearic Islands considering the introduction of meteorological variables, such as temperature to reduce forecasting error. Variables analyzed for the forecasting in terms of overall accuracy are cloudiness, solar radiation, and wind velocity. It has also been analyzed the type of days to be considered in the research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=short-term%20load%20forecasting" title="short-term load forecasting">short-term load forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20demand" title=" power demand"> power demand</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20forecasting" title=" load forecasting"> load forecasting</a> </p> <a href="https://publications.waset.org/abstracts/107890/load-forecasting-in-short-term-including-meteorological-variables-for-balearic-islands-paper" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107890.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">565</span> The Profit Trend of Cosmetics Products Using Bootstrap Edgeworth Approximation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edlira%20Donefski">Edlira Donefski</a>, <a href="https://publications.waset.org/abstracts/search?q=Lorenc%20Ekonomi"> Lorenc Ekonomi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tina%20Donefski"> Tina Donefski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Edgeworth approximation is one of the most important statistical methods that has a considered contribution in the reduction of the sum of standard deviation of the independent variables&rsquo; coefficients in a Quantile Regression Model. This model estimates the conditional median or other quantiles. In this paper, we have applied approximating statistical methods in an economical problem. We have created and generated a quantile regression model to see how the profit gained is connected with the realized sales of the cosmetic products in a real data, taken from a local business. The Linear Regression of the generated profit and the realized sales was not free of autocorrelation and heteroscedasticity, so this is the reason that we have used this model instead of Linear Regression. Our aim is to analyze in more details the relation between the variables taken into study: the profit and the finalized sales and how to minimize the standard errors of the independent variable involved in this study, the level of realized sales. The statistical methods that we have applied in our work are Edgeworth Approximation for Independent and Identical distributed (IID) cases, Bootstrap version of the Model and the Edgeworth approximation for Bootstrap Quantile Regression Model. The graphics and the results that we have presented here identify the best approximating model of our study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bootstrap" title="bootstrap">bootstrap</a>, <a href="https://publications.waset.org/abstracts/search?q=edgeworth%20approximation" title=" edgeworth approximation"> edgeworth approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=IID" title=" IID"> IID</a>, <a href="https://publications.waset.org/abstracts/search?q=quantile" title=" quantile"> quantile</a> </p> <a href="https://publications.waset.org/abstracts/135144/the-profit-trend-of-cosmetics-products-using-bootstrap-edgeworth-approximation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135144.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">564</span> Fuzzy Time Series Forecasting Based on Fuzzy Logical Relationships, PSO Technique, and Automatic Clustering Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20M.%20Kamrul%20Islam">A. K. M. Kamrul Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhamid%20Bouchachia"> Abdelhamid Bouchachia</a>, <a href="https://publications.waset.org/abstracts/search?q=Suang%20Cang"> Suang Cang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongnian%20Yu"> Hongnian Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forecasting model has a great impact in terms of prediction and continues to do so into the future. Although many forecasting models have been studied in recent years, most researchers focus on different forecasting methods based on fuzzy time series to solve forecasting problems. The forecasted models accuracy fully depends on the two terms that are the length of the interval in the universe of discourse and the content of the forecast rules. Moreover, a hybrid forecasting method can be an effective and efficient way to improve forecasts rather than an individual forecasting model. There are different hybrids forecasting models which combined fuzzy time series with evolutionary algorithms, but the performances are not quite satisfactory. In this paper, we proposed a hybrid forecasting model which deals with the first order as well as high order fuzzy time series and particle swarm optimization to improve the forecasted accuracy. The proposed method used the historical enrollments of the University of Alabama as dataset in the forecasting process. Firstly, we considered an automatic clustering algorithm to calculate the appropriate interval for the historical enrollments. Then particle swarm optimization and fuzzy time series are combined that shows better forecasting accuracy than other existing forecasting models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20time%20series%20%28fts%29" title="fuzzy time series (fts)">fuzzy time series (fts)</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=clustering%20algorithm" title=" clustering algorithm"> clustering algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20forecasting%20model" title=" hybrid forecasting model"> hybrid forecasting model</a> </p> <a href="https://publications.waset.org/abstracts/51515/fuzzy-time-series-forecasting-based-on-fuzzy-logical-relationships-pso-technique-and-automatic-clustering-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51515.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">563</span> Collaborative Planning and Forecasting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neha%20Asthana">Neha Asthana</a>, <a href="https://publications.waset.org/abstracts/search?q=Vishal%20Krishna%20Prasad"> Vishal Krishna Prasad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Collaborative planning and forecasting are the innovative and systematic approaches towards productive integration and assimilation of data synergized into information. The changing and variable market dynamics have persuaded global business chains to incorporate collaborative planning and forecasting as an imperative tool. Thus, it is essential for the supply chains to constantly improvise, update its nature, and mould as per changing global environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=information%20transfer" title="information transfer">information transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting" title=" forecasting"> forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20management" title=" supply chain management"> supply chain management</a> </p> <a href="https://publications.waset.org/abstracts/7060/collaborative-planning-and-forecasting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">562</span> Application of the Quantile Regression Approach to the Heterogeneity of the Fine Wine Prices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charles-Olivier%20Am%C3%A9d%C3%A9e-Manesme">Charles-Olivier Amédée-Manesme</a>, <a href="https://publications.waset.org/abstracts/search?q=Benoit%20Faye"> Benoit Faye</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20Le%20Fur"> Eric Le Fur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the heterogeneity of the Bordeaux Legends 50 wine market price segment is addressed. For this purpose, quantile regression is applied – with market segmentation based on wine bottle price quantile – and the hedonic price of wine attributes is computed for various price segments of the market. The approach is applied to a major privately held data set which consists of approximately 30,000 transactions over the 2003–2014 period. The findings suggest that the relative hedonic prices of several wine attributes differ significantly among deciles. In particular, the elasticity coefficient of the expert ratings shows strong variation among prices. If - as suggested in the literature - expert ratings have a positive influence on wine price on average, they have a clearly decreasing impact over the quantiles. Finally, the lower the wine price, the higher the potential for price appreciation over time. Other variables such as chateaux or vintage are also shown to vary across the distribution of wine prices. While enhancing our understanding of the complex market dynamics that underlie Bordeaux wines’ price, this research provides empirical evidence that the QR approach adequately captures heterogeneity among wine price ranges, which simultaneously applies to wine stock, vintage and auctions’ house. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hedonics" title="hedonics">hedonics</a>, <a href="https://publications.waset.org/abstracts/search?q=market%20segmentation" title=" market segmentation"> market segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=quantile%20regression" title=" quantile regression"> quantile regression</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneity" title=" heterogeneity"> heterogeneity</a>, <a href="https://publications.waset.org/abstracts/search?q=wine%20economics" title=" wine economics"> wine economics</a> </p> <a href="https://publications.waset.org/abstracts/70068/application-of-the-quantile-regression-approach-to-the-heterogeneity-of-the-fine-wine-prices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">561</span> Bayesian Variable Selection in Quantile Regression with Application to the Health and Retirement Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priya%20Kedia">Priya Kedia</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiranmoy%20Das"> Kiranmoy Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is a rich literature on variable selection in regression setting. However, most of these methods assume normality for the response variable under consideration for implementing the methodology and establishing the statistical properties of the estimates. In many real applications, the distribution for the response variable may be non-Gaussian, and one might be interested in finding the best subset of covariates at some predetermined quantile level. We develop dynamic Bayesian approach for variable selection in quantile regression framework. We use a zero-inflated mixture prior for the regression coefficients, and consider the asymmetric Laplace distribution for the response variable for modeling different quantiles of its distribution. An efficient Gibbs sampler is developed for our computation. Our proposed approach is assessed through extensive simulation studies, and real application of the proposed approach is also illustrated. We consider the data from health and retirement study conducted by the University of Michigan, and select the important predictors when the outcome of interest is out-of-pocket medical cost, which is considered as an important measure for financial risk. Our analysis finds important predictors at different quantiles of the outcome, and thus enhance our understanding on the effects of different predictors on the out-of-pocket medical cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=variable%20selection" title="variable selection">variable selection</a>, <a href="https://publications.waset.org/abstracts/search?q=quantile%20regression" title=" quantile regression"> quantile regression</a>, <a href="https://publications.waset.org/abstracts/search?q=Gibbs%20sampler" title=" Gibbs sampler"> Gibbs sampler</a>, <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20Laplace%20distribution" title=" asymmetric Laplace distribution"> asymmetric Laplace distribution</a> </p> <a href="https://publications.waset.org/abstracts/122459/bayesian-variable-selection-in-quantile-regression-with-application-to-the-health-and-retirement-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122459.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">560</span> Lee-Carter Mortality Forecasting Method with Dynamic Normal Inverse Gaussian Mortality Index </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Funda%20Kul">Funda Kul</a>, <a href="https://publications.waset.org/abstracts/search?q=%C4%B0smail%20G%C3%BCr"> İsmail Gür</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pension scheme providers have to price mortality risk by accurate mortality forecasting method. There are many mortality-forecasting methods constructed and used in literature. The Lee-Carter model is the first model to consider stochastic improvement trends in life expectancy. It is still precisely used. Mortality forecasting is done by mortality index in the Lee-Carter model. It is assumed that mortality index fits ARIMA time series model. In this paper, we propose and use dynamic normal inverse gaussian distribution to modeling mortality indes in the Lee-Carter model. Using population mortality data for Italy, France, and Turkey, the model is forecasting capability is investigated, and a comparative analysis with other models is ensured by some well-known benchmarking criterions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mortality" title="mortality">mortality</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting" title=" forecasting"> forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=lee-carter%20model" title=" lee-carter model"> lee-carter model</a>, <a href="https://publications.waset.org/abstracts/search?q=normal%20inverse%20gaussian%20distribution" title=" normal inverse gaussian distribution"> normal inverse gaussian distribution</a> </p> <a href="https://publications.waset.org/abstracts/39750/lee-carter-mortality-forecasting-method-with-dynamic-normal-inverse-gaussian-mortality-index" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">559</span> Forecasting Amman Stock Market Data Using a Hybrid Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Awajan">Ahmad Awajan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadam%20Al%20Wadi"> Sadam Al Wadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a hybrid method based on Empirical Mode Decomposition and Holt-Winter (EMD-HW) is used to forecast Amman stock market data. First, the data are decomposed by EMD method into Intrinsic Mode Functions (IMFs) and residual components. Then, all components are forecasted by HW technique. Finally, forecasting values are aggregated together to get the forecasting value of stock market data. Empirical results showed that the EMD- HW outperform individual forecasting models. The strength of this EMD-HW lies in its ability to forecast non-stationary and non- linear time series without a need to use any transformation method. Moreover, EMD-HW has a relatively high accuracy comparing with eight existing forecasting methods based on the five forecast error measures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Holt-Winter%20method" title="Holt-Winter method">Holt-Winter method</a>, <a href="https://publications.waset.org/abstracts/search?q=empirical%20mode%20decomposition" title=" empirical mode decomposition"> empirical mode decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting" title=" forecasting"> forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20series" title=" time series"> time series</a> </p> <a href="https://publications.waset.org/abstracts/122857/forecasting-amman-stock-market-data-using-a-hybrid-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">558</span> The Impact of Governance on Happiness: Evidence from Quantile Regressions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chiung-Ju%20Huang">Chiung-Ju Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study utilizes the quantile regression analysis to examine the impact of governance (including democratic quality and technical quality) on happiness in 101 countries worldwide, classified as &ldquo;developed countries&rdquo; and &ldquo;developing countries&rdquo;. The empirical results show that the impact of democratic quality and technical quality on happiness is significantly positive for &ldquo;developed countries&rdquo;, while is insignificant for &ldquo;developing countries&rdquo;. The results suggest that the authorities in developed countries can enhance the level of individual happiness by means of improving the democracy quality and technical quality. However, for developing countries, promoting the quality of governance in order to enhance the level of happiness may not be effective. Policy makers in developed countries may pay more attention on increasing real GDP per capita instead of promoting the quality of governance to enhance individual happiness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=governance" title="governance">governance</a>, <a href="https://publications.waset.org/abstracts/search?q=happiness" title=" happiness"> happiness</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20regression" title=" multiple regression"> multiple regression</a>, <a href="https://publications.waset.org/abstracts/search?q=quantile%20regression" title=" quantile regression"> quantile regression</a> </p> <a href="https://publications.waset.org/abstracts/53398/the-impact-of-governance-on-happiness-evidence-from-quantile-regressions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53398.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">557</span> Enhancing the Interpretation of Group-Level Diagnostic Results from Cognitive Diagnostic Assessment: Application of Quantile Regression and Cluster Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wenbo%20Du">Wenbo Du</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaomei%20Ma"> Xiaomei Ma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the empowerment of Cognitive Diagnostic Assessment (CDA), various domains of language testing and assessment have been investigated to dig out more diagnostic information. What is noticeable is that most of the extant empirical CDA-based research puts much emphasis on individual-level diagnostic purpose with very few concerned about learners’ group-level performance. Even though the personalized diagnostic feedback is the unique feature that differentiates CDA from other assessment tools, group-level diagnostic information cannot be overlooked in that it might be more practical in classroom setting. Additionally, the group-level diagnostic information obtained via current CDA always results in a “flat pattern”, that is, the mastery/non-mastery of all tested skills accounts for the two highest proportion. In that case, the outcome does not bring too much benefits than the original total score. To address these issues, the present study attempts to apply cluster analysis for group classification and quantile regression analysis to pinpoint learners’ performance at different proficiency levels (beginner, intermediate and advanced) thus to enhance the interpretation of the CDA results extracted from a group of EFL learners’ reading performance on a diagnostic reading test designed by PELDiaG research team from a key university in China. The results show that EM method in cluster analysis yield more appropriate classification results than that of CDA, and quantile regression analysis does picture more insightful characteristics of learners with different reading proficiencies. The findings are helpful and practical for instructors to refine EFL reading curriculum and instructional plan tailored based on the group classification results and quantile regression analysis. Meanwhile, these innovative statistical methods could also make up the deficiencies of CDA and push forward the development of language testing and assessment in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cognitive%20diagnostic%20assessment" title="cognitive diagnostic assessment">cognitive diagnostic assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnostic%20feedback" title=" diagnostic feedback"> diagnostic feedback</a>, <a href="https://publications.waset.org/abstracts/search?q=EFL%20reading" title=" EFL reading"> EFL reading</a>, <a href="https://publications.waset.org/abstracts/search?q=quantile%20regression" title=" quantile regression"> quantile regression</a> </p> <a href="https://publications.waset.org/abstracts/132566/enhancing-the-interpretation-of-group-level-diagnostic-results-from-cognitive-diagnostic-assessment-application-of-quantile-regression-and-cluster-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">556</span> Comparison of Applicability of Time Series Forecasting Models VAR, ARCH and ARMA in Management Science: Study Based on Empirical Analysis of Time Series Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Tariq">Muhammad Tariq</a>, <a href="https://publications.waset.org/abstracts/search?q=Hammad%20Tahir"> Hammad Tahir</a>, <a href="https://publications.waset.org/abstracts/search?q=Fawwad%20Mahmood%20Butt"> Fawwad Mahmood Butt </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: This study attempts to examine the best forecasting methodologies in the time series. The time series forecasting models such as VAR, ARCH and the ARMA are considered for the analysis. Methodology: The Bench Marks or the parameters such as Adjusted R square, F-stats, Durban Watson, and Direction of the roots have been critically and empirically analyzed. The empirical analysis consists of time series data of Consumer Price Index and Closing Stock Price. Findings: The results show that the VAR model performed better in comparison to other models. Both the reliability and significance of VAR model is highly appreciable. In contrary to it, the ARCH model showed very poor results for forecasting. However, the results of ARMA model appeared double standards i.e. the AR roots showed that model is stationary and that of MA roots showed that the model is invertible. Therefore, the forecasting would remain doubtful if it made on the bases of ARMA model. It has been concluded that VAR model provides best forecasting results. Practical Implications: This paper provides empirical evidences for the application of time series forecasting model. This paper therefore provides the base for the application of best time series forecasting model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forecasting" title="forecasting">forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20series" title=" time series"> time series</a>, <a href="https://publications.waset.org/abstracts/search?q=auto%20regression" title=" auto regression"> auto regression</a>, <a href="https://publications.waset.org/abstracts/search?q=ARCH" title=" ARCH"> ARCH</a>, <a href="https://publications.waset.org/abstracts/search?q=ARMA" title=" ARMA"> ARMA</a> </p> <a href="https://publications.waset.org/abstracts/45124/comparison-of-applicability-of-time-series-forecasting-models-var-arch-and-arma-in-management-science-study-based-on-empirical-analysis-of-time-series-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45124.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">555</span> pscmsForecasting: A Python Web Service for Time Series Forecasting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ioannis%20Andrianakis">Ioannis Andrianakis</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasileios%20Gkatas"> Vasileios Gkatas</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikos%20Eleftheriadis"> Nikos Eleftheriadis</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexios%20Ellinidis"> Alexios Ellinidis</a>, <a href="https://publications.waset.org/abstracts/search?q=Ermioni%20Avramidou"> Ermioni Avramidou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> pscmsForecasting is an open-source web service that implements a variety of time series forecasting algorithms and exposes them to the user via the ubiquitous HTTP protocol. It allows developers to enhance their applications by adding time series forecasting functionalities through an intuitive and easy-to-use interface. This paper provides some background on time series forecasting and gives details about the implemented algorithms, aiming to enhance the end user’s understanding of the underlying methods before incorporating them into their applications. A detailed description of the web service’s interface and its various parameterizations is also provided. Being an open-source project, pcsmsForecasting can also be easily modified and tailored to the specific needs of each application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=time%20series" title="time series">time series</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting" title=" forecasting"> forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20service" title=" web service"> web service</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20source" title=" open source"> open source</a> </p> <a href="https://publications.waset.org/abstracts/170621/pscmsforecasting-a-python-web-service-for-time-series-forecasting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">554</span> Forecasting Stock Prices Based on the Residual Income Valuation Model: Evidence from a Time-Series Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chen-Yin%20Kuo">Chen-Yin Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yung-Hsin%20Lee"> Yung-Hsin Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Previous studies applying residual income valuation (RIV) model generally use panel data and single-equation model to forecast stock prices. Unlike these, this paper uses Taiwan longitudinal data to estimate multi-equation time-series models such as Vector Autoregressive (VAR), Vector Error Correction Model (VECM), and conduct out-of-sample forecasting. Further, this work assesses their forecasting performance by two instruments. In favor of extant research, the major finding shows that VECM outperforms other three models in forecasting for three stock sectors over entire horizons. It implies that an error correction term containing long-run information contributes to improve forecasting accuracy. Moreover, the pattern of composite shows that at longer horizon, VECM produces the greater reduction in errors, and performs substantially better than VAR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=residual%20income%20valuation%20model" title="residual income valuation model">residual income valuation model</a>, <a href="https://publications.waset.org/abstracts/search?q=vector%20error%20correction%20model" title=" vector error correction model"> vector error correction model</a>, <a href="https://publications.waset.org/abstracts/search?q=out%20of%20sample%20forecasting" title=" out of sample forecasting"> out of sample forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting%20accuracy" title=" forecasting accuracy"> forecasting accuracy</a> </p> <a href="https://publications.waset.org/abstracts/1668/forecasting-stock-prices-based-on-the-residual-income-valuation-model-evidence-from-a-time-series-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1668.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">553</span> Two Day Ahead Short Term Load Forecasting Neural Network Based</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Firas%20M.%20Tuaimah">Firas M. Tuaimah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an Artificial Neural Network based approach for short-term load forecasting and exactly for two days ahead. Two seasons have been discussed for Iraqi power system, namely summer and winter; the hourly load demand is the most important input variables for ANN based load forecasting. The recorded daily load profile with a lead time of 1-48 hours for July and December of the year 2012 was obtained from the operation and control center that belongs to the Ministry of Iraqi electricity. The results of the comparison show that the neural network gives a good prediction for the load forecasting and for two days ahead. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=short-term%20load%20forecasting" title="short-term load forecasting">short-term load forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title=" artificial neural networks"> artificial neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=back%20propagation%20learning" title=" back propagation learning"> back propagation learning</a>, <a href="https://publications.waset.org/abstracts/search?q=hourly%20load%20demand" title=" hourly load demand"> hourly load demand</a> </p> <a href="https://publications.waset.org/abstracts/7878/two-day-ahead-short-term-load-forecasting-neural-network-based" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">552</span> Reliability Based Investigation on the Choice of Characteristic Soil Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jann-Eike%20Saathoff">Jann-Eike Saathoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Kirill%20Alexander%20Schmoor"> Kirill Alexander Schmoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Achmus"> Martin Achmus</a>, <a href="https://publications.waset.org/abstracts/search?q=Mauricio%20Terceros"> Mauricio Terceros</a> </p> <p class="card-text"><strong>Abstract:</strong></p> By using partial factors of safety, uncertainties due to the inherent variability of the soil properties and loads are taken into account in the geotechnical design process. According to the reliability index concept in Eurocode-0 in conjunction with Eurocode-7 a minimum safety level of &beta;&nbsp;=&nbsp;3.8 for reliability class RC2 shall be established. The reliability of the system depends heavily on the choice of the prespecified safety factor and the choice of the characteristic soil properties. The safety factors stated in the standards are mainly based on experience. However, no general accepted method for the calculation of a characteristic value within the current design practice exists. In this study, a laterally loaded monopile is investigated and the influence of the chosen quantile values of the deterministic system, calculated with p-y springs, will be presented. Monopiles are the most common foundation concepts for offshore wind energy converters. Based on the calculations for non-cohesive soils, a recommendation for an appropriate quantile value for the necessary safety level according to the standards for a deterministic design is given. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymptotic%20sampling" title="asymptotic sampling">asymptotic sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=characteristic%20value" title=" characteristic value"> characteristic value</a>, <a href="https://publications.waset.org/abstracts/search?q=monopile%20foundation" title=" monopile foundation"> monopile foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20design" title=" probabilistic design"> probabilistic design</a>, <a href="https://publications.waset.org/abstracts/search?q=quantile%20values" title=" quantile values"> quantile values</a> </p> <a href="https://publications.waset.org/abstracts/101485/reliability-based-investigation-on-the-choice-of-characteristic-soil-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">551</span> Forecasting Future Demand for Energy Efficient Vehicles: A Review of Methodological Approaches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dimitrios%20I.%20Tselentis">Dimitrios I. Tselentis</a>, <a href="https://publications.waset.org/abstracts/search?q=Simon%20P.%20Washington"> Simon P. Washington</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Considerable literature has been focused over the last few decades on forecasting the consumer demand of Energy Efficient Vehicles (EEVs). These methodological issues range from how to capture recent purchase decisions in revealed choice studies and how to set up experiments in stated preference (SP) studies, and choice of analysis method for analyzing such data. This paper reviews the plethora of published studies on the field of forecasting demand of EEVs since 1980, and provides a review and annotated bibliography of that literature as it pertains to this particular demand forecasting problem. This detailed review addresses the literature not only to Transportation studies, but specifically to the problem and methodologies around forecasting to the time horizons of planning studies which may represent 10 to 20 year forecasts. The objectives of the paper are to identify where existing gaps in literature exist and to articulate where promising methodologies might guide longer term forecasting. One of the key findings of this review is that there are many common techniques used both in the field of new product demand forecasting and the field of predicting future demand for EEV. Apart from SP and RP methods, some of these new techniques that have emerged in the literature in the last few decades are survey related approaches, product diffusion models, time-series modelling, computational intelligence models and other holistic approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=demand%20forecasting" title="demand forecasting">demand forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=Energy%20Efficient%20Vehicles%20%28EEVs%29" title=" Energy Efficient Vehicles (EEVs)"> Energy Efficient Vehicles (EEVs)</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting%20methodologies%20review" title=" forecasting methodologies review"> forecasting methodologies review</a>, <a href="https://publications.waset.org/abstracts/search?q=methodological%20approaches" title=" methodological approaches"> methodological approaches</a> </p> <a href="https://publications.waset.org/abstracts/15014/forecasting-future-demand-for-energy-efficient-vehicles-a-review-of-methodological-approaches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">489</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantile%20forecasting&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantile%20forecasting&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantile%20forecasting&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantile%20forecasting&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantile%20forecasting&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantile%20forecasting&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantile%20forecasting&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantile%20forecasting&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantile%20forecasting&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantile%20forecasting&amp;page=19">19</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantile%20forecasting&amp;page=20">20</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantile%20forecasting&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10