CINXE.COM

Search results for: fuzzy rule

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: fuzzy rule</title> <meta name="description" content="Search results for: fuzzy rule"> <meta name="keywords" content="fuzzy rule"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="fuzzy rule" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="fuzzy rule"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1473</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: fuzzy rule</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1473</span> Learning Algorithms for Fuzzy Inference Systems Composed of Double- and Single-Input Rule Modules</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hirofumi%20Miyajima">Hirofumi Miyajima</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazuya%20Kishida"> Kazuya Kishida</a>, <a href="https://publications.waset.org/abstracts/search?q=Noritaka%20Shigei"> Noritaka Shigei</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiromi%20Miyajima"> Hiromi Miyajima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most of self-tuning fuzzy systems, which are automatically constructed from learning data, are based on the steepest descent method (SDM). However, this approach often requires a large convergence time and gets stuck into a shallow local minimum. One of its solutions is to use fuzzy rule modules with a small number of inputs such as DIRMs (Double-Input Rule Modules) and SIRMs (Single-Input Rule Modules). In this paper, we consider a (generalized) DIRMs model composed of double and single-input rule modules. Further, in order to reduce the redundant modules for the (generalized) DIRMs model, pruning and generative learning algorithms for the model are suggested. In order to show the effectiveness of them, numerical simulations for function approximation, Box-Jenkins and obstacle avoidance problems are performed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Box-Jenkins%27s%20problem" title="Box-Jenkins&#039;s problem">Box-Jenkins&#039;s problem</a>, <a href="https://publications.waset.org/abstracts/search?q=double-input%20rule%20module" title=" double-input rule module"> double-input rule module</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20inference%20model" title=" fuzzy inference model"> fuzzy inference model</a>, <a href="https://publications.waset.org/abstracts/search?q=obstacle%20avoidance" title=" obstacle avoidance"> obstacle avoidance</a>, <a href="https://publications.waset.org/abstracts/search?q=single-input%20rule%20module" title=" single-input rule module"> single-input rule module</a> </p> <a href="https://publications.waset.org/abstracts/46971/learning-algorithms-for-fuzzy-inference-systems-composed-of-double-and-single-input-rule-modules" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46971.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1472</span> A Fuzzy-Logic Approach to Rule-Based Systems for Leadership Style Selection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kim%20Michelle%20Siegling">Kim Michelle Siegling</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Spengler"> Thomas Spengler</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebastian%20Herzog"> Sebastian Herzog</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In personnel economics, the choice of a leadership style is about the question of how a supervisor should lead his or her employees in such a way that operational goals are achieved. In this paper, it is assumed that such leadership decisions are made according to the situation. Thus, the optimal or at least a permissible leadership style has to be selected from a set of several possible leadership styles. For this choice, a wide range of models has been developed in the scientific literature, from which the so-called normative decision model will be picked out and focused on. While the original model is based on univocal rules, this paper develops a fuzzy rule system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leadership" title="leadership">leadership</a>, <a href="https://publications.waset.org/abstracts/search?q=leadership%20styles" title=" leadership styles"> leadership styles</a>, <a href="https://publications.waset.org/abstracts/search?q=rule%20based%20systems" title=" rule based systems"> rule based systems</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a> </p> <a href="https://publications.waset.org/abstracts/186818/a-fuzzy-logic-approach-to-rule-based-systems-for-leadership-style-selection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">41</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1471</span> Hybrid Artificial Bee Colony and Least Squares Method for Rule-Based Systems Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahcene%20Habbi">Ahcene Habbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yassine%20Boudouaoui"> Yassine Boudouaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the problem of automatic rule generation for fuzzy systems design. The proposed approach is based on hybrid artificial bee colony (ABC) optimization and weighted least squares (LS) method and aims to find the structure and parameters of fuzzy systems simultaneously. More precisely, two ABC based fuzzy modeling strategies are presented and compared. The first strategy uses global optimization to learn fuzzy models, the second one hybridizes ABC and weighted least squares estimate method. The performances of the proposed ABC and ABC-LS fuzzy modeling strategies are evaluated on complex modeling problems and compared to other advanced modeling methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automatic%20design" title="automatic design">automatic design</a>, <a href="https://publications.waset.org/abstracts/search?q=learning" title=" learning"> learning</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20rules" title=" fuzzy rules"> fuzzy rules</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid" title=" hybrid"> hybrid</a>, <a href="https://publications.waset.org/abstracts/search?q=swarm%20optimization" title=" swarm optimization"> swarm optimization</a> </p> <a href="https://publications.waset.org/abstracts/15603/hybrid-artificial-bee-colony-and-least-squares-method-for-rule-based-systems-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15603.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1470</span> Decision Making System for Clinical Datasets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Bharathiraja">P. Bharathiraja </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Computer Aided decision making system is used to enhance diagnosis and prognosis of diseases and also to assist clinicians and junior doctors in clinical decision making. Medical Data used for decision making should be definite and consistent. Data Mining and soft computing techniques are used for cleaning the data and for incorporating human reasoning in decision making systems. Fuzzy rule based inference technique can be used for classification in order to incorporate human reasoning in the decision making process. In this work, missing values are imputed using the mean or mode of the attribute. The data are normalized using min-ma normalization to improve the design and efficiency of the fuzzy inference system. The fuzzy inference system is used to handle the uncertainties that exist in the medical data. Equal-width-partitioning is used to partition the attribute values into appropriate fuzzy intervals. Fuzzy rules are generated using Class Based Associative rule mining algorithm. The system is trained and tested using heart disease data set from the University of California at Irvine (UCI) Machine Learning Repository. The data was split using a hold out approach into training and testing data. From the experimental results it can be inferred that classification using fuzzy inference system performs better than trivial IF-THEN rule based classification approaches. Furthermore it is observed that the use of fuzzy logic and fuzzy inference mechanism handles uncertainty and also resembles human decision making. The system can be used in the absence of a clinical expert to assist junior doctors and clinicians in clinical decision making. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decision%20making" title="decision making">decision making</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=normalization" title=" normalization"> normalization</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20rule" title=" fuzzy rule"> fuzzy rule</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a> </p> <a href="https://publications.waset.org/abstracts/31212/decision-making-system-for-clinical-datasets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31212.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">517</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1469</span> Fuzzy Control and Pertinence Functions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luiz%20F.%20J.%20Maia">Luiz F. J. Maia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an approach to fuzzy control, with the use of new pertinence functions, applied in the case of an inverted pendulum. Appropriate definitions of pertinence functions to fuzzy sets make possible the implementation of the controller with only one control rule, resulting in a smooth control surface. The fuzzy control system can be implemented with analog devices, affording a true real-time performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=control%20surface" title="control surface">control surface</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20control" title=" fuzzy control"> fuzzy control</a>, <a href="https://publications.waset.org/abstracts/search?q=Inverted%20pendulum" title=" Inverted pendulum"> Inverted pendulum</a>, <a href="https://publications.waset.org/abstracts/search?q=pertinence%20functions" title=" pertinence functions"> pertinence functions</a> </p> <a href="https://publications.waset.org/abstracts/2467/fuzzy-control-and-pertinence-functions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1468</span> Power Energy Management For A Grid-Connected PV System Using Rule-Base Fuzzy Logic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nousheen%20Hashmi">Nousheen Hashmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shoab%20Ahmad%20Khan"> Shoab Ahmad Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Active collaboration among the green energy sources and the load demand leads to serious issues related to power quality and stability. The growing number of green energy resources and Distributed-Generators need newer strategies to be incorporated for their operations to keep the power energy stability among green energy resources and micro-grid/Utility Grid. This paper presents a novel technique for energy power management in Grid-Connected Photovoltaic with energy storage system under set of constraints including weather conditions, Load Shedding Hours, Peak pricing Hours by using rule-based fuzzy smart grid controller to schedule power coming from multiple Power sources (photovoltaic, grid, battery) under the above set of constraints. The technique fuzzifies all the inputs and establishes fuzzify rule set from fuzzy outputs before defuzzification. Simulations are run for 24 hours period and rule base power scheduler is developed. The proposed fuzzy controller control strategy is able to sense the continuous fluctuations in Photovoltaic power generation, Load Demands, Grid (load Shedding patterns) and Battery State of Charge in order to make correct and quick decisions.The suggested Fuzzy Rule-based scheduler can operate well with vague inputs thus doesn’t not require any exact numerical model and can handle nonlinearity. This technique provides a framework for the extension to handle multiple special cases for optimized working of the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photovoltaic" title="photovoltaic">photovoltaic</a>, <a href="https://publications.waset.org/abstracts/search?q=power" title=" power"> power</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20generators" title=" distributed generators"> distributed generators</a>, <a href="https://publications.waset.org/abstracts/search?q=state%20of%20charge" title=" state of charge"> state of charge</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20shedding" title=" load shedding"> load shedding</a>, <a href="https://publications.waset.org/abstracts/search?q=membership%20functions" title=" membership functions"> membership functions</a> </p> <a href="https://publications.waset.org/abstracts/36815/power-energy-management-for-a-grid-connected-pv-system-using-rule-base-fuzzy-logic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">479</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1467</span> Conflict Resolution in Fuzzy Rule Base Systems Using Temporal Modalities Inference</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nasser%20S.%20Shebka">Nasser S. Shebka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fuzzy logic is used in complex adaptive systems where classical tools of representing knowledge are unproductive. Nevertheless, the incorporation of fuzzy logic, as it’s the case with all artificial intelligence tools, raised some inconsistencies and limitations in dealing with increased complexity systems and rules that apply to real-life situations and hinders the ability of the inference process of such systems, but it also faces some inconsistencies between inferences generated fuzzy rules of complex or imprecise knowledge-based systems. The use of fuzzy logic enhanced the capability of knowledge representation in such applications that requires fuzzy representation of truth values or similar multi-value constant parameters derived from multi-valued logic, which set the basis for the three t-norms and their based connectives which are actually continuous functions and any other continuous t-norm can be described as an ordinal sum of these three basic ones. However, some of the attempts to solve this dilemma were an alteration to fuzzy logic by means of non-monotonic logic, which is used to deal with the defeasible inference of expert systems reasoning, for example, to allow for inference retraction upon additional data. However, even the introduction of non-monotonic fuzzy reasoning faces a major issue of conflict resolution for which many principles were introduced, such as; the specificity principle and the weakest link principle. The aim of our work is to improve the logical representation and functional modelling of AI systems by presenting a method of resolving existing and potential rule conflicts by representing temporal modalities within defeasible inference rule-based systems. Our paper investigates the possibility of resolving fuzzy rules conflict in a non-monotonic fuzzy reasoning-based system by introducing temporal modalities and Kripke's general weak modal logic operators in order to expand its knowledge representation capabilities by means of flexibility in classifying newly generated rules, and hence, resolving potential conflicts between these fuzzy rules. We were able to address the aforementioned problem of our investigation by restructuring the inference process of the fuzzy rule-based system. This is achieved by using time-branching temporal logic in combination with restricted first-order logic quantifiers, as well as propositional logic to represent classical temporal modality operators. The resulting findings not only enhance the flexibility of complex rule-base systems inference process but contributes to the fundamental methods of building rule bases in such a manner that will allow for a wider range of applicable real-life situations derived from a quantitative and qualitative knowledge representational perspective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20rule-based%20systems" title="fuzzy rule-based systems">fuzzy rule-based systems</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20tense%20inference" title=" fuzzy tense inference"> fuzzy tense inference</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20systems" title=" intelligent systems"> intelligent systems</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal%20modalities" title=" temporal modalities"> temporal modalities</a> </p> <a href="https://publications.waset.org/abstracts/156492/conflict-resolution-in-fuzzy-rule-base-systems-using-temporal-modalities-inference" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1466</span> Fuzzy Ideal Topological Spaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Koam">Ali Koam</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Ibedou"> Ismail Ibedou</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20E.%20Abbas"> S. E. Abbas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, it is introduced the notion of r-fuzzy ideal separation axioms Tᵢi = 0; 1; 2 based on a fuzzy ideal I on a fuzzy topological space (X; τ). An r-fuzzy ideal connectedness related to the fuzzy ideal I is introduced which has relations with a previous r-fuzzy fuzzy connectedness. An r-fuzzy ideal compactness related to Ι is introduced which has also relations with many other types of fuzzy compactness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20ideal" title="fuzzy ideal">fuzzy ideal</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20separation%20axioms" title=" fuzzy separation axioms"> fuzzy separation axioms</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20compactness" title=" fuzzy compactness"> fuzzy compactness</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20connectedness" title=" fuzzy connectedness"> fuzzy connectedness</a> </p> <a href="https://publications.waset.org/abstracts/101746/fuzzy-ideal-topological-spaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1465</span> Fuzzy Inference System for Risk Assessment Evaluation of Wheat Flour Product Manufacturing Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yas%20Barzegaar">Yas Barzegaar</a>, <a href="https://publications.waset.org/abstracts/search?q=Atrin%20Barzegar"> Atrin Barzegar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this research is to develop an intelligent system to analyze the risk level of wheat flour product manufacturing system. The model consists of five Fuzzy Inference Systems in two different layers to analyse the risk of a wheat flour product manufacturing system. The first layer of the model consists of four Fuzzy Inference Systems with three criteria. The output of each one of the Physical, Chemical, Biological and Environmental Failures will be the input of the final manufacturing systems. The proposed model based on Mamdani Fuzzy Inference Systems gives a performance ranking of wheat flour products manufacturing systems. The first step is obtaining data to identify the failure modes from expert’s opinions. The second step is the fuzzification process to convert crisp input to a fuzzy set., then the IF-then fuzzy rule applied through inference engine, and in the final step, the defuzzification process is applied to convert the fuzzy output into real numbers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=failure%20modes" title="failure modes">failure modes</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20rules" title=" fuzzy rules"> fuzzy rules</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20inference%20system" title=" fuzzy inference system"> fuzzy inference system</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a> </p> <a href="https://publications.waset.org/abstracts/169565/fuzzy-inference-system-for-risk-assessment-evaluation-of-wheat-flour-product-manufacturing-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1464</span> Fuzzy Inference System for Risk Assessment Evaluation of Wheat Flour Product Manufacturing Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atrin%20Barzegar">Atrin Barzegar</a>, <a href="https://publications.waset.org/abstracts/search?q=Yas%20Barzegar"> Yas Barzegar</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefano%20Marrone"> Stefano Marrone</a>, <a href="https://publications.waset.org/abstracts/search?q=Francesco%20Bellini"> Francesco Bellini</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Verde"> Laura Verde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this research is to develop an intelligent system to analyze the risk level of wheat flour product manufacturing system. The model consists of five Fuzzy Inference Systems in two different layers to analyse the risk of a wheat flour product manufacturing system. The first layer of the model consists of four Fuzzy Inference Systems with three criteria. The output of each one of the Physical, Chemical, Biological and Environmental Failures will be the input of the final manufacturing systems. The proposed model based on Mamdani Fuzzy Inference Systems gives a performance ranking of wheat flour products manufacturing systems. The first step is obtaining data to identify the failure modes from expert’s opinions. The second step is the fuzzification process to convert crisp input to a fuzzy set., then the IF-then fuzzy rule applied through inference engine, and in the final step, the defuzzification process is applied to convert the fuzzy output into real numbers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=failure%20modes" title="failure modes">failure modes</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20rules" title=" fuzzy rules"> fuzzy rules</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20inference%20system" title=" fuzzy inference system"> fuzzy inference system</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a> </p> <a href="https://publications.waset.org/abstracts/170997/fuzzy-inference-system-for-risk-assessment-evaluation-of-wheat-flour-product-manufacturing-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170997.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1463</span> Corruption and the Entrenchment of the Rule of Law in Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Grace%20Titilayo">Grace Titilayo</a>, <a href="https://publications.waset.org/abstracts/search?q=Kolawole-Amao"> Kolawole-Amao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Influence and authority of law within society should be respected by all and sundry regardless of individual status. Rule of law implies that every citizen is subject to the law. In a society governed by the rule of law, government and its officials and agents are also held subject to and accountable under the law. Law should not be employed to suit individual tenets. Where the rule of law operates, the government is the government of law and not of men. Corruption is a factor that kills the growth of the rule of law. Where corruption flourishes, the rule of law fails, simply put, corruption is a threat to the rule of law. It bastardized and undermines the rule of law and good governance principles - where men rule at their discretion rather than the use of the rule of law which makes governance processes ineffective. Corruption is prevalent all over the world, and has extremely far reaching effects. Many of the world’s greatest challenges have been amplified by corruption, for example poverty, unequal distribution of wealth and resources, and world hunger and it weakens the application and the entrenchment of the rule of law. It saps citizens' trust in their governments and undercuts government credibility. This paper will discuss the rule of law in the present democratic system in Nigeria, the impact of corruption on the rule of law in Nigeria and how corruption undermines and subverts the entrenchment of the rule of law in the present day Nigeria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rule%20of%20law" title="rule of law">rule of law</a>, <a href="https://publications.waset.org/abstracts/search?q=corruption" title=" corruption"> corruption</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria" title=" Nigeria"> Nigeria</a>, <a href="https://publications.waset.org/abstracts/search?q=influence" title=" influence"> influence</a>, <a href="https://publications.waset.org/abstracts/search?q=authority" title=" authority "> authority </a> </p> <a href="https://publications.waset.org/abstracts/33036/corruption-and-the-entrenchment-of-the-rule-of-law-in-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33036.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">557</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1462</span> Sensitivity Analysis in Fuzzy Linear Programming Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Nasseri">S. H. Nasseri</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ebrahimnejad"> A. Ebrahimnejad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fuzzy set theory has been applied to many fields, such as operations research, control theory, and management sciences. In this paper, we consider two classes of fuzzy linear programming (FLP) problems: Fuzzy number linear programming and linear programming with trapezoidal fuzzy variables problems. We state our recently established results and develop fuzzy primal simplex algorithms for solving these problems. Finally, we give illustrative examples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20linear%20programming" title="fuzzy linear programming">fuzzy linear programming</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20numbers" title=" fuzzy numbers"> fuzzy numbers</a>, <a href="https://publications.waset.org/abstracts/search?q=duality" title=" duality"> duality</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20analysis" title=" sensitivity analysis"> sensitivity analysis</a> </p> <a href="https://publications.waset.org/abstracts/16916/sensitivity-analysis-in-fuzzy-linear-programming-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">565</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1461</span> Pruning Algorithm for the Minimum Rule Reduct Generation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sahin%20Emrah%20Amrahov">Sahin Emrah Amrahov</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatih%20Aybar"> Fatih Aybar</a>, <a href="https://publications.waset.org/abstracts/search?q=Serhat%20Dogan"> Serhat Dogan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we consider the rule reduct generation problem. Rule Reduct Generation (RG) and Modified Rule Generation (MRG) algorithms, that are used to solve this problem, are well-known. Alternative to these algorithms, we develop Pruning Rule Generation (PRG) algorithm. We compare the PRG algorithm with RG and MRG. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rough%20sets" title="rough sets">rough sets</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20rules" title=" decision rules"> decision rules</a>, <a href="https://publications.waset.org/abstracts/search?q=rule%20induction" title=" rule induction"> rule induction</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a> </p> <a href="https://publications.waset.org/abstracts/17254/pruning-algorithm-for-the-minimum-rule-reduct-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">528</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1460</span> Power System Stability Enhancement Using Self Tuning Fuzzy PI Controller for TCSC</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salman%20Hameed">Salman Hameed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a self-tuning fuzzy PI controller (STFPIC) is proposed for thyristor controlled series capacitor (TCSC) to improve power system dynamic performance. In a STFPIC controller, the output scaling factor is adjusted on-line by an updating factor (α). The value of α is determined from a fuzzy rule-base defined on error (e) and change of error (Δe) of the controlled variable. The proposed self-tuning controller is designed using a very simple control rule-base and the most natural and unbiased membership functions (MFs) (symmetric triangles with equal base and 50% overlap with neighboring MFs). The comparative performances of the proposed STFPIC and the standard fuzzy PI controller (FPIC) have been investigated on a multi-machine power system (namely, 4 machine two area system) through detailed non-linear simulation studies using MATLAB/SIMULINK. From the simulation studies it has been found out that for damping oscillations, the performance of the proposed STFPIC is better than that obtained by the standard FPIC. Moreover, the proposed STFPIC as well as the FPIC have been found to be quite effective in damping oscillations over a wide range of operating conditions and are quite effective in enhancing the power carrying capability of the power system significantly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title="genetic algorithm">genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20system%20stability" title=" power system stability"> power system stability</a>, <a href="https://publications.waset.org/abstracts/search?q=self-tuning%20fuzzy%20controller" title=" self-tuning fuzzy controller"> self-tuning fuzzy controller</a>, <a href="https://publications.waset.org/abstracts/search?q=thyristor%20controlled%20series%20capacitor" title=" thyristor controlled series capacitor"> thyristor controlled series capacitor</a> </p> <a href="https://publications.waset.org/abstracts/7935/power-system-stability-enhancement-using-self-tuning-fuzzy-pi-controller-for-tcsc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7935.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1459</span> Some New Hesitant Fuzzy Sets Operator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20S.%20Thakur">G. S. Thakur </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, four new operators (O1, O2, O3, O4) are proposed, defined and considered to study the new properties and identities on hesitant fuzzy sets. These operators are useful for different operation on hesitant fuzzy sets. The various theorems are proved using the new operators. The study of the proposed new operators has opened a new area of research and applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vague%20sets" title="vague sets">vague sets</a>, <a href="https://publications.waset.org/abstracts/search?q=hesitant%20fuzzy%20sets" title=" hesitant fuzzy sets"> hesitant fuzzy sets</a>, <a href="https://publications.waset.org/abstracts/search?q=intuitionistic%20fuzzy%20set" title=" intuitionistic fuzzy set"> intuitionistic fuzzy set</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20sets" title=" fuzzy sets"> fuzzy sets</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20multisets" title=" fuzzy multisets "> fuzzy multisets </a> </p> <a href="https://publications.waset.org/abstracts/5174/some-new-hesitant-fuzzy-sets-operator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1458</span> Rule-Based Mamdani Type Fuzzy Modeling of Performances of Anode Side of Proton Exchange Membrane Fuel Cell Spin-Coated with Yttria-Stabilized Zirconia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sad%C4%B1k%20Ata">Sadık Ata</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevser%20Dincer"> Kevser Dincer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, performance of proton exchange membrane (PEM) fuel cell was experimentally investigated and modelled with Rule-Based Mamdani-Type Fuzzy (RBMTF) modelling technique. Coating on the anode side of the PEM fuel cell was accomplished with the spin method by using Yttria-stabilized zirconia (YSZ). Input parameters voltage density (V/cm2), and current density (A/cm2), temperature (°C), time (s); output parameter power density (W/cm2) were described by RBMTF if-then rules. Numerical parameters of input and output variables were fuzzificated as linguistic variables: Very Very Low (L1), Very Low (L2), Low (L3), Negative Medium (L4), Medium (L5), Positive Medium (L6), High (L7), Very High (L8) and Very Very High (L9) linguistic classes. The comparison between experimental data and RBMTF is done by using statistical methods like absolute fraction of variance (R2). The actual values and RBMTF results indicated that RBMTF can be successfully used for the analysis of performance of PEM fuel cell. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=proton%20exchange%20membrane%20%28PEM%29" title="proton exchange membrane (PEM)">proton exchange membrane (PEM)</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20cell" title=" fuel cell"> fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=rule-based%20Mamdani-type%20fuzzy%20%28RMBTF%29%20modeling" title=" rule-based Mamdani-type fuzzy (RMBTF) modeling"> rule-based Mamdani-type fuzzy (RMBTF) modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=yttria-stabilized%20zirconia%20%28YSZ%29" title=" yttria-stabilized zirconia (YSZ)"> yttria-stabilized zirconia (YSZ)</a> </p> <a href="https://publications.waset.org/abstracts/38252/rule-based-mamdani-type-fuzzy-modeling-of-performances-of-anode-side-of-proton-exchange-membrane-fuel-cell-spin-coated-with-yttria-stabilized-zirconia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38252.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1457</span> Design of a Fuzzy Expert System for the Impact of Diabetes Mellitus on Cardiac and Renal Impediments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Rama%20Devi%20Jothilingam">E. Rama Devi Jothilingam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diabetes mellitus is now one of the most common non communicable diseases globally. India leads the world with largest number of diabetic subjects earning the title "diabetes capital of the world". In order to reduce the mortality rate, a fuzzy expert system is designed to predict the severity of cardiac and renal problems of diabetic patients using fuzzy logic. Since uncertainty is inherent in medicine, fuzzy logic is used in this research work to remove the inherent fuzziness of linguistic concepts and uncertain status in diabetes mellitus which is the prime cause for the cardiac arrest and renal failure. In this work, the controllable risk factors "blood sugar, insulin, ketones, lipids, obesity, blood pressure and protein/creatinine ratio" are considered as input parameters and the "the stages of cardiac" (SOC)" and the stages of renal" (SORD) are considered as the output parameters. The triangular membership functions are used to model the input and output parameters. The rule base is constructed for the proposed expert system based on the knowledge from the medical experts. Mamdani inference engine is used to infer the information based on the rule base to take major decision in diagnosis. Mean of maximum is used to get a non fuzzy control action that best represent possibility distribution of an inferred fuzzy control action. The proposed system also classifies the patients with high risk and low risk using fuzzy c means clustering techniques so that the patients with high risk are treated immediately. The system is validated with Matlab and is used as a tracking system with accuracy and robustness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diabetes%20mellitus" title="Diabetes mellitus">Diabetes mellitus</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20expert%20system" title=" fuzzy expert system"> fuzzy expert system</a>, <a href="https://publications.waset.org/abstracts/search?q=Mamdani" title=" Mamdani"> Mamdani</a>, <a href="https://publications.waset.org/abstracts/search?q=MATLAB" title=" MATLAB"> MATLAB</a> </p> <a href="https://publications.waset.org/abstracts/27510/design-of-a-fuzzy-expert-system-for-the-impact-of-diabetes-mellitus-on-cardiac-and-renal-impediments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1456</span> Credit Risk Evaluation of Dairy Farming Using Fuzzy Logic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20H.%20Fattepur">R. H. Fattepur</a>, <a href="https://publications.waset.org/abstracts/search?q=Sameer%20R.%20Fattepur"> Sameer R. Fattepur</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20K.%20Sreekantha"> D. K. Sreekantha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dairy Farming is one of the key industries in India. India is the leading producer and also the consumer of milk, milk-based products in the world. In this paper, we have attempted to the replace the human expert system and to develop an artificial expert system prototype to increase the speed and accuracy of decision making dairy farming credit risk evaluation. Fuzzy logic is used for dealing with uncertainty, vague and acquired knowledge, fuzzy rule base method is used for representing this knowledge for building an effective expert system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=expert%20system" title="expert system">expert system</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20base" title=" knowledge base"> knowledge base</a>, <a href="https://publications.waset.org/abstracts/search?q=dairy%20farming" title=" dairy farming"> dairy farming</a>, <a href="https://publications.waset.org/abstracts/search?q=credit%20risk" title=" credit risk"> credit risk</a> </p> <a href="https://publications.waset.org/abstracts/40514/credit-risk-evaluation-of-dairy-farming-using-fuzzy-logic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40514.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1455</span> Fuzzy Rules Based Improved BEENISH Protocol for Wireless Sensor Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rishabh%20Sharma">Rishabh Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main design parameter of WSN (wireless sensor network) is the energy consumption. To compensate this parameter, hierarchical clustering is a technique that assists in extending duration of the networks life by efficiently consuming the energy. This paper focuses on dealing with the WSNs and the FIS (fuzzy interface system) which are deployed to enhance the BEENISH protocol. The node energy, mobility, pause time and density are considered for the selection of CH (cluster head). The simulation outcomes exhibited that the projected system outperforms the traditional system with regard to the energy utilization and number of packets transmitted to sink. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20network" title="wireless sensor network">wireless sensor network</a>, <a href="https://publications.waset.org/abstracts/search?q=sink" title=" sink"> sink</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor%20node" title=" sensor node"> sensor node</a>, <a href="https://publications.waset.org/abstracts/search?q=routing%20protocol" title=" routing protocol"> routing protocol</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20rule" title=" fuzzy rule"> fuzzy rule</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20inference%20system" title=" fuzzy inference system"> fuzzy inference system</a> </p> <a href="https://publications.waset.org/abstracts/144303/fuzzy-rules-based-improved-beenish-protocol-for-wireless-sensor-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1454</span> Improving the Performance of Proton Exchange Membrane Using Fuzzy Logic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sad%C4%B1k%20Ata">Sadık Ata</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevser%20Dincer"> Kevser Dincer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the performance of proton exchange membrane (PEM) fuel cell was experimentally investigated and modelled with Rule-Based Mamdani-Type Fuzzy (RBMTF) modelling technique. Coating on the anode side of the PEM fuel cell was accomplished with the spin method by using Yttria-stabilized zirconia (YSZ). Input-output parameters were described by RBMTF if-then rules. Numerical parameters of input and output variables were fuzzificated as linguistic variables: Very Very Low (L1), Very Low (L2), Low (L3), Negative Medium (L4), Medium (L5), Positive Medium (L6),High (L7), Very High (L8) and Very Very High (L9) linguistic classes. The comparison between experimental data and RBMTF is done by using statistical methods like absolute fraction of variance (R2). The actual values and RBMTF results indicated that RBMTF can be successfully used for the analysis of performance PEM fuel cell. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=proton%20exchange%20membrane%20%28PEM%29" title="proton exchange membrane (PEM)">proton exchange membrane (PEM)</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20cell" title=" fuel cell"> fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=rule-based%20mamdani-type%20fuzzy%20%28RMBTF%29%20modelling" title=" rule-based mamdani-type fuzzy (RMBTF) modelling"> rule-based mamdani-type fuzzy (RMBTF) modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=Yttria-stabilized%20zirconia%20%28YSZ%29" title=" Yttria-stabilized zirconia (YSZ)"> Yttria-stabilized zirconia (YSZ)</a> </p> <a href="https://publications.waset.org/abstracts/49649/improving-the-performance-of-proton-exchange-membrane-using-fuzzy-logic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1453</span> On an Approach for Rule Generation in Association Rule Mining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Chandra">B. Chandra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Association Rule Mining, much attention has been paid for developing algorithms for large (frequent/closed/maximal) itemsets but very little attention has been paid to improve the performance of rule generation algorithms. Rule generation is an important part of Association Rule Mining. In this paper, a novel approach named NARG (Association Rule using Antecedent Support) has been proposed for rule generation that uses memory resident data structure named FCET (Frequent Closed Enumeration Tree) to find frequent/closed itemsets. In addition, the computational speed of NARG is enhanced by giving importance to the rules that have lower antecedent support. Comparative performance evaluation of NARG with fast association rule mining algorithm for rule generation has been done on synthetic datasets and real life datasets (taken from UCI Machine Learning Repository). Performance analysis shows that NARG is computationally faster in comparison to the existing algorithms for rule generation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=knowledge%20discovery" title="knowledge discovery">knowledge discovery</a>, <a href="https://publications.waset.org/abstracts/search?q=association%20rule%20mining" title=" association rule mining"> association rule mining</a>, <a href="https://publications.waset.org/abstracts/search?q=antecedent%20support" title=" antecedent support"> antecedent support</a>, <a href="https://publications.waset.org/abstracts/search?q=rule%20generation" title=" rule generation"> rule generation</a> </p> <a href="https://publications.waset.org/abstracts/44331/on-an-approach-for-rule-generation-in-association-rule-mining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1452</span> Mathematical and Fuzzy Logic in the Interpretation of the Quran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Khorrami">Morteza Khorrami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The logic as an intellectual infrastructure plays an essential role in the Islamic sciences. Hence, there are a few of the verses of the Holy Quran that their interpretation is not possible due to lack of proper logic. In many verses in the Quran, argument and the respondent has requested from the audience that shows the logic rule is in the Quran. The paper which use a descriptive and analytic method, tries to show the role of logic in understanding of the Quran reasoning methods and display some of Quranic statements with mathematical symbols and point that we can help these symbols for interesting and interpretation and answering to some questions and doubts. In this paper, this problem has been mentioned that the Quran did not use two-valued logic (Aristotelian) in all cases, but the fuzzy logic can also be searched in the Quran. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aristotelian%20logic" title="aristotelian logic">aristotelian logic</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=interpretation" title=" interpretation"> interpretation</a>, <a href="https://publications.waset.org/abstracts/search?q=Holy%20Quran" title=" Holy Quran"> Holy Quran</a> </p> <a href="https://publications.waset.org/abstracts/37444/mathematical-and-fuzzy-logic-in-the-interpretation-of-the-quran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">675</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1451</span> 2D Structured Non-Cyclic Fuzzy Graphs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Pathinathan">T. Pathinathan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Peter"> M. Peter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fuzzy graphs incorporate concepts from graph theory with fuzzy principles. In this paper, we make a study on the properties of fuzzy graphs which are non-cyclic and are of two-dimensional in structure. In particular, this paper presents 2D structure or the structure of double layer for a non-cyclic fuzzy graph whose underlying crisp graph is non-cyclic. In any graph structure, introducing 2D structure may lead to an inherent cycle. We propose relevant conditions for 2D structured non-cyclic fuzzy graphs. These conditions are extended even to fuzzy graphs of the 3D structure. General theoretical properties that are studied for any fuzzy graph are verified to 2D structured or double layered fuzzy graphs. Concepts like Order, Degree, Strong and Size for a fuzzy graph are studied for 2D structured or double layered non-cyclic fuzzy graphs. Using different types of fuzzy graphs, the proposed concepts relating to 2D structured fuzzy graphs are verified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=double%20layered%20fuzzy%20graph" title="double layered fuzzy graph">double layered fuzzy graph</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20layered%20non%E2%80%93cyclic%20fuzzy%20graph" title=" double layered non–cyclic fuzzy graph"> double layered non–cyclic fuzzy graph</a>, <a href="https://publications.waset.org/abstracts/search?q=order" title=" order"> order</a>, <a href="https://publications.waset.org/abstracts/search?q=degree%20and%20size" title=" degree and size"> degree and size</a> </p> <a href="https://publications.waset.org/abstracts/80562/2d-structured-non-cyclic-fuzzy-graphs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1450</span> The Lexicographic Serial Rule</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thi%20Thao%20Nguyen">Thi Thao Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20McLennan"> Andrew McLennan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shino%20Takayama"> Shino Takayama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study the probabilistic allocation of finitely many indivisible objects to finitely many agents. Well known allocation rules for this problem include random priority, the market mechanism proposed by Hylland and Zeckhauser [1979], and the probabilistic serial rule of Bogomolnaia and Moulin [2001]. We propose a new allocation rule, which we call the lexico-graphic (serial) rule, that is tailored for situations in which each agent's primary concern is to maximize the probability of receiving her favourite object. Three axioms, lex efficiency, lex envy freeness and fairness, are proposed and fully characterize the lexicographic serial rule. We also discuss how our axioms and the lexicographic rule are related to other allocation rules, particularly the probabilistic serial rule. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Efficiency" title="Efficiency">Efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=Envy%20free" title=" Envy free"> Envy free</a>, <a href="https://publications.waset.org/abstracts/search?q=Lexicographic" title=" Lexicographic"> Lexicographic</a>, <a href="https://publications.waset.org/abstracts/search?q=Probabilistic%20Serial%20Rule" title=" Probabilistic Serial Rule"> Probabilistic Serial Rule</a> </p> <a href="https://publications.waset.org/abstracts/124573/the-lexicographic-serial-rule" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1449</span> Solutions of Fuzzy Transportation Problem Using Best Candidates Method and Different Ranking Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Annie%20Christi">M. S. Annie Christi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transportation Problem (TP) is based on supply and demand of commodities transported from one source to the different destinations. Usual methods for finding solution of TPs are North-West Corner Rule, Least Cost Method Vogel&rsquo;s Approximation Method etc. The transportation costs tend to vary at each time. We can use fuzzy numbers which would give solution according to this situation. In this study the Best Candidate Method (BCM) is applied. For ranking Centroid Ranking Technique (CRT) and Robust Ranking Technique have been adopted to transform the fuzzy TP and the above methods are applied to EDWARDS Vacuum Company, Crawley, in West Sussex in the United Kingdom. A Comparative study is also given<strong>.</strong> We see that the transportation cost can be minimized by the application of CRT under BCM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=best%20candidate%20method" title="best candidate method">best candidate method</a>, <a href="https://publications.waset.org/abstracts/search?q=centroid%20ranking%20technique" title=" centroid ranking technique"> centroid ranking technique</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20transportation%20problem" title=" fuzzy transportation problem"> fuzzy transportation problem</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20ranking%20technique" title=" robust ranking technique"> robust ranking technique</a>, <a href="https://publications.waset.org/abstracts/search?q=transportation%20problem" title=" transportation problem"> transportation problem</a> </p> <a href="https://publications.waset.org/abstracts/60506/solutions-of-fuzzy-transportation-problem-using-best-candidates-method-and-different-ranking-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1448</span> Evaluation of a Hybrid Knowledge-Based System Using Fuzzy Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamalendu%20Pal">Kamalendu Pal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes the main features of a knowledge-based system evaluation method. System evaluation is placed in the context of a hybrid legal decision-support system, Advisory Support for Home Settlement in Divorce (ASHSD). Legal knowledge for ASHSD is represented in two forms, as rules and previously decided cases. Besides distinguishing the two different forms of knowledge representation, the paper outlines the actual use of these forms in a computational framework that is designed to generate a plausible solution for a given case, by using rule-based reasoning (RBR) and case-based reasoning (CBR) in an integrated environment. The nature of suitability assessment of a solution has been considered as a multiple criteria decision making process in ASHAD evaluation. The evaluation was performed by a combination of discussions and questionnaires with different user groups. The answers to questionnaires used in this evaluations method have been measured as a combination of linguistic variables, fuzzy numbers, and by using defuzzification process. The results show that the designed evaluation method creates suitable mechanism in order to improve the performance of the knowledge-based system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=case-based%20reasoning" title="case-based reasoning">case-based reasoning</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20number" title=" fuzzy number"> fuzzy number</a>, <a href="https://publications.waset.org/abstracts/search?q=legal%20decision-support%20system" title=" legal decision-support system"> legal decision-support system</a>, <a href="https://publications.waset.org/abstracts/search?q=linguistic%20variable" title=" linguistic variable"> linguistic variable</a>, <a href="https://publications.waset.org/abstracts/search?q=rule-based%20reasoning" title=" rule-based reasoning"> rule-based reasoning</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20evaluation" title=" system evaluation "> system evaluation </a> </p> <a href="https://publications.waset.org/abstracts/29897/evaluation-of-a-hybrid-knowledge-based-system-using-fuzzy-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29897.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1447</span> Solving Fuzzy Multi-Objective Linear Programming Problems with Fuzzy Decision Variables</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahnaz%20Hosseinzadeh">Mahnaz Hosseinzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Aliyeh%20Kazemi"> Aliyeh Kazemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a method is proposed for solving Fuzzy Multi-Objective Linear Programming problems (FMOLPP) with fuzzy right hand side and fuzzy decision variables. To illustrate the proposed method, it is applied to the problem of selecting suppliers for an automotive parts producer company in Iran in order to find the number of optimal orders allocated to each supplier considering the conflicting objectives. Finally, the obtained results are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20multi-objective%20linear%20programming%20problems" title="fuzzy multi-objective linear programming problems">fuzzy multi-objective linear programming problems</a>, <a href="https://publications.waset.org/abstracts/search?q=triangular%20fuzzy%20numbers" title=" triangular fuzzy numbers"> triangular fuzzy numbers</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20ranking" title=" fuzzy ranking"> fuzzy ranking</a>, <a href="https://publications.waset.org/abstracts/search?q=supplier%20selection%20problem" title=" supplier selection problem"> supplier selection problem</a> </p> <a href="https://publications.waset.org/abstracts/54020/solving-fuzzy-multi-objective-linear-programming-problems-with-fuzzy-decision-variables" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54020.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1446</span> Complex Fuzzy Evolution Equation with Nonlocal Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelati%20El%20Allaoui">Abdelati El Allaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Melliani"> Said Melliani</a>, <a href="https://publications.waset.org/abstracts/search?q=Lalla%20Saadia%20Chadli"> Lalla Saadia Chadli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this paper is to study the existence and uniqueness of Mild solutions for a complex fuzzy evolution equation with nonlocal conditions that accommodates the notion of fuzzy sets defined by complex-valued membership functions. We first propose definition of complex fuzzy strongly continuous semigroups. We then give existence and uniqueness result relevant to the complex fuzzy evolution equation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Complex%20fuzzy%20evolution%20equations" title="Complex fuzzy evolution equations">Complex fuzzy evolution equations</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlocal%20conditions" title=" nonlocal conditions"> nonlocal conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=mild%20solution" title=" mild solution"> mild solution</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20fuzzy%20semigroups" title=" complex fuzzy semigroups"> complex fuzzy semigroups</a> </p> <a href="https://publications.waset.org/abstracts/59900/complex-fuzzy-evolution-equation-with-nonlocal-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1445</span> Fuzzy Multi-Component DEA with Shared and Undesirable Fuzzy Resources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jolly%20Puri">Jolly Puri</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiv%20Prasad%20Yadav"> Shiv Prasad Yadav</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multi-component data envelopment analysis (MC-DEA) is a popular technique for measuring aggregate performance of the decision making units (DMUs) along with their components. However, the conventional MC-DEA is limited to crisp input and output data which may not always be available in exact form. In real life problems, data may be imprecise or fuzzy. Therefore, in this paper, we propose (i) a fuzzy MC-DEA (FMC-DEA) model in which shared and undesirable fuzzy resources are incorporated, (ii) the proposed FMC-DEA model is transformed into a pair of crisp models using cut approach, (iii) fuzzy aggregate performance of a DMU and fuzzy efficiencies of components are defined to be fuzzy numbers, and (iv) a numerical example is illustrated to validate the proposed approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-component%20DEA" title="multi-component DEA">multi-component DEA</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20multi-component%20DEA" title=" fuzzy multi-component DEA"> fuzzy multi-component DEA</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20resources" title=" fuzzy resources"> fuzzy resources</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20making%20units%20%28DMUs%29" title=" decision making units (DMUs)"> decision making units (DMUs)</a> </p> <a href="https://publications.waset.org/abstracts/9809/fuzzy-multi-component-dea-with-shared-and-undesirable-fuzzy-resources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1444</span> Credit Risk Assessment Using Rule Based Classifiers: A Comparative Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salima%20Smiti">Salima Smiti</a>, <a href="https://publications.waset.org/abstracts/search?q=Ines%20Gasmi"> Ines Gasmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Makram%20Soui"> Makram Soui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Credit risk is the most important issue for financial institutions. Its assessment becomes an important task used to predict defaulter customers and classify customers as good or bad payers. To this objective, numerous techniques have been applied for credit risk assessment. However, to our knowledge, several evaluation techniques are black-box models such as neural networks, SVM, etc. They generate applicants’ classes without any explanation. In this paper, we propose to assess credit risk using rules classification method. Our output is a set of rules which describe and explain the decision. To this end, we will compare seven classification algorithms (JRip, Decision Table, OneR, ZeroR, Fuzzy Rule, PART and Genetic programming (GP)) where the goal is to find the best rules satisfying many criteria: accuracy, sensitivity, and specificity. The obtained results confirm the efficiency of the GP algorithm for German and Australian datasets compared to other rule-based techniques to predict the credit risk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=credit%20risk%20assessment" title="credit risk assessment">credit risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=classification%20algorithms" title=" classification algorithms"> classification algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=rule%20extraction" title=" rule extraction"> rule extraction</a> </p> <a href="https://publications.waset.org/abstracts/82645/credit-risk-assessment-using-rule-based-classifiers-a-comparative-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fuzzy%20rule&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fuzzy%20rule&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fuzzy%20rule&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fuzzy%20rule&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fuzzy%20rule&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fuzzy%20rule&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fuzzy%20rule&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fuzzy%20rule&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fuzzy%20rule&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fuzzy%20rule&amp;page=49">49</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fuzzy%20rule&amp;page=50">50</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fuzzy%20rule&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10