CINXE.COM

Search results for: transient heat conduction

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: transient heat conduction</title> <meta name="description" content="Search results for: transient heat conduction"> <meta name="keywords" content="transient heat conduction"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="transient heat conduction" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="transient heat conduction"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3597</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: transient heat conduction</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3597</span> Solving Transient Conduction and Radiation using Finite Volume Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashok%20K.%20Satapathy">Ashok K. Satapathy</a>, <a href="https://publications.waset.org/abstracts/search?q=Prerana%20Nashine"> Prerana Nashine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radiative heat transfer in participating medium was anticipated using the finite volume method. The radiative transfer equations are formulated for absorbing and anisotropically scattering and emitting medium. The solution strategy is discussed and the conditions for computational stability are conferred. The equations have been solved for transient radiative medium and transient radiation incorporated with transient conduction. Results have been obtained for irradiation and corresponding heat fluxes for both the cases. The solutions can be used to conclude incident energy and surface heat flux. Transient solutions were obtained for a slab of heat conducting in slab by thermal radiation. The effect of heat conduction during the transient phase is to partially equalize the internal temperature distribution. The solution procedure provides accurate temperature distributions in these regions. A finite volume procedure with variable space and time increments is used to solve the transient energy equation. The medium in the enclosure absorbs, emits, and anisotropically scatters radiative energy. The incident radiations and the radiative heat fluxes are presented in graphical forms. The phase function anisotropy plays a significant role in the radiation heat transfer when the boundary condition is non-symmetric. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=participating%20media" title="participating media">participating media</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20volume%20method" title=" finite volume method"> finite volume method</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20coupled%20with%20conduction" title=" radiation coupled with conduction"> radiation coupled with conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a> </p> <a href="https://publications.waset.org/abstracts/6346/solving-transient-conduction-and-radiation-using-finite-volume-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3596</span> Transient Heat Conduction in Nonuniform Hollow Cylinders with Time Dependent Boundary Condition at One Surface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sen%20Yung%20Lee">Sen Yung Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih%20Cheng%20Huang"> Chih Cheng Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Te%20Wen%20Tu"> Te Wen Tu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A solution methodology without using integral transformation is proposed to develop analytical solutions for transient heat conduction in nonuniform hollow cylinders with time-dependent boundary condition at the outer surface. It is shown that if the thermal conductivity and the specific heat of the medium are in arbitrary polynomial function forms, the closed solutions of the system can be developed. The influence of physical properties on the temperature distribution of the system is studied. A numerical example is given to illustrate the efficiency and the accuracy of the solution methodology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytical%20solution" title="analytical solution">analytical solution</a>, <a href="https://publications.waset.org/abstracts/search?q=nonuniform%20hollow%20cylinder" title=" nonuniform hollow cylinder"> nonuniform hollow cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=time-dependent%20boundary%20condition" title=" time-dependent boundary condition"> time-dependent boundary condition</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20heat%20conduction" title=" transient heat conduction"> transient heat conduction</a> </p> <a href="https://publications.waset.org/abstracts/25068/transient-heat-conduction-in-nonuniform-hollow-cylinders-with-time-dependent-boundary-condition-at-one-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3595</span> Solving the Nonlinear Heat Conduction in a Spherical Coordinate with Electrical Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Gheitaghy">A. M. Gheitaghy</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Saffari"> H. Saffari</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Q.%20Zhang"> G. Q. Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical approach based on the electrical simulation method is proposed to solve a nonlinear transient heat conduction problem with nonlinear boundary for a spherical body. This problem represents a strong nonlinearity in both the governing equation for temperature dependent thermal property and the boundary condition for combined convective and radiative cooling. By analysing the equivalent electrical model using the electrical circuit simulation program HSPICE, transient temperature and heat flux distributions at sphere can be obtained easily and fast. The solutions clearly illustrate the effect of the radiation-conduction parameter Nrc, the Biot number and the linear coefficient of temperature dependent conductivity and heat capacity. On comparing the results with corresponding numerical solutions, the accuracy and efficiency of this computational method are found to be good. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convective%20and%20radiative%20boundary" title="convective and radiative boundary">convective and radiative boundary</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20simulation%20method" title=" electrical simulation method"> electrical simulation method</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20heat%20conduction" title=" nonlinear heat conduction"> nonlinear heat conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=spherical%20coordinate" title=" spherical coordinate"> spherical coordinate</a> </p> <a href="https://publications.waset.org/abstracts/44491/solving-the-nonlinear-heat-conduction-in-a-spherical-coordinate-with-electrical-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3594</span> Application of Residual Correction Method on Hyperbolic Thermoelastic Response of Hollow Spherical Medium in Rapid Transient Heat Conduction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Po-Jen%20Su">Po-Jen Su</a>, <a href="https://publications.waset.org/abstracts/search?q=Huann-Ming%20Chou"> Huann-Ming Chou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article we uses the residual correction method to deal with transient thermoelastic problems with a hollow spherical region when the continuum medium possesses spherically isotropic thermoelastic properties. Based on linear thermoelastic theory, the equations of hyperbolic heat conduction and thermoelastic motion were combined to establish the thermoelastic dynamic model with consideration of the deformation acceleration effect and non-Fourier effect under the condition of transient thermal shock. The approximate solutions of temperature and displacement distributions are obtained using the residual correction method based on the maximum principle in combination with the finite difference method, making it easier and faster to obtain upper and lower approximations of exact solutions. The proposed method is found to be an effective numerical method with satisfactory accuracy. Moreover, the result shows that the effect of transient thermal shock induced by deformation acceleration is enhanced by non-Fourier heat conduction with increased peak stress. The influence on the stress increases with the thermal relaxation time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maximum%20principle" title="maximum principle">maximum principle</a>, <a href="https://publications.waset.org/abstracts/search?q=non-Fourier%20heat%20conduction" title=" non-Fourier heat conduction"> non-Fourier heat conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20correction%20method" title=" residual correction method"> residual correction method</a>, <a href="https://publications.waset.org/abstracts/search?q=thermo-elastic%20response" title=" thermo-elastic response"> thermo-elastic response</a> </p> <a href="https://publications.waset.org/abstracts/30884/application-of-residual-correction-method-on-hyperbolic-thermoelastic-response-of-hollow-spherical-medium-in-rapid-transient-heat-conduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3593</span> Conduction Accompanied With Transient Radiative Heat Transfer Using Finite Volume Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ashok">A. Ashok</a>, <a href="https://publications.waset.org/abstracts/search?q=K.Satapathy"> K.Satapathy</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Prerana%20Nashine"> B. Prerana Nashine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this research work is to investigate for one dimensional transient radiative transfer equations with conduction using finite volume method. Within the infrastructure of finite-volume, we obtain the conservative discretization of the terms in order to preserve the overall conservative property of finitevolume schemes. Coupling of conductive and radiative equation resulting in fluxes is governed by the magnitude of emissivity, extinction coefficient, and temperature of the medium as well as geometry of the problem. The problem under consideration has been solved, for a slab dominating radiation coupled with transient conduction based on finite volume method. The boundary conditions are also chosen so as to give a good model of the discretized form of radiation transfer equation. The important feature of the present method is flexibility in specifying the control angles in the FVM, while keeping the simplicity in the solution procedure. Effects of various model parameters are examined on the distributions of temperature, radiative and conductive heat fluxes and incident radiation energy etc. The finite volume method is considered to effectively evaluate the propagation of radiation intensity through a participating medium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=participating%20media" title="participating media">participating media</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20volume%20method" title=" finite volume method"> finite volume method</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20coupled%20with%20conduction" title=" radiation coupled with conduction"> radiation coupled with conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20radiative%20heat%20transfer" title=" transient radiative heat transfer "> transient radiative heat transfer </a> </p> <a href="https://publications.waset.org/abstracts/9579/conduction-accompanied-with-transient-radiative-heat-transfer-using-finite-volume-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3592</span> Study of Heat Transfer in the Absorber Plates of a Flat-Plate Solar Collector Using Dual-Phase-Lag Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Ching%20Yang">Yu-Ching Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Haw-Long%20Lee"> Haw-Long Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Win-Jin%20Chang"> Win-Jin Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work numerically analyzes the transient heat transfer in the absorber plates of a flat-plate solar collector based on the dual-phase-lag (DPL) heat conduction model. An efficient numerical scheme involving the hybrid application of the Laplace transform and control volume methods is used to solve the linear hyperbolic heat conduction equation. This work also examines the effect of different medium parameters on the behavior of heat transfer. Results show that, while the heat-flux phase lag induces thermal waves in the medium, the temperature-gradient phase lag smoothens the thermal waves by promoting non-Fourier diffusion-like conduction into the medium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorber%20plates" title="absorber plates">absorber plates</a>, <a href="https://publications.waset.org/abstracts/search?q=dual-phase-lag" title=" dual-phase-lag"> dual-phase-lag</a>, <a href="https://publications.waset.org/abstracts/search?q=non-Fourier" title=" non-Fourier"> non-Fourier</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20collector" title=" solar collector"> solar collector</a> </p> <a href="https://publications.waset.org/abstracts/46764/study-of-heat-transfer-in-the-absorber-plates-of-a-flat-plate-solar-collector-using-dual-phase-lag-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46764.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3591</span> Transient Current Investigations in Liquid Crystalline Polyurethane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jitendra%20Kumar%20Quamara">Jitendra Kumar Quamara</a>, <a href="https://publications.waset.org/abstracts/search?q=Sohan%20Lal"> Sohan Lal</a>, <a href="https://publications.waset.org/abstracts/search?q=Pushkar%20Raj"> Pushkar Raj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrical conduction behavior of liquid crystalline polyurethane (LCPU) has been investigated under transient conditions in the operating temperature range 50-220°C at various electric fields of 4.35-43.45 kV/cm. The transient currents show the hyperbolic decay character and the decay exponent ∆t (one tenth decay time) dependent on field as well as on temperature. The increase in I0/Is values (where I0 represents the current observed immediately after applying the voltage and Is represents the steady state current) and the variation of mobility at high operating temperatures shows the appearance of mesophase. The origin of transient currents has been attributed to the dipolar nature of carbonyl (C=O) groups in the main chain of LCPU and the trapping charge carriers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20conduction" title="electrical conduction">electrical conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20current" title=" transient current"> transient current</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20crystalline%20polymers" title=" liquid crystalline polymers"> liquid crystalline polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=mesophase" title=" mesophase "> mesophase </a> </p> <a href="https://publications.waset.org/abstracts/9788/transient-current-investigations-in-liquid-crystalline-polyurethane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3590</span> Numerical Investigation on Transient Heat Conduction through Brine-Spongy Ice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20R.%20Dehghani">S. R. Dehghani</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20S.%20Muzychka"> Y. S. Muzychka</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20F.%20Naterer"> G. F. Naterer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ice accretion of salt water on cold substrates creates brine-spongy ice. This type of ice is a mixture of pure ice and liquid brine. A real case of creation of this type of ice is superstructure icing which occurs on marine vessels and offshore structures in cold and harsh conditions. Transient heat transfer through this medium causes phase changes between brine pockets and pure ice. Salt rejection during the process of transient heat conduction increases the salinity of brine pockets to reach a local equilibrium state. In this process the only effect of passing heat through the medium is not changing the sensible heat of the ice and brine pockets; latent heat plays an important role and affects the mechanism of heat transfer. In this study, a new analytical model for evaluating heat transfer through brine-spongy ice is suggested. This model considers heat transfer and partial solidification and melting together. Properties of brine-spongy ice are obtained using properties of liquid brine and pure ice. A numerical solution using Method of Lines discretizes the medium to reach a set of ordinary differential equations. Boundary conditions are chosen using one of the applicable cases of this type of ice; one side is considered as a thermally isolated surface, and the other side is assumed to be suddenly affected by a constant temperature boundary. All cases are evaluated in temperatures between -20 C and the freezing point of brine-spongy ice. Solutions are conducted using different salinities from 5 to 60 ppt. Time steps and space intervals are chosen properly to maintain the most stable and fast solution. Variation of temperature, volume fraction of brine and brine salinity versus time are the most important outputs of this study. Results show that transient heat conduction through brine-spongy ice can create a various range of salinity of brine pockets from the initial salinity to that of 180 ppt. The rate of variation of temperature is found to be slower for high salinity cases. The maximum rate of heat transfer occurs at the start of the simulation. This rate decreases as time passes. Brine pockets are smaller at portions closer to the colder side than that of the warmer side. A the start of the solution, the numerical solution tends to increase instabilities. This is because of sharp variation of temperature at the start of the process. Changing the intervals improves the unstable situation. The analytical model using a numerical scheme is capable of predicting thermal behavior of brine spongy ice. This model and numerical solutions are important for modeling the process of freezing of salt water and ice accretion on cold structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=method%20of%20lines" title="method of lines">method of lines</a>, <a href="https://publications.waset.org/abstracts/search?q=brine-spongy%20ice" title=" brine-spongy ice"> brine-spongy ice</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20conduction" title=" heat conduction"> heat conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=salt%20water" title=" salt water"> salt water</a> </p> <a href="https://publications.waset.org/abstracts/61740/numerical-investigation-on-transient-heat-conduction-through-brine-spongy-ice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61740.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3589</span> Analyses of Natural Convection Heat Transfer from a Heated Cylinder Mounted in Vertical Duct</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Bhowmik">H. Bhowmik</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Faisal"> A. Faisal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Al%20Yaarubi"> Ahmed Al Yaarubi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabil%20Al%20Alawi"> Nabil Al Alawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experiments are conducted to analyze the steady-state and the power-on transient natural convection heat transfer from a horizontal cylinder mounted in a vertical up flow circular duct. The heat flux ranges from 177 W/m<sup>2</sup> to 2426 W/m<sup>2</sup> and the Rayleigh number ranges from 1&times;10<sup>4</sup> to 4.35&times;10<sup>4</sup>. For natural air flow and constant heat flux condition, the effects of heat transfer around the cylinder under steady-state condition are investigated. The steady-state results compare favorably with that of the available data. The effects of transient heat transfer data on different angular position of the thermocouple (0<sup>o</sup>, 90<sup>o</sup>, 180<sup>o</sup>) are also reported. It is observed that the transient heat transfer around the cylinder is strongly affected by the position of thermocouples. In the transient region, the rate of heat transfer obtained at 90<sup>o</sup> and 180<sup>o</sup> are higher than that of stagnation point (0<sup>o</sup>). Finally, the dependence of the average Nusselt number on Rayleigh number for steady and transient natural convection heat transfer are analyzed, and a correlation equation is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fourier%20number" title="Fourier number">Fourier number</a>, <a href="https://publications.waset.org/abstracts/search?q=Nusselt%20number" title=" Nusselt number"> Nusselt number</a>, <a href="https://publications.waset.org/abstracts/search?q=Rayleigh%20number" title=" Rayleigh number"> Rayleigh number</a>, <a href="https://publications.waset.org/abstracts/search?q=steady%20state" title=" steady state"> steady state</a>, <a href="https://publications.waset.org/abstracts/search?q=transient" title=" transient"> transient</a> </p> <a href="https://publications.waset.org/abstracts/84493/analyses-of-natural-convection-heat-transfer-from-a-heated-cylinder-mounted-in-vertical-duct" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3588</span> Unsteady Temperature Distribution in a Finite Functionally Graded Cylinder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Amiri%20Delouei">A. Amiri Delouei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current study, two-dimensional unsteady heat conduction in a functionally graded cylinder is studied analytically. The temperature distribution is in radial and longitudinal directions. Heat conduction coefficients are considered a power function of radius both in radial and longitudinal directions. The proposed solution can exactly satisfy the boundary conditions. Analytical unsteady temperature distribution for different parameters of functionally graded cylinder is investigated. The achieved exact solution is useful for thermal stress analysis of functionally graded cylinders. Regarding the analytical approach, this solution can be used to understand the concepts of heat conduction in functionally graded materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=functionally%20graded%20materials" title="functionally graded materials">functionally graded materials</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteady%20heat%20conduction" title=" unsteady heat conduction"> unsteady heat conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=cylinder" title=" cylinder"> cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20distribution" title=" temperature distribution"> temperature distribution</a> </p> <a href="https://publications.waset.org/abstracts/75750/unsteady-temperature-distribution-in-a-finite-functionally-graded-cylinder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3587</span> Numerical Investigation of Hot Oil Velocity Effect on Force Heat Convection and Impact of Wind Velocity on Convection Heat Transfer in Receiver Tube of Parabolic Trough Collector System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Afshar">O. Afshar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A solar receiver is designed for operation under extremely uneven heat flux distribution, cyclic weather, and cloud transient cycle conditions, which can include large thermal stress and even receiver failure. In this study, the effect of different oil velocity on convection coefficient factor and impact of wind velocity on local Nusselt number by Finite Volume Method will be analyzed. This study is organized to give an overview of the numerical modeling using a MATLAB software, as an accurate, time efficient and economical way of analyzing the heat transfer trends over stationary receiver tube for different Reynolds number. The results reveal when oil velocity is below 0.33m/s, the value of convection coefficient is negligible at low temperature. The numerical graphs indicate that when oil velocity increases up to 1.2 m/s, heat convection coefficient increases significantly. In fact, a reduction in oil velocity causes a reduction in heat conduction through the glass envelope. In addition, the different local Nusselt number is reduced when the wind blows toward the concave side of the collector and it has a significant effect on heat losses reduction through the glass envelope. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=receiver%20tube" title="receiver tube">receiver tube</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20convection" title=" heat convection"> heat convection</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20conduction" title=" heat conduction"> heat conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=Nusselt%20number" title=" Nusselt number"> Nusselt number</a> </p> <a href="https://publications.waset.org/abstracts/38149/numerical-investigation-of-hot-oil-velocity-effect-on-force-heat-convection-and-impact-of-wind-velocity-on-convection-heat-transfer-in-receiver-tube-of-parabolic-trough-collector-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3586</span> Transient Heat Transfer of a Spiral Fin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sen-Yung%20Lee">Sen-Yung Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Li-Kuo%20Chou"> Li-Kuo Chou</a>, <a href="https://publications.waset.org/abstracts/search?q=Chao-Kuang%20Chen"> Chao-Kuang Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the problem of temperature transient response of a spiral fin, with its end insulated, is analyzed with base end subjected to a variation of fluid temperature. The hybrid method of Laplace transforms/Adomian decomposed method-Pad&eacute;, is applied to the temperature transient response of the fin, the result of the temperature distribution and the heat flux at the base of the spiral fin are obtained, show a good agreement in the physical phenomenon. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laplace%20transforms" title="Laplace transforms">Laplace transforms</a>, <a href="https://publications.waset.org/abstracts/search?q=Adomian%20decomposed%20method-%20Pad%C3%A9" title=" Adomian decomposed method- Padé"> Adomian decomposed method- Padé</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20response" title=" transient response"> transient response</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a> </p> <a href="https://publications.waset.org/abstracts/47926/transient-heat-transfer-of-a-spiral-fin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47926.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3585</span> On the Thermal Behavior of the Slab in a Reheating Furnace with Radiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gyo%20Woo%20Lee">Gyo Woo Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Man%20Young%20Kim"> Man Young Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A mathematical heat transfer model for the prediction of transient heating of the slab in a direct-fired walking beam type reheating furnace has been developed by considering the nongray thermal radiation with given furnace environments. The furnace is modeled as radiating nongray medium with carbon dioxide and water with five-zoned gas temperature and the furnace wall is considered as a constant temperature lower than furnace gas one. The slabs are moving with constant velocity depending on the residence time through the non-firing, charging, preheating, heating, and final soaking zones. Radiative heat flux obtained by considering the radiative heat exchange inside the furnace as well as convective one from the surrounding hot gases are introduced as boundary condition of the transient heat conduction within the slab. After validating thermal radiation model adopted in this work, thermal fields in both model and real reheating furnace are investigated in terms of radiative heat flux in the furnace and temperature inside the slab. The results show that the slab in the furnace can be more heated with higher slab emissivity and residence time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reheating%20furnace" title="reheating furnace">reheating furnace</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20slab" title=" steel slab"> steel slab</a>, <a href="https://publications.waset.org/abstracts/search?q=radiative%20heat%20transfer" title=" radiative heat transfer"> radiative heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=WSGGM" title=" WSGGM"> WSGGM</a>, <a href="https://publications.waset.org/abstracts/search?q=emissivity" title=" emissivity"> emissivity</a>, <a href="https://publications.waset.org/abstracts/search?q=residence%20time" title=" residence time"> residence time</a> </p> <a href="https://publications.waset.org/abstracts/8145/on-the-thermal-behavior-of-the-slab-in-a-reheating-furnace-with-radiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8145.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3584</span> Transient Modeling of Velocity Profile and Heat Transfer of Electrohydrodynamically Augmented Micro Heat Pipe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Shokouhmand">H. Shokouhmand</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Tajerian"> M. Tajerian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At this paper velocity profile modeling and heat transfer in the micro heat pipes by using electrohydrodynamic (EHD) field at the transient regime have been studied. In the transient flow, one dimensional and two phase fluid flow and heat transfer for micro heat pipes with square cross section, have been studied. At this model Coulomb and dielectrophoretic forces are considered. Coupled, non-linear equations governed on the model (continuity, momentum, and energy equations) have been solved simultaneously by numerical methods. Transient behavior of affecting parameters e.g. substrate temperature, velocity of coolant liquid, radius of curvature and coolant liquid pressure, has been verified. By obtaining and plotting the mentioned parameters, it has been shown that the EHD field enhances the heat transfer process. So, the time required to reach the steady state regime decreases from 16 seconds to 2.4 seconds after applying EHD field. Another result has been observed implicitly that by increasing the heat input the effect of EHD field became more significant. The numerical results of model predict the experimental results available in the literature successfully, and it has been observed there is a good agreement between them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micro%20heat%20pipe" title="micro heat pipe">micro heat pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20modeling" title=" transient modeling"> transient modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=electrohydrodynamics" title=" electrohydrodynamics"> electrohydrodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=capillary" title=" capillary"> capillary</a>, <a href="https://publications.waset.org/abstracts/search?q=meniscus" title=" meniscus"> meniscus</a> </p> <a href="https://publications.waset.org/abstracts/72051/transient-modeling-of-velocity-profile-and-heat-transfer-of-electrohydrodynamically-augmented-micro-heat-pipe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3583</span> Effects of Daily Temperature Changes on Transient Heat and Moisture Transport in Unsaturated Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Davood%20Yazdani%20Cherati">Davood Yazdani Cherati</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Pak"> Ali Pak</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehrdad%20Jafarzadeh"> Mehrdad Jafarzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research contains the formulation of a two-dimensional analytical solution to transient heat, and moisture flow in a semi-infinite unsaturated soil environment under the influence of daily temperature changes. For this purpose, coupled energy conservation and mass fluid continuity equations governing hydrothermal behavior of unsaturated soil media are presented in terms of temperature and volumetric moisture content. In consideration of the soil environment as an infinite half-space and by linearization of the governing equations, Laplace–Fourier transformation is conducted to convert differential equations with partial derivatives (PDEs) to ordinary differential equations (ODEs). The obtained ODEs are solved, and the inverse transformations are calculated to determine the solution to the system of equations. Results indicate that heat variation induces moisture transport in both horizontal and vertical directions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytical%20solution" title="analytical solution">analytical solution</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20conduction" title=" heat conduction"> heat conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrothermal%20analysis" title=" hydrothermal analysis"> hydrothermal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=laplace%E2%80%93fourier%20transformation" title=" laplace–fourier transformation"> laplace–fourier transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=two-dimensional" title=" two-dimensional"> two-dimensional</a> </p> <a href="https://publications.waset.org/abstracts/112397/effects-of-daily-temperature-changes-on-transient-heat-and-moisture-transport-in-unsaturated-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112397.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3582</span> Wall Heat Flux Mapping in Liquid Rocket Combustion Chamber with Different Jet Impingement Angles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20S.%20Pradeep">O. S. Pradeep</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Vigneshwaran"> S. Vigneshwaran</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Praveen%20Kumar"> K. Praveen Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Jeyendran"> K. Jeyendran</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20R.%20Sanal%20Kumar"> V. R. Sanal Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of injector attitude on wall heat flux plays an important role in predicting the start-up transient and also determining the combustion chamber wall durability of liquid rockets. In this paper comprehensive numerical studies have been carried out on an idealized liquid rocket combustion chamber to examine the transient wall heat flux during its start-up transient at different injector attitude. Numerical simulations have been carried out with the help of a validated 2d axisymmetric, double precision, pressure-based, transient, species transport, SST k-omega model with laminar finite rate model for governing turbulent-chemistry interaction for four cases with different jet intersection angles, viz., 0<sup>o</sup>, 30<sup>o</sup>, 45<sup>o</sup>, and 60<sup>o</sup>. We concluded that the jets intersection angle is having a bearing on the time and location of the maximum wall-heat flux zone of the liquid rocket combustion chamber during the start-up transient. We also concluded that the wall heat flux mapping in liquid rocket combustion chamber during the start-up transient is a meaningful objective for the chamber wall material selection and the lucrative design optimization of the combustion chamber for improving the payload capability of the rocket. &nbsp; <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combustion%20chamber" title="combustion chamber">combustion chamber</a>, <a href="https://publications.waset.org/abstracts/search?q=injector" title=" injector"> injector</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20rocket" title=" liquid rocket"> liquid rocket</a>, <a href="https://publications.waset.org/abstracts/search?q=rocket%20engine%20wall%20heat%20flux" title=" rocket engine wall heat flux"> rocket engine wall heat flux</a> </p> <a href="https://publications.waset.org/abstracts/62084/wall-heat-flux-mapping-in-liquid-rocket-combustion-chamber-with-different-jet-impingement-angles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">487</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3581</span> An Accurate Prediction of Surface Temperature History in a Supersonic Flight </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Tahsini">A. M. Tahsini</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Hosseini"> S. A. Hosseini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the surface temperature history of the adaptor part in a two-stage supersonic launch vehicle is accurately predicted. The full Navier-Stokes equations are used to estimate the aerodynamic heat flux. The one-dimensional heat conduction in solid phase is used to compute the temperature history. The instantaneous surface temperature is used to improve the applied heat flux, to improve the accuracy of the results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20heating" title="aerodynamic heating">aerodynamic heating</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20conduction" title=" heat conduction"> heat conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic%20flight" title=" supersonic flight"> supersonic flight</a>, <a href="https://publications.waset.org/abstracts/search?q=launch%20vehicle" title=" launch vehicle"> launch vehicle</a> </p> <a href="https://publications.waset.org/abstracts/1462/an-accurate-prediction-of-surface-temperature-history-in-a-supersonic-flight" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3580</span> Numerical Investigation of Heat Transfer in Laser Irradiated Biological Samplebased on Dual-Phase-Lag Heat Conduction Model Using Lattice Boltzmann Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shashank%20Patidar">Shashank Patidar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumit%20Kumar"> Sumit Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Atul%20Srivastava"> Atul Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Suneet%20Singh"> Suneet Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Present work is concerned with the numerical investigation of thermal response of biological tissues during laser-based photo-thermal therapy for destroying cancerous/abnormal cells with minimal damage to the surrounding normal cells. Light propagation through the biological sample is mathematically modelled by transient radiative transfer equation. In the present work, application of the Lattice Boltzmann Method is extended to analyze transport of short-pulse radiation in a participating medium.In order to determine the two-dimensional temperature distribution inside the tissue medium, the RTE has been coupled with Penne’s bio-heat transfer equation based on Fourier’s law by several researchers in last few years. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lattice%20Boltzmann%20method" title="lattice Boltzmann method">lattice Boltzmann method</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20radiation%20transfer%20equation" title=" transient radiation transfer equation"> transient radiation transfer equation</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20phase%20lag%20model" title=" dual phase lag model "> dual phase lag model </a> </p> <a href="https://publications.waset.org/abstracts/17369/numerical-investigation-of-heat-transfer-in-laser-irradiated-biological-samplebased-on-dual-phase-lag-heat-conduction-model-using-lattice-boltzmann-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17369.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3579</span> A New Analytic Solution for the Heat Conduction with Time-Dependent Heat Transfer Coefficient</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Te%20Wen%20Tu">Te Wen Tu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sen%20Yung%20Lee"> Sen Yung Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An alternative approach is proposed to develop the analytic solution for one dimensional heat conduction with one mixed type boundary condition and general time-dependent heat transfer coefficient. In this study, the physic meaning of the solution procedure is revealed. It is shown that the shifting function takes the physic meaning of the reciprocal of Biot function in the initial time. Numerical results show the accuracy of this study. Comparing with those given in the existing literature, the difference is less than 0.3%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytic%20solution" title="analytic solution">analytic solution</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20coefficient" title=" heat transfer coefficient"> heat transfer coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=shifting%20function%20method" title=" shifting function method"> shifting function method</a>, <a href="https://publications.waset.org/abstracts/search?q=time-dependent%20boundary%20condition" title=" time-dependent boundary condition"> time-dependent boundary condition</a> </p> <a href="https://publications.waset.org/abstracts/7436/a-new-analytic-solution-for-the-heat-conduction-with-time-dependent-heat-transfer-coefficient" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3578</span> Numerical Method for Heat Transfer Problem in a Block Having an Interface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beghdadi%20Lotfi">Beghdadi Lotfi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouziane%20Abdelhafid"> Bouziane Abdelhafid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A finite volume method for quadrilaterals unstructured mesh is developed to predict the two dimensional steady-state solutions of conduction equation. In this scheme, based on the integration around the polygonal control volume, the derivatives of conduction equation must be converted into closed line integrals using same formulation of the Stokes theorem. To valid the accuracy of the method two numerical experiments s are used: conduction in a regular block (with known analytical solution) and conduction in a rotated block (case with curved boundaries).The numerical results show good agreement with analytical results. To demonstrate the accuracy of the method, the absolute and root-mean square errors versus the grid size are examined quantitatively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stokes%20theorem" title="Stokes theorem">Stokes theorem</a>, <a href="https://publications.waset.org/abstracts/search?q=unstructured%20grid" title=" unstructured grid"> unstructured grid</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20geometry" title=" complex geometry"> complex geometry</a> </p> <a href="https://publications.waset.org/abstracts/45081/numerical-method-for-heat-transfer-problem-in-a-block-having-an-interface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3577</span> Analysis of an Error Estimate for the Asymptotic Solution of the Heat Conduction Problem in a Dilated Pipe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Maru%C5%A1i%C4%87-Paloka">E. Marušić-Paloka</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Pa%C5%BEanin"> I. Pažanin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Pr%C5%A1a"> M. Prša</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Subject of this study is the stationary heat conduction problem through a pipe filled with incompressible viscous fluid. In previous work, we observed the existence and uniqueness theorems for the corresponding boundary-value problem and within we have taken into account the effects of the pipe's dilatation due to the temperature of the fluid inside of the pipe. The main difficulty comes from the fact that flow domain changes depending on the solution of the observed heat equation leading to a non-standard coupled governing problem. The goal of this work is to find solution estimate since the exact solution of the studied problem is not possible to determine. We use an asymptotic expansion in order of a small parameter which is presented as a heat expansion coefficient of the pipe's material. Furthermore, an error estimate is provided for the mentioned asymptotic approximation of the solution for inner area of the pipe. Close to the boundary, problem becomes more complex so different approaches are observed, mainly Theory of Perturbations and Separations of Variables. In view of that, error estimate for the whole approximation will be provided with additional software simulations of gotten situation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymptotic%20analysis" title="asymptotic analysis">asymptotic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=dilated%20pipe" title=" dilated pipe"> dilated pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=error%20estimate" title=" error estimate"> error estimate</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20conduction" title=" heat conduction"> heat conduction</a> </p> <a href="https://publications.waset.org/abstracts/77208/analysis-of-an-error-estimate-for-the-asymptotic-solution-of-the-heat-conduction-problem-in-a-dilated-pipe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3576</span> Investigation of Software Integration for Simulations of Buoyancy-Driven Heat Transfer in a Vehicle Underhood during Thermal Soak</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Yuan">R. Yuan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sivasankaran"> S. Sivasankaran</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Dutta"> N. Dutta</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Ebrahimi"> K. Ebrahimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the software capability and computer-aided engineering (CAE) method of modelling transient heat transfer process occurred in the vehicle underhood region during vehicle thermal soak phase. The heat retention from the soak period will be beneficial to the cold start with reduced friction loss for the second 14°C worldwide harmonized light-duty vehicle test procedure (WLTP) cycle, therefore provides benefits on both CO₂ emission reduction and fuel economy. When vehicle undergoes soak stage, the airflow and the associated convective heat transfer around and inside the engine bay is driven by the buoyancy effect. This effect along with thermal radiation and conduction are the key factors to the thermal simulation of the engine bay to obtain the accurate fluids and metal temperature cool-down trajectories and to predict the temperatures at the end of the soak period. Method development has been investigated in this study on a light-duty passenger vehicle using coupled aerodynamic-heat transfer thermal transient modelling method for the full vehicle under 9 hours of thermal soak. The 3D underhood flow dynamics were solved inherently transient by the Lattice-Boltzmann Method (LBM) method using the PowerFlow software. This was further coupled with heat transfer modelling using the PowerTHERM software provided by Exa Corporation. The particle-based LBM method was capable of accurately handling extremely complicated transient flow behavior on complex surface geometries. The detailed thermal modelling, including heat conduction, radiation, and buoyancy-driven heat convection, were integrated solved by PowerTHERM. The 9 hours cool-down period was simulated and compared with the vehicle testing data of the key fluid (coolant, oil) and metal temperatures. The developed CAE method was able to predict the cool-down behaviour of the key fluids and components in agreement with the experimental data and also visualised the air leakage paths and thermal retention around the engine bay. The cool-down trajectories of the key components obtained for the 9 hours thermal soak period provide vital information and a basis for the further development of reduced-order modelling studies in future work. This allows a fast-running model to be developed and be further imbedded with the holistic study of vehicle energy modelling and thermal management. It is also found that the buoyancy effect plays an important part at the first stage of the 9 hours soak and the flow development during this stage is vital to accurately predict the heat transfer coefficients for the heat retention modelling. The developed method has demonstrated the software integration for simulating buoyancy-driven heat transfer in a vehicle underhood region during thermal soak with satisfying accuracy and efficient computing time. The CAE method developed will allow integration of the design of engine encapsulations for improving fuel consumption and reducing CO₂ emissions in a timely and robust manner, aiding the development of low-carbon transport technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ATCT%2FWLTC%20driving%20cycle" title="ATCT/WLTC driving cycle">ATCT/WLTC driving cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=buoyancy-driven%20heat%20transfer" title=" buoyancy-driven heat transfer"> buoyancy-driven heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=CAE%20method" title=" CAE method"> CAE method</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20retention" title=" heat retention"> heat retention</a>, <a href="https://publications.waset.org/abstracts/search?q=underhood%20modeling" title=" underhood modeling"> underhood modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20thermal%20soak" title=" vehicle thermal soak"> vehicle thermal soak</a> </p> <a href="https://publications.waset.org/abstracts/105440/investigation-of-software-integration-for-simulations-of-buoyancy-driven-heat-transfer-in-a-vehicle-underhood-during-thermal-soak" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105440.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3575</span> Investigation of Heat Transfer Mechanism Inside Shell and Tube Latent Heat Thermal Energy Storage Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeid%20Seddegh">Saeid Seddegh</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaolin%20Wang"> Xiaolin Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Alan%20D.%20Henderson"> Alan D. Henderson</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20Chen"> Dong Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Oliver%20Oims"> Oliver Oims</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this research is to study the heat transfer processes and phase change behaviour of a phase change material (PCM) in shell and tube latent heat thermal energy storage (LHTES) systems. The thermal behaviour in a vertical and horizontal shell-and-tube heat energy storage system using a pure thermal conduction model and a combined conduction-convection heat transfer model is compared in this paper. The model is first validated using published experimental data available in literature and then used to study the temperature variation, solid-liquid interface, phase distribution, total melting and solidification time during melting and solidification processes of PCMs. The simulated results show that the combined convection and conduction model can better describe the energy transfer in PCMs during melting process. In contrast, heat transfer by conduction is more significant during the solidification process since the two models show little difference. Also, it was concluded that during the charging process for the horizontal orientation, convective heat transfer has a strong effect on melting of the upper part of the solid PCM and is less significant during melting of the lower half of the solid PCM. However, in the vertical orientation, convective heat transfer is the same active during the entire charging process. In the solidification process, the thermal behavior does not show any difference between horizontal and vertical systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=latent%20heat%20thermal%20energy%20storage" title="latent heat thermal energy storage">latent heat thermal energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20change%20material" title=" phase change material"> phase change material</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=melting" title=" melting"> melting</a>, <a href="https://publications.waset.org/abstracts/search?q=shell%20and%20tube%20heat%20exchanger" title=" shell and tube heat exchanger"> shell and tube heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=melting" title=" melting"> melting</a>, <a href="https://publications.waset.org/abstracts/search?q=solidification" title=" solidification"> solidification</a> </p> <a href="https://publications.waset.org/abstracts/35186/investigation-of-heat-transfer-mechanism-inside-shell-and-tube-latent-heat-thermal-energy-storage-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">554</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3574</span> Vibration of Nanobeam Subjected to Constant Magnetic Field and Ramp-Type Thermal Loading under Non-Fourier Heat Conduction Law of Lord-Shulman</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamdy%20M.%20Youssef">Hamdy M. Youssef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, the usual Euler–Bernoulli nanobeam has been modeled in the context of Lord-Shulman thermoelastic theorem, which contains non-Fourier heat conduction law. The nanobeam has been subjected to a constant magnetic field and ramp-type thermal loading. The Laplace transform definition has been applied to the governing equations, and the solutions have been obtained by using a direct approach. The inversions of the Laplace transform have been calculated numerically by using Tzou approximation method. The solutions have been applied to a nanobeam made of silicon nitride. The distributions of the temperature increment, lateral deflection, strain, stress, and strain-energy density have been represented in figures with different values of the magnetic field intensity and ramp-time heat parameter. The value of the magnetic field intensity and ramp-time heat parameter have significant effects on all the studied functions, and they could be used as tuners to control the energy which has been generated through the nanobeam. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanobeam" title="nanobeam">nanobeam</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration" title=" vibration"> vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=constant%20magnetic%20field" title=" constant magnetic field"> constant magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=ramp-type%20thermal%20loading" title=" ramp-type thermal loading"> ramp-type thermal loading</a>, <a href="https://publications.waset.org/abstracts/search?q=non-Fourier%20heat%20conduction%20law" title=" non-Fourier heat conduction law"> non-Fourier heat conduction law</a> </p> <a href="https://publications.waset.org/abstracts/155279/vibration-of-nanobeam-subjected-to-constant-magnetic-field-and-ramp-type-thermal-loading-under-non-fourier-heat-conduction-law-of-lord-shulman" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155279.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3573</span> On a Transient Magnetohydrodynamics Heat Transfer Within Radiative Porous Channel Due to Convective Boundary Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bashiru%20Abdullahi">Bashiru Abdullahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Isah%20Bala%20Yabo"> Isah Bala Yabo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Yakubu%20Seini"> Ibrahim Yakubu Seini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the steady/transient MHD heat transfer within radiative porous channel due to convective boundary conditions is considered. The solution of the steady-state and that of the transient version were conveyed by Perturbation and Finite difference methods respectively. The heat transfer mechanism of the present work ascertains the influence of Biot number〖(B〗_i1), magnetizing parameter (M), radiation parameter(R), temperature difference, suction/injection(S) Grashof number (Gr) and time (t) on velocity (u), temperature(θ), skin friction(τ), and Nusselt number (Nu). The results established were discussed with the help of a line graph. It was found that the velocity, temperature, and skin friction decay with increasing suction/injection and magnetizing parameters while the Nusselt number upsurges with suction/injection at y = 0 and falls at y =1. The steady-state solution was in perfect agreement with the transient version for a significant value of time t. It is interesting to report that the Biot number has a cogent influence consequently, as its values upsurge the result of the present work slant the extended literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20radiation" title=" thermal radiation"> thermal radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20channel" title=" porous channel"> porous channel</a>, <a href="https://publications.waset.org/abstracts/search?q=MHD" title=" MHD"> MHD</a>, <a href="https://publications.waset.org/abstracts/search?q=transient" title=" transient"> transient</a>, <a href="https://publications.waset.org/abstracts/search?q=convective%20boundary%20condition" title=" convective boundary condition"> convective boundary condition</a> </p> <a href="https://publications.waset.org/abstracts/151318/on-a-transient-magnetohydrodynamics-heat-transfer-within-radiative-porous-channel-due-to-convective-boundary-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3572</span> Transient Hygrothermoelastic Behavior in an Infinite Annular Cylinder with Internal Heat Generation by Linear Dependence Theory of Coupled Heat and Moisture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tasneem%20Firdous%20Islam">Tasneem Firdous Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20D.%20Kedar"> G. D. Kedar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to study the effect of internal heat generation in a transient infinitely long annular cylinder subjected to hygrothermal loadings. The linear dependence theory of moisture and temperature is derived based on Dufour and Soret effect. The meticulous solutions of temperature, moisture, and thermal stresses are procured by using the Hankel transform technique. The influence of the internal heat source on the radial aspect is examined for coupled and uncoupled cases. In the present study, the composite material T300/5208 is considered, and the coupled and uncoupled cases are analyzed. The results obtained are computed numerically and illustrated graphically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=temperature" title="temperature">temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture" title=" moisture"> moisture</a>, <a href="https://publications.waset.org/abstracts/search?q=hygrothermoelasticity" title=" hygrothermoelasticity"> hygrothermoelasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20heat%20generation" title=" internal heat generation"> internal heat generation</a>, <a href="https://publications.waset.org/abstracts/search?q=annular%20cylinder" title=" annular cylinder"> annular cylinder</a> </p> <a href="https://publications.waset.org/abstracts/150585/transient-hygrothermoelastic-behavior-in-an-infinite-annular-cylinder-with-internal-heat-generation-by-linear-dependence-theory-of-coupled-heat-and-moisture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3571</span> A Multigrid Approach for Three-Dimensional Inverse Heat Conduction Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jianhua%20Zhou">Jianhua Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuwen%20Zhang"> Yuwen Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A two-step multigrid approach is proposed to solve the inverse heat conduction problem in a 3-D object under laser irradiation. In the first step, the location of the laser center is estimated using a coarse and uniform grid system. In the second step, the front-surface temperature is recovered in good accuracy using a multiple grid system in which fine mesh is used at laser spot center to capture the drastic temperature rise in this region but coarse mesh is employed in the peripheral region to reduce the total number of sensors required. The effectiveness of the two-step approach and the multiple grid system are demonstrated by the illustrative inverse solutions. If the measurement data for the temperature and heat flux on the back surface do not contain random error, the proposed multigrid approach can yield more accurate inverse solutions. When the back-surface measurement data contain random noise, accurate inverse solutions cannot be obtained if both temperature and heat flux are measured on the back surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conduction" title="conduction">conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20problems" title=" inverse problems"> inverse problems</a>, <a href="https://publications.waset.org/abstracts/search?q=conjugated%20gradient%20method" title=" conjugated gradient method"> conjugated gradient method</a>, <a href="https://publications.waset.org/abstracts/search?q=laser" title=" laser"> laser</a> </p> <a href="https://publications.waset.org/abstracts/91353/a-multigrid-approach-for-three-dimensional-inverse-heat-conduction-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3570</span> Effect of Viscous Dissipation and Axial Conduction in Thermally Developing Region of the Channel Partially Filled with a Porous Material Subjected to Constant Wall Heat Flux</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D%20Bhargavi">D Bhargavi</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Sharath%20Kumar%20Reddy"> J. Sharath Kumar Reddy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present investigation has been undertaken to assess the effect of viscous dissipation and axial conduction on forced convection heat transfer in the entrance region of a parallel plate channel with the porous insert attached to both walls of the channel. The flow field is unidirectional. Flow in the porous region corresponds to Darcy-Brinkman model and the clear fluid region to that of plane Poiseuille flow. The effects of the parameters Darcy number, <em>Da</em>, Peclet number, <em>Pe</em>, Brinkman number, <em>Br</em> and a porous fraction <em>&gamma;<sub>p</sub></em> on the local heat transfer coefficient are analyzed graphically. Effects of viscous dissipation employing the Darcy model and the clear fluid compatible model have been studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=porous%20material" title="porous material">porous material</a>, <a href="https://publications.waset.org/abstracts/search?q=channel%20partially%20filled%20with%20a%20porous%20material" title=" channel partially filled with a porous material"> channel partially filled with a porous material</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20conduction" title=" axial conduction"> axial conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=viscous%20dissipation" title=" viscous dissipation"> viscous dissipation</a> </p> <a href="https://publications.waset.org/abstracts/114671/effect-of-viscous-dissipation-and-axial-conduction-in-thermally-developing-region-of-the-channel-partially-filled-with-a-porous-material-subjected-to-constant-wall-heat-flux" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114671.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3569</span> Membrane Distillation Process Modeling: Dynamical Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fadi%20Eleiwi">Fadi Eleiwi</a>, <a href="https://publications.waset.org/abstracts/search?q=Taous%20Meriem%20Laleg-Kirati"> Taous Meriem Laleg-Kirati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a complete dynamic modeling of a membrane distillation process. The model contains two consistent dynamic models. A 2D advection-diffusion equation for modeling the whole process and a modified heat equation for modeling the membrane itself. The complete model describes the temperature diffusion phenomenon across the feed, membrane, permeate containers and boundary layers of the membrane. It gives an online and complete temperature profile for each point in the domain. It explains heat conduction and convection mechanisms that take place inside the process in terms of mathematical parameters, and justify process behavior during transient and steady state phases. The process is monitored for any sudden change in the performance at any instance of time. In addition, it assists maintaining production rates as desired, and gives recommendations during membrane fabrication stages. System performance and parameters can be optimized and controlled using this complete dynamic model. Evolution of membrane boundary temperature with time, vapor mass transfer along the process, and temperature difference between membrane boundary layers are depicted and included. Simulations were performed over the complete model with real membrane specifications. The plots show consistency between 2D advection-diffusion model and the expected behavior of the systems as well as literature. Evolution of heat inside the membrane starting from transient response till reaching steady state response for fixed and varying times is illustrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=membrane%20distillation" title="membrane distillation">membrane distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamical%20modeling" title=" dynamical modeling"> dynamical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=advection-diffusion%20equation" title=" advection-diffusion equation"> advection-diffusion equation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20equilibrium" title=" thermal equilibrium"> thermal equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20equation" title=" heat equation"> heat equation</a> </p> <a href="https://publications.waset.org/abstracts/6363/membrane-distillation-process-modeling-dynamical-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3568</span> Heat Transfer from Block Heat Sources Mounted on the Wall of a 3-D Cabinet to Ambient Natural Convective Air Stream</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20C.%20Cheng">J. C. Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20L.%20Tsay"> Y. L. Tsay</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20D.%20Chan"> Z. D. Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20H.%20Yang"> C. H. Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study the physical system under consideration is a three-dimensional (3-D) cabinet with arrays of block heat sources mounted on one of the walls of the cabinet. The block heat sources dissipate heat to the cabinet surrounding through the conjugate conduction and natural convection. The results illustrate that the difference in hot spot temperatures of the system (θH) for the situations with and without consideration of thermal interaction is higher for smaller Rayleigh number (Ra), and can be up to 94.73% as Ra=10^5. In addition, the heat transfer characteristics depends strongly on the dimensionless heat conductivity of cabinet wall (Kwf), heat conductivity of block (Kpf) and length of cabinet (Ax). The maximum reduction in θH is 70.01% when Kwf varies from 10 to 1000, and it is 30.07% for Ax from 0.5 to 1. While the hot spot temperature of system is not sensitive to the cabinet angle (Φ). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=block%20heat%20sources" title="block heat sources">block heat sources</a>, <a href="https://publications.waset.org/abstracts/search?q=3-D%20cabinet" title=" 3-D cabinet"> 3-D cabinet</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20interaction" title=" thermal interaction"> thermal interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a> </p> <a href="https://publications.waset.org/abstracts/16075/heat-transfer-from-block-heat-sources-mounted-on-the-wall-of-a-3-d-cabinet-to-ambient-natural-convective-air-stream" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">555</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transient%20heat%20conduction&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transient%20heat%20conduction&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transient%20heat%20conduction&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transient%20heat%20conduction&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transient%20heat%20conduction&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transient%20heat%20conduction&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transient%20heat%20conduction&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transient%20heat%20conduction&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transient%20heat%20conduction&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transient%20heat%20conduction&amp;page=119">119</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transient%20heat%20conduction&amp;page=120">120</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transient%20heat%20conduction&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10