CINXE.COM

Search results for: precipitate

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: precipitate</title> <meta name="description" content="Search results for: precipitate"> <meta name="keywords" content="precipitate"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="precipitate" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="precipitate"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 63</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: precipitate</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> A Method for Solid-Liquid Separation of Cs+ from Radioactive Waste by Using Ionic Liquids and Extractants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20W.%20Choi">J. W. Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Y.%20Cho"> S. Y. Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20J.%20Lee"> H. J. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Z.%20Oh"> W. Z. Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20J.%20Choi"> S. J. Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ionic liquids (ILs), which is alternative to conventional organic solvent, were used for extraction of Cs ions. ILs, as useful environment friendly green solvents, have been recently applied as replacement for traditional volatile organic compounds (VOCs) in liquid/liquid extraction of heavy metal ions as well as organic and inorganic species and pollutants. Thus, Ionic liquids were used for extraction of Cs ions from the liquid radioactive waste. In most cases, Cs ions present in radioactive wastes in very low concentration, approximately less than 1ppm. Therefore, unlike established extraction system the required amount of ILs as extractant is comparatively very small. This extraction method involves cation exchange mechanism in which Cs ion transfers to the organic phase and binds to one crown ether by chelation in exchange of single ILs cation, IL_cation+, transfer to the aqueous phase. In this extraction system showed solid-liquid separation in which the Ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonly)imide (C2mimTf2N) and the crown ether Dicyclohexano-18-crown-6 (DCH18C6) both were used here in very little amount as solvent and as extractant, respectively. 30 mM of CsNO3 was used as simulated waste solution cesium ions. Generally, in liquid-liquid extraction, the molar ratio of CE:Cs+:ILs was 1:5~10:>100, while our applied molar ratio of CE:Cs+:ILs was 1:2:1~10. The quantity of CE and Cs ions were fixed to 0.6 and 1.2 mmol, respectively. The phenomenon of precipitation showed two kinds of separation: solid-liquid separation in the ratio of 1:2:1 and 1:2:2; solid-liquid-liquid separation (3 phase) in the ratio of 1:2:5 and 1:2:10. In the last system, 3 phases were precipitate-ionic liquids-aqueous. The precipitate was verified to consist of Cs+, DCH18C6, Tf2N- based on the cation exchange mechanism. We analyzed precipitate using scanning electron microscopy with X-ray microanalysis (SEM-EDS), an elemental analyser, Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC). The experimental results showed an easy extraction method and confirmed the composition of solid precipitate. We also obtained information that complex formation ratio of Cs+ to DCH18C6 is 0.88:1 regardless of C2mimTf2N quantities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extraction" title="extraction">extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=precipitation" title=" precipitation"> precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=solid-liquid%20seperation" title=" solid-liquid seperation"> solid-liquid seperation</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquid" title=" ionic liquid"> ionic liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=precipitate" title=" precipitate"> precipitate</a> </p> <a href="https://publications.waset.org/abstracts/50080/a-method-for-solid-liquid-separation-of-cs-from-radioactive-waste-by-using-ionic-liquids-and-extractants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Isolation, Preparation and Biological Properties of Soybean-Flaxseed Protein Co-Precipitates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20H.%20Alu%E2%80%99datt">Muhammad H. Alu’datt</a>, <a href="https://publications.waset.org/abstracts/search?q=Inteaz%20Alli"> Inteaz Alli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted to prepare and evaluate the biological properties of protein co-precipitates from flaxseed and soybean. Protein was prepared by NaOH extraction through the mixing of soybean flour (Sf) and flaxseed flour (Ff) or mixtures of soybean extract (Se) and flaxseed extract (Fe). The protein co-precipitates were precipitated by isoelectric (IEP) and isoelectric-heating (IEPH) co-precipitation techniques. Effects of extraction and co-precipitation techniques on co-precipitate yield were investigated. Native-PAGE, SDS-PAGE were used to study the molecular characterization. Content and antioxidant activity of extracted free and bound phenolic compounds were evaluated for protein co-precipitates. Removal of free and bound phenolic compounds from protein co-precipitates showed little effects on the electrophoretic behavior of the proteins or the protein subunits of protein co-precipitates. Results showed that he highest protein contents and yield were obtained in for Sf-Ff/IEP co-precipitate with values of 53.28 and 25.58% respectively as compared to protein isolates and other co-precipitates. Results revealed that the Sf-Ff/IEP showed a higher content of bound phenolic compounds (53.49% from total phenolic content) as compared to free phenolic compounds (46.51% from total phenolic content). Antioxidant activities of extracted bound phenolic compounds with and without heat treatment from Sf-Ff/IEHP were higher as compared to free phenolic compounds extracted from other protein co-precipitates (29.68 and 22.84%, respectively). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title="antioxidant">antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=phenol" title=" phenol"> phenol</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20co-precipitate" title=" protein co-precipitate"> protein co-precipitate</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/47994/isolation-preparation-and-biological-properties-of-soybean-flaxseed-protein-co-precipitates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> Advanced Electron Microscopy Study of Fission Products in a TRISO Coated Particle Neutron Irradiated to 3.6 X 1021 N/cm² Fast Fluence at 1040 ⁰C</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haiming%20Wen">Haiming Wen</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabella%20J.%20Van%20Rooyen"> Isabella J. Van Rooyen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tristructural isotropic (TRISO)-coated fuel particles are designed as nuclear fuel for high-temperature gas reactors. TRISO coating consists of layers of carbon buffer, inner pyrolytic carbon (IPyC), SiC, and outer pyrolytic carbon. The TRISO coating, especially the SiC layer, acts as a containment system for fission products produced in the kernel. However, release of certain metallic fission products across intact TRISO coatings has been observed for decades. Despite numerous studies, mechanisms by which fission products migrate across the coating layers remain poorly understood. In this study, scanning transmission electron microscopy (STEM), energy dispersive X-ray spectroscopy (EDS), high-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) were used to examine the distribution, composition and structure of fission products in a TRISO coated particle neutron irradiated to 3.6 x 1021 n/cm² fast fluence at 1040 ⁰C. Precession electron diffraction was used to investigate characters of grain boundaries where specific fission product precipitates are located. The retention fraction of 110mAg in the investigated TRISO particle was estimated to be 0.19. A high density of nanoscale fission product precipitates was observed in the SiC layer close to the SiC-IPyC interface, most of which are rich in Pd, while Ag was not identified. Some Pd-rich precipitates contain U. Precipitates tend to have complex structure and composition. Although a precipitate appears to have uniform contrast in STEM, EDS indicated that there may be composition variations throughout the precipitate, and HRTEM suggested that the precipitate may have several parts different in crystal structure or orientation. Attempts were made to measure charge states of precipitates using EELS and study their possible effect on precipitate transport. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TRISO%20particle" title="TRISO particle">TRISO particle</a>, <a href="https://publications.waset.org/abstracts/search?q=fission%20product" title=" fission product"> fission product</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20fuel" title=" nuclear fuel"> nuclear fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20microscopy" title=" electron microscopy"> electron microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20irradiation" title=" neutron irradiation "> neutron irradiation </a> </p> <a href="https://publications.waset.org/abstracts/63680/advanced-electron-microscopy-study-of-fission-products-in-a-triso-coated-particle-neutron-irradiated-to-36-x-1021-ncm2-fast-fluence-at-1040-c" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63680.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> Effect of Aging on Hardness and Corrosion Resistance of WE43 Magnesium Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ziya%20Esen">Ziya Esen</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96zg%C3%BCr%20Duygulu"> Özgür Duygulu</a>, <a href="https://publications.waset.org/abstracts/search?q=Nazl%C4%B1%20S.%20B%C3%BCy%C3%BCkatak"> Nazlı S. Büyükatak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the effects of aging heat treatment on corrosion resistance and mechanical properties of WE43 Magnesium alloy. The heat treatment of alloys was conducted by solutionizing at 525oC for 16 h, followed by aging at 190, 210 and 230oC for up to 48 h. The type and the size of precipitates formed upon aging have influenced both the mechanical properties and corrosion behavior of the alloy. Solutionized alloy displayed the worst corrosion resistance in simulated body fluid, while peak hardness and the best corrosion resistance were observed in the alloy aged at 210oC for 24 h as a result of β’ precipitate formation. Longer aging duration at 210oC decreased the corrosion rate due to the coarsening of the precipitates and formation of precipitate-free zones. The increased corrosion resistance of the peak aged samples was attributed to the slowing down effect of the Mg(OH)₂/MgO corrosion layer by the pinning effect of β’-precipitates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=WE43%20magnesium%20alloy" title="WE43 magnesium alloy">WE43 magnesium alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=simulated%20body%20fluid" title=" simulated body fluid"> simulated body fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/186918/effect-of-aging-on-hardness-and-corrosion-resistance-of-we43-magnesium-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186918.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">5</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> Electrochemical Recovery of Lithium from Geothermal Brines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanaz%20Mosadeghsedghi">Sanaz Mosadeghsedghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mathew%20Hudder"> Mathew Hudder</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ali%20Baghbanzadeh"> Mohammad Ali Baghbanzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Charbel%20Atallah"> Charbel Atallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyedeh%20Laleh%20Dashtban%20Kenari"> Seyedeh Laleh Dashtban Kenari</a>, <a href="https://publications.waset.org/abstracts/search?q=Konstantin%20Volchek"> Konstantin Volchek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lithium has recently been extensively used in lithium-ion batteries (LIBs) for electric vehicles and portable electronic devices. The conventional evaporative approach to recover and concentrate lithium is extremely slow and may take 10-24 months to concentrate lithium from dilute sources, such as geothermal brines. To response to the increasing industrial lithium demand, alternative extraction and concentration technologies should be developed to recover lithium from brines with low concentrations. In this study, a combination of electrocoagulation (EC) and electrodialysis (ED) was evaluated for the recovery of lithium from geothermal brines. The brine samples in this study, collected in Western Canada, had lithium concentrations of 50-75 mg/L on a background of much higher (over 10,000 times) concentrations of sodium. This very high sodium-to-lithium ratio poses challenges to the conventional direct-lithium extraction processes which employ lithium-selective adsorbents. EC was used to co-precipitate lithium using a sacrificial aluminium electrode. The precipitate was then dissolved, and the leachate was treated using ED to separate and concentrate lithium from other ions. The focus of this paper is on the study of ED, including a two-step ED process that included a mono-valent selective stage to separate lithium from multi-valent cations followed by a bipolar ED stage to convert lithium chloride (LiCl) to LiOH product. Eventually, the ED cell was reconfigured using mono-valent cation exchange with the bipolar membranes to combine the two ED steps in one. Using this process at optimum conditions, over 95% of the co-existing cations were removed and the purity of lithium increased to over 90% in the final product. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20separation" title="electrochemical separation">electrochemical separation</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocoagulation" title=" electrocoagulation"> electrocoagulation</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodialysis" title=" electrodialysis"> electrodialysis</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium%20extraction" title=" lithium extraction"> lithium extraction</a> </p> <a href="https://publications.waset.org/abstracts/175784/electrochemical-recovery-of-lithium-from-geothermal-brines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175784.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Microstructure Dependent Fatigue Crack Growth in Aluminum Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Nandana">M. S. Nandana</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Udaya%20Bhat"> K. Udaya Bhat</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20M.%20Manjunatha"> C. M. Manjunatha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study aluminum alloy 7010 was subjected to three different ageing treatments i.e., peak ageing (T6), over-ageing (T7451) and retrogression and re ageing (RRA) to study the influence of precipitate microstructure on the fatigue crack growth rate behavior. The microstructural modification was studied by using transmission electron microscope (TEM) to examine the change in the size and morphology of precipitates in the matrix and on the grain boundaries. The standard compact tension (CT) specimens were fabricated and tested under constant amplitude fatigue crack growth tests to evaluate the influence of heat treatment on the fatigue crack growth rate properties. The tests were performed in a computer-controlled servo-hydraulic test machine applying a load ratio, R = 0.1 at a loading frequency of 10 Hz as per ASTM E647. The fatigue crack growth was measured by adopting compliance technique using a CMOD gauge attached to the CT specimen. The average size of the matrix precipitates were found to be of 16-20 nm in T7451, 5-6 nm in RRA and 2-3 nm in T6 conditions respectively. The grain boundary precipitate which was continuous in T6, was disintegrated in RRA and T7451 condition. The PFZ width was lower in RRA compared to T7451 condition. The crack growth rate was higher in T7451 and lowest in RRA treated alloy. The RRA treated alloy also exhibits an increase in threshold stress intensity factor range (∆Kₜₕ). The ∆Kₜₕ measured was 11.1, 10.3 and 5.7 MPam¹/² in RRA, T6 and T7451 alloys respectively. The fatigue crack growth rate in RRA treated alloy was nearly 2-3 times lower than that in T6 and was one order lower than that observed in T7451 condition. The surface roughness of RRA treated alloy was more pronounced when compared to the other conditions. The reduction in fatigue crack growth rate in RRA alloy was majorly due to the increase in roughness and partially due to increase in spacing between the matrix precipitates. The reduction in crack growth rate and increase in threshold stress intensity range is expected to benefit the damage tolerant capability of aircraft structural components under service loads. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage%20tolerance" title="damage tolerance">damage tolerance</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=PFZ" title=" PFZ"> PFZ</a>, <a href="https://publications.waset.org/abstracts/search?q=RRA" title=" RRA"> RRA</a> </p> <a href="https://publications.waset.org/abstracts/100680/microstructure-dependent-fatigue-crack-growth-in-aluminum-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100680.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> A Simple Chemical Precipitation Method of Titanium Dioxide Nanoparticles Using Polyvinyl Pyrrolidone as a Capping Agent and Their Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20P.%20Muhamed%20Shajudheen">V. P. Muhamed Shajudheen</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Viswanathan"> K. Viswanathan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Anitha%20Rani"> K. Anitha Rani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Uma%20Maheswari"> A. Uma Maheswari</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Saravana%20Kumar"> S. Saravana Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a simple chemical precipitation route for the preparation of titanium dioxide nanoparticles, synthesized by using titanium tetra isopropoxide as a precursor and polyvinyl pyrrolidone (PVP) as a capping agent, is reported. The Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA) of the samples were recorded and the phase transformation temperature of titanium hydroxide, Ti(OH)<sub>4</sub> to titanium oxide, TiO<sub>2</sub> was investigated. The as-prepared Ti(OH)<sub>4</sub> precipitate was annealed at 800&deg;C to obtain TiO<sub>2</sub> nanoparticles. The thermal, structural, morphological and textural characterizations of the TiO<sub>2</sub> nanoparticle samples were carried out by different techniques such as DSC-TGA, X-Ray Diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Micro Raman spectroscopy, UV-Visible absorption spectroscopy (UV-Vis), Photoluminescence spectroscopy (PL) and Field Effect Scanning Electron Microscopy (FESEM) techniques. The as-prepared precipitate was characterized using DSC-TGA and confirmed the mass loss of around 30%. XRD results exhibited no diffraction peaks attributable to anatase phase, for the reaction products, after the solvent removal. The results indicate that the product is purely rutile. The vibrational frequencies of two main absorption bands of prepared samples are discussed from the results of the FTIR analysis. The formation of nanosphere of diameter of the order of 10 nm, has been confirmed by FESEM. The optical band gap was found by using UV-Visible spectrum. From photoluminescence spectra, a strong emission was observed. The obtained results suggest that this method provides a simple, efficient and versatile technique for preparing TiO<sub>2</sub> nanoparticles and it has the potential to be applied to other systems for photocatalytic activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TiO2%20nanoparticles" title="TiO2 nanoparticles">TiO2 nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20precipitation%20route" title=" chemical precipitation route"> chemical precipitation route</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20transition" title=" phase transition"> phase transition</a>, <a href="https://publications.waset.org/abstracts/search?q=Fourier%20Transform%20Infra-Red%20spectroscopy%20%28FTIR%29" title=" Fourier Transform Infra-Red spectroscopy (FTIR)"> Fourier Transform Infra-Red spectroscopy (FTIR)</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-Raman%20spectroscopy" title=" micro-Raman spectroscopy"> micro-Raman spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=UV-Visible%20absorption%20spectroscopy%20%28UV-Vis%29" title=" UV-Visible absorption spectroscopy (UV-Vis)"> UV-Visible absorption spectroscopy (UV-Vis)</a>, <a href="https://publications.waset.org/abstracts/search?q=Photoluminescence%20Spectroscopy%20%28PL%29%20and%20Field%20Effect%20Scanning%20electron%20microscopy%20%28FESEM%29" title=" Photoluminescence Spectroscopy (PL) and Field Effect Scanning electron microscopy (FESEM)"> Photoluminescence Spectroscopy (PL) and Field Effect Scanning electron microscopy (FESEM)</a> </p> <a href="https://publications.waset.org/abstracts/47692/a-simple-chemical-precipitation-method-of-titanium-dioxide-nanoparticles-using-polyvinyl-pyrrolidone-as-a-capping-agent-and-their-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> Formation of Mg-Silicate Scales and Inhibition of Their Scale Formation at Injection Wells in Geothermal Power Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Abebe%20Ebebo">Samuel Abebe Ebebo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Scale precipitation causes a major issue for geothermal power plants because it reduces the production rate of geothermal energy. Each geothermal power plant's different chemical and physical conditions can cause the scale to precipitate under a particular set of fluid-rock interactions. Depending on the mineral, it is possible to have scale in the production well, steam separators, heat exchangers, reinjection wells, and everywhere in between. The scale consists mainly of smectite and trace amounts of chlorite, magnetite, quartz, hematite, dolomite, aragonite, and amorphous silica. The smectite scale is one of the difficult scales at injection wells in geothermal power plants. X-ray diffraction and chemical composition identify this smectite as Stevensite. The characteristics and the scale of each injection well line are different depending on the fluid chemistry. The smectite scale has been widely distributed in pipelines and surface plants. Mineral water equilibrium showed that the main factors controlling the saturation indices of smectite increased pH and dissolved Mg concentration due to the precipitate on the equipment surface. This study aims to characterize the scales and geothermal fluids collected from the Onuma geothermal power plant in Akita Prefecture, Japan. Field tests were conducted on October 30–November 3, 2021, at Onuma to determine the pH control methods for preventing magnesium silicate scaling, and as exemplified, the formation of magnesium silicate hydrates (M-S-H) with MgO to SiO2 ratios of 1.0 and pH values of 10 for one day has been studied at 25 °C. As a result, M-S-H scale formation could be suppressed, and stevensite formation could also be suppressed when we can decrease the pH of the fluid by less than 8.1, 7.4, and 8 (at 97 °C) in the fluid from O-3Rb and O-6Rb, O-10Rg, and O-12R, respectively. In this context, the scales and fluids collected from injection wells at a geothermal power plant in Japan were analyzed and characterized to understand the formation conditions of Mg-silicate scales with on-site synthesis experiments. From the results of the characterizations and on-site synthesis experiments, the inhibition method of their scale formation is discussed based on geochemical modeling in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnesium%20silicate" title="magnesium silicate">magnesium silicate</a>, <a href="https://publications.waset.org/abstracts/search?q=scaling" title=" scaling"> scaling</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibitor" title=" inhibitor"> inhibitor</a>, <a href="https://publications.waset.org/abstracts/search?q=geothermal%20power%20plant" title=" geothermal power plant"> geothermal power plant</a> </p> <a href="https://publications.waset.org/abstracts/184320/formation-of-mg-silicate-scales-and-inhibition-of-their-scale-formation-at-injection-wells-in-geothermal-power-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Preparation of Amorphous silica from Algerian Diatomite and Its Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Medeghri">S. Medeghri</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Hamzaoui"> S. Hamzaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zerdali"> M. Zerdali</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Masatomo"> S. Masatomo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work there is a facile method to produce pure amorphous silica from Algerian diatomite with an economic and ecological method. The sodium silicate is commonly used as precursor in silica gel diatomite preparation. In this study, the preparation of sodium silicate is preceded by acid washing of raw diatomite; the acid is then slowly added to precipitate silica at different pH values to obtain silica gel. The silica gel is characterized by EDX, ICP-MS and XRD. The EDX revels that the purity of silica from diatom is 98% after purification compared to raw diatom. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diatomite" title="diatomite">diatomite</a>, <a href="https://publications.waset.org/abstracts/search?q=acid%20cleaning" title=" acid cleaning"> acid cleaning</a>, <a href="https://publications.waset.org/abstracts/search?q=dissolution" title=" dissolution"> dissolution</a>, <a href="https://publications.waset.org/abstracts/search?q=amorphous%20silica" title=" amorphous silica"> amorphous silica</a>, <a href="https://publications.waset.org/abstracts/search?q=purity" title=" purity"> purity</a> </p> <a href="https://publications.waset.org/abstracts/27238/preparation-of-amorphous-silica-from-algerian-diatomite-and-its-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">576</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> The Influence of Sulfate and Magnesium Ions on the Growth Kinetics of CaCO3</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kotbia%20Labiod">Kotbia Labiod</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Mouldi%20Tlili"> Mohamed Mouldi Tlili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presence of different mineral salts in natural waters may precipitate and form hard deposits in water distribution systems. In this respect, we have developed numerous works on scaling by Algerian water with a very high hardness of 102 °F. The aim of our work is to study the influence of water dynamics and its composition on mineral salts on the precipitation of calcium carbonate (CaCO3). To achieve this objective, we have adopted two precipitation techniques based on controlled degassing of dissolved CO2. This study will identify the causes and provide answers to this complex phenomenon. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcium%20carbonate" title="calcium carbonate">calcium carbonate</a>, <a href="https://publications.waset.org/abstracts/search?q=controlled%20degassing" title=" controlled degassing"> controlled degassing</a>, <a href="https://publications.waset.org/abstracts/search?q=precipitation" title=" precipitation"> precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=scaling" title=" scaling"> scaling</a> </p> <a href="https://publications.waset.org/abstracts/73053/the-influence-of-sulfate-and-magnesium-ions-on-the-growth-kinetics-of-caco3" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73053.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Microstructural Interactions of Ag and Sc Alloying Additions during Casting and Artificial Ageing to a T6 Temper in a A356 Aluminium Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dimitrios%20Bakavos">Dimitrios Bakavos</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitrios%20Tsivoulas"> Dimitrios Tsivoulas</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaowalit%20Limmaneevichitr"> Chaowalit Limmaneevichitr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aluminium cast alloys, of the Al-Si system, are widely used for shape castings. Their microstructures can be further improved on one hand, by alloying modification and on the other, by optimised artificial ageing. In this project four hypoeutectic Al-alloys, the A356, A356+ Ag, A356+Sc, and A356+Ag+Sc have been studied. The interactions of Ag and Sc during solidification and artificial ageing at 170°C to a T6 temper have been investigated in details. The evolution of the eutectic microstructure is studied by thermal analysis and interrupted solidification. The ageing kinetics of the alloys has been identified by hardness measurements. The precipitate phases, number density, and chemical composition has been analysed by means of transmission electron microscopy (TEM) and EDS analysis. Furthermore, the SHT effect onto the Si eutectic particles for the four alloys has been investigated by means of optical microscopy, image analysis, and the UTS strength has been compared with the UTS of the alloys after casting. The results suggest that the Ag additions, significantly enhance the ageing kinetics of the A356 alloy. The formation of β” precipitates were kinetically accelerated and an increase of 8% and 5% in peak hardness strength has been observed compared to the base A356 and A356-Sc alloy. The EDS analysis demonstrates that Ag is present on the β” precipitate composition. After prolonged ageing 100 hours at 170°C, the A356-Ag exhibits 17% higher hardness strength compared to the other three alloys. During solidification, Sc additions change the macroscopic eutectic growth mode to the propagation of a defined eutectic front from the mold walls opposite to the heat flux direction. In contrast, Ag has no significance effect on the solidification mode revealing a macroscopic eutectic growth similar to A356 base alloy. However, the mechanical strength of the as cast A356-Ag, A356-Sc, and A356+Ag+Sc additions has increased by 5, 30, and 35 MPa, respectively. The outcome is a tribute to the refining of the eutectic Si that takes place which it is strong in the A356-Sc alloy and more profound when silver and scandium has been combined. Moreover after SHT the Al alloy with the highest mechanical strength, is the one with Ag additions, in contrast to the as-cast condition where the Sc and Sc+Ag alloy was the strongest. The increase of strength is mainly attributed to the dissolution of grain boundary precipitates the increase of the solute content into the matrix, the spherodisation, and coarsening of the eutectic Si. Therefore, we could safely conclude for an A356 hypoeutectic alloy additions of: Ag exhibits a refining effect on the Si eutectic which is improved when is combined with Sc. In addition Ag enhance, the ageing kinetics increases the hardness and retains its strength at prolonged artificial ageing in a Al-7Si 0.3Mg hypoeutectic alloy. Finally the addition of Sc is beneficial due to the refinement of the α-Al grain and modification-refinement of the eutectic Si increasing the strength of the as-cast product. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ageing" title="ageing">ageing</a>, <a href="https://publications.waset.org/abstracts/search?q=casting" title=" casting"> casting</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20strength" title=" mechanical strength"> mechanical strength</a>, <a href="https://publications.waset.org/abstracts/search?q=precipitates" title=" precipitates"> precipitates</a> </p> <a href="https://publications.waset.org/abstracts/34561/microstructural-interactions-of-ag-and-sc-alloying-additions-during-casting-and-artificial-ageing-to-a-t6-temper-in-a-a356-aluminium-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34561.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Synthesis and Characterization of Magnesium and Strontium Doped Sulphate-Hydroxyapatite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ammar%20Z.%20Alshemary">Ammar Z. Alshemary</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Fan%20Goh"> Yi-Fan Goh</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafaqat%20Hussain"> Rafaqat Hussain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnesium (Mg2+), strontium (Sr2+) and sulphate ions (SO42-) were successfully substituted into hydroxyapatite (Ca10-x-y MgxSry(PO4)6-z(SO4)zOH2-z) structure through ion exchange process at cationic and anionic sites. Mg2+and Sr2+ ions concentrations were varied between (0.00-0.10), keeping concentration of SO42- ions at z=0.05. [Mg (NO3)2], [Sr (NO3)2] and (Na2SO4) were used as Mg2+, Sr2+, and SO42- sources respectively. The synthesized white precipitate were subjected to heat treatment at 500ºC and finally characterized by X-ray diffraction (XRD) and Fourier Transform infra-red spectroscopy (FTIR). The results showed that the substitution of Mg2+, Sr2+ and SO42- ions into the HA lattice resulted in an increase in the broadness and reduction of XRD peaks. This confirmed that the crystallinity was reduced due to the substitution of ions. Similarly, FTIR result showed the effect of substitution on phosphate bands as well as exchange of hydroxyl group by SO42- ions to balance the charges on HA surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydroxyapatite" title="hydroxyapatite">hydroxyapatite</a>, <a href="https://publications.waset.org/abstracts/search?q=substitution" title=" substitution"> substitution</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIR" title=" FTIR"> FTIR</a> </p> <a href="https://publications.waset.org/abstracts/14180/synthesis-and-characterization-of-magnesium-and-strontium-doped-sulphate-hydroxyapatite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14180.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Mechanisms Leading to the Protective Behavior of Ethanol Vapour Drying of Probiotics </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahnaz%20Mansouri">Shahnaz Mansouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiao%20Dong%20Chen"> Xiao Dong Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng%20Wai%20Woo"> Meng Wai Woo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new antisolvent vapour precipitation approach was used to make ultrafine submicron probiotic encapsulates. The approach uses ethanol vapour to precipitate submicron encapsulates within relatively large droplets. Surprisingly, the probiotics (Lactobacillus delbrueckii ssp. bulgaricus, Streptococcus thermophilus) showed relatively high survival even under destructive ethanolic conditions within the droplet. This unusual behaviour was deduced to be caused by the denaturation and aggregation of the milk protein forming an ethanolic protective matrix for the probiotics. Skim milk droplets which is rich in casein and contains naturally occurring minerals provided higher ethanolic protection when compared whey protein isolate and lactose droplets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=whey" title="whey">whey</a>, <a href="https://publications.waset.org/abstracts/search?q=skim%20milk" title=" skim milk"> skim milk</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotic" title=" probiotic"> probiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=antisolvent" title=" antisolvent"> antisolvent</a>, <a href="https://publications.waset.org/abstracts/search?q=precipitation" title=" precipitation"> precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=encapsulation" title=" encapsulation"> encapsulation</a>, <a href="https://publications.waset.org/abstracts/search?q=denaturation" title=" denaturation"> denaturation</a>, <a href="https://publications.waset.org/abstracts/search?q=aggregation" title=" aggregation"> aggregation</a> </p> <a href="https://publications.waset.org/abstracts/22431/mechanisms-leading-to-the-protective-behavior-of-ethanol-vapour-drying-of-probiotics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22431.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">522</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Thermo-Mechanical Processing Scheme to Obtain Micro-Duplex Structure Favoring Superplasticity in an As-Cast and Homogenized Medium Alloyed Nickel Base Superalloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Sahithya">K. Sahithya</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Balasundar"> I. Balasundar</a>, <a href="https://publications.waset.org/abstracts/search?q=Pritapant"> Pritapant</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Raghua"> T. Raghua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ni-based superalloy with a nominal composition Ni-14% Cr-11% Co-5.8% Mo-2.4% Ti-2.4% Nb-2.8% Al-0.26 % Fe-0.032% Si-0.069% C (all in wt %) is used as turbine discs in a variety of aero engines. Like any other superalloy, the primary processing of the as-cast superalloy poses a major challenge due to its complex alloy chemistry. The challenge was circumvented by characterizing the different phases present in the material, optimizing the homogenization treatment, identifying a suitable thermomechanical processing window using dynamic materials modeling. The as-cast material was subjected to homogenization at 1200°C for a soaking period of 8 hours and quenched using different media. Water quenching (WQ) after homogenization resulted in very fine spherical γꞌ precipitates of sizes 30-50 nm, whereas furnace cooling (FC) after homogenization resulted in bimodal distribution of precipitates (primary gamma prime of size 300nm and secondary gamma prime of size 5-10 nm). MC type primary carbides that are stable till the melting point of the material were found in both WQ and FC samples. Deformation behaviour of both the materials below (1000-1100°C) and above gamma prime solvus (1100-1175°C) was evaluated by subjecting the material to series of compression tests at different constant true strain rates (0.0001/sec-1/sec). An in-detail examination of the precipitate dislocation interaction mechanisms carried out using TEM revealed precipitate shearing and Orowan looping as the mechanisms governing deformation in WQ and FC, respectively. Incoherent/semi coherent gamma prime precipitates in the case of FC material facilitates better workability of the material, whereas the coherent precipitates in WQ material contributed to higher resistance to deformation of the material. Both the materials exhibited discontinuous dynamic recrystallization (DDRX) above gamma prime solvus temperature. The recrystallization kinetics was slower in the case of WQ material. Very fine grain boundary carbides ( ≤ 300 nm) retarded the recrystallisation kinetics in WQ. Coarse carbides (1-5 µm) facilitate particle stimulated nucleation in FC material. The FC material was cogged (primary hot working) 1120˚C, 0.03/sec resulting in significant grain refinement, i.e., from 3000 μm to 100 μm. The primary processed material was subjected to intensive thermomechanical deformation subsequently by reducing the temperature by 50˚C in each processing step with intermittent heterogenization treatment at selected temperatures aimed at simultaneous coarsening of the gamma prime precipitates and refinement of the gamma matrix grains. The heterogeneous annealing treatment carried out, resulted in gamma grains of 10 μm and gamma prime precipitates of 1-2 μm. Further thermo mechanical processing of the material was carried out at 1025˚C to increase the homogeneity of the obtained micro-duplex structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=superalloys" title="superalloys">superalloys</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20material%20modeling" title=" dynamic material modeling"> dynamic material modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel%20alloys" title=" nickel alloys"> nickel alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20recrystallization" title=" dynamic recrystallization"> dynamic recrystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=superplasticity" title=" superplasticity"> superplasticity</a> </p> <a href="https://publications.waset.org/abstracts/121172/thermo-mechanical-processing-scheme-to-obtain-micro-duplex-structure-favoring-superplasticity-in-an-as-cast-and-homogenized-medium-alloyed-nickel-base-superalloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Green Synthesis of Copper Oxide and Cobalt Oxide Nanoparticles Using Spinacia Oleracea Leaf Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yameen%20Ahmed">Yameen Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamshid%20Hussain"> Jamshid Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Farman%20Ullah"> Farman Ullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Sohaib%20Asif"> Sohaib Asif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The investigation aims at the synthesis of copper oxide and cobalt oxide nanoparticles using Spinacia oleracea leaf extract. These nanoparticles have many properties and applications. They possess antimicrobial catalytic properties and also they can be used in energy storage materials, gas sensors, etc. The Spinacia oleracea leaf extract behaves as a reducing agent in nanoparticle synthesis. The plant extract was first prepared and then treated with copper and cobalt salt solutions to get the precipitate. The salt solutions used for this purpose are copper sulfate pentahydrate (CuSO₄.5H₂O) and cobalt chloride hexahydrate (CoCl₂.6H₂O). The UV-Vis, XRD, EDX, and SEM techniques are used to find the optical, structural, and morphological properties of copper oxide and cobalt oxide nanoparticles. The UV absorption peaks are at 326 nm and 506 nm for copper oxide and cobalt oxide nanoparticles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cobalt%20oxide" title="cobalt oxide">cobalt oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20oxide" title=" copper oxide"> copper oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20synthesis" title=" green synthesis"> green synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/142865/green-synthesis-of-copper-oxide-and-cobalt-oxide-nanoparticles-using-spinacia-oleracea-leaf-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142865.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Recovery of Boron as Homogeneous Perborate Particles from Synthetic Wastewater by Integrating Chemical Oxo-Precipitation with Fluidized-Bed Homogeneous Granulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chiung-Chin%20Huang">Chiung-Chin Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jui-Yen%20Lin"> Jui-Yen Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yao-Hui%20Huang"> Yao-Hui Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Among current techniques of boron removal from wastewater with high boron concentration, chemical oxo-precipitation (COP) is one of the promising methods due to its milder condition. COP uses H2O2 to transform boric acid to perborates which can easily precipitate with barium ions at room temperature. However, the generation of the waste sludge that requires sludge/water separation and sludge dewatering is troublesome. This work presents an innovative technology which integrates chemical oxo-precipitation (COP) with fluidized-bed homogeneous granulation (FBHG) to reclaim boron as homogeneous perborate particles. By conducting COP in a fluidized-bed reactor, the barium perborate can be granulated to form homogeneous particles (>1.0 mm) with low water content (< 10%). Under the suitable condition, more than 70% of boron can be recovered from 600 ppm of boron solution and the residual boron is lower than 100 ppm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=barium" title="barium">barium</a>, <a href="https://publications.waset.org/abstracts/search?q=perborate" title=" perborate"> perborate</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20oxo-precipitation" title=" chemical oxo-precipitation"> chemical oxo-precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=boron%20removal" title=" boron removal"> boron removal</a>, <a href="https://publications.waset.org/abstracts/search?q=fluidized-bed" title=" fluidized-bed"> fluidized-bed</a>, <a href="https://publications.waset.org/abstracts/search?q=granulation" title=" granulation"> granulation</a> </p> <a href="https://publications.waset.org/abstracts/45161/recovery-of-boron-as-homogeneous-perborate-particles-from-synthetic-wastewater-by-integrating-chemical-oxo-precipitation-with-fluidized-bed-homogeneous-granulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45161.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Effect of Irradiation on Nano-Indentation Properties and Microstructure of X-750 Ni-Based Superalloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pooyan%20Changizian">Pooyan Changizian</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhongwen%20Yao"> Zhongwen Yao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of current study is to make an excellent correlation between mechanical properties and microstructures of ion irradiated X-750 Ni-based superalloy. Towards this end, two different irradiation procedures were carried out, including single Ni ion irradiation and pre-helium implantation with subsequent Ni ion irradiation. Nano-indentation technique was employed to evaluate the mechanical properties of irradiated material. The nano-hardness measurements depict highly different results for two irradiation procedures. Single ion irradiated X-750 shows softening behavior; however, pre-helium implanted specimens present significant hardening compared to the un-irradiated material. Cross-section TEM examination demonstrates that softening is attributed to the γ׳-precipitate instability (disordering/dissolution) which overcomes the hardening effect of irradiation-induced defects. In contrast, the presence of cavities or helium bubbles is probably the main cause for irradiation-induced hardening of helium implanted samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Inconel%20X-750" title="Inconel X-750">Inconel X-750</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoindentation" title=" nanoindentation"> nanoindentation</a>, <a href="https://publications.waset.org/abstracts/search?q=helium%20bubbles" title=" helium bubbles"> helium bubbles</a>, <a href="https://publications.waset.org/abstracts/search?q=defects" title=" defects"> defects</a> </p> <a href="https://publications.waset.org/abstracts/59555/effect-of-irradiation-on-nano-indentation-properties-and-microstructure-of-x-750-ni-based-superalloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59555.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Passive Neutralization of Acid Mine Drainage Using Locally Produced Limestone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reneiloe%20Seodigeng">Reneiloe Seodigeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Malwandla%20Hanabe"> Malwandla Hanabe</a>, <a href="https://publications.waset.org/abstracts/search?q=Haleden%20Chiririwa"> Haleden Chiririwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Hilary%20Rutto"> Hilary Rutto</a>, <a href="https://publications.waset.org/abstracts/search?q=Tumisang%20Seodigeng"> Tumisang Seodigeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neutralisation of acid-mine drainage (AMD) using limestone is cost effective, and good results can be obtained. However, this process has its limitations; it cannot be used for highly acidic water which consists of Fe(III). When Fe(III) reacts with CaCO<sub>3</sub>, it results in armoring. Armoring slows the reaction, and additional alkalinity can no longer be generated. Limestone is easily accessible, so this problem can be easily dealt with. Experiments were carried out to evaluate the effect of PVC pipe length on ferric and ferrous ions. It was found that the shorter the pipe length the more these dissolved metals precipitate. The effect of the pipe length on the hydrogen ions was also studied, and it was found that these two have an inverse relationship. Experimental data were further compared with the model prediction data to see if they behave in a similar fashion. The model was able to predict the behaviour of 1.5m and 2 m pipes in ferric and ferrous ion precipitation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid%20mine%20drainage" title="acid mine drainage">acid mine drainage</a>, <a href="https://publications.waset.org/abstracts/search?q=neutralisation" title=" neutralisation"> neutralisation</a>, <a href="https://publications.waset.org/abstracts/search?q=limestone" title=" limestone"> limestone</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modelling" title=" mathematical modelling"> mathematical modelling</a> </p> <a href="https://publications.waset.org/abstracts/64535/passive-neutralization-of-acid-mine-drainage-using-locally-produced-limestone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> The Investigation of Precipitation Conditions of Chevreul’s Salt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Turan%20%C3%87alban">Turan Çalban</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatih%20Sevim"> Fatih Sevim</a>, <a href="https://publications.waset.org/abstracts/search?q=Oral%20La%C3%A7in"> Oral Laçin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the precipitation conditions of Chevreul&rsquo;s salt were evaluated. The structure of Chevreul&rsquo;s salt was examined by considering the previous studies. Thermodynamically, the most important precipitation parameters were pH, temperature, and sulphite-copper(II) ratio. The amount of Chevreul&rsquo;s salt increased with increasing the temperature and sulphite-copper(II) ratio at the certain range, while it increased with decreasing the pH value at the chosen range. The best solution medium for recovery of Chevreul&rsquo;s salt is sulphur dioxide gas-water system. Moreover, the soluble sulphite salts are used as efficient precipitating reagents. Chevreul&rsquo;s salt is generally used to produce the highly pure copper powders from synthetic copper sulphate solutions and impure leach solutions. When the pH of the initial ammoniacal solution is greater than 8.5, ammonia in the medium is not free, and Chevreul&rsquo;s salt from solution does not precipitate. In contrast, copper ammonium sulphide is precipitated. The pH of the initial solution containing ammonia for precipitating of Chevreul&rsquo;s salt must be less than 8.5. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chevreul%27s%20salt" title="Chevreul&#039;s salt">Chevreul&#039;s salt</a>, <a href="https://publications.waset.org/abstracts/search?q=production" title=" production"> production</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20sulfites" title=" copper sulfites"> copper sulfites</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20compound" title=" copper compound"> copper compound</a> </p> <a href="https://publications.waset.org/abstracts/52071/the-investigation-of-precipitation-conditions-of-chevreuls-salt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Thermomechanical Processing of a CuZnAl Shape-Memory Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pedro%20Henrique%20Alves%20Martins">Pedro Henrique Alves Martins</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20Guilherme%20%20Ferreira%20De%20Siqueira"> Paulo Guilherme Ferreira De Siqueira</a>, <a href="https://publications.waset.org/abstracts/search?q=Franco%20De%20Castro%20Bubani"> Franco De Castro Bubani</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Teresa%20Paulino%20Aguilar"> Maria Teresa Paulino Aguilar</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20Roberto%20%20Cetlin"> Paulo Roberto Cetlin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cu-base shape-memory alloys (CuZnAl, CuAlNi, CuAlBe, etc.) are promising engineering materials for several unconventional devices, such as sensors, actuators, and mechanical vibration dampers. Brittleness is one of the factors that limit the commercial use of these alloys, as it makes thermomechanical processing difficult. In this work, a method for the hot extrusion of a 75.50% Cu, 16,74% Zn, 7,76% Al (weight %) alloy is presented. The effects of the thermomechanical processing in the microstructure and the pseudoelastic behavior of the alloy are assessed by optical metallography, compression and hardness tests. Results show that hot extrusion is a suitable method to obtain severe cross-section reductions in the CuZnAl shape-memory alloy studied. The alloy maintained its pseudoelastic effect after the extrusion and the modifications in the mechanical behavior caused by precipitation during hot extrusion can be minimized by a suitable precipitate dissolution heat treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hot%20extrusion" title="hot extrusion">hot extrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudoelastic" title=" pseudoelastic"> pseudoelastic</a>, <a href="https://publications.waset.org/abstracts/search?q=shape-memory%20alloy" title=" shape-memory alloy"> shape-memory alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=thermomechanical%20processing" title=" thermomechanical processing"> thermomechanical processing</a> </p> <a href="https://publications.waset.org/abstracts/70427/thermomechanical-processing-of-a-cuznal-shape-memory-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Screening of Minimal Salt Media for Biosurfactant Production by Bacillus spp.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20M.%20Al-Wahaibi">Y. M. Al-Wahaibi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Al-Bahry"> S. N. Al-Bahry</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20E.%20Elshafie"> A. E. Elshafie</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Al-Bemani"> A. S. Al-Bemani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20J.%20Joshi"> S. J. Joshi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Al-Bahri"> A. K. Al-Bahri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Crude oil is a major source of global energy. The major problem is its widespread use and demand resulted is in increasing environmental pollution. One associated pollution problem is ‘oil spills’. Oil spills can be remediated with the use of chemical dispersants, microbial biodegradation and microbial metabolites such as biosurfactants. Four different minimal salt media for biosurfactant production by Bacillus isolated from oil contaminated sites from Oman were screened. These minimal salt media were supplemented with either glucose or sucrose as a carbon source. Among the isolates, W16 and B30 produced the most active biosurfactants. Isolate W16 produced better biosurfactant than the rest, and reduced surface tension (ST) and interfacial tension (IFT) to 25.26mN/m and 2.29mN/m respectively within 48h which are characteristics for removal of oil in contaminated sites. Biosurfactant was produced in bulk and extracted using acid precipitation method. Thin Layer Chromatography (TLC) of acid precipitate biosurfactant revealed two concentrated bands. Further studies of W16 biosurfactant in bioremediation of oil spills are recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil%20contamination" title="oil contamination">oil contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=remediation" title=" remediation"> remediation</a>, <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20spp" title=" Bacillus spp"> Bacillus spp</a>, <a href="https://publications.waset.org/abstracts/search?q=biosurfactant" title=" biosurfactant"> biosurfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20tension" title=" surface tension"> surface tension</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20tension" title=" interfacial tension"> interfacial tension</a> </p> <a href="https://publications.waset.org/abstracts/3731/screening-of-minimal-salt-media-for-biosurfactant-production-by-bacillus-spp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Experimental Investigation of Heat Transfer and Scale Growth Characteristics of Crystallisation Scale in Agitation Tank</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prasanjit%20%20Das">Prasanjit Das</a>, <a href="https://publications.waset.org/abstracts/search?q=M%20.M.%20K.%20Khan"> M .M. K. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20G.%20Rasul"> M. G. Rasul</a>, <a href="https://publications.waset.org/abstracts/search?q=Jie%20Wu"> Jie Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Youn"> I. Youn </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Crystallisation scale occurs when dissolved minerals precipitate from an aqueous solution. To investigate the crystallisation scale growth of normal solubility salt, a lab-scale agitation tank with and without baffles were used as a benchmark using potassium nitrate as the test fluid. Potassium nitrate (KNO3) solution in this test leads to crystallisation scale on heat transfer surfaces. This experimental investigation has focused on the effect of surface crystallisation of potassium nitrate on the low-temperature heat exchange surfaces on the wall of the agitation tank. The impeller agitation rate affects the scaling rate at the low-temperature agitation wall and it shows a decreasing scaling rate with an increasing agitation rate. It was observed that there was a significant variation of heat transfer coefficients and scaling resistance coefficients with different agitation rate as well as with varying impeller size, tank with and without baffles and solution concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crystallisation" title="crystallisation">crystallisation</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20coefficient" title=" heat transfer coefficient"> heat transfer coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=scale" title=" scale"> scale</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance" title=" resistance"> resistance</a> </p> <a href="https://publications.waset.org/abstracts/80971/experimental-investigation-of-heat-transfer-and-scale-growth-characteristics-of-crystallisation-scale-in-agitation-tank" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80971.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Antibacterial Potential from the Crude Extracts of Hemolymph and Hepatopancreas of Portunus segnis and Grapsus albolineatus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mona%20Hajirasouli">Mona Hajirasouli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Abstract: introduction: Antimicrobial compounds are important in the first line of the host defense system of many animal species. Material and methods: In the present study antibacterial activity of crude and proteins precipitate of hemolymph and crude hepatopancreas extracts from Portunus segnis and Grapsus albolineatus against a range of 6 different bacterial strains evaluated. Amoxicillin as a positive control were also used. Results: Maximum activity (15.9 mm) was recorded in male haemolymph of p.segnis against Entrobacter and minimum activity (7 mm) was recorded against Serratia marcescens, Enterobacter sp. and Proteus mirabilis from different extracts of Grapsus albolineatus. Data were analyzed using independent-t in SPSS version 16, and results indicate that there were not any significant differences between hemolymph and hepatopancreas extracts of 2 species. Discussion: Antimicrobial activity has been reported earlier in the hemolymph of some brachyuran crabs such as: blue crab Callinectes sapidus, mud crab Scylla serrata, Ocypode macrocera and Carcinus maenas. This study shows that hemolymph and hepatopancreas of Portunus segnis and Grapsus albolineatus may potential antibiotics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brachyuran" title="brachyuran">brachyuran</a>, <a href="https://publications.waset.org/abstracts/search?q=Portunus%20segnis" title=" Portunus segnis"> Portunus segnis</a>, <a href="https://publications.waset.org/abstracts/search?q=Grapsus%20albolineatus" title=" Grapsus albolineatus"> Grapsus albolineatus</a>, <a href="https://publications.waset.org/abstracts/search?q=hemolymph" title=" hemolymph"> hemolymph</a>, <a href="https://publications.waset.org/abstracts/search?q=hepatopancreas" title=" hepatopancreas"> hepatopancreas</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title=" antibacterial"> antibacterial</a> </p> <a href="https://publications.waset.org/abstracts/57855/antibacterial-potential-from-the-crude-extracts-of-hemolymph-and-hepatopancreas-of-portunus-segnis-and-grapsus-albolineatus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57855.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Test of Moisture Sensor Activation Speed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Parkova">I. Parkova</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Vali%C5%A1evskis"> A. Vališevskis</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Vi%C4%BCumsone"> A. Viļumsone</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nocturnal enuresis or bed-wetting is intermittent incontinence during sleep of children after age 5 that may precipitate wide range of behavioural and developmental problems. One of the non-pharmacological treatment methods is the use of a bed-wetting alarm system. In order to improve comfort conditions of nocturnal enuresis alarm system, modular moisture sensor should be replaced by a textile sensor. In this study behaviour and moisture detection speed of woven and sewn sensors were compared by analysing change in electrical resistance after solution (salt water) was dripped on sensor samples. Material of samples has different structure and yarn location, which affects solution detection rate. Sensor system circuit was designed and two sensor tests were performed: system activation test and false alarm test to determine the sensitivity of the system and activation threshold. Sewn sensor had better result in system’s activation test – faster reaction, but woven sensor had better result in system’s false alarm test – it was less sensitive to perspiration simulation. After experiments it was found that the optimum switching threshold is 3V in case of 5V input voltage, which provides protection against false alarms, for example – during intensive sweating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conductive%20yarns" title="conductive yarns">conductive yarns</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20textile%20sensor" title=" moisture textile sensor"> moisture textile sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=industry" title=" industry"> industry</a>, <a href="https://publications.waset.org/abstracts/search?q=material" title=" material"> material</a> </p> <a href="https://publications.waset.org/abstracts/7649/test-of-moisture-sensor-activation-speed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Ingini Seeds: A Qualitative Study on Its Use in Water Purification in the Dry Zone of Sri Lanka</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iranga%20Weerakkody">Iranga Weerakkody</a>, <a href="https://publications.waset.org/abstracts/search?q=Palitha%20Sri%20Geegana%20Arachchige"> Palitha Sri Geegana Arachchige</a>, <a href="https://publications.waset.org/abstracts/search?q=Dasith%20Tilakaratna"> Dasith Tilakaratna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this research is to study how folk wisdom can be applied to assist in the process of purification of water. This is qualitative research, and by random sampling, it is focused on to the dry zone of Sri Lanka. The research limitation has been set to the use of Ingini seeds (Strychnos potatorum) to purify water. Here the research is based on connecting traditional knowledge regarding water purification using Ingini seeds to modern times and the advantages and disadvantages of using Ingini seeds to purify water sources. Ingini seeds have been used among villagers of the dry zone to purify water for a long time by methods such as planting Ingini plants around water sources and depositing seeds covered with a cotton cloth inside wells. Crushed Ingini seeds have been put into clay water pots to reduce the hardness of water, as well as the number of impurities present in the water. This shows that Ingini seeds have a property that is successful in precipitating dissolved impurities in water. Ingini seeds are also used to precipitate solid impurities in herbal wine. The advantages of using Ingini seeds are that it can be obtained naturally from the ecology without an additional cost and that it is completely organic forest produce. Another specialty is that in practices, it is used to treat kidney stones and other water-related diseases affecting the kidneys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=folklife" title="folklife">folklife</a>, <a href="https://publications.waset.org/abstracts/search?q=Ingini%20seeds" title=" Ingini seeds"> Ingini seeds</a>, <a href="https://publications.waset.org/abstracts/search?q=Strychnos%20potatorum" title=" Strychnos potatorum"> Strychnos potatorum</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20forest%20produce" title=" organic forest produce"> organic forest produce</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20purification" title=" water purification"> water purification</a> </p> <a href="https://publications.waset.org/abstracts/128366/ingini-seeds-a-qualitative-study-on-its-use-in-water-purification-in-the-dry-zone-of-sri-lanka" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128366.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Characterizing the Fracture Toughness Properties of Aluminum I-Rod Removed from National Research Universal Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20%20Bach">Michael Bach</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extensive weld repair was carried out in 2009 after a leak was detected in the aluminum 5052 vessel of the National Research Universal (NRU) reactor. This was the second vessel installed since 1974. In support of the NRU vessel leak repair and fitness for service assessments, an estimate of property changes due to irradiation exposure is required to extend the service of the reactor until 2018. In order to fully evaluate the property changes in the vessel wall, an Iodine-125 rod (I rod) made from the same material and irradiated in the NRU reactor from 1974 1991, was retrieved and sectioned for microstructure characterization and mechanical testing. The different sections of the I rod were exposed to various levels of thermal neutron fluences from 0 to a maximum of 11.9 x 1022 n/cm2. The end of life thermal neutron fluence of the NRU vessel is estimated to be 2.2 x 1022 n/cm2 at 35 years of service. Tensile test and fracture toughness test was performed on the I-rod material at various axial locations. The changes in tensile properties were attributed primarily to the creation of finely dispersed Mg-Si precipitates that harden the material and reduced the ductility. Despite having a reduction in fracture toughness, the NRU vessel is still operation at the current fluence levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20alloy" title="aluminum alloy">aluminum alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=fitness-for-service%20assessment" title=" fitness-for-service assessment "> fitness-for-service assessment </a>, <a href="https://publications.waset.org/abstracts/search?q=fracutre%20toughness" title=" fracutre toughness"> fracutre toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20reactor" title=" nuclear reactor"> nuclear reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=precipitate%20strengthening" title=" precipitate strengthening"> precipitate strengthening</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20damage" title=" radiation damage"> radiation damage</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a> </p> <a href="https://publications.waset.org/abstracts/83986/characterizing-the-fracture-toughness-properties-of-aluminum-i-rod-removed-from-national-research-universal-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Thermophoresis Particle Precipitate on Heated Surfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rebhi%20A.%20Damseh">Rebhi A. Damseh</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Duwairi"> H. M. Duwairi</a>, <a href="https://publications.waset.org/abstracts/search?q=Benbella%20A.%20Shannak"> Benbella A. Shannak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work deals with heat and mass transfer by steady laminar boundary layer flow of a Newtonian, viscous fluid over a vertical flat plate with variable surface heat flux embedded in a fluid saturated porous medium in the presence of thermophoresis particle deposition effect. The governing partial differential equations are transformed into no-similar form by using special transformation and solved numerically by using an implicit finite difference method. Many results are obtained and a representative set is displaced graphically to illustrate the influence of the various physical parameters on the wall thermophoresis deposition velocity and concentration profiles. It is found that the increasing of thermophoresis constant or temperature differences enhances heat transfer rates from vertical surfaces and increase wall thermophoresis velocities; this is due to favourable temperature gradients or buoyancy forces. It is also found that the effect of thermophoresis phenomena is more pronounced near pure natural convection heat transfer limit; because this phenomenon is directly a temperature gradient or buoyancy forces dependent. Comparisons with previously published work in the limits are performed and the results are found to be in excellent agreement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermophoresis" title="thermophoresis">thermophoresis</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20medium" title=" porous medium"> porous medium</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20surface%20heat%20flux" title=" variable surface heat flux"> variable surface heat flux</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a> </p> <a href="https://publications.waset.org/abstracts/6694/thermophoresis-particle-precipitate-on-heated-surfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6694.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Theoretical Study of Structural Parameters, Chemical Reactivity and Spectral and Thermodynamical Properties of Organometallic Complexes Containing Zinc, Nickel and Cadmium with Nitrilotriacetic Acid and Tea Ligands: Density Functional Theory Investigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nour%20El%20Houda%20Bensiradj">Nour El Houda Bensiradj</a>, <a href="https://publications.waset.org/abstracts/search?q=Nafila%20Zouaghi"> Nafila Zouaghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Taha%20Bensiradj"> Taha Bensiradj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The pollution of water resources is characterized by the presence of microorganisms, chemicals, or industrial waste. Generally, this waste generates effluents containing large quantities of heavy metals, making the water unsuitable for consumption and causing the death of aquatic life and associated biodiversity. Currently, it is very important to assess the impact of heavy metals in water pollution as well as the processes for treating and reducing them. Among the methods of water treatment and disinfection, we mention the complexation of metal ions using ligands which serve to precipitate and subsequently eliminate these ions. In this context, we are interested in the study of complexes containing heavy metals such as zinc, nickel, and cadmium, which are present in several industrial discharges and are discharged into water sources. We will use the ligands of triethanolamine (TEA) and nitrilotriacetic acid (NTA). The theoretical study is based on molecular modeling, using the density functional theory (DFT) implemented in the Gaussian 09 program. The geometric and energetic properties of the above complexes will be calculated. Spectral properties such as infrared, as well as reactivity descriptors, and thermodynamic properties such as enthalpy and free enthalpy will also be determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title="heavy metals">heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=NTA" title=" NTA"> NTA</a>, <a href="https://publications.waset.org/abstracts/search?q=TEA" title=" TEA"> TEA</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=IR" title=" IR"> IR</a>, <a href="https://publications.waset.org/abstracts/search?q=reactivity%20descriptors" title=" reactivity descriptors"> reactivity descriptors</a> </p> <a href="https://publications.waset.org/abstracts/156557/theoretical-study-of-structural-parameters-chemical-reactivity-and-spectral-and-thermodynamical-properties-of-organometallic-complexes-containing-zinc-nickel-and-cadmium-with-nitrilotriacetic-acid-and-tea-ligands-density-functional-theory-investigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> An Evaluation of Solubility of Wax and Asphaltene in Crude Oil for Improved Flow Properties Using a Copolymer Solubilized in Organic Solvent with an Aromatic Hydrocarbon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Anisuzzaman">S. M. Anisuzzaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Sariah%20Abang"> Sariah Abang</a>, <a href="https://publications.waset.org/abstracts/search?q=Awang%20Bono"> Awang Bono</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Krishnaiah"> D. Krishnaiah</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20M.%20Ismail"> N. M. Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20B.%20Sandrison"> G. B. Sandrison</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wax and asphaltene are high molecular weighted compounds that contribute to the stability of crude oil at a dispersed state. Transportation of crude oil along pipelines from the oil rig to the refineries causes fluctuation of temperature which will lead to the coagulation of wax and flocculation of asphaltenes. This paper focuses on the prevention of wax and asphaltene precipitate deposition on the inner surface of the pipelines by using a wax inhibitor and an asphaltene dispersant. The novelty of this prevention method is the combination of three substances; a wax inhibitor dissolved in a wax inhibitor solvent and an asphaltene solvent, namely, ethylene-vinyl acetate (EVA) copolymer dissolved in methylcyclohexane (MCH) and toluene (TOL) to inhibit the precipitation and deposition of wax and asphaltene. The objective of this paper was to optimize the percentage composition of each component in this inhibitor which can maximize the viscosity reduction of crude oil. The optimization was divided into two stages which are the laboratory experimental stage in which the viscosity of crude oil samples containing inhibitor of different component compositions is tested at decreasing temperatures and the data optimization stage using response surface methodology (RSM) to design an optimizing model. The results of experiment proved that the combination of 50% EVA + 25% MCH + 25% TOL gave a maximum viscosity reduction of 67% while the RSM model proved that the combination of 57% EVA + 20.5% MCH + 22.5% TOL gave a maximum viscosity reduction of up to 61%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphaltene" title="asphaltene">asphaltene</a>, <a href="https://publications.waset.org/abstracts/search?q=ethylene-vinyl%20acetate" title=" ethylene-vinyl acetate"> ethylene-vinyl acetate</a>, <a href="https://publications.waset.org/abstracts/search?q=methylcyclohexane" title=" methylcyclohexane"> methylcyclohexane</a>, <a href="https://publications.waset.org/abstracts/search?q=toluene" title=" toluene"> toluene</a>, <a href="https://publications.waset.org/abstracts/search?q=wax" title=" wax"> wax</a> </p> <a href="https://publications.waset.org/abstracts/69607/an-evaluation-of-solubility-of-wax-and-asphaltene-in-crude-oil-for-improved-flow-properties-using-a-copolymer-solubilized-in-organic-solvent-with-an-aromatic-hydrocarbon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Mercury Removal Using Pseudomonas putida (ATTC 49128): Effect of Acclimatization Time, Speed, and Temperature of Incubator Shaker</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20M.%20Azoddein">A. A. M. Azoddein</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20M.%20Yunus"> R. M. Yunus</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20M.%20Sulaiman"> N. M. Sulaiman</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Bustary"> A. B. Bustary</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Sabar"> K. Sabar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microbes have been used to solve environmental problems for many years. The use microorganism to sequester, precipitate or alter the oxidation state of various heavy metals has been extensively studied. Processes by which microorganism interacts with toxic metal are very diverse. The purpose of this research is to remove the mercury using Pseudomonas putida, pure culture ATTC 49128 at optimum growth parameters such as techniques of culture, acclimatization time and speed of incubator shaker. Thus, in this study, the optimum growth parameters of P.putida were obtained to achieve the maximum of mercury removal. Based on the optimum parameters of Pseudomonas putida for specific growth rate, the removal of two different mercury concentration, 1 ppm and 4 ppm were studied. A mercury-resistant bacterial strain which is able to reduce ionic mercury to metallic mercury was used to reduce ionic mercury from mercury nitrate solution. The overall levels of mercury removal in this study were between 80% and 90%. The information obtained in this study is of fundamental for understanding of the survival of P.putida ATTC 49128 in mercury solution. Thus, microbial mercury environmental pollutants removal is a potential biological treatment for waste water treatment especially in petrochemical industries in Malaysia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pseudomonas%20putida" title="Pseudomonas putida">Pseudomonas putida</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20kinetic" title=" growth kinetic"> growth kinetic</a>, <a href="https://publications.waset.org/abstracts/search?q=biosorption" title=" biosorption"> biosorption</a>, <a href="https://publications.waset.org/abstracts/search?q=mercury" title=" mercury"> mercury</a>, <a href="https://publications.waset.org/abstracts/search?q=petrochemical%20waste%20water" title=" petrochemical waste water"> petrochemical waste water</a> </p> <a href="https://publications.waset.org/abstracts/19360/mercury-removal-using-pseudomonas-putida-attc-49128-effect-of-acclimatization-time-speed-and-temperature-of-incubator-shaker" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">667</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=precipitate&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=precipitate&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=precipitate&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10