CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–13 of 13 results for author: <span class="mathjax">Putyra, K K</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/math" aria-role="search"> Searching in archive <strong>math</strong>. <a href="/search/?searchtype=author&query=Putyra%2C+K+K">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Putyra, K K"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Putyra%2C+K+K&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Putyra, K K"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.02977">arXiv:2305.02977</a> <span> [<a href="https://arxiv.org/pdf/2305.02977">pdf</a>, <a href="https://arxiv.org/format/2305.02977">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geometric Topology">math.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Algebra">math.QA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Representation Theory">math.RT</span> </div> </div> <p class="title is-5 mathjax"> On unification of colored annular sl(2) knot homology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/math?searchtype=author&query=Beliakova%2C+A">Anna Beliakova</a>, <a href="/search/math?searchtype=author&query=Hogancamp%2C+M">Matthew Hogancamp</a>, <a href="/search/math?searchtype=author&query=Putyra%2C+K+K">Krzysztof Karol Putyra</a>, <a href="/search/math?searchtype=author&query=Wehrli%2C+S+M">Stephan Martin Wehrli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.02977v1-abstract-short" style="display: inline;"> We show that the Khovanov and Cooper-Krushkal models for colored sl(2) homology are equivalent in the case of the unknot, when formulated in the quantum annular Bar-Natan category. Again for the unknot, these two theories are shown to be equivalent to a third colored homology theory, defined using the action of Jones-Wenzl projectors on the quantum annular homology of cables. The proof is given by… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.02977v1-abstract-full').style.display = 'inline'; document.getElementById('2305.02977v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.02977v1-abstract-full" style="display: none;"> We show that the Khovanov and Cooper-Krushkal models for colored sl(2) homology are equivalent in the case of the unknot, when formulated in the quantum annular Bar-Natan category. Again for the unknot, these two theories are shown to be equivalent to a third colored homology theory, defined using the action of Jones-Wenzl projectors on the quantum annular homology of cables. The proof is given by conceptualizing the properties of all three models into a Chebyshev system and by proving its uniqueness. In addition, we show that the classes of the Cooper-Hogancamp projectors in the quantum horizontal trace coincide with those of the Cooper-Krushkal projectors on the passing through strands. As an application, we compute the full quantum Hochschild homology of Khovanov's arc algebras. Finally, we state precise conjectures formalizing cabling operations and extending the above results to all knots. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.02977v1-abstract-full').style.display = 'none'; document.getElementById('2305.02977v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">47 pages, color figures (but can be safely printed black and white)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 57M27 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.00878">arXiv:2210.00878</a> <span> [<a href="https://arxiv.org/pdf/2210.00878">pdf</a>, <a href="https://arxiv.org/ps/2210.00878">ps</a>, <a href="https://arxiv.org/format/2210.00878">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geometric Topology">math.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Algebraic Topology">math.AT</span> </div> </div> <p class="title is-5 mathjax"> A proof of Dunfield-Gukov-Rasmussen Conjecture </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/math?searchtype=author&query=Beliakova%2C+A">Anna Beliakova</a>, <a href="/search/math?searchtype=author&query=Putyra%2C+K+K">Krzysztof K. Putyra</a>, <a href="/search/math?searchtype=author&query=Robert%2C+L">Louis-Hadrien Robert</a>, <a href="/search/math?searchtype=author&query=Wagner%2C+E">Emmanuel Wagner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.00878v2-abstract-short" style="display: inline;"> In 2005 Dunfield, Gukov and Rasmussen conjectured an existence of the spectral sequence from the reduced triply graded Khovanov-Rozansky homology of a knot to its knot Floer homology defined by Ozsv谩th and Szab贸. The main result of this paper is a proof of this conjecture. For this purpose, we construct a bigraded spectral sequence from the $\mathfrak{gl}_0$ homology constructed by the last two au… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.00878v2-abstract-full').style.display = 'inline'; document.getElementById('2210.00878v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.00878v2-abstract-full" style="display: none;"> In 2005 Dunfield, Gukov and Rasmussen conjectured an existence of the spectral sequence from the reduced triply graded Khovanov-Rozansky homology of a knot to its knot Floer homology defined by Ozsv谩th and Szab贸. The main result of this paper is a proof of this conjecture. For this purpose, we construct a bigraded spectral sequence from the $\mathfrak{gl}_0$ homology constructed by the last two authors to the knot Floer homology. Using the fact that the $\mathfrak{gl}_0$ homology comes equipped with a spectral sequence from the reduced triply graded homology, we obtain our main result. The first spectral sequence is of Bockstein type and comes from a subtle manipulation of coefficients. The main tools are quantum traces of foams and of singular Soergel bimodules and a $\mathbb Z$-valued cube of resolutions model for knot Floer homology originally constructed by Ozsv谩th and Szab贸 over the field of two elements. As an application, we deduce that the $\mathfrak{gl}_0$ homology as well as the reduced triply graded Khovanov-Rozansky one detect the unknot, the two trefoils, the figure eight knot and the cinquefoil. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.00878v2-abstract-full').style.display = 'none'; document.getElementById('2210.00878v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">62 pages. This is an improved version of arXiv:2112.02428; v2:65 pages, version accepted to JEMS</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 57K18; 18G40; 55U20 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.02428">arXiv:2112.02428</a> <span> </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geometric Topology">math.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Algebraic Topology">math.AT</span> </div> </div> <p class="title is-5 mathjax"> Algebraic versus geometric categorification of the~Alexander polynomial: a~spectral sequence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/math?searchtype=author&query=Putyra%2C+K+K">Krzysztof K Putyra</a>, <a href="/search/math?searchtype=author&query=Beliakova%2C+A">Anna Beliakova</a>, <a href="/search/math?searchtype=author&query=Robert%2C+L">Louis-Hadrien Robert</a>, <a href="/search/math?searchtype=author&query=Wagner%2C+E">Emmanuel Wagner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.02428v2-abstract-short" style="display: inline;"> We construct a bigraded spectral sequence from the gl(0)-homology to knot Floer homology. This spectral sequence is of Bockstein type and comes from a subtle manipulation of coefficients. The main tools are quantum traces of foams and of singular Soergel bimodules. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.02428v2-abstract-full" style="display: none;"> We construct a bigraded spectral sequence from the gl(0)-homology to knot Floer homology. This spectral sequence is of Bockstein type and comes from a subtle manipulation of coefficients. The main tools are quantum traces of foams and of singular Soergel bimodules. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.02428v2-abstract-full').style.display = 'none'; document.getElementById('2112.02428v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Replaced by arXiv:2210.00878</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 57K18 (Primary) 18G40; 55U20 (Secondary) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.12194">arXiv:1903.12194</a> <span> [<a href="https://arxiv.org/pdf/1903.12194">pdf</a>, <a href="https://arxiv.org/ps/1903.12194">ps</a>, <a href="https://arxiv.org/format/1903.12194">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Algebraic Topology">math.AT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Algebra">math.QA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Representation Theory">math.RT</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.2140/agt.2023.23.1303">10.2140/agt.2023.23.1303 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the functoriality of sl(2) tangle homology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/math?searchtype=author&query=Beliakova%2C+A">Anna Beliakova</a>, <a href="/search/math?searchtype=author&query=Hogancamp%2C+M">Matthew Hogancamp</a>, <a href="/search/math?searchtype=author&query=Putyra%2C+K+K">Krzysztof Karol Putyra</a>, <a href="/search/math?searchtype=author&query=Wehrli%2C+S+M">Stephan Martin Wehrli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.12194v2-abstract-short" style="display: inline;"> We construct an explicit equivalence between the (bi)category of gl(2) webs and foams and the Bar-Natan (bi)category of Temperley-Lieb diagrams and cobordisms. With this equivalence we can fix functoriality of every link homology theory that factors through the Bar-Natan category. To achieve this, we define web versions of arc algebras and their quasi-hereditary covers, which provide strictly func… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.12194v2-abstract-full').style.display = 'inline'; document.getElementById('1903.12194v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.12194v2-abstract-full" style="display: none;"> We construct an explicit equivalence between the (bi)category of gl(2) webs and foams and the Bar-Natan (bi)category of Temperley-Lieb diagrams and cobordisms. With this equivalence we can fix functoriality of every link homology theory that factors through the Bar-Natan category. To achieve this, we define web versions of arc algebras and their quasi-hereditary covers, which provide strictly functorial tangle homologies. Furthermore, we construct explicit isomorphisms between these algebras and the original ones based on Temperley-Lieb cup diagrams. The immediate application is a strictly functorial version of the Beliakova-Putyra-Wehrli quantization of the annular link homology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.12194v2-abstract-full').style.display = 'none'; document.getElementById('1903.12194v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">44 pages, color pictures (but printing in black and white is OK)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 57M27; 55N35 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Algebr. Geom. Topol. 23 (2023) 1303-1361 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1605.03523">arXiv:1605.03523</a> <span> [<a href="https://arxiv.org/pdf/1605.03523">pdf</a>, <a href="https://arxiv.org/ps/1605.03523">ps</a>, <a href="https://arxiv.org/format/1605.03523">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geometric Topology">math.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Category Theory">math.CT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Algebra">math.QA</span> </div> </div> <p class="title is-5 mathjax"> Quantum Link Homology via Trace Functor I </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/math?searchtype=author&query=Beliakova%2C+A">Anna Beliakova</a>, <a href="/search/math?searchtype=author&query=Putyra%2C+K+K">Krzysztof Karol Putyra</a>, <a href="/search/math?searchtype=author&query=Wehrli%2C+S+M">Stephan Martin Wehrli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1605.03523v2-abstract-short" style="display: inline;"> Motivated by topology, we develop a general theory of traces and shadows for an endobicategory, which is a~pair: bicategory $\mathbf{C}$ and endobifunctor $危\colon \mathbf C \to\mathbf C$. For a graded linear bicategory and a fixed invertible parameter $q$, we quantize this theory by using the endofunctor $危_q$ such that $危_q 伪:=q^{-掳伪}危伪$ for any 2-morphism $伪$ and coincides with $危$ otherwise.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.03523v2-abstract-full').style.display = 'inline'; document.getElementById('1605.03523v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1605.03523v2-abstract-full" style="display: none;"> Motivated by topology, we develop a general theory of traces and shadows for an endobicategory, which is a~pair: bicategory $\mathbf{C}$ and endobifunctor $危\colon \mathbf C \to\mathbf C$. For a graded linear bicategory and a fixed invertible parameter $q$, we quantize this theory by using the endofunctor $危_q$ such that $危_q 伪:=q^{-掳伪}危伪$ for any 2-morphism $伪$ and coincides with $危$ otherwise. Applying the quantized trace to the~bicategory of Chen-Khovanov bimodules we get a new triply graded link homology theory called quantum annular link homology. If $q=1$ we reproduce Asaeda-Przytycki-Sikora (APS) homology for links in a thickened annulus. We prove that our homology carries an action of $\mathcal U_q(\mathfrak{sl}_2)$, which intertwines the action of cobordisms. In particular, the~quantum annular homology of an $n$-cable admits an action of the braid group, which commutes with the quantum group action and factors through the Jones skein relation. This produces a nontrivial invariant for surfaces knotted in four dimensions. Moreover, a direct computation for torus links shows that the rank of quantum annular homology groups does depend on the quantum parameter $q$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.03523v2-abstract-full').style.display = 'none'; document.getElementById('1605.03523v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">A major revision of the previous version (functoriality of traces and shadows explained, construction of traces and shadows on (bi)categories of complexes, etc.); 85 pages, color figures (but can be safely printed black and white)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 57M27; 55N35; 16E40; 18D05; 18F30 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1601.00798">arXiv:1601.00798</a> <span> [<a href="https://arxiv.org/pdf/1601.00798">pdf</a>, <a href="https://arxiv.org/ps/1601.00798">ps</a>, <a href="https://arxiv.org/format/1601.00798">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Algebraic Topology">math.AT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geometric Topology">math.GT</span> </div> </div> <p class="title is-5 mathjax"> Knot invariants arising from homological operations on Khovanov homology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/math?searchtype=author&query=Putyra%2C+K+K">Krzysztof K. Putyra</a>, <a href="/search/math?searchtype=author&query=Shumakovitch%2C+A+N">Alexander N. Shumakovitch</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1601.00798v1-abstract-short" style="display: inline;"> We construct an algebra of non-trivial homological operations on Khovanov homology with coefficients in $\mathbb Z_2$ generated by two Bockstein operations. We use the unified Khovanov homology theory developed by the first author to lift this algebra to integral Khovanov homology. We conjecture that these two algebras are infinite and present evidence in support of our conjectures. Finally, we li… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.00798v1-abstract-full').style.display = 'inline'; document.getElementById('1601.00798v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1601.00798v1-abstract-full" style="display: none;"> We construct an algebra of non-trivial homological operations on Khovanov homology with coefficients in $\mathbb Z_2$ generated by two Bockstein operations. We use the unified Khovanov homology theory developed by the first author to lift this algebra to integral Khovanov homology. We conjecture that these two algebras are infinite and present evidence in support of our conjectures. Finally, we list examples of knots that have the same even and odd Khovanov homology, but different actions of these homological operations. This confirms that the unified theory is a finer knot invariant than the even and odd Khovanov homology combined. The case of reduced Khovanov homology is also considered. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.00798v1-abstract-full').style.display = 'none'; document.getElementById('1601.00798v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 57M25; 55S05; 18G60 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1501.05293">arXiv:1501.05293</a> <span> [<a href="https://arxiv.org/pdf/1501.05293">pdf</a>, <a href="https://arxiv.org/ps/1501.05293">ps</a>, <a href="https://arxiv.org/format/1501.05293">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geometric Topology">math.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Algebraic Topology">math.AT</span> </div> </div> <p class="title is-5 mathjax"> On a triply graded Khovanov homology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/math?searchtype=author&query=Putyra%2C+K+K">Krzysztof K. Putyra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1501.05293v1-abstract-short" style="display: inline;"> Cobordisms are naturally bigraded and we show that this grading extends to Khovanov homology, making it a triply graded theory. Although the new grading does not make the homology a stronger invariant, it can be used to show that odd Khovanov homology is multiplicative with respect to disjoint unions and connected sums of links; same results hold for the generalized Khovanov homology defined by th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.05293v1-abstract-full').style.display = 'inline'; document.getElementById('1501.05293v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1501.05293v1-abstract-full" style="display: none;"> Cobordisms are naturally bigraded and we show that this grading extends to Khovanov homology, making it a triply graded theory. Although the new grading does not make the homology a stronger invariant, it can be used to show that odd Khovanov homology is multiplicative with respect to disjoint unions and connected sums of links; same results hold for the generalized Khovanov homology defined by the author in his previous work. We also examine the module structure on both odd and even Khovanov homology, in particular computing the effect of sliding a basepoint through a crossing on the integral homology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.05293v1-abstract-full').style.display = 'none'; document.getElementById('1501.05293v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages. Some diagrams use colors, but they are readable when printed black and white</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 55N35; 57M27 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1411.5905">arXiv:1411.5905</a> <span> [<a href="https://arxiv.org/pdf/1411.5905">pdf</a>, <a href="https://arxiv.org/ps/1411.5905">ps</a>, <a href="https://arxiv.org/format/1411.5905">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geometric Topology">math.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Algebra">math.QA</span> </div> </div> <p class="title is-5 mathjax"> The degenerate distributive complex is degenerate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/math?searchtype=author&query=Przytycki%2C+J+H">Jozef H. Przytycki</a>, <a href="/search/math?searchtype=author&query=Putyra%2C+K+K">Krzysztof K. Putyra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1411.5905v3-abstract-short" style="display: inline;"> We prove that the degenerate part of the distributive homology of a multispindle is determined by the normalized homology. In particular, when the multispindle is a quandle $Q$, the degenerate homology of $Q$ is completely determined by the quandle homology of $Q$. For this case (and generally for two term homology of a spindle) we provide an explicit K眉nneth-type formula for the degenerate part.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.5905v3-abstract-full').style.display = 'inline'; document.getElementById('1411.5905v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1411.5905v3-abstract-full" style="display: none;"> We prove that the degenerate part of the distributive homology of a multispindle is determined by the normalized homology. In particular, when the multispindle is a quandle $Q$, the degenerate homology of $Q$ is completely determined by the quandle homology of $Q$. For this case (and generally for two term homology of a spindle) we provide an explicit K眉nneth-type formula for the degenerate part. This solves the mystery in algebraic knot theory of the meaning of the degenerate quandle homology, brought over 15 years ago when the homology theories were defined, and the degenerate part was observed to be non trivial. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.5905v3-abstract-full').style.display = 'none'; document.getElementById('1411.5905v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages. 2nd version: the proof of Lemma A.8 is simplified. 3rd version: a few typos corrected, some colors in pictures changed to darker</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 55N35; 18G60 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1407.5987">arXiv:1407.5987</a> <span> [<a href="https://arxiv.org/pdf/1407.5987">pdf</a>, <a href="https://arxiv.org/ps/1407.5987">ps</a>, <a href="https://arxiv.org/format/1407.5987">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geometric Topology">math.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Algebraic Topology">math.AT</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.2140/agt.2016.16.2021">10.2140/agt.2016.16.2021 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mirror links have dual odd and generalized Khovanov homology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/math?searchtype=author&query=Lubawski%2C+W">Wojciech Lubawski</a>, <a href="/search/math?searchtype=author&query=Putyra%2C+K+K">Krzysztof K. Putyra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1407.5987v1-abstract-short" style="display: inline;"> We show that the generalized Khovanov homology, defined by the second author in the framework of chronological cobordisms, admits a grading by the group $\mathbb{Z}\times\mathbb{Z}_2$, in which all homogeneous summands are isomorphic to the unified Khovanov homology defined over the ring $\mathbb{Z}_蟺:=\mathbb{Z}[蟺]/(蟺^2-1)$ (here, setting $蟺$ to $\pm 1$ results either in even or odd Khovanov homo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.5987v1-abstract-full').style.display = 'inline'; document.getElementById('1407.5987v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1407.5987v1-abstract-full" style="display: none;"> We show that the generalized Khovanov homology, defined by the second author in the framework of chronological cobordisms, admits a grading by the group $\mathbb{Z}\times\mathbb{Z}_2$, in which all homogeneous summands are isomorphic to the unified Khovanov homology defined over the ring $\mathbb{Z}_蟺:=\mathbb{Z}[蟺]/(蟺^2-1)$ (here, setting $蟺$ to $\pm 1$ results either in even or odd Khovanov homology). The generalized homology has $\Bbbk := \mathbb{Z}[X,Y,Z^{\pm 1}]/(X^2=Y^2=1)$ as coefficients, and the above implies that most of automorphisms of $\Bbbk$ fix the isomorphism class of the generalized homology regarded as $\Bbbk$-modules, so that the even and odd Khovanov homology are the only two specializations of the invariant. In particular, switching $X$ with $Y$ induces a derived isomorphism between the generalized Khovanov homology of a link $L$ with its dual version, i.e. the homology of the mirror image $L^!$, and we compute an explicit formula for this map. When specialized to integers it descends to a duality isomorphism for odd Khovanov homology, which was conjectured by A. Shumakovitch. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.5987v1-abstract-full').style.display = 'none'; document.getElementById('1407.5987v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 55N35; 57M27 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Algebr. Geom. Topol. 16 (2016) 2021-2044 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1312.4109">arXiv:1312.4109</a> <span> [<a href="https://arxiv.org/pdf/1312.4109">pdf</a>, <a href="https://arxiv.org/ps/1312.4109">ps</a>, <a href="https://arxiv.org/format/1312.4109">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Commutative Algebra">math.AC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Rings and Algebras">math.RA</span> </div> </div> <p class="title is-5 mathjax"> Separated presentations of modules over pullback rings </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/math?searchtype=author&query=Putyra%2C+K+K">Krzysztof K. Putyra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1312.4109v1-abstract-short" style="display: inline;"> We define pullback and separated presentations of modules over pullback rings, and, if the ring is a pullback of epimorphisms over a semisimple ring, an algorithm reducing such a presentation of a module to an $R$-diagram. The latter is the input for a classification algorithm of finitely generated modules over a pullback ring of two Dedekind domains. As an example we show how to obtain an $R$-dia… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.4109v1-abstract-full').style.display = 'inline'; document.getElementById('1312.4109v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1312.4109v1-abstract-full" style="display: none;"> We define pullback and separated presentations of modules over pullback rings, and, if the ring is a pullback of epimorphisms over a semisimple ring, an algorithm reducing such a presentation of a module to an $R$-diagram. The latter is the input for a classification algorithm of finitely generated modules over a pullback ring of two Dedekind domains. As an example we show how to obtain an $R$-diagram for homology of a chain complex of free modules over a $p$-pullback ring. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.4109v1-abstract-full').style.display = 'none'; document.getElementById('1312.4109v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 13C05; 13C13 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1310.1895">arXiv:1310.1895</a> <span> [<a href="https://arxiv.org/pdf/1310.1895">pdf</a>, <a href="https://arxiv.org/ps/1310.1895">ps</a>, <a href="https://arxiv.org/format/1310.1895">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geometric Topology">math.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Rings and Algebras">math.RA</span> </div> </div> <p class="title is-5 mathjax"> A 2-category of chronological cobordisms and odd Khovanov homology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/math?searchtype=author&query=Putyra%2C+K+K">Krzysztof K. Putyra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1310.1895v2-abstract-short" style="display: inline;"> We create a framework for odd Khovanov homology in the spirit of Bar-Natan's construction for the ordinary Khovanov homology. Namely, we express the cube of resolutions of a link diagram as a diagram in a certain 2-category of chronological cobordisms and show that it is 2-commutative: the composition of 2-morphisms along any 3-dimensional subcube is trivial. This allows us to create a chain compl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1310.1895v2-abstract-full').style.display = 'inline'; document.getElementById('1310.1895v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1310.1895v2-abstract-full" style="display: none;"> We create a framework for odd Khovanov homology in the spirit of Bar-Natan's construction for the ordinary Khovanov homology. Namely, we express the cube of resolutions of a link diagram as a diagram in a certain 2-category of chronological cobordisms and show that it is 2-commutative: the composition of 2-morphisms along any 3-dimensional subcube is trivial. This allows us to create a chain complex, whose homotopy type modulo certain relations is a link invariant. Both the original and the odd Khovanov homology can be recovered from this construction by applying certain strict 2-functors. We describe other possible choices of functors, including the one that covers both homology theories and another generalizing dotted cobordisms to the odd setting. Our construction works as well for tangles and is conjectured to be functorial up to sign with respect to tangle cobordisms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1310.1895v2-abstract-full').style.display = 'none'; document.getElementById('1310.1895v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 October, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">60 pages, 15 figures (PS-tricks). This is an extended version of arxiv:1004.0889, with a rewritten proof of invariance of the generalized complex. Changes in the second version: presentation of chronological cobordisms is better explained, functoriality w/r to tangle cobordisms is conjectured</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 55N35; 57M27; 17D99 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Banach Center Publ. 103:291-355, 2014 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1306.1506">arXiv:1306.1506</a> <span> [<a href="https://arxiv.org/pdf/1306.1506">pdf</a>, <a href="https://arxiv.org/ps/1306.1506">ps</a>, <a href="https://arxiv.org/format/1306.1506">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geometric Topology">math.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Algebra">math.QA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.4064/fm225-1-5">10.4064/fm225-1-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Torsion in one-term distributive homology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/math?searchtype=author&query=Crans%2C+A+S">Alissa S. Crans</a>, <a href="/search/math?searchtype=author&query=Przytycki%2C+J+H">J贸zef H. Przytycki</a>, <a href="/search/math?searchtype=author&query=Putyra%2C+K+K">Krzysztof K. Putyra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1306.1506v1-abstract-short" style="display: inline;"> The one-term distributive homology was introduced by J.H.Przytycki as an atomic replacement of rack and quandle homology, which was first introduced and developed by R.Fenn, C.Rourke and B.Sanderson, and J.S.Carter, S.Kamada and M.Saito. This homology was initially suspected to be torsion-free, but we show in this paper that the one-term homology of a finite spindle can have torsion. We carefully… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.1506v1-abstract-full').style.display = 'inline'; document.getElementById('1306.1506v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1306.1506v1-abstract-full" style="display: none;"> The one-term distributive homology was introduced by J.H.Przytycki as an atomic replacement of rack and quandle homology, which was first introduced and developed by R.Fenn, C.Rourke and B.Sanderson, and J.S.Carter, S.Kamada and M.Saito. This homology was initially suspected to be torsion-free, but we show in this paper that the one-term homology of a finite spindle can have torsion. We carefully analyze spindles of block decomposition of type (n,1) and introduce various techniques to compute their homology precisely. In addition, we show that any finite group can appear as the torsion subgroup of the first homology of some finite spindle. Finally, we show that if a shelf satisfies a certain, rather general, condition then the one-term homology is trivial. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.1506v1-abstract-full').style.display = 'none'; document.getElementById('1306.1506v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 2 PS-Tricks figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 55N35; 18G60 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Fundamenta Mathematicae 225 (2014) pp. 75-94 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1111.4772">arXiv:1111.4772</a> <span> [<a href="https://arxiv.org/pdf/1111.4772">pdf</a>, <a href="https://arxiv.org/ps/1111.4772">ps</a>, <a href="https://arxiv.org/format/1111.4772">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geometric Topology">math.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Rings and Algebras">math.RA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s40062-012-0012-5">10.1007/s40062-012-0012-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Homology of Distributive Lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/math?searchtype=author&query=Przytycki%2C+J+H">Jozef H. Przytycki</a>, <a href="/search/math?searchtype=author&query=Putyra%2C+K+K">Krzysztof K. Putyra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1111.4772v1-abstract-short" style="display: inline;"> We outline the theory of sets with distributive operations: multishelves and multispindles, with examples provided by semi-lattices, lattices and skew lattices. For every such a structure we define multi-term distributive homology and show some of its properties. The main result is a complete formula for the homology of a finite distributive lattice. We also indicate the answer for unital spindles… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1111.4772v1-abstract-full').style.display = 'inline'; document.getElementById('1111.4772v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1111.4772v1-abstract-full" style="display: none;"> We outline the theory of sets with distributive operations: multishelves and multispindles, with examples provided by semi-lattices, lattices and skew lattices. For every such a structure we define multi-term distributive homology and show some of its properties. The main result is a complete formula for the homology of a finite distributive lattice. We also indicate the answer for unital spindles and conjecture the general formula for semi-lattices and some skew lattices. Then we propose a generalization of a lattice as a set with a number of idempotent operations satisfying the absorption law. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1111.4772v1-abstract-full').style.display = 'none'; document.getElementById('1111.4772v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 3 tables, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Homotopy Relat. Struct., 8(1), April 2013, 35-65 </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>