CINXE.COM
Search results for: Mamyshev regenerator.
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Mamyshev regenerator.</title> <meta name="description" content="Search results for: Mamyshev regenerator."> <meta name="keywords" content="Mamyshev regenerator."> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Mamyshev regenerator." name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Mamyshev regenerator."> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 11</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Mamyshev regenerator.</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> All-Optical Function Based on Self-Similar Spectral Broadening for 2R Regeneration in High-Bit-Rate Optical Transmission Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Leila%20Graini">Leila Graini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, we demonstrate basic all-optical functions for 2R regeneration (Re-amplification and Re-shaping) based on self-similar spectral broadening in low normal dispersion and highly nonlinear fiber (ND-HNLF) to regenerate the signal through optical filtering including the transfer function characteristics, and output extinction ratio. Our approach of all-optical 2R regeneration is based on those of Mamyshev. The numerical study reveals the self-similar spectral broadening very effective for 2R all-optical regeneration; the proposed design presents high stability compared to a conventional regenerator using SPM broadening with reduction of the intensity fluctuations and improvement of the extinction ratio.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=All-optical%20function" title="All-optical function">All-optical function</a>, <a href="https://publications.waset.org/search?q=2R%20optical%20regeneration" title=" 2R optical regeneration"> 2R optical regeneration</a>, <a href="https://publications.waset.org/search?q=self-similar%20broadening" title=" self-similar broadening"> self-similar broadening</a>, <a href="https://publications.waset.org/search?q=Mamyshev%20regenerator." title=" Mamyshev regenerator."> Mamyshev regenerator.</a> </p> <a href="https://publications.waset.org/10009908/all-optical-function-based-on-self-similar-spectral-broadening-for-2r-regeneration-in-high-bit-rate-optical-transmission-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009908/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009908/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009908/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009908/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009908/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009908/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009908/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009908/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009908/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009908/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">819</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Construction and Performance Characterization of the Looped-Tube Travelling-Wave Thermoacoustic Engine with Ceramic Regenerator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Abdulrahman%20S.%20Abduljalil">Abdulrahman S. Abduljalil</a>, <a href="https://publications.waset.org/search?q=Zhibin%20Yu"> Zhibin Yu</a>, <a href="https://publications.waset.org/search?q=Artur%20J.%20Jaworski"> Artur J. Jaworski</a>, <a href="https://publications.waset.org/search?q=Lei%20Shi"> Lei Shi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a travelling wave thermoacoustic device, the regenerator sandwiched between a pair of (hot and cold) heat exchangers constitutes the so-called thermoacoustic core, where the thermoacoustic energy conversion from heat to acoustic power takes place. The temperature gradient along the regenerator caused by the two heat exchangers excites and maintains the acoustic wave in the resonator. The devices are called travelling wave thermoacoustic systems because the phase angle difference between the pressure and velocity oscillation is close to zero in the regenerator. This paper presents the construction and testing of a thermoacoustic engine equipped with a ceramic regenerator, made from a ceramic material that is usually used as catalyst substrate in vehicles- exhaust systems, with fine square channels (900 cells per square inch). The testing includes the onset temperature difference (minimum temperature difference required to start the acoustic oscillation in an engine), the acoustic power output, thermal efficiency and the temperature profile along the regenerator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Regenerator" title="Regenerator">Regenerator</a>, <a href="https://publications.waset.org/search?q=Temperature%20gradient" title=" Temperature gradient"> Temperature gradient</a>, <a href="https://publications.waset.org/search?q=Thermoacoustic" title=" Thermoacoustic"> Thermoacoustic</a>, <a href="https://publications.waset.org/search?q=Travelling-wave." title=" Travelling-wave."> Travelling-wave.</a> </p> <a href="https://publications.waset.org/6539/construction-and-performance-characterization-of-the-looped-tube-travelling-wave-thermoacoustic-engine-with-ceramic-regenerator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6539/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6539/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6539/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6539/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6539/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6539/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6539/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6539/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6539/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6539/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6539.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2266</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Comparison between Post- and Oxy-Combustion Systems in a Petroleum Refinery Unit Using Modeling and Optimization </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Farooq%20A.%20Al-Sheikh">Farooq A. Al-Sheikh</a>, <a href="https://publications.waset.org/search?q=Ali%20Elkamel"> Ali Elkamel</a>, <a href="https://publications.waset.org/search?q=William%20A.%20Anderson"> William A. Anderson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A fluidized catalytic cracking unit (FCCU) is one of the effective units in many refineries. Modeling and optimization of FCCU were done by many researchers in past decades, but in this research, comparison between post- and oxy-combustion was studied in the regenerator-FCCU. Therefore, a simplified mathematical model was derived by doing mass/heat balances around both reactor and regenerator. A state space analysis was employed to show effects of the flow rates variables such as air, feed, spent catalyst, regenerated catalyst and flue gas on the output variables. The main aim of studying dynamic responses is to figure out the most influencing variables that affect both reactor/regenerator temperatures; also, finding the upper/lower limits of the influencing variables to ensure that temperatures of the reactors and regenerator work within normal operating conditions. Therefore, those values will be used as side constraints in the optimization technique to find appropriate operating regimes. The objective functions were modeled to be maximizing the energy in the reactor while minimizing the energy consumption in the regenerator. In conclusion, an oxy-combustion process can be used instead of a post-combustion one.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=FCCU%20modeling" title="FCCU modeling">FCCU modeling</a>, <a href="https://publications.waset.org/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/search?q=oxy-combustion%20post-combustion." title=" oxy-combustion post-combustion."> oxy-combustion post-combustion.</a> </p> <a href="https://publications.waset.org/10008233/comparison-between-post-and-oxy-combustion-systems-in-a-petroleum-refinery-unit-using-modeling-and-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10008233/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10008233/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10008233/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10008233/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10008233/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10008233/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10008233/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10008233/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10008233/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10008233/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10008233.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">923</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Thermo-Exergy Optimization of Gas Turbine Cycle with Two Different Regenerator Designs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Saria%20Abed">Saria Abed</a>, <a href="https://publications.waset.org/search?q=Tahar%20Khir"> Tahar Khir</a>, <a href="https://publications.waset.org/search?q=Ammar%20Ben%20Brahim"> Ammar Ben Brahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A thermo-exergy optimization of a gas turbine cycle with two different regenerator designs is established. A comparison was made between the performance of the two regenerators and their roles in improving the cycle efficiencies. The effect of operational parameters (the pressure ratio of the compressor, the ambient temperature, excess of air, geometric parameters of the regenerators, etc.) on thermal efficiencies, the exergy efficiencies, and irreversibilities were studied using thermal balances and quantitative exegetic equilibrium for each component and for the whole system. The results are given graphically by using the EES software, and an appropriate discussion and conclusion was made.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Exergy%20efficiency" title="Exergy efficiency">Exergy efficiency</a>, <a href="https://publications.waset.org/search?q=gas%20turbine" title=" gas turbine"> gas turbine</a>, <a href="https://publications.waset.org/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/search?q=irreversibility" title=" irreversibility"> irreversibility</a>, <a href="https://publications.waset.org/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/search?q=regenerator" title=" regenerator"> regenerator</a>, <a href="https://publications.waset.org/search?q=thermal%20efficiency." title=" thermal efficiency."> thermal efficiency.</a> </p> <a href="https://publications.waset.org/10006906/thermo-exergy-optimization-of-gas-turbine-cycle-with-two-different-regenerator-designs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10006906/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10006906/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10006906/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10006906/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10006906/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10006906/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10006906/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10006906/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10006906/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10006906/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10006906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1092</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Thermal Analysis of Open-Cycle Regenerator Gas-Turbine Power-Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20M.%20Rahman">M. M. Rahman</a>, <a href="https://publications.waset.org/search?q=Thamir%20K.%20Ibrahim"> Thamir K. Ibrahim</a>, <a href="https://publications.waset.org/search?q=M.%20Y.%20Taib"> M. Y. Taib</a>, <a href="https://publications.waset.org/search?q=M.%20M.%20Noor"> M. M. Noor</a>, <a href="https://publications.waset.org/search?q=Rosli%20A.%20Bakar"> Rosli A. Bakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Regenerative gas turbine engine cycle is presented that yields higher cycle efficiencies than simple cycle operating under the same conditions. The power output, efficiency and specific fuel consumption are simulated with respect to operating conditions. The analytical formulae about the relation to determine the thermal efficiency are derived taking into account the effected operation conditions (ambient temperature, compression ratio, regenerator effectiveness, compressor efficiency, turbine efficiency and turbine inlet temperature). Model calculations for a wide range of parameters are presented, as are comparisons with simple gas turbine cycle. The power output and thermal efficiency are found to be increasing with the regenerative effectiveness, and the compressor and turbine efficiencies. The efficiency increased with increase the compression ratio to 5, then efficiency decreased with increased compression ratio, but in simple cycle the thermal efficiency always increase with increased in compression ratio. The increased in ambient temperature caused decreased thermal efficiency, but the increased in turbine inlet temperature increase thermal efficiency.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Gas%20turbine" title="Gas turbine">Gas turbine</a>, <a href="https://publications.waset.org/search?q=power%20plant" title=" power plant"> power plant</a>, <a href="https://publications.waset.org/search?q=thermal%20analysis" title=" thermal analysis"> thermal analysis</a>, <a href="https://publications.waset.org/search?q=regeneration" title=" regeneration"> regeneration</a> </p> <a href="https://publications.waset.org/11973/thermal-analysis-of-open-cycle-regenerator-gas-turbine-power-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11973/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11973/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11973/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11973/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11973/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11973/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11973/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11973/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11973/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11973/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11973.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">7262</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Performance of a Turbofan Engine with Intercooling and Regeneration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=J.%20Lebre">J. Lebre</a>, <a href="https://publications.waset.org/search?q=F.%20Br%C3%B3jo"> F. Br贸jo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pollution emission levels of aircraft engines are a nowadays high concern. Any technological advance that could reduce emission levels is always welcome. In what concerns aircraft engines, a possible solution for this problem could be the use of regenerators and intercoolers. These components might reduce the specific fuel consumption, increase efficiency and specific thrust and consequently reduce the pollution levels of the engine. This is not a novel solution. These heat exchangers are already is use in stationary engines. For aircraft engines, the extra weight of the needed hardware could overcome the fuel saved. This work compares a conventional engine with configurations that use intercoolers and regenerators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Intercooler" title="Intercooler">Intercooler</a>, <a href="https://publications.waset.org/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/search?q=regenerator" title=" regenerator"> regenerator</a>, <a href="https://publications.waset.org/search?q=turbofan" title=" turbofan"> turbofan</a> </p> <a href="https://publications.waset.org/4373/performance-of-a-turbofan-engine-with-intercooling-and-regeneration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4373/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4373/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4373/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4373/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4373/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4373/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4373/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4373/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4373/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4373/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4373.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3559</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Gas Sweetening Process Simulation: Investigation on Recovering Waste Hydraulic Energy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Meisam%20Moghadasi">Meisam Moghadasi</a>, <a href="https://publications.waset.org/search?q=Hassan%20Ali%20Ozgoli"> Hassan Ali Ozgoli</a>, <a href="https://publications.waset.org/search?q=Foad%20Farhani"> Foad Farhani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this research, firstly, a commercial gas sweetening unit with methyl-di-ethanol-amine (MDEA) solution is simulated and comprised in an integrated model in accordance with Aspen HYSYS software. For evaluation purposes, in the second step, the results of the simulation are compared with operating data gathered from South Pars Gas Complex (SPGC). According to the simulation results, the considerable energy potential contributed to the pressure difference between absorber and regenerator columns causes this energy driving force to be applied in power recovery turbine (PRT). In the last step, the amount of waste hydraulic energy is calculated, and its recovery methods are investigated.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Gas%20sweetening%20unit" title="Gas sweetening unit">Gas sweetening unit</a>, <a href="https://publications.waset.org/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/search?q=MDEA" title=" MDEA"> MDEA</a>, <a href="https://publications.waset.org/search?q=power%20recovery%20turbine" title=" power recovery turbine"> power recovery turbine</a>, <a href="https://publications.waset.org/search?q=waste-to-energy." title=" waste-to-energy. "> waste-to-energy. </a> </p> <a href="https://publications.waset.org/10009356/gas-sweetening-process-simulation-investigation-on-recovering-waste-hydraulic-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009356/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009356/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009356/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009356/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009356/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009356/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009356/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009356/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009356/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009356/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1077</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Natural Gas Dehydration Process Simulation and Optimization: A Case Study of Khurmala Field in Iraqi Kurdistan Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=R.%20Abdulrahman">R. Abdulrahman</a>, <a href="https://publications.waset.org/search?q=I.%20Sebastine"> I. Sebastine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural gas is the most popular fossil fuel in the current era and future as well. Natural gas is existed in underground reservoirs so it may contain many of non-hydrocarbon components for instance, hydrogen sulfide, nitrogen and water vapor. These impurities are undesirable compounds and cause several technical problems for example, corrosion and environment pollution. Therefore, these impurities should be reduce or removed from natural gas stream. Khurmala dome is located in southwest Erbil-Kurdistan region. The Kurdistan region government has paid great attention for this dome to provide the fuel for Kurdistan region. However, the Khurmala associated natural gas is currently flaring at the field. Moreover, nowadays there is a plan to recover and trade this gas and to use it either as feedstock to power station or to sell it in global market. However, the laboratory analysis has showed that the Khurmala sour gas has huge quantities of H2S about (5.3%) and CO2 about (4.4%). Indeed, Khurmala gas sweetening process has been removed in previous study by using Aspen HYSYS. However, Khurmala sweet gas still contents some quintets of water about 23 ppm in sweet gas stream. This amount of water should be removed or reduced. Indeed, water content in natural gas cause several technical problems such as hydrates and corrosion. Therefore, this study aims to simulate the prospective Khurmala gas dehydration process by using Aspen HYSYS V. 7.3 program. Moreover, the simulation process succeeded in reducing the water content to less than 0.1ppm. In addition, the simulation work is also achieved process optimization by using several desiccant types for example, TEG and DEG and it also study the relationship between absorbents type and its circulation rate with HCs losses from glycol regenerator tower. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Aspen%20Hysys" title="Aspen Hysys">Aspen Hysys</a>, <a href="https://publications.waset.org/search?q=Process%20simulation" title=" Process simulation"> Process simulation</a>, <a href="https://publications.waset.org/search?q=gas%20dehydration" title=" gas dehydration"> gas dehydration</a>, <a href="https://publications.waset.org/search?q=process%20optimization." title=" process optimization."> process optimization.</a> </p> <a href="https://publications.waset.org/1630/natural-gas-dehydration-process-simulation-and-optimization-a-case-study-of-khurmala-field-in-iraqi-kurdistan-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1630/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1630/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1630/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1630/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1630/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1630/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1630/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1630/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1630/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1630/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">8970</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> The Role of Fluid Catalytic Cracking in Process Optimisation for Petroleum Refineries </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Chinwendu%20R.%20Nnabalu">Chinwendu R. Nnabalu</a>, <a href="https://publications.waset.org/search?q=Gioia%20Falcone"> Gioia Falcone</a>, <a href="https://publications.waset.org/search?q=Imma%20Bortone"> Imma Bortone</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Petroleum refining is a chemical process in which the raw material (crude oil) is converted to finished commercial products for end users. The fluid catalytic cracking (FCC) unit is a key asset in refineries, requiring optimised processes in the context of engineering design. Following the first stage of separation of crude oil in a distillation tower, an additional 40 per cent quantity is attainable in the gasoline pool with further conversion of the downgraded product of crude oil (residue from the distillation tower) using a catalyst in the FCC process. Effective removal of sulphur oxides, nitrogen oxides, carbon and heavy metals from FCC gasoline requires greater separation efficiency and involves an enormous environmental significance. The FCC unit is primarily a reactor and regeneration system which employs cyclone systems for separation. Catalyst losses in FCC cyclones lead to high particulate matter emission on the regenerator side and fines carryover into the product on the reactor side. This paper aims at demonstrating the importance of FCC unit design criteria in terms of technical performance and compliance with environmental legislation. A systematic review of state-of-the-art FCC technology was carried out, identifying its key technical challenges and sources of emissions. Case studies of petroleum refineries in Nigeria were assessed against selected global case studies. The review highlights the need for further modelling investigations to help improve FCC design to more effectively meet product specification requirements while complying with stricter environmental legislation.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Design" title="Design">Design</a>, <a href="https://publications.waset.org/search?q=emissions" title=" emissions"> emissions</a>, <a href="https://publications.waset.org/search?q=fluid%20catalytic%20cracking" title=" fluid catalytic cracking"> fluid catalytic cracking</a>, <a href="https://publications.waset.org/search?q=petroleum%20refineries." title=" petroleum refineries. "> petroleum refineries. </a> </p> <a href="https://publications.waset.org/10010592/the-role-of-fluid-catalytic-cracking-in-process-optimisation-for-petroleum-refineries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10010592/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10010592/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10010592/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10010592/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10010592/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10010592/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10010592/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10010592/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10010592/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10010592/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10010592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">878</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Study on the Integration Schemes and Performance Comparisons of Different Integrated Solar Combined Cycle-Direct Steam Generation Systems </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Liqiang%20Duan">Liqiang Duan</a>, <a href="https://publications.waset.org/search?q=Ma%20Jingkai"> Ma Jingkai</a>, <a href="https://publications.waset.org/search?q=Lv%20Zhipeng"> Lv Zhipeng</a>, <a href="https://publications.waset.org/search?q=Haifan%20Cai"> Haifan Cai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The integrated solar combined cycle (ISCC) system has a series of advantages such as increasing the system power generation, reducing the cost of solar power generation, less pollutant and CO<sub>2</sub> emission. In this paper, the parabolic trough collectors with direct steam generation (DSG) technology are considered to replace the heat load of heating surfaces in heat regenerator steam generation (HRSG) of a conventional natural gas combined cycle (NGCC) system containing a PG9351FA gas turbine and a triple pressure HRSG with reheat. The detailed model of the NGCC system is built in ASPEN PLUS software and the parabolic trough collectors with DSG technology is modeled in EBSILON software. ISCC-DSG systems with the replacement of single, two, three and four heating surfaces are studied in this paper. Results show that: (1) the ISCC-DSG systems with the replacement heat load of HPB, HPB+LPE, HPE2+HPB+HPS, HPE1+HPE2+ HPB+HPS are the best integration schemes when single, two, three and four stages of heating surfaces are partly replaced by the parabolic trough solar energy collectors with DSG technology. (2) Both the changes of feed water flow and the heat load of the heating surfaces in ISCC-DSG systems with the replacement of multi-stage heating surfaces are smaller than those in ISCC-DSG systems with the replacement of single heating surface. (3) ISCC-DSG systems with the replacement of HPB+LPE heating surfaces can increase the solar power output significantly. (4) The ISCC-DSG systems with the replacement of HPB heating surfaces has the highest solar-thermal-to-electricity efficiency (47.45%) and the solar radiation energy-to-electricity efficiency (30.37%), as well as the highest exergy efficiency of solar field (33.61%).</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=HRSG" title="HRSG">HRSG</a>, <a href="https://publications.waset.org/search?q=integration%20scheme" title=" integration scheme"> integration scheme</a>, <a href="https://publications.waset.org/search?q=parabolic%20trough%20collectors%20with%20DSG%20technology" title=" parabolic trough collectors with DSG technology"> parabolic trough collectors with DSG technology</a>, <a href="https://publications.waset.org/search?q=solar%20power%20generation." title=" solar power generation. "> solar power generation. </a> </p> <a href="https://publications.waset.org/10008795/study-on-the-integration-schemes-and-performance-comparisons-of-different-integrated-solar-combined-cycle-direct-steam-generation-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10008795/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10008795/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10008795/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10008795/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10008795/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10008795/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10008795/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10008795/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10008795/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10008795/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10008795.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">892</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Multi-Objective Optimization of Gas Turbine Power Cycle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mohsen%20Nikaein">Mohsen Nikaein</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Because of importance of energy, optimization of power generation systems is necessary. Gas turbine cycles are suitable manner for fast power generation, but their efficiency is partly low. In order to achieving higher efficiencies, some propositions are preferred such as recovery of heat from exhaust gases in a regenerator, utilization of intercooler in a multistage compressor, steam injection to combustion chamber and etc. However thermodynamic optimization of gas turbine cycle, even with above components, is necessary. In this article multi-objective genetic algorithms are employed for Pareto approach optimization of Regenerative-Intercooling-Gas Turbine (RIGT) cycle. In the multiobjective optimization a number of conflicting objective functions are to be optimized simultaneously. The important objective functions that have been considered for optimization are entropy generation of RIGT cycle (Ns) derives using Exergy Analysis and Gouy-Stodola theorem, thermal efficiency and the net output power of RIGT Cycle. These objectives are usually conflicting with each other. The design variables consist of thermodynamic parameters such as compressor pressure ratio (Rp), excess air in combustion (EA), turbine inlet temperature (TIT) and inlet air temperature (T0). At the first stage single objective optimization has been investigated and the method of Non-dominated Sorting Genetic Algorithm (NSGA-II) has been used for multi-objective optimization. Optimization procedures are performed for two and three objective functions and the results are compared for RIGT Cycle. In order to investigate the optimal thermodynamic behavior of two objectives, different set, each including two objectives of output parameters, are considered individually. For each set Pareto front are depicted. The sets of selected decision variables based on this Pareto front, will cause the best possible combination of corresponding objective functions. There is no superiority for the points on the Pareto front figure, but they are superior to any other point. In the case of three objective optimization the results are given in tables. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Exergy" title="Exergy">Exergy</a>, <a href="https://publications.waset.org/search?q=Entropy%20Generation" title=" Entropy Generation"> Entropy Generation</a>, <a href="https://publications.waset.org/search?q=Brayton%20Cycle" title=" Brayton Cycle"> Brayton Cycle</a>, <a href="https://publications.waset.org/search?q=DesignParameters" title=" DesignParameters"> DesignParameters</a>, <a href="https://publications.waset.org/search?q=Optimization" title=" Optimization"> Optimization</a>, <a href="https://publications.waset.org/search?q=Genetic%20Algorithm" title=" Genetic Algorithm"> Genetic Algorithm</a>, <a href="https://publications.waset.org/search?q=Multi-Objective." title=" Multi-Objective."> Multi-Objective.</a> </p> <a href="https://publications.waset.org/5983/multi-objective-optimization-of-gas-turbine-power-cycle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/5983/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/5983/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/5983/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/5983/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/5983/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/5983/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/5983/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/5983/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/5983/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/5983/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/5983.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2524</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>