CINXE.COM

Search results for: stream water

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: stream water</title> <meta name="description" content="Search results for: stream water"> <meta name="keywords" content="stream water"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="stream water" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="stream water"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9099</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: stream water</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9099</span> Determination of Flow Arrangement for Optimum Performance in Heat Exchangers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Salisu%20Atiku">Ahmed Salisu Atiku</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This task involves the determination of the flow arrangement for optimum performance and the calculation of total heat transfer of two identical double pipe heat exchangers in series. The inner pipe contains the cold water stream at 27°C, whilst the outer pipe contains the two hot stream of water at 50°C and 90 °C which can be mixed in any way desired. The analysis was carried out using counter flow arrangement due to its good heat transfer ability. The best way of heating this cold stream was found out to be passing the 90°C hot stream through the two heat exchangers. The outlet temperature of the cold stream was found to be 39.6°C and overall heat transfer of 131.3 kW. Though starting with 50°C hot stream in the first heat exchanger followed by 90°C hot stream in the second heat exchanger gives an outlet temperature almost the same as 90°C hot stream alone, but the heat transfer is low. The reason for the low heat transfer was that only the heat transfer in the second heat exchanger is considered. Whilst the reason behind high outlet temperature was that the cold stream was already preheated by the first stream. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20stream" title="cold stream">cold stream</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20arrangement" title=" flow arrangement"> flow arrangement</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchanger" title=" heat exchanger"> heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20stream" title=" hot stream"> hot stream</a> </p> <a href="https://publications.waset.org/abstracts/51973/determination-of-flow-arrangement-for-optimum-performance-in-heat-exchangers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51973.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9098</span> Water Quality Determination of River Systems in Antalya Basin by Biomonitoring</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Kalyoncu">Hasan Kalyoncu</a>, <a href="https://publications.waset.org/abstracts/search?q=F%C3%BCsun%20K%C4%B1l%C3%A7%C4%B1k"> Füsun Kılçık</a>, <a href="https://publications.waset.org/abstracts/search?q=Hatice%20G%C3%BClboy%20Aky%C4%B1ld%C4%B1r%C4%B1m"> Hatice Gülboy Akyıldırım</a>, <a href="https://publications.waset.org/abstracts/search?q=Aynur%20%C3%96zen"> Aynur Özen</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Acar"> Mehmet Acar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Yoluk"> Nur Yoluk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For evaluation of water quality of the river systems in Antalya Basin, macrozoobenthos samples were taken from 22 determined stations by a hand net and identified at family level. Water quality of Antalya Basin was determined according to Biological Monitoring Working Party (BMWP) system, by using macrozoobenthic invertebrates and physicochemical parameters. As a result of the evaluation, while Aksu Stream was determined as the most polluted stream in Antalya Basin, Isparta Stream was determined as the most polluted tributary of Aksu Stream. Pollution level of the Isparta Stream was determined as quality class V and it is the extremely polluted part of stream. Pollution loads at the sources of the streams were determined in low levels in general. Due to some parts of the streams have passed through deep canyons and take their sources from nonresidential and non-arable regions, majority of the streams that take place in Antalya Basin are at high quality level. Waste water, which comes from agricultural and residential regions, affects the lower basins of the streams. Because of the waste water, lower parts of the stream basins exposed to the pollution under anthropogenic effects. However, in Aksu Stream, which differs by being exposed to domestic and industrial wastes of Isparta City, extreme pollution was determined, particularly in the Isparta Stream part. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Antalya%20basin" title="Antalya basin">Antalya basin</a>, <a href="https://publications.waset.org/abstracts/search?q=biomonitoring" title=" biomonitoring"> biomonitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=BMWP" title=" BMWP"> BMWP</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a> </p> <a href="https://publications.waset.org/abstracts/49348/water-quality-determination-of-river-systems-in-antalya-basin-by-biomonitoring" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49348.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9097</span> Mongolian Water Quality Problem and Health of Free-Grazing Sheep </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu%20Yoshihara">Yu Yoshihara</a>, <a href="https://publications.waset.org/abstracts/search?q=Chika%20Tada"> Chika Tada</a>, <a href="https://publications.waset.org/abstracts/search?q=Moe%20Takada"> Moe Takada</a>, <a href="https://publications.waset.org/abstracts/search?q=Nyam-Osor%20Purevdorj"> Nyam-Osor Purevdorj</a>, <a href="https://publications.waset.org/abstracts/search?q=Khorolmaa%20Chimedtseren"> Khorolmaa Chimedtseren</a>, <a href="https://publications.waset.org/abstracts/search?q=Yutaka%20Nakai"> Yutaka Nakai </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water pollution from animal waste and its influence on grazing animals is a current concern regarding Mongolian grazing lands. We allocated 32 free-grazing lambs to four groups and provided each with water from a different source (upper stream, lower stream, well, and pond) for 49 days. We recorded the amount of water consumed by the lambs, as well as their body weight, behavior, white blood cell count, acute phase (haptoglobin) protein level, and fecal condition. We measured the chemical and biological qualities of the four types of water, and we detected enteropathogenic and enterohemorrhagic Escherichia coli in fecal samples by using a genetic approach. Pond water contained high levels of nitrogen and minerals, and well water contained high levels of bacteria. The odor concentration index decreased in order from pond water to upper stream, lower stream, and well. On day 15 of the experiment, the following parameters were the highest in lambs drinking water from the following sources: water intake (pond or lower stream), body weight gain (pond), WBC count (lower stream), haptoglobin concentration (well), and enteropathogenic E. coli infection rate (lower stream). Lambs that drank well water spent more time lying down and less time grazing than the others, and lambs that drank pond water spent more time standing and less time lying down. Lambs given upper or lower stream water exhibited more severe diarrhea on day 15 of the experiment than before the experiment. Mongolian sheep seemed to adapt to chemically contaminated water: their productivity benefited the most from pond water, likely owing to its rich mineral content. Lambs that drank lower stream water showed increases in enteropathogenic E. coli infection, clinical diarrhea, and WBC count. Lambs that drank well water, which was bacteriologically contaminated, had increased serum acute phase protein levels and poor physical condition; they were thus at increased risk of negative health and production effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA" title="DNA">DNA</a>, <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title=" Escherichia coli"> Escherichia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=fecal%20sample" title=" fecal sample"> fecal sample</a>, <a href="https://publications.waset.org/abstracts/search?q=lower%20stream" title=" lower stream"> lower stream</a>, <a href="https://publications.waset.org/abstracts/search?q=well%20water" title=" well water"> well water</a> </p> <a href="https://publications.waset.org/abstracts/33379/mongolian-water-quality-problem-and-health-of-free-grazing-sheep" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33379.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9096</span> Plecoptera Fauna of Alara and Karpuz Streams and Determination of their Relationships with Water Quality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Kalyoncu">Hasan Kalyoncu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ay%C5%9Fe%20G%C3%BCne%C5%9F"> Ayşe Güneş</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was carried on 12 determined stations, on Alara and Karpuz Streams, between January and November 2014. Seasonal samples were taken from the stations to analyze physicochemical parameters and Plecoptera Fauna in the water. The correlation between identified taxa and physicochemical data were tried to determine. As the result of the study, 2088 individuals from Plecoptera fauna were examined, 3 genera and 13 species were identified. The taxa of Brachyptera risi, Capnia bifrons, Dinocras cephalotes, Diura bicaudata, Isogenus nebecula, Isogenus sp., Isoperla grammatica, Leuctra hippopus, Leuctra inermis, Leuctra moselyi, Leuctra sp., Nemoura sp., Perla bipunctata, Perla marginata, Protonemura meyeri and Rhabdiopteryx acuminata were determined. In Alara Stream, the dominant species were; Isogenus nebecula at stations I and IV, Leuctra moselyi at station II, Leuctra hippopus at stations III, V and VI. In Karpuz Stream, Brachyptera risi was the dominant species in all stations. While Leuctra hippopus was the dominant taxon in Alara Stream, in Karpuz Stream it was Brachyptera risi. The highest diversity value was at station III and the lowest was at station VI in Alara Stream and the lowest diversity value was at station VI, while the highest was at station I in Karpuz Stream. In Alara Stream, the most similar stations were I and III, while in Karpuz Stream the highest similarity was determined between stations I and II. As for the evaluation result, the water quality of Alara and Karpuz Streams were determined as at oligosaprobic level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alara%20stream" title="Alara stream">Alara stream</a>, <a href="https://publications.waset.org/abstracts/search?q=Karpuz%20stream" title=" Karpuz stream"> Karpuz stream</a>, <a href="https://publications.waset.org/abstracts/search?q=plecoptera" title=" plecoptera"> plecoptera</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a> </p> <a href="https://publications.waset.org/abstracts/49396/plecoptera-fauna-of-alara-and-karpuz-streams-and-determination-of-their-relationships-with-water-quality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49396.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9095</span> Hydraulic Characteristics of the Tidal River Dongcheon in Busan City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Young%20Man%20Cho">Young Man Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang%20Hyun%20Kim"> Sang Hyun Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Even though various management practices such as sediment dredging were attempted to improve water quality of Dongcheon located in Busan, the environmental condition of this stream was deteriorated. Therefore, Busan metropolitan city had pumped and diverted sea water to upstream of Dongcheon for several years. This study explored hydraulic characteristics of Dongcheon to configure the best management practice for ecological restoration and water quality improvement of a man-made urban stream. Intensive field investigation indicates that average flow velocities at depths of 20% and 80% from the water surface ranged 5 to 10 cm/s and 2 to 5 cm/s, respectively. Concentrations of dissolved oxygen for all depths were less than 0.25 mg/l during low tidal period. Even though density difference can be found along stream depth, density current seems rarely generated in Dongcheon. Short period of high tidal portion and shallow depths are responsible for well-mixing nature of Doncheon. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydraulic" title="hydraulic">hydraulic</a>, <a href="https://publications.waset.org/abstracts/search?q=tidal%20river" title=" tidal river"> tidal river</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20current" title=" density current"> density current</a>, <a href="https://publications.waset.org/abstracts/search?q=sea%20water" title=" sea water"> sea water</a> </p> <a href="https://publications.waset.org/abstracts/53392/hydraulic-characteristics-of-the-tidal-river-dongcheon-in-busan-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9094</span> Innovative Method for Treating Oil-Produced Water with Low Operating Cost</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maha%20Salman">Maha Salman</a>, <a href="https://publications.waset.org/abstracts/search?q=Gada%20Al-Nuwaibit"> Gada Al-Nuwaibit</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Al-Haji"> Ahmed Al-Haji</a>, <a href="https://publications.waset.org/abstracts/search?q=Saleh%20Al-Haddad"> Saleh Al-Haddad</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Al-Mesri"> Abbas Al-Mesri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mansour%20Al-Rugeeb"> Mansour Al-Rugeeb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The high salinity of oil-produced water and its complicated chemical composition, makes designing a suitable treatment system for oil-produced water is extremely difficult and costly. On the current study, a new innovative method was proposed to treat the complicated oil-produced water through a simple mixing with brine stream produced from waste water treatment plant. The proposal will investigate the scaling potential of oil-produce water, seawater and the selected brine water (BW) produced from Sulaibiya waste water treatment and reclamation plant (SWWTRP) before and after the mixing with oil-produced water, and will calculate the scaling potential of all expected precipitated salts using different conversion and different % of mixing to optimize the % of mixing between the oil-produced water and the selected stream. The result shows a great, feasible and economic solution to treat oil produced with a very low capital cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brine%20water" title="brine water">brine water</a>, <a href="https://publications.waset.org/abstracts/search?q=oil-produced%20water" title=" oil-produced water"> oil-produced water</a>, <a href="https://publications.waset.org/abstracts/search?q=scaling%20potential" title=" scaling potential"> scaling potential</a>, <a href="https://publications.waset.org/abstracts/search?q=Sulaibiyah%20waste%20water%20and%20reclaminatin%20plant" title=" Sulaibiyah waste water and reclaminatin plant"> Sulaibiyah waste water and reclaminatin plant</a> </p> <a href="https://publications.waset.org/abstracts/64421/innovative-method-for-treating-oil-produced-water-with-low-operating-cost" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9093</span> Effects of Urbanization on Land Use/Land Cover and Stream Flow of a Sub-Tropical River Basin of India </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Satyavati%20Shukla">Satyavati Shukla</a>, <a href="https://publications.waset.org/abstracts/search?q=Lakhan%20V.%20Rathod"> Lakhan V. Rathod</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohan%20V.%20Khire"> Mohan V. Khire</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rapid urbanization changes the land use/land cover pattern of a developing region. Due to these land surface changes, stream flow of the rivers also changes. It is important to investigate the factors affecting hydrological characteristics of the river basin for better river basin management planning. This study is aimed to understand the effect of Land Use/Land Cover (LU/LC) changes on stream flow of Upper Bhima River basin which is highly stressed in terms of water resources. In this study, Upper Bhima River basin is divided into two adjacent sub-watersheds: Mula-Mutha (urbanized) sub-watershed and Bhima (non-urbanized) sub-watershed. First of all, LU/LC changes were estimated over 1980, 2002, and 2009 for both Mula-Mutha and Bhima sub-watersheds. Further, stream flow simulations were done using Soil and Water Assessment Tool (SWAT) for the streams draining both watersheds. Results revealed that stream flow was relatively higher for urbanized sub-watershed. Through Sensitivity Analysis it was observed that out of all the parameters used, base flow was the most sensitive parameter towards LU/LC changes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20use%2Fland%20cover" title="land use/land cover">land use/land cover</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=stream%20flow" title=" stream flow"> stream flow</a>, <a href="https://publications.waset.org/abstracts/search?q=urbanization" title=" urbanization"> urbanization</a> </p> <a href="https://publications.waset.org/abstracts/44757/effects-of-urbanization-on-land-useland-cover-and-stream-flow-of-a-sub-tropical-river-basin-of-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44757.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9092</span> Assessment of Escherichia coli along Nakibiso Stream in Mbale Municipality, Uganda</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Walusansa">Abdul Walusansa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to assess the level of microbial pollution along Nakibiso stream. The study was carried out in polluted waters of Nakibiso stream, originating from Mbale municipality and running through ADRA Estates to Namatala Wetlands in Eastern Uganda. Four sites along the stream were selected basing on the activities of their vicinity. A total of 120 samples were collected in sterile bottles from the four sampling locations of the stream during the wet and dry seasons of the year 2011. The samples were taken to the National water and Sewerage Cooperation Laboratory for Analysis. Membrane filter technique was used to test for Erischerichia coli. Nitrogen, Phosphorus, pH, dissolved oxygen, electrical conductivity, total suspended solids, turbidity and temperature were also measured. Results for Nitrogen and Phosphorus for sites; 1, 2, 3 and 4 were 1.8, 8.8, 7.7 and 13.8 NH4-N mg/L; and 1.8, 2.1, 1.8 and 2.3 PO4-P mg/L respectively. Basing on these results, it was estimated that farmers use 115 and 24 Kg/acre of Nitrogen and Phosphorus respectively per month. Taking results for Nitrogen, the same amount of Nutrients in artificial fertilizers would cost $ 88. This shows that reuse of wastewater has a potential in terms of nutrients. The results for E. coli for sites 1, 2, 3 and 4 were 1.1 X 107, 9.1 X 105, 7.4 X 105, and 3.4 X 105 respectively. E. coli hence decreased downstream with statistically significant variations between sites 1 and 4. Site 1 had the highest mean E.coli counts. The bacterial contamination was significantly higher during the dry season when more water was needed for irrigation. Although the water had the potential for reuse in farming, bacterial contamination during both seasons was higher than 103 FC/100ml recommended by WHO for unrestricted Agriculture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20coli" title="E. coli">E. coli</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen" title=" nitrogen"> nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorus" title=" phosphorus"> phosphorus</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20reuse" title=" water reuse"> water reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water" title=" waste water"> waste water</a> </p> <a href="https://publications.waset.org/abstracts/68433/assessment-of-escherichia-coli-along-nakibiso-stream-in-mbale-municipality-uganda" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9091</span> Ground Water Pollution Investigation around Çorum Stream Basin in Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Halil%20Bas">Halil Bas</a>, <a href="https://publications.waset.org/abstracts/search?q=Unal%20Demiray"> Unal Demiray</a>, <a href="https://publications.waset.org/abstracts/search?q=Sukru%20Dursun"> Sukru Dursun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water and ground water pollution at the most of the countries is important problem. Investigation of water pollution source must be carried out to save fresh water. Because fresh water sources are very limited and recent sources are not enough for increasing population of world. In this study, investigation was carried out on pollution factors effecting the quality of the groundwater in Çorum Stream Basin in Turkey. Effect of geological structure of the region and the interaction between the stream and groundwater was researched. For the investigation, stream and groundwater sampling were performed at rainy and dry seasons to see if there is a change on quality parameters. The results were evaluated by the computer programs and then graphics, distribution maps were prepared. Thus, degree of the quality and pollution were tried to understand. According to analysis results, because the results of streams and the ground waters are not so close to each other we can say that there is no interaction between the stream and the groundwater. As the irrigation water, the stream waters are generally in the range between C3S1 region and the ground waters are generally in the range between C3S1 and C4S2 regions according to US Salinity Laboratory Diagram. According to Wilcox diagram stream waters are generally good-permissible and ground waters are generally good permissible, doubtful to unsuitable and unsuitable type. Especially ground waters are doubtful to unsuitable and unsuitable types in dry season. It may be assumed that as the result of relative increase in concentration of salt minerals. Especially samples from groundwater wells bored close to gypsium bearing units have high hardness, electrical conductivity and salinity values. Thus for drinking and irrigation these waters are determined as unsuitable. As a result of these studies, it is understood that the groundwater especially was effected by the lithological contamination rather than the anthropogenic or the other types of pollution. Because the alluvium is covered by the silt and clay lithology it is not affected by the anthropogenic and the other foreign factors. The results of solid waste disposal site leachate indicate that this site would have a risk potential for pollution in the future. Although the parameters did not exceed the maximum dangerous values it does not mean that they will not be dangerous in the future, and this case must be taken into account. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C3%87orum" title="Çorum">Çorum</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogeology" title=" hydrogeology"> hydrogeology</a>, <a href="https://publications.waset.org/abstracts/search?q=geology" title=" geology"> geology</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=stream" title=" stream"> stream</a> </p> <a href="https://publications.waset.org/abstracts/21201/ground-water-pollution-investigation-around-corum-stream-basin-in-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">501</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9090</span> Numerical Study of an Impinging Jet in a Coflow Stream</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rim%20Ben%20Kalifa">Rim Ben Kalifa</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabra%20Habli"> Sabra Habli</a>, <a href="https://publications.waset.org/abstracts/search?q=Nejla%20Mahjoub%20Sa%C3%AFd"> Nejla Mahjoub Saïd</a>, <a href="https://publications.waset.org/abstracts/search?q=Herv%C3%A9%20Bournot"> Hervé Bournot</a>, <a href="https://publications.waset.org/abstracts/search?q=Georges%20Le%20Palec"> Georges Le Palec</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study treats different phenomena taking place in a configuration of air jet impinging on a flat surface in a coflow stream. A Computational Fluid Dynamics study is performed using the Reynolds-averaged Navier–Stokes equations by means of the Reynolds Stress Model (RSM) second order turbulent closure model. The results include mean and turbulent velocities and quantify the large effects of the coflow stream on an impinging air jet. The study of the jet in a no-directed coflow stream shows the presence of a phenomenon of recirculation near the flat plate. The influence of the coflow velocity ratio on the behavior of an impinging plane jet was also numerically investigated. The coflow stream imposed noticeable restrictions on the spreading of the impinging jet. The results show that the coflow stream decreases considerably the entrainment of air jet. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turbulent%20jet" title="turbulent jet">turbulent jet</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence%20models" title=" turbulence models"> turbulence models</a>, <a href="https://publications.waset.org/abstracts/search?q=coflow%20stream" title=" coflow stream"> coflow stream</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20ratio" title=" velocity ratio"> velocity ratio</a> </p> <a href="https://publications.waset.org/abstracts/42629/numerical-study-of-an-impinging-jet-in-a-coflow-stream" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9089</span> Stream Extraction from 1m-DTM Using ArcGIS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jerald%20Ruta">Jerald Ruta</a>, <a href="https://publications.waset.org/abstracts/search?q=Ricardo%20Villar"> Ricardo Villar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jojemar%20Bantugan"> Jojemar Bantugan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nycel%20Barbadillo"> Nycel Barbadillo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jigg%20Pelayo"> Jigg Pelayo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Streams are important in providing water supply for industrial, agricultural and human consumption, In short when there are streams there are lives. Identifying streams are essential since many developed cities are situated in the vicinity of these bodies of water and in flood management, it serves as basin for surface runoff within the area. This study aims to process and generate features from high-resolution digital terrain model (DTM) with 1-meter resolution using Hydrology Tools of ArcGIS. The raster was then filled, processed flow direction and accumulation, then raster calculate and provide stream order, converted to vector, and clearing undesirable features using the ancillary or google earth. In field validation streams were classified whether perennial, intermittent or ephemeral. Results show more than 90% of the extracted feature were accurate in assessment through field validation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20terrain%20models" title="digital terrain models">digital terrain models</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrology%20tools" title=" hydrology tools"> hydrology tools</a>, <a href="https://publications.waset.org/abstracts/search?q=strahler%20method" title=" strahler method"> strahler method</a>, <a href="https://publications.waset.org/abstracts/search?q=stream%20classification" title=" stream classification"> stream classification</a> </p> <a href="https://publications.waset.org/abstracts/58581/stream-extraction-from-1m-dtm-using-arcgis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58581.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9088</span> The Impact of Mining Activities on the Surface Water Quality: A Case Study of the Kaap River in Barberton, Mpumalanga</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20F.%20Mamabolo">M. F. Mamabolo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mining activities are identified as the most significant source of heavy metal contamination in river basins, due to inadequate disposal of mining waste thus resulting in acid mine drainage. Waste materials generated from gold mining and processing have severe and widespread impacts on water resources. Therefore, a total of 30 water samples were collected from Fig Tree Creek, Kaapriver, Sheba mine stream & Sauid kaap river to investigate the impact of gold mines on the Kaap River system. Physicochemical parameters (pH, EC and TDS) were taken using a BANTE 900P portable water quality meter. The concentration of Fe, Cu, Co, and SO₄²⁻ in water samples were analysed using Inductively Coupled Plasma-Mass spectrophotometry (ICP-MS) at 0.01 mg/L. The results were compared to the regulatory guideline of the World Health Organization (WHO) and the South Africa National Standards (SANS). It was found that Fe, Cu and Co were below the guideline values while SO₄²⁻ detected in Sheba mine stream exceeded the 250 mg/L limit for both seasons, attributed by mine wastewater. SO₄²⁻ was higher in wet season due to high evaporation rates and greater interaction between rocks and water. The pH of all the streams was within the limit (≥5 to ≤9.7), however EC of the Sheba mine stream, Suid Kaap River & where the tributary connects with the Fig Tree Creek exceeded 1700 uS/m, due to dissolved material. The TDS of Sheba mine stream exceeded 1000 mg/L, attributed by high SO₄²⁻ concentration. While the tributary connecting to the Fig Tree Creek exceed the value due to pollution from household waste, runoff from agriculture etc. In conclusion, the water from all sampled streams were safe for consumption due to low concentrations of physicochemical parameters. However, elevated concentration of SO₄²⁻ should be monitored and managed to avoid water quality deterioration in the Kaap River system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaap%20river%20system" title="Kaap river system">Kaap river system</a>, <a href="https://publications.waset.org/abstracts/search?q=mines" title=" mines"> mines</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=sulphate" title=" sulphate"> sulphate</a> </p> <a href="https://publications.waset.org/abstracts/173969/the-impact-of-mining-activities-on-the-surface-water-quality-a-case-study-of-the-kaap-river-in-barberton-mpumalanga" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9087</span> A Milky-White Stream Water Suitability for Drinking Purpose</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kassahun%20Tadesse">Kassahun Tadesse</a>, <a href="https://publications.waset.org/abstracts/search?q=Megersa%20O.%20Dinka"> Megersa O. Dinka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drinking water suitability study was conducted for a milky-white stream in remote areas of Ethiopia in order to understand its effect on human health. Water samples were taken from the water source and physicochemical properties were analyzed based on standard methods. The mean values of pH, total dissolved solids, sodium, magnesium, potassium, manganese, chloride, boron, and fluoride were within maximum permissible limits set for health. Whereas turbidity, calcium, irons, hardness, alkalinity, nitrate, and sulfate contents were above the limits. The water is very hard water due to high calcium content. High sulfate content can cause noticeable taste and a laxative (gastrointestinal) effect. The nitrate content was very high and can cause methemoglobinemia (blue baby syndrome) which is a temporary blood disorder in the bottle fed infants. Hence, parents should be advised not to give this water to infants. In conclusion, all physicochemical parameters except for nitrate are safe for health but may affect the appearance and taste, and wear water infrastructures. A high value of turbidity due to suspended minerals is the cause for milky-white colour. However, a mineralogical analysis of suspended sediments is required to identify the exact cause for white colour, and a study on sediment source was recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hard%20water" title="hard water">hard water</a>, <a href="https://publications.waset.org/abstracts/search?q=laxative%20effect" title=" laxative effect"> laxative effect</a>, <a href="https://publications.waset.org/abstracts/search?q=methemoglobinemia" title=" methemoglobinemia"> methemoglobinemia</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrate" title=" nitrate"> nitrate</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical" title=" physicochemical"> physicochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality "> water quality </a> </p> <a href="https://publications.waset.org/abstracts/81840/a-milky-white-stream-water-suitability-for-drinking-purpose" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81840.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9086</span> Solubility of Water in CO2 Mixtures at Pipeline Operation Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ahmad">Mohammad Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Sander%20Gersen"> Sander Gersen</a>, <a href="https://publications.waset.org/abstracts/search?q=Erwin%20Wilbers"> Erwin Wilbers</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon capture, transport and underground storage have become a major solution to reduce CO2 emissions from power plants and other large CO2 sources. A big part of this captured CO2 stream is transported at high pressure dense phase conditions and stored in offshore underground depleted oil and gas fields. CO2 is also transported in offshore pipelines to be used for enhanced oil and gas recovery. The captured CO2 stream with impurities may contain water that causes severe corrosion problems, flow assurance failure and might damage valves and instrumentations. Thus, free water formation should be strictly prevented. The purpose of this work is to study the solubility of water in pure CO2 and in CO2 mixtures under real pipeline pressure (90-150 bar) and temperature operation conditions (5-35°C). A set up was constructed to generate experimental data. The results show the solubility of water in CO2 mixtures increasing with the increase of the temperature or/and with the increase in pressure. A drop in water solubility in CO2 is observed in the presence of impurities. The data generated were then used to assess the capabilities of two mixture models: the GERG-2008 model and the EOS-CG model. By generating the solubility data, this study contributes to determine the maximum allowable water content in CO2 pipelines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20capture%20and%20storage" title="carbon capture and storage">carbon capture and storage</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20solubility" title=" water solubility"> water solubility</a>, <a href="https://publications.waset.org/abstracts/search?q=equation%20of%20states" title=" equation of states"> equation of states</a>, <a href="https://publications.waset.org/abstracts/search?q=fluids%20engineering" title=" fluids engineering"> fluids engineering</a> </p> <a href="https://publications.waset.org/abstracts/3161/solubility-of-water-in-co2-mixtures-at-pipeline-operation-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3161.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9085</span> Modeling Stream Flow with Prediction Uncertainty by Using SWAT Hydrologic and RBNN Neural Network Models for Agricultural Watershed in India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajai%20Singh">Ajai Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Simulation of hydrological processes at the watershed outlet through modelling approach is essential for proper planning and implementation of appropriate soil conservation measures in Damodar Barakar catchment, Hazaribagh, India where soil erosion is a dominant problem. This study quantifies the parametric uncertainty involved in simulation of stream flow using Soil and Water Assessment Tool (SWAT), a watershed scale model and Radial Basis Neural Network (RBNN), an artificial neural network model. Both the models were calibrated and validated based on measured stream flow and quantification of the uncertainty in SWAT model output was assessed using ‘‘Sequential Uncertainty Fitting Algorithm’’ (SUFI-2). Though both the model predicted satisfactorily, but RBNN model performed better than SWAT with R2 and NSE values of 0.92 and 0.92 during training, and 0.71 and 0.70 during validation period, respectively. Comparison of the results of the two models also indicates a wider prediction interval for the results of the SWAT model. The values of P-factor related to each model shows that the percentage of observed stream flow values bracketed by the 95PPU in the RBNN model as 91% is higher than the P-factor in SWAT as 87%. In other words the RBNN model estimates the stream flow values more accurately and with less uncertainty. It could be stated that RBNN model based on simple input could be used for estimation of monthly stream flow, missing data, and testing the accuracy and performance of other models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SWAT" title="SWAT">SWAT</a>, <a href="https://publications.waset.org/abstracts/search?q=RBNN" title=" RBNN"> RBNN</a>, <a href="https://publications.waset.org/abstracts/search?q=SUFI%202" title=" SUFI 2"> SUFI 2</a>, <a href="https://publications.waset.org/abstracts/search?q=bootstrap%20technique" title=" bootstrap technique"> bootstrap technique</a>, <a href="https://publications.waset.org/abstracts/search?q=stream%20flow" title=" stream flow"> stream flow</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/21788/modeling-stream-flow-with-prediction-uncertainty-by-using-swat-hydrologic-and-rbnn-neural-network-models-for-agricultural-watershed-in-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9084</span> Application of Random Forest Model in The Prediction of River Water Quality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Turuganti%20Venkateswarlu">Turuganti Venkateswarlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jagadeesh%20Anmala"> Jagadeesh Anmala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Excessive runoffs from various non-point source land uses, and other point sources are rapidly contaminating the water quality of streams in the Upper Green River watershed, Kentucky, USA. It is essential to maintain the stream water quality as the river basin is one of the major freshwater sources in this province. It is also important to understand the water quality parameters (WQPs) quantitatively and qualitatively along with their important features as stream water is sensitive to climatic events and land-use practices. In this paper, a model was developed for predicting one of the significant WQPs, Fecal Coliform (FC) from precipitation, temperature, urban land use factor (ULUF), agricultural land use factor (ALUF), and forest land-use factor (FLUF) using Random Forest (RF) algorithm. The RF model, a novel ensemble learning algorithm, can even find out advanced feature importance characteristics from the given model inputs for different combinations. This model’s outcomes showed a good correlation between FC and climate events and land use factors (R2 = 0.94) and precipitation and temperature are the primary influencing factors for FC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title="water quality">water quality</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use%20factors" title=" land use factors"> land use factors</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20forest" title=" random forest"> random forest</a>, <a href="https://publications.waset.org/abstracts/search?q=fecal%20coliform" title=" fecal coliform"> fecal coliform</a> </p> <a href="https://publications.waset.org/abstracts/140075/application-of-random-forest-model-in-the-prediction-of-river-water-quality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9083</span> Prevalence of Parasitic Diseases in Different Fishes of North-West Himalayan Streams of India </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feroz%20A.%20Shah">Feroz A. Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Balkhi"> M. H. Balkhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study was aimed at to record the distribution and prevalence of various metazoan parasites of fish from hill stream/coldwater fishes of various water bodies of northwest Himalayan region of India. Snow trout (Schizoth oracids) from eutrophic lakes and fresh water streams were collected from January to December 2012, to study the impact of environmental factors on the dynamics and distribution of parasitic infection. The prevalence of helminth parasites was correlated with available physico-chemical parameters including water temperature, pH and dissolved oxygen (DO). The most abundant parasitic infection recorded during this study was Adenoscolex sp. (Cestode parasite) which showed positive correlation with pH (significant p≤0.05) negative correlation with temperature. The Bothriocephalus was having positive correlation with water temperature while as negative correlation was observed with pH and DO. The correlation between Diplozoon sp. and Clinostomum sp. with the physiochemical parameters were non-significant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hill%20stream%20fishes" title="hill stream fishes">hill stream fishes</a>, <a href="https://publications.waset.org/abstracts/search?q=parasites" title=" parasites"> parasites</a>, <a href="https://publications.waset.org/abstracts/search?q=Western%20Himalayas" title=" Western Himalayas"> Western Himalayas</a>, <a href="https://publications.waset.org/abstracts/search?q=prevelance" title=" prevelance"> prevelance</a> </p> <a href="https://publications.waset.org/abstracts/38339/prevalence-of-parasitic-diseases-in-different-fishes-of-north-west-himalayan-streams-of-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38339.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9082</span> Evaluation of Biochemical Oxygen Demand and Dissolved Oxygen for Thames River by Using Stream Water Quality Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghassan%20Al-Dulaimi">Ghassan Al-Dulaimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studied the biochemical parameter (BOD5) and (DO) for the Thames River (Canada-Ontario). Water samples have been collected from Thames River along different points between Chatham to Woodstock and were analysed for various water quality parameters during the low flow season (April). The study involves the application of the stream water quality model QUAL2K model to simulate and predict the dissolved oxygen (DO) and biochemical oxygen demand (BOD5) profiles for Thames River in a stretch of 251 kilometers. The model output showed that DO in the entire river was within the limit of not less than 4 mg/L. For Carbonaceous Biochemical Oxygen Demand CBOD, the entire river may be divided into two main reaches; the first one is extended from Chatham City (0 km) to London (150 km) and has a CBOD concentration of 2 mg/L, and the second reach has CBOD range (2–4) mg/L in which begins from London city and extend to near Woodstock city (73km). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biochemical%20oxygen%20demand" title="biochemical oxygen demand">biochemical oxygen demand</a>, <a href="https://publications.waset.org/abstracts/search?q=dissolved%20oxygen" title=" dissolved oxygen"> dissolved oxygen</a>, <a href="https://publications.waset.org/abstracts/search?q=Thames%20river" title=" Thames river"> Thames river</a>, <a href="https://publications.waset.org/abstracts/search?q=QUAL2K%20model" title=" QUAL2K model"> QUAL2K model</a> </p> <a href="https://publications.waset.org/abstracts/158505/evaluation-of-biochemical-oxygen-demand-and-dissolved-oxygen-for-thames-river-by-using-stream-water-quality-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9081</span> DCT and Stream Ciphers for Improved Image Encryption Mechanism </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20R.%20Sharika">T. R. Sharika</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashwini%20Kumar"> Ashwini Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamal%20Bijlani"> Kamal Bijlani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Encryption is the process of converting crucial information’s unreadable to unauthorized persons. Image security is an important type of encryption that secures all type of images from cryptanalysis. A stream cipher is a fast symmetric key algorithm which is used to convert plaintext to cipher text. In this paper we are proposing an image encryption algorithm with Discrete Cosine Transform and Stream Ciphers that can improve compression of images and enhanced security. The paper also explains the use of a shuffling algorithm for enhancing securing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decryption" title="decryption">decryption</a>, <a href="https://publications.waset.org/abstracts/search?q=DCT" title=" DCT"> DCT</a>, <a href="https://publications.waset.org/abstracts/search?q=encryption" title=" encryption"> encryption</a>, <a href="https://publications.waset.org/abstracts/search?q=RC4%20cipher" title=" RC4 cipher"> RC4 cipher</a>, <a href="https://publications.waset.org/abstracts/search?q=stream%20cipher" title=" stream cipher"> stream cipher</a> </p> <a href="https://publications.waset.org/abstracts/32780/dct-and-stream-ciphers-for-improved-image-encryption-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9080</span> Some Hematological Parameters of the Mauremys rivulata in Two Different Water Quality in the Biga Stream (Çanakkale, Turkey)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cigdem%20Gul">Cigdem Gul</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Tosunoglu"> Murat Tosunoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurcihan%20Hacioglu"> Nurcihan Hacioglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The contamination or desiccation of fresh waters also has a negative effect on freshwater turtles like other fresh water-dependent species. In order to conserve those species, which are confronted with such negative conditions, it is necessary to know beforehand the biology and the physiology of species. In this study, a comprehensive health assessment was conducted on a total of 20 clinically normal individuals free living Western Caspian Turtle (Mauremys rivulata) captured from two different freshwater localities in the Biga stream (Çanakkale-Turkey). When comparing our findings with the Turkish legislation (Water pollution control regulation), the 1. Locality of the Biga stream in terms of total coliform classified as "high quality water" (Coliform: 866.66 MPN/100 mL), while the 2. Locality was a “contaminated water" (Coliform: 53266.66 MPN/100 mL). Blood samples for hematological and biochemical analyses were obtained from the dorsal coccygeal vein. A total of 1-2 mL of blood was collected from each of the specimens via needle. After the required procedures had been performed, the turtles were put back in the same localities. Hematological and biochemical analyses based on high quality water and contaminated water, respectively, are as follows: Red blood cell count (512600-582666.66 per cubic millimeter of blood), white blood cell count (5920-5980 per cubic millimeter of blood), hematocrit value (24-24.66 %), hemoglobin concentration (6.52-6.35 g/dl), mean corpuscular volume (466.20-468.98 fl), mean corpuscular hemoglobin (125.77-113.84 pg), mean corpuscular hemoglobin concentration (28.25-26.49 %), glucose (94.43-87.43 mg/dl), creatinine (0.23-0.3241 mg/dl), uric acid (12.59-10.48 mg/L), albumin (1.46-1.25 g/dl), calcium (8.67-9.59 mg/dl), triglyceride (95.55-75.21 mg/dl), and total protein (4.85-3.45 g/dl). When an examination was made depending on the water quality of freshwater, variations were detected in hematology and biochemistry values, but not found significant difference. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biochemistry" title="biochemistry">biochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=freshwater%20quality" title=" freshwater quality"> freshwater quality</a>, <a href="https://publications.waset.org/abstracts/search?q=hematological%20parameters" title=" hematological parameters"> hematological parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=Mauremys%20rivulata." title=" Mauremys rivulata."> Mauremys rivulata.</a> </p> <a href="https://publications.waset.org/abstracts/27237/some-hematological-parameters-of-the-mauremys-rivulata-in-two-different-water-quality-in-the-biga-stream-canakkale-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9079</span> Modular Data and Calculation Framework for a Technology-based Mapping of the Manufacturing Process According to the Value Stream Management Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tim%20Wollert">Tim Wollert</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabian%20Behrendt"> Fabian Behrendt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Value Stream Management (VSM) is a widely used methodology in the context of Lean Management for improving end-to-end material and information flows from a supplier to a customer from a company’s perspective. Whereas the design principles, e.g. Pull, value-adding, customer-orientation and further ones are still valid against the background of an increasing digitalized and dynamic environment, the methodology itself for mapping a value stream is characterized as time- and resource-intensive due to the high degree of manual activities. The digitalization of processes in the context of Industry 4.0 enables new opportunities to reduce these manual efforts and make the VSM approach more agile. The paper at hand aims at providing a modular data and calculation framework, utilizing the available business data, provided by information and communication technologies for automizing the value stream mapping process with focus on the manufacturing process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lean%20management%204.0" title="lean management 4.0">lean management 4.0</a>, <a href="https://publications.waset.org/abstracts/search?q=value%20stream%20management%20%28VSM%29%204.0" title=" value stream management (VSM) 4.0"> value stream management (VSM) 4.0</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20value%20stream%20mapping" title=" dynamic value stream mapping"> dynamic value stream mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=enterprise%20resource%20planning%20%28ERP%29" title=" enterprise resource planning (ERP)"> enterprise resource planning (ERP)</a> </p> <a href="https://publications.waset.org/abstracts/153596/modular-data-and-calculation-framework-for-a-technology-based-mapping-of-the-manufacturing-process-according-to-the-value-stream-management-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9078</span> Stream Channel Changes in Balingara River, Sulawesi Tengah</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhardiyan%20Erawan">Muhardiyan Erawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaenal%20Mutaqin"> Zaenal Mutaqin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Balingara River is one of the rivers with the type Gravel-Bed in Indonesia. Gravel-Bed Rivers easily deformed in a relatively short time due to several variables, that are climate (rainfall), river discharge, topography, rock types, and land cover. To determine stream channel changes in Balingara River used Landsat 7 and 8 and analyzed planimetric or two dimensions. Parameters to determine changes in the stream channel are sinuosity ratio, Brice Index, the extent of erosion and deposition. Changes in stream channel associated with changes in land cover then analyze with a descriptive analysis of spatial and temporal. The location of a stream channel has a low gradient in the upstream, and middle watershed with the type of rock in the form of gravel is more easily changed than other locations. Changes in the area of erosion and deposition influence the land cover changes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brice%20Index" title="Brice Index">Brice Index</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion" title=" erosion"> erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=deposition" title=" deposition"> deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=gravel-bed" title=" gravel-bed"> gravel-bed</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20cover%20change" title=" land cover change"> land cover change</a>, <a href="https://publications.waset.org/abstracts/search?q=sinuosity%20ratio" title=" sinuosity ratio"> sinuosity ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=stream%20channel%20change" title=" stream channel change"> stream channel change</a> </p> <a href="https://publications.waset.org/abstracts/70833/stream-channel-changes-in-balingara-river-sulawesi-tengah" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9077</span> Assessment of the Water Quality of the Nhue River in Vietnam and its Suitability for Irrigation Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thi%20Lan%20Huong%20Nguyen">Thi Lan Huong Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Motohei%20Kanayama"> Motohei Kanayama</a>, <a href="https://publications.waset.org/abstracts/search?q=Takahiro%20Higashi"> Takahiro Higashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Van%20Chinh%20Le"> Van Chinh Le</a>, <a href="https://publications.waset.org/abstracts/search?q=Thu%20Ha%20Doan"> Thu Ha Doan</a>, <a href="https://publications.waset.org/abstracts/search?q=Anh%20Dao%20Chu"> Anh Dao Chu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Nhue River in Vietnam is the main source of irrigation water for suburban agricultural land and fish farm. Wastewater from the industrial plants located along these rivers has been discharged, which has degraded the water quality of the rivers. The present paper describes the chemical properties of water from the river focusing on heavy metal pollution and the suitability of water quality for irrigation. Water from the river was heavily polluted with heavy metals such as Pb, Cu, Zn, Cr, Cd, and Ni. Dissolved oxygen, COD, and total suspended solids, and the concentrations of all heavy metals exceeded the Vietnamese standard for surface water quality in all investigated sites. The concentrations of some heavy metals such as Cu, Cd, Cr and Ni were over the internationally recommended WHO maximum limits for irrigation water. A wide variation in heavy metal concentration of water due to metal types is the result of wastewater discharged from different industrial sources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title="heavy metals">heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=stream%20water" title=" stream water"> stream water</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation" title=" irrigation"> irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=industry" title=" industry"> industry</a> </p> <a href="https://publications.waset.org/abstracts/3344/assessment-of-the-water-quality-of-the-nhue-river-in-vietnam-and-its-suitability-for-irrigation-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3344.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9076</span> Preliminary Study of Water-Oil Separation Process in Three-Phase Separators Using Factorial Experimental Designs and Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Caroline%20M.%20B.%20De%20Araujo">Caroline M. B. De Araujo</a>, <a href="https://publications.waset.org/abstracts/search?q=Helenise%20A.%20Do%20Nascimento"> Helenise A. Do Nascimento</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudia%20J.%20Da%20S.%20Cavalcanti"> Claudia J. Da S. Cavalcanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Mauricio%20A.%20Da%20Motta%20Sobrinho"> Mauricio A. Da Motta Sobrinho</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20F.%20Pimentel"> Maria F. Pimentel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil production is often followed by the joint production of water and gas. During the journey up to the surface, due to severe conditions of temperature and pressure, the mixing between these three components normally occurs. Thus, the three phases separation process must be one of the first steps to be performed after crude oil extraction, where the water-oil separation is the most complex and important step, since the presence of water into the process line can increase corrosion and hydrates formation. A wide range of methods can be applied in order to proceed with oil-water separation, being more commonly used: flotation, hydrocyclones, as well as the three phase separator vessels. Facing what has been presented so far, it is the aim of this paper to study a system consisting of a three-phase separator, evaluating the influence of three variables: temperature, working pressure and separator type, for two types of oil (light and heavy), by performing two factorial design plans 23, in order to find the best operating condition. In this case, the purpose is to obtain the greatest oil flow rate in the product stream (m3/h) as well as the lowest percentage of water in the oil stream. The simulation of the three-phase separator was performed using Aspen Hysys®2006 simulation software in stationary mode, and the evaluation of the factorial experimental designs was performed using the software Statistica®. From the general analysis of the four normal probability plots of effects obtained, it was observed that interaction effects of two and three factors did not show statistical significance at 95% confidence, since all the values were very close to zero. Similarly, the main effect "separator type" did not show significant statistical influence in any situation. As in this case, it has been assumed that the volumetric flow of water, oil and gas were equal in the inlet stream, the effect separator type, in fact, may not be significant for the proposed system. Nevertheless, the main effect “temperature” was significant for both responses (oil flow rate and mass fraction of water in the oil stream), considering both light and heavy oil, so that the best operation condition occurs with the temperature at its lowest level (30oC), since the higher the temperature, the liquid oil components pass into the vapor phase, going to the gas stream. Furthermore, the higher the temperature, the higher the formation water vapor, so that ends up going into the lighter stream (oil stream), making the separation process more difficult. Regarding the “working pressure”, this effect showed to be significant only for the oil flow rate, so that the best operation condition occurs with the pressure at its highest level (9bar), since a higher operating pressure, in this case, indicated a lower pressure drop inside the vessel, generating lower level of turbulence inside the separator. In conclusion, the best-operating condition obtained for the proposed system, at the studied range, occurs for temperature is at its lowest level and the working pressure is at its highest level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=factorial%20experimental%20design" title="factorial experimental design">factorial experimental design</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20production" title=" oil production"> oil production</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=three-phase%20separator" title=" three-phase separator"> three-phase separator</a> </p> <a href="https://publications.waset.org/abstracts/56766/preliminary-study-of-water-oil-separation-process-in-three-phase-separators-using-factorial-experimental-designs-and-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56766.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9075</span> Assessment of Mountain Hydrological Processes in the Gumera Catchment, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tewele%20Gebretsadkan%20Haile">Tewele Gebretsadkan Haile</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mountain terrains are essential to regional water resources by regulating hydrological processes that use downstream water supplies. Nevertheless, limited observed earth data in complex topography poses challenges for water resources regulation. That's why satellite product is implemented in this study. This study evaluates hydrological processes on mountain catchment of Gumera, Ethiopia using HBV-light model with satellite precipitation products (CHIRPS) for the temporal scale of 1996 to 2010 and area coverage of 1289 km2. The catchment is characterized by cultivation dominant and elevation ranges from 1788 to 3606 m above sea level. Three meteorological stations have been used for downscaling of the satellite data and one stream flow for calibration and validation. The result shows total annual water balance showed that precipitation 1410 mm, simulated 828 mm surface runoff compared to 1042 mm observed stream flow with actual evapotranspiration estimate 586mm and 1495mm potential evapotranspiration. The temperature range is 9°C in winter to 21°C. The catchment contributes 74% as quack runoff to the total runoff and 26% as lower groundwater storage, which sustains stream flow during low periods. The model uncertainty was measured using different metrics such as coefficient of determination, model efficiency, efficiency for log(Q) and flow weighted efficiency 0.76, 0.74, 0.66 and 0.70 respectively. The research result highlights that HBV model captures the mountain hydrology simulation and the result indicates quack runoff due to the traditional agricultural system, slope factor of the topography and adaptation measure for water resource management is recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mountain%20hydrology" title="mountain hydrology">mountain hydrology</a>, <a href="https://publications.waset.org/abstracts/search?q=CHIRPS" title=" CHIRPS"> CHIRPS</a>, <a href="https://publications.waset.org/abstracts/search?q=Gumera" title=" Gumera"> Gumera</a>, <a href="https://publications.waset.org/abstracts/search?q=HBV%20model" title=" HBV model"> HBV model</a> </p> <a href="https://publications.waset.org/abstracts/193453/assessment-of-mountain-hydrological-processes-in-the-gumera-catchment-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193453.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">12</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9074</span> Quantification of the Gumera Catchment&#039;s Mountain Hydrological Processes in Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tewele%20Gebretsadkan%20Haile">Tewele Gebretsadkan Haile</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mountain terrains are essential to regional water resources by regulating hydrological processes that use downstream water supplies. Nevertheless, limited observed earth data in complex topography poses challenges for water resources regulation. That's why satellite product is implemented in this study. This study evaluates hydrological processes on mountain catchment of Gumera, Ethiopia using HBV-light model with satellite precipitation products (CHIRPS) for the temporal scale of 1996 to 2010 and area coverage of 1289 km2. The catchment is characterized by cultivation dominant and elevation ranges from 1788 to 3606 m above sea level. Three meteorological stations have been used for downscaling of the satellite data and one stream flow for calibration and validation. The result shows total annual water balance showed that precipitation 1410 mm, simulated 828 mm surface runoff compared to 1042 mm observed stream flow with actual evapotranspiration estimate 586mm and 1495mm potential evapotranspiration. The temperature range is 9°C in winter to 21°C. The catchment contributes 74% as quack runoff to the total runoff and 26% as lower groundwater storage, which sustains stream flow during low periods. The model uncertainty was measured using different metrics such as coefficient of determination, model efficiency, efficiency for log(Q) and flow weighted efficiency 0.76, 0.74, 0.66 and 0.70 respectively. The research result highlights that HBV model captures the mountain hydrology simulation and the result indicates quack runoff due to the traditional agricultural system, slope factor of the topography and adaptation measure for water resource management is recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mountain%20hydrology" title="mountain hydrology">mountain hydrology</a>, <a href="https://publications.waset.org/abstracts/search?q=CHIRPS" title=" CHIRPS"> CHIRPS</a>, <a href="https://publications.waset.org/abstracts/search?q=HBV%20model" title=" HBV model"> HBV model</a>, <a href="https://publications.waset.org/abstracts/search?q=Gumera" title=" Gumera"> Gumera</a> </p> <a href="https://publications.waset.org/abstracts/194007/quantification-of-the-gumera-catchments-mountain-hydrological-processes-in-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194007.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">11</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9073</span> Evaluation of Water Quality for the Kurtbogazi Dam Outlet and the Streams Feeding the Dam (Ankara, Turkey)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gulsen%20Tozsin">Gulsen Tozsin</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Bakir"> Fatma Bakir</a>, <a href="https://publications.waset.org/abstracts/search?q=Cemil%20Acar"> Cemil Acar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ercument%20Koc"> Ercument Koc</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kurtbogazi Dam has gained special meaning for Ankara, Turkey for the last decade due to the rapid depletion of nearby resources of drinking water. In this study, the results of the analyses of Kurtbogazi Dam outlet water and the rivers flowing into the Kurtbogazi Dam were discussed for the period of last five years between 2008 and 2012. The quality of these surface water resources were evaluated in terms of pH, temperature, biochemical oxygen demand (BOD5), nitrate, phosphate and chlorine. They were classified according to the Council Directive (75/440/EEC). Moreover, the properties of these surface waters were assessed to determine the quality of water for drinking and irrigation purposes using Piper, US Salinity Laboratory and Wilcox diagrams. The results revealed that the quality of all the investigated water sources are generally at satisfactory level as surface water except for Pazar Stream in terms of ortho-phosphate and BOD5 concentration for 2008. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kurtbogazi%20dam" title="Kurtbogazi dam">Kurtbogazi dam</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality%20assessment" title=" water quality assessment"> water quality assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=Ankara%20water" title=" Ankara water"> Ankara water</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20supply" title=" water supply"> water supply</a> </p> <a href="https://publications.waset.org/abstracts/34379/evaluation-of-water-quality-for-the-kurtbogazi-dam-outlet-and-the-streams-feeding-the-dam-ankara-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34379.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9072</span> Improved Hash Value Based Stream CipherUsing Delayed Feedback with Carry Shift Register</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20K.%20Soundra%20Pandian">K. K. Soundra Pandian</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhupendra%20Gupta"> Bhupendra Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the modern era, as the application data’s are massive and complex, it needs to be secured from the adversary attack. In this context, a non-recursive key based integrated spritz stream cipher with the circulant hash function using delayed feedback with carry shift register (d-FCSR) is proposed in this paper. The novelty of this proposed stream cipher algorithm is to engender the improved keystream using d-FCSR. The proposed algorithm is coded using Verilog HDL to produce dynamic binary key stream and implemented on commercially available FPGA device Virtex 5 xc5vlx110t-2ff1136. The implementation of stream cipher using d-FCSR on the FPGA device operates at a maximum frequency of 60.62 MHz. It achieved the data throughput of 492 Mbps and improved in terms of efficiency (throughput/area) compared to existing techniques. This paper also briefs the cryptanalysis of proposed circulant hash value based spritz stream cipher using d-FCSR is against the adversary attack on a hardware platform for the hardware based cryptography applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cryptography" title="cryptography">cryptography</a>, <a href="https://publications.waset.org/abstracts/search?q=circulant%20function" title=" circulant function"> circulant function</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20programmable%20gated%20array" title=" field programmable gated array"> field programmable gated array</a>, <a href="https://publications.waset.org/abstracts/search?q=hash%20value" title=" hash value"> hash value</a>, <a href="https://publications.waset.org/abstracts/search?q=spritz%20stream%20cipher" title=" spritz stream cipher"> spritz stream cipher</a> </p> <a href="https://publications.waset.org/abstracts/73756/improved-hash-value-based-stream-cipherusing-delayed-feedback-with-carry-shift-register" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73756.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9071</span> Data Stream Association Rule Mining with Cloud Computing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Suraj%20Aravind">B. Suraj Aravind</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20M.%20Krishna%20Prasad"> M. H. M. Krishna Prasad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There exist emerging applications of data streams that require association rule mining, such as network traffic monitoring, web click streams analysis, sensor data, data from satellites etc. Data streams typically arrive continuously in high speed with huge amount and changing data distribution. This raises new issues that need to be considered when developing association rule mining techniques for stream data. This paper proposes to introduce an improved data stream association rule mining algorithm by eliminating the limitation of resources. For this, the concept of cloud computing is used. Inclusion of this may lead to additional unknown problems which needs further research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20stream" title="data stream">data stream</a>, <a href="https://publications.waset.org/abstracts/search?q=association%20rule%20mining" title=" association rule mining"> association rule mining</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title=" cloud computing"> cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=frequent%20itemsets" title=" frequent itemsets"> frequent itemsets</a> </p> <a href="https://publications.waset.org/abstracts/10064/data-stream-association-rule-mining-with-cloud-computing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">501</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9070</span> Using Stable Isotopes and Hydrochemical Characteristics to Assess Stream Water Sources and Flow Paths: A Case Study of the Jonkershoek Catchment, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Retang%20A.%20Mokua">Retang A. Mokua</a>, <a href="https://publications.waset.org/abstracts/search?q=Julia%20Glenday"> Julia Glenday</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacobus%20M.%20Nel"> Jacobus M. Nel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding hydrological processes in mountain headwater catchments, such as the Jonkershoek Valley, is crucial for improving the predictive capability of hydrologic modeling in the Cape Fold Mountain region of South Africa, incorporating the influence of the Table Mountain Group fractured rock aquifers. Determining the contributions of various possible surface and subsurface flow pathways in such catchments has been a challenge due to the complex nature of the fractured rock geology, low ionic concentrations, high rainfall, and streamflow variability. The study aimed to describe the mechanisms of streamflow generation during two seasons (dry and wet). In this study, stable isotopes of water (18O and 2H), hydrochemical tracer electrical conductivity (EC), hydrometric data were used to assess the spatial and temporal variation in flow pathways and geographic sources of stream water. Stream water, groundwater, two shallow piezometers, and spring samples were routinely sampled at two adjacent headwater sub-catchments and analyzed for isotopic ratios during baseflow conditions between January 2018 and January 2019. From these results, no significance (p > 0.05) in seasonal variations in isotopic ratios were observed, the stream isotope signatures were consistent throughout the study period. However, significant seasonal and spatial variations in the EC were evident (p < 0.05). The findings suggest that, in the dry season, baseflow generation mechanisms driven by groundwater and interflow as discharge from perennial springs in these catchments are the primary contributors. The wet season flows were attributed to interflow and perennial and ephemeral springs. Furthermore, the observed seasonal variations in EC were indicative of a greater proportion of sub-surface water inputs. With these results, a conceptual model of streamflow generation processes for the two seasons was constructed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20conductivity" title="electrical conductivity">electrical conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonkershoek%20valley" title=" Jonkershoek valley"> Jonkershoek valley</a>, <a href="https://publications.waset.org/abstracts/search?q=stable%20isotopes" title=" stable isotopes"> stable isotopes</a>, <a href="https://publications.waset.org/abstracts/search?q=table%20mountain%20group" title=" table mountain group"> table mountain group</a> </p> <a href="https://publications.waset.org/abstracts/114550/using-stable-isotopes-and-hydrochemical-characteristics-to-assess-stream-water-sources-and-flow-paths-a-case-study-of-the-jonkershoek-catchment-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114550.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stream%20water&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stream%20water&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stream%20water&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stream%20water&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stream%20water&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stream%20water&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stream%20water&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stream%20water&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stream%20water&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stream%20water&amp;page=303">303</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stream%20water&amp;page=304">304</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stream%20water&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10